OSDN Git Service

Merge tag 'mm-stable-2023-08-28-18-26' of git://git.kernel.org/pub/scm/linux/kernel...
[tomoyo/tomoyo-test1.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/api.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
64 #include <asm/uv/uv.h>
65 #include <asm/set_memory.h>
66 #include <asm/traps.h>
67 #include <asm/sev.h>
68
69 #include "cpu.h"
70
71 u32 elf_hwcap2 __read_mostly;
72
73 /* Number of siblings per CPU package */
74 int smp_num_siblings = 1;
75 EXPORT_SYMBOL(smp_num_siblings);
76
77 /* Last level cache ID of each logical CPU */
78 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
79
80 u16 get_llc_id(unsigned int cpu)
81 {
82         return per_cpu(cpu_llc_id, cpu);
83 }
84 EXPORT_SYMBOL_GPL(get_llc_id);
85
86 /* L2 cache ID of each logical CPU */
87 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
88
89 static struct ppin_info {
90         int     feature;
91         int     msr_ppin_ctl;
92         int     msr_ppin;
93 } ppin_info[] = {
94         [X86_VENDOR_INTEL] = {
95                 .feature = X86_FEATURE_INTEL_PPIN,
96                 .msr_ppin_ctl = MSR_PPIN_CTL,
97                 .msr_ppin = MSR_PPIN
98         },
99         [X86_VENDOR_AMD] = {
100                 .feature = X86_FEATURE_AMD_PPIN,
101                 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
102                 .msr_ppin = MSR_AMD_PPIN
103         },
104 };
105
106 static const struct x86_cpu_id ppin_cpuids[] = {
107         X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
108         X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
109
110         /* Legacy models without CPUID enumeration */
111         X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
112         X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
113         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
114         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
115         X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
116         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
117         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
118         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
119         X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
120         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
121         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
122
123         {}
124 };
125
126 static void ppin_init(struct cpuinfo_x86 *c)
127 {
128         const struct x86_cpu_id *id;
129         unsigned long long val;
130         struct ppin_info *info;
131
132         id = x86_match_cpu(ppin_cpuids);
133         if (!id)
134                 return;
135
136         /*
137          * Testing the presence of the MSR is not enough. Need to check
138          * that the PPIN_CTL allows reading of the PPIN.
139          */
140         info = (struct ppin_info *)id->driver_data;
141
142         if (rdmsrl_safe(info->msr_ppin_ctl, &val))
143                 goto clear_ppin;
144
145         if ((val & 3UL) == 1UL) {
146                 /* PPIN locked in disabled mode */
147                 goto clear_ppin;
148         }
149
150         /* If PPIN is disabled, try to enable */
151         if (!(val & 2UL)) {
152                 wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
153                 rdmsrl_safe(info->msr_ppin_ctl, &val);
154         }
155
156         /* Is the enable bit set? */
157         if (val & 2UL) {
158                 c->ppin = __rdmsr(info->msr_ppin);
159                 set_cpu_cap(c, info->feature);
160                 return;
161         }
162
163 clear_ppin:
164         clear_cpu_cap(c, info->feature);
165 }
166
167 static void default_init(struct cpuinfo_x86 *c)
168 {
169 #ifdef CONFIG_X86_64
170         cpu_detect_cache_sizes(c);
171 #else
172         /* Not much we can do here... */
173         /* Check if at least it has cpuid */
174         if (c->cpuid_level == -1) {
175                 /* No cpuid. It must be an ancient CPU */
176                 if (c->x86 == 4)
177                         strcpy(c->x86_model_id, "486");
178                 else if (c->x86 == 3)
179                         strcpy(c->x86_model_id, "386");
180         }
181 #endif
182 }
183
184 static const struct cpu_dev default_cpu = {
185         .c_init         = default_init,
186         .c_vendor       = "Unknown",
187         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
188 };
189
190 static const struct cpu_dev *this_cpu = &default_cpu;
191
192 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
193 #ifdef CONFIG_X86_64
194         /*
195          * We need valid kernel segments for data and code in long mode too
196          * IRET will check the segment types  kkeil 2000/10/28
197          * Also sysret mandates a special GDT layout
198          *
199          * TLS descriptors are currently at a different place compared to i386.
200          * Hopefully nobody expects them at a fixed place (Wine?)
201          */
202         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
203         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
204         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
205         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
206         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
207         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
208 #else
209         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
210         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
211         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
212         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
213         /*
214          * Segments used for calling PnP BIOS have byte granularity.
215          * They code segments and data segments have fixed 64k limits,
216          * the transfer segment sizes are set at run time.
217          */
218         /* 32-bit code */
219         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
220         /* 16-bit code */
221         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
222         /* 16-bit data */
223         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
224         /* 16-bit data */
225         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
226         /* 16-bit data */
227         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
228         /*
229          * The APM segments have byte granularity and their bases
230          * are set at run time.  All have 64k limits.
231          */
232         /* 32-bit code */
233         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
234         /* 16-bit code */
235         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
236         /* data */
237         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
238
239         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
240         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
241 #endif
242 } };
243 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
244
245 #ifdef CONFIG_X86_64
246 static int __init x86_nopcid_setup(char *s)
247 {
248         /* nopcid doesn't accept parameters */
249         if (s)
250                 return -EINVAL;
251
252         /* do not emit a message if the feature is not present */
253         if (!boot_cpu_has(X86_FEATURE_PCID))
254                 return 0;
255
256         setup_clear_cpu_cap(X86_FEATURE_PCID);
257         pr_info("nopcid: PCID feature disabled\n");
258         return 0;
259 }
260 early_param("nopcid", x86_nopcid_setup);
261 #endif
262
263 static int __init x86_noinvpcid_setup(char *s)
264 {
265         /* noinvpcid doesn't accept parameters */
266         if (s)
267                 return -EINVAL;
268
269         /* do not emit a message if the feature is not present */
270         if (!boot_cpu_has(X86_FEATURE_INVPCID))
271                 return 0;
272
273         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
274         pr_info("noinvpcid: INVPCID feature disabled\n");
275         return 0;
276 }
277 early_param("noinvpcid", x86_noinvpcid_setup);
278
279 #ifdef CONFIG_X86_32
280 static int cachesize_override = -1;
281 static int disable_x86_serial_nr = 1;
282
283 static int __init cachesize_setup(char *str)
284 {
285         get_option(&str, &cachesize_override);
286         return 1;
287 }
288 __setup("cachesize=", cachesize_setup);
289
290 /* Standard macro to see if a specific flag is changeable */
291 static inline int flag_is_changeable_p(u32 flag)
292 {
293         u32 f1, f2;
294
295         /*
296          * Cyrix and IDT cpus allow disabling of CPUID
297          * so the code below may return different results
298          * when it is executed before and after enabling
299          * the CPUID. Add "volatile" to not allow gcc to
300          * optimize the subsequent calls to this function.
301          */
302         asm volatile ("pushfl           \n\t"
303                       "pushfl           \n\t"
304                       "popl %0          \n\t"
305                       "movl %0, %1      \n\t"
306                       "xorl %2, %0      \n\t"
307                       "pushl %0         \n\t"
308                       "popfl            \n\t"
309                       "pushfl           \n\t"
310                       "popl %0          \n\t"
311                       "popfl            \n\t"
312
313                       : "=&r" (f1), "=&r" (f2)
314                       : "ir" (flag));
315
316         return ((f1^f2) & flag) != 0;
317 }
318
319 /* Probe for the CPUID instruction */
320 int have_cpuid_p(void)
321 {
322         return flag_is_changeable_p(X86_EFLAGS_ID);
323 }
324
325 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
326 {
327         unsigned long lo, hi;
328
329         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
330                 return;
331
332         /* Disable processor serial number: */
333
334         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
335         lo |= 0x200000;
336         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
337
338         pr_notice("CPU serial number disabled.\n");
339         clear_cpu_cap(c, X86_FEATURE_PN);
340
341         /* Disabling the serial number may affect the cpuid level */
342         c->cpuid_level = cpuid_eax(0);
343 }
344
345 static int __init x86_serial_nr_setup(char *s)
346 {
347         disable_x86_serial_nr = 0;
348         return 1;
349 }
350 __setup("serialnumber", x86_serial_nr_setup);
351 #else
352 static inline int flag_is_changeable_p(u32 flag)
353 {
354         return 1;
355 }
356 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
357 {
358 }
359 #endif
360
361 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
362 {
363         if (cpu_has(c, X86_FEATURE_SMEP))
364                 cr4_set_bits(X86_CR4_SMEP);
365 }
366
367 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
368 {
369         unsigned long eflags = native_save_fl();
370
371         /* This should have been cleared long ago */
372         BUG_ON(eflags & X86_EFLAGS_AC);
373
374         if (cpu_has(c, X86_FEATURE_SMAP))
375                 cr4_set_bits(X86_CR4_SMAP);
376 }
377
378 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
379 {
380         /* Check the boot processor, plus build option for UMIP. */
381         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
382                 goto out;
383
384         /* Check the current processor's cpuid bits. */
385         if (!cpu_has(c, X86_FEATURE_UMIP))
386                 goto out;
387
388         cr4_set_bits(X86_CR4_UMIP);
389
390         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
391
392         return;
393
394 out:
395         /*
396          * Make sure UMIP is disabled in case it was enabled in a
397          * previous boot (e.g., via kexec).
398          */
399         cr4_clear_bits(X86_CR4_UMIP);
400 }
401
402 /* These bits should not change their value after CPU init is finished. */
403 static const unsigned long cr4_pinned_mask =
404         X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
405         X86_CR4_FSGSBASE | X86_CR4_CET;
406 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
407 static unsigned long cr4_pinned_bits __ro_after_init;
408
409 void native_write_cr0(unsigned long val)
410 {
411         unsigned long bits_missing = 0;
412
413 set_register:
414         asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
415
416         if (static_branch_likely(&cr_pinning)) {
417                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
418                         bits_missing = X86_CR0_WP;
419                         val |= bits_missing;
420                         goto set_register;
421                 }
422                 /* Warn after we've set the missing bits. */
423                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
424         }
425 }
426 EXPORT_SYMBOL(native_write_cr0);
427
428 void __no_profile native_write_cr4(unsigned long val)
429 {
430         unsigned long bits_changed = 0;
431
432 set_register:
433         asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
434
435         if (static_branch_likely(&cr_pinning)) {
436                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
437                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
438                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
439                         goto set_register;
440                 }
441                 /* Warn after we've corrected the changed bits. */
442                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
443                           bits_changed);
444         }
445 }
446 #if IS_MODULE(CONFIG_LKDTM)
447 EXPORT_SYMBOL_GPL(native_write_cr4);
448 #endif
449
450 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
451 {
452         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
453
454         lockdep_assert_irqs_disabled();
455
456         newval = (cr4 & ~clear) | set;
457         if (newval != cr4) {
458                 this_cpu_write(cpu_tlbstate.cr4, newval);
459                 __write_cr4(newval);
460         }
461 }
462 EXPORT_SYMBOL(cr4_update_irqsoff);
463
464 /* Read the CR4 shadow. */
465 unsigned long cr4_read_shadow(void)
466 {
467         return this_cpu_read(cpu_tlbstate.cr4);
468 }
469 EXPORT_SYMBOL_GPL(cr4_read_shadow);
470
471 void cr4_init(void)
472 {
473         unsigned long cr4 = __read_cr4();
474
475         if (boot_cpu_has(X86_FEATURE_PCID))
476                 cr4 |= X86_CR4_PCIDE;
477         if (static_branch_likely(&cr_pinning))
478                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
479
480         __write_cr4(cr4);
481
482         /* Initialize cr4 shadow for this CPU. */
483         this_cpu_write(cpu_tlbstate.cr4, cr4);
484 }
485
486 /*
487  * Once CPU feature detection is finished (and boot params have been
488  * parsed), record any of the sensitive CR bits that are set, and
489  * enable CR pinning.
490  */
491 static void __init setup_cr_pinning(void)
492 {
493         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
494         static_key_enable(&cr_pinning.key);
495 }
496
497 static __init int x86_nofsgsbase_setup(char *arg)
498 {
499         /* Require an exact match without trailing characters. */
500         if (strlen(arg))
501                 return 0;
502
503         /* Do not emit a message if the feature is not present. */
504         if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
505                 return 1;
506
507         setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
508         pr_info("FSGSBASE disabled via kernel command line\n");
509         return 1;
510 }
511 __setup("nofsgsbase", x86_nofsgsbase_setup);
512
513 /*
514  * Protection Keys are not available in 32-bit mode.
515  */
516 static bool pku_disabled;
517
518 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
519 {
520         if (c == &boot_cpu_data) {
521                 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
522                         return;
523                 /*
524                  * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
525                  * bit to be set.  Enforce it.
526                  */
527                 setup_force_cpu_cap(X86_FEATURE_OSPKE);
528
529         } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
530                 return;
531         }
532
533         cr4_set_bits(X86_CR4_PKE);
534         /* Load the default PKRU value */
535         pkru_write_default();
536 }
537
538 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
539 static __init int setup_disable_pku(char *arg)
540 {
541         /*
542          * Do not clear the X86_FEATURE_PKU bit.  All of the
543          * runtime checks are against OSPKE so clearing the
544          * bit does nothing.
545          *
546          * This way, we will see "pku" in cpuinfo, but not
547          * "ospke", which is exactly what we want.  It shows
548          * that the CPU has PKU, but the OS has not enabled it.
549          * This happens to be exactly how a system would look
550          * if we disabled the config option.
551          */
552         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
553         pku_disabled = true;
554         return 1;
555 }
556 __setup("nopku", setup_disable_pku);
557 #endif
558
559 #ifdef CONFIG_X86_KERNEL_IBT
560
561 __noendbr u64 ibt_save(bool disable)
562 {
563         u64 msr = 0;
564
565         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
566                 rdmsrl(MSR_IA32_S_CET, msr);
567                 if (disable)
568                         wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
569         }
570
571         return msr;
572 }
573
574 __noendbr void ibt_restore(u64 save)
575 {
576         u64 msr;
577
578         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
579                 rdmsrl(MSR_IA32_S_CET, msr);
580                 msr &= ~CET_ENDBR_EN;
581                 msr |= (save & CET_ENDBR_EN);
582                 wrmsrl(MSR_IA32_S_CET, msr);
583         }
584 }
585
586 #endif
587
588 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
589 {
590         u64 msr = CET_ENDBR_EN;
591
592         if (!HAS_KERNEL_IBT ||
593             !cpu_feature_enabled(X86_FEATURE_IBT))
594                 return;
595
596         wrmsrl(MSR_IA32_S_CET, msr);
597         cr4_set_bits(X86_CR4_CET);
598
599         if (!ibt_selftest()) {
600                 pr_err("IBT selftest: Failed!\n");
601                 wrmsrl(MSR_IA32_S_CET, 0);
602                 setup_clear_cpu_cap(X86_FEATURE_IBT);
603                 return;
604         }
605 }
606
607 __noendbr void cet_disable(void)
608 {
609         if (cpu_feature_enabled(X86_FEATURE_IBT))
610                 wrmsrl(MSR_IA32_S_CET, 0);
611 }
612
613 /*
614  * Some CPU features depend on higher CPUID levels, which may not always
615  * be available due to CPUID level capping or broken virtualization
616  * software.  Add those features to this table to auto-disable them.
617  */
618 struct cpuid_dependent_feature {
619         u32 feature;
620         u32 level;
621 };
622
623 static const struct cpuid_dependent_feature
624 cpuid_dependent_features[] = {
625         { X86_FEATURE_MWAIT,            0x00000005 },
626         { X86_FEATURE_DCA,              0x00000009 },
627         { X86_FEATURE_XSAVE,            0x0000000d },
628         { 0, 0 }
629 };
630
631 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
632 {
633         const struct cpuid_dependent_feature *df;
634
635         for (df = cpuid_dependent_features; df->feature; df++) {
636
637                 if (!cpu_has(c, df->feature))
638                         continue;
639                 /*
640                  * Note: cpuid_level is set to -1 if unavailable, but
641                  * extended_extended_level is set to 0 if unavailable
642                  * and the legitimate extended levels are all negative
643                  * when signed; hence the weird messing around with
644                  * signs here...
645                  */
646                 if (!((s32)df->level < 0 ?
647                      (u32)df->level > (u32)c->extended_cpuid_level :
648                      (s32)df->level > (s32)c->cpuid_level))
649                         continue;
650
651                 clear_cpu_cap(c, df->feature);
652                 if (!warn)
653                         continue;
654
655                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
656                         x86_cap_flag(df->feature), df->level);
657         }
658 }
659
660 /*
661  * Naming convention should be: <Name> [(<Codename>)]
662  * This table only is used unless init_<vendor>() below doesn't set it;
663  * in particular, if CPUID levels 0x80000002..4 are supported, this
664  * isn't used
665  */
666
667 /* Look up CPU names by table lookup. */
668 static const char *table_lookup_model(struct cpuinfo_x86 *c)
669 {
670 #ifdef CONFIG_X86_32
671         const struct legacy_cpu_model_info *info;
672
673         if (c->x86_model >= 16)
674                 return NULL;    /* Range check */
675
676         if (!this_cpu)
677                 return NULL;
678
679         info = this_cpu->legacy_models;
680
681         while (info->family) {
682                 if (info->family == c->x86)
683                         return info->model_names[c->x86_model];
684                 info++;
685         }
686 #endif
687         return NULL;            /* Not found */
688 }
689
690 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
691 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
692 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
693
694 #ifdef CONFIG_X86_32
695 /* The 32-bit entry code needs to find cpu_entry_area. */
696 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
697 #endif
698
699 /* Load the original GDT from the per-cpu structure */
700 void load_direct_gdt(int cpu)
701 {
702         struct desc_ptr gdt_descr;
703
704         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
705         gdt_descr.size = GDT_SIZE - 1;
706         load_gdt(&gdt_descr);
707 }
708 EXPORT_SYMBOL_GPL(load_direct_gdt);
709
710 /* Load a fixmap remapping of the per-cpu GDT */
711 void load_fixmap_gdt(int cpu)
712 {
713         struct desc_ptr gdt_descr;
714
715         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
716         gdt_descr.size = GDT_SIZE - 1;
717         load_gdt(&gdt_descr);
718 }
719 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
720
721 /**
722  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
723  * @cpu:        The CPU number for which this is invoked
724  *
725  * Invoked during early boot to switch from early GDT and early per CPU to
726  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
727  * switch is implicit by loading the direct GDT. On 64bit this requires
728  * to update GSBASE.
729  */
730 void __init switch_gdt_and_percpu_base(int cpu)
731 {
732         load_direct_gdt(cpu);
733
734 #ifdef CONFIG_X86_64
735         /*
736          * No need to load %gs. It is already correct.
737          *
738          * Writing %gs on 64bit would zero GSBASE which would make any per
739          * CPU operation up to the point of the wrmsrl() fault.
740          *
741          * Set GSBASE to the new offset. Until the wrmsrl() happens the
742          * early mapping is still valid. That means the GSBASE update will
743          * lose any prior per CPU data which was not copied over in
744          * setup_per_cpu_areas().
745          *
746          * This works even with stackprotector enabled because the
747          * per CPU stack canary is 0 in both per CPU areas.
748          */
749         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
750 #else
751         /*
752          * %fs is already set to __KERNEL_PERCPU, but after switching GDT
753          * it is required to load FS again so that the 'hidden' part is
754          * updated from the new GDT. Up to this point the early per CPU
755          * translation is active. Any content of the early per CPU data
756          * which was not copied over in setup_per_cpu_areas() is lost.
757          */
758         loadsegment(fs, __KERNEL_PERCPU);
759 #endif
760 }
761
762 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
763
764 static void get_model_name(struct cpuinfo_x86 *c)
765 {
766         unsigned int *v;
767         char *p, *q, *s;
768
769         if (c->extended_cpuid_level < 0x80000004)
770                 return;
771
772         v = (unsigned int *)c->x86_model_id;
773         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
774         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
775         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
776         c->x86_model_id[48] = 0;
777
778         /* Trim whitespace */
779         p = q = s = &c->x86_model_id[0];
780
781         while (*p == ' ')
782                 p++;
783
784         while (*p) {
785                 /* Note the last non-whitespace index */
786                 if (!isspace(*p))
787                         s = q;
788
789                 *q++ = *p++;
790         }
791
792         *(s + 1) = '\0';
793 }
794
795 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
796 {
797         unsigned int eax, ebx, ecx, edx;
798
799         c->x86_max_cores = 1;
800         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
801                 return;
802
803         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
804         if (eax & 0x1f)
805                 c->x86_max_cores = (eax >> 26) + 1;
806 }
807
808 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
809 {
810         unsigned int n, dummy, ebx, ecx, edx, l2size;
811
812         n = c->extended_cpuid_level;
813
814         if (n >= 0x80000005) {
815                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
816                 c->x86_cache_size = (ecx>>24) + (edx>>24);
817 #ifdef CONFIG_X86_64
818                 /* On K8 L1 TLB is inclusive, so don't count it */
819                 c->x86_tlbsize = 0;
820 #endif
821         }
822
823         if (n < 0x80000006)     /* Some chips just has a large L1. */
824                 return;
825
826         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
827         l2size = ecx >> 16;
828
829 #ifdef CONFIG_X86_64
830         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
831 #else
832         /* do processor-specific cache resizing */
833         if (this_cpu->legacy_cache_size)
834                 l2size = this_cpu->legacy_cache_size(c, l2size);
835
836         /* Allow user to override all this if necessary. */
837         if (cachesize_override != -1)
838                 l2size = cachesize_override;
839
840         if (l2size == 0)
841                 return;         /* Again, no L2 cache is possible */
842 #endif
843
844         c->x86_cache_size = l2size;
845 }
846
847 u16 __read_mostly tlb_lli_4k[NR_INFO];
848 u16 __read_mostly tlb_lli_2m[NR_INFO];
849 u16 __read_mostly tlb_lli_4m[NR_INFO];
850 u16 __read_mostly tlb_lld_4k[NR_INFO];
851 u16 __read_mostly tlb_lld_2m[NR_INFO];
852 u16 __read_mostly tlb_lld_4m[NR_INFO];
853 u16 __read_mostly tlb_lld_1g[NR_INFO];
854
855 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
856 {
857         if (this_cpu->c_detect_tlb)
858                 this_cpu->c_detect_tlb(c);
859
860         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
861                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
862                 tlb_lli_4m[ENTRIES]);
863
864         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
865                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
866                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
867 }
868
869 int detect_ht_early(struct cpuinfo_x86 *c)
870 {
871 #ifdef CONFIG_SMP
872         u32 eax, ebx, ecx, edx;
873
874         if (!cpu_has(c, X86_FEATURE_HT))
875                 return -1;
876
877         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
878                 return -1;
879
880         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
881                 return -1;
882
883         cpuid(1, &eax, &ebx, &ecx, &edx);
884
885         smp_num_siblings = (ebx & 0xff0000) >> 16;
886         if (smp_num_siblings == 1)
887                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
888 #endif
889         return 0;
890 }
891
892 void detect_ht(struct cpuinfo_x86 *c)
893 {
894 #ifdef CONFIG_SMP
895         int index_msb, core_bits;
896
897         if (detect_ht_early(c) < 0)
898                 return;
899
900         index_msb = get_count_order(smp_num_siblings);
901         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
902
903         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
904
905         index_msb = get_count_order(smp_num_siblings);
906
907         core_bits = get_count_order(c->x86_max_cores);
908
909         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
910                                        ((1 << core_bits) - 1);
911 #endif
912 }
913
914 static void get_cpu_vendor(struct cpuinfo_x86 *c)
915 {
916         char *v = c->x86_vendor_id;
917         int i;
918
919         for (i = 0; i < X86_VENDOR_NUM; i++) {
920                 if (!cpu_devs[i])
921                         break;
922
923                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
924                     (cpu_devs[i]->c_ident[1] &&
925                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
926
927                         this_cpu = cpu_devs[i];
928                         c->x86_vendor = this_cpu->c_x86_vendor;
929                         return;
930                 }
931         }
932
933         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
934                     "CPU: Your system may be unstable.\n", v);
935
936         c->x86_vendor = X86_VENDOR_UNKNOWN;
937         this_cpu = &default_cpu;
938 }
939
940 void cpu_detect(struct cpuinfo_x86 *c)
941 {
942         /* Get vendor name */
943         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
944               (unsigned int *)&c->x86_vendor_id[0],
945               (unsigned int *)&c->x86_vendor_id[8],
946               (unsigned int *)&c->x86_vendor_id[4]);
947
948         c->x86 = 4;
949         /* Intel-defined flags: level 0x00000001 */
950         if (c->cpuid_level >= 0x00000001) {
951                 u32 junk, tfms, cap0, misc;
952
953                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
954                 c->x86          = x86_family(tfms);
955                 c->x86_model    = x86_model(tfms);
956                 c->x86_stepping = x86_stepping(tfms);
957
958                 if (cap0 & (1<<19)) {
959                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
960                         c->x86_cache_alignment = c->x86_clflush_size;
961                 }
962         }
963 }
964
965 static void apply_forced_caps(struct cpuinfo_x86 *c)
966 {
967         int i;
968
969         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
970                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
971                 c->x86_capability[i] |= cpu_caps_set[i];
972         }
973 }
974
975 static void init_speculation_control(struct cpuinfo_x86 *c)
976 {
977         /*
978          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
979          * and they also have a different bit for STIBP support. Also,
980          * a hypervisor might have set the individual AMD bits even on
981          * Intel CPUs, for finer-grained selection of what's available.
982          */
983         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
984                 set_cpu_cap(c, X86_FEATURE_IBRS);
985                 set_cpu_cap(c, X86_FEATURE_IBPB);
986                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
987         }
988
989         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
990                 set_cpu_cap(c, X86_FEATURE_STIBP);
991
992         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
993             cpu_has(c, X86_FEATURE_VIRT_SSBD))
994                 set_cpu_cap(c, X86_FEATURE_SSBD);
995
996         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
997                 set_cpu_cap(c, X86_FEATURE_IBRS);
998                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
999         }
1000
1001         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1002                 set_cpu_cap(c, X86_FEATURE_IBPB);
1003
1004         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1005                 set_cpu_cap(c, X86_FEATURE_STIBP);
1006                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1007         }
1008
1009         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1010                 set_cpu_cap(c, X86_FEATURE_SSBD);
1011                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1012                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1013         }
1014 }
1015
1016 void get_cpu_cap(struct cpuinfo_x86 *c)
1017 {
1018         u32 eax, ebx, ecx, edx;
1019
1020         /* Intel-defined flags: level 0x00000001 */
1021         if (c->cpuid_level >= 0x00000001) {
1022                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1023
1024                 c->x86_capability[CPUID_1_ECX] = ecx;
1025                 c->x86_capability[CPUID_1_EDX] = edx;
1026         }
1027
1028         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1029         if (c->cpuid_level >= 0x00000006)
1030                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1031
1032         /* Additional Intel-defined flags: level 0x00000007 */
1033         if (c->cpuid_level >= 0x00000007) {
1034                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1035                 c->x86_capability[CPUID_7_0_EBX] = ebx;
1036                 c->x86_capability[CPUID_7_ECX] = ecx;
1037                 c->x86_capability[CPUID_7_EDX] = edx;
1038
1039                 /* Check valid sub-leaf index before accessing it */
1040                 if (eax >= 1) {
1041                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1042                         c->x86_capability[CPUID_7_1_EAX] = eax;
1043                 }
1044         }
1045
1046         /* Extended state features: level 0x0000000d */
1047         if (c->cpuid_level >= 0x0000000d) {
1048                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1049
1050                 c->x86_capability[CPUID_D_1_EAX] = eax;
1051         }
1052
1053         /* AMD-defined flags: level 0x80000001 */
1054         eax = cpuid_eax(0x80000000);
1055         c->extended_cpuid_level = eax;
1056
1057         if ((eax & 0xffff0000) == 0x80000000) {
1058                 if (eax >= 0x80000001) {
1059                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1060
1061                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1062                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
1063                 }
1064         }
1065
1066         if (c->extended_cpuid_level >= 0x80000007) {
1067                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1068
1069                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1070                 c->x86_power = edx;
1071         }
1072
1073         if (c->extended_cpuid_level >= 0x80000008) {
1074                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1075                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1076         }
1077
1078         if (c->extended_cpuid_level >= 0x8000000a)
1079                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1080
1081         if (c->extended_cpuid_level >= 0x8000001f)
1082                 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1083
1084         if (c->extended_cpuid_level >= 0x80000021)
1085                 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1086
1087         init_scattered_cpuid_features(c);
1088         init_speculation_control(c);
1089
1090         /*
1091          * Clear/Set all flags overridden by options, after probe.
1092          * This needs to happen each time we re-probe, which may happen
1093          * several times during CPU initialization.
1094          */
1095         apply_forced_caps(c);
1096 }
1097
1098 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1099 {
1100         u32 eax, ebx, ecx, edx;
1101
1102         if (c->extended_cpuid_level >= 0x80000008) {
1103                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1104
1105                 c->x86_virt_bits = (eax >> 8) & 0xff;
1106                 c->x86_phys_bits = eax & 0xff;
1107         }
1108 #ifdef CONFIG_X86_32
1109         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
1110                 c->x86_phys_bits = 36;
1111 #endif
1112         c->x86_cache_bits = c->x86_phys_bits;
1113 }
1114
1115 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1116 {
1117 #ifdef CONFIG_X86_32
1118         int i;
1119
1120         /*
1121          * First of all, decide if this is a 486 or higher
1122          * It's a 486 if we can modify the AC flag
1123          */
1124         if (flag_is_changeable_p(X86_EFLAGS_AC))
1125                 c->x86 = 4;
1126         else
1127                 c->x86 = 3;
1128
1129         for (i = 0; i < X86_VENDOR_NUM; i++)
1130                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1131                         c->x86_vendor_id[0] = 0;
1132                         cpu_devs[i]->c_identify(c);
1133                         if (c->x86_vendor_id[0]) {
1134                                 get_cpu_vendor(c);
1135                                 break;
1136                         }
1137                 }
1138 #endif
1139 }
1140
1141 #define NO_SPECULATION          BIT(0)
1142 #define NO_MELTDOWN             BIT(1)
1143 #define NO_SSB                  BIT(2)
1144 #define NO_L1TF                 BIT(3)
1145 #define NO_MDS                  BIT(4)
1146 #define MSBDS_ONLY              BIT(5)
1147 #define NO_SWAPGS               BIT(6)
1148 #define NO_ITLB_MULTIHIT        BIT(7)
1149 #define NO_SPECTRE_V2           BIT(8)
1150 #define NO_MMIO                 BIT(9)
1151 #define NO_EIBRS_PBRSB          BIT(10)
1152
1153 #define VULNWL(vendor, family, model, whitelist)        \
1154         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1155
1156 #define VULNWL_INTEL(model, whitelist)          \
1157         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1158
1159 #define VULNWL_AMD(family, whitelist)           \
1160         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1161
1162 #define VULNWL_HYGON(family, whitelist)         \
1163         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1164
1165 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1166         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1167         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1168         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1169         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1170         VULNWL(VORTEX,  5, X86_MODEL_ANY,       NO_SPECULATION),
1171         VULNWL(VORTEX,  6, X86_MODEL_ANY,       NO_SPECULATION),
1172
1173         /* Intel Family 6 */
1174         VULNWL_INTEL(TIGERLAKE,                 NO_MMIO),
1175         VULNWL_INTEL(TIGERLAKE_L,               NO_MMIO),
1176         VULNWL_INTEL(ALDERLAKE,                 NO_MMIO),
1177         VULNWL_INTEL(ALDERLAKE_L,               NO_MMIO),
1178
1179         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1180         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1181         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1182         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1183         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1184
1185         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1186         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1187         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1188         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1189         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1190         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1191
1192         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1193
1194         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1195         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1196
1197         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1198         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1199         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1200
1201         /*
1202          * Technically, swapgs isn't serializing on AMD (despite it previously
1203          * being documented as such in the APM).  But according to AMD, %gs is
1204          * updated non-speculatively, and the issuing of %gs-relative memory
1205          * operands will be blocked until the %gs update completes, which is
1206          * good enough for our purposes.
1207          */
1208
1209         VULNWL_INTEL(ATOM_TREMONT,              NO_EIBRS_PBRSB),
1210         VULNWL_INTEL(ATOM_TREMONT_L,            NO_EIBRS_PBRSB),
1211         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1212
1213         /* AMD Family 0xf - 0x12 */
1214         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1215         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1216         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1217         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1218
1219         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1220         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1221         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1222
1223         /* Zhaoxin Family 7 */
1224         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1225         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1226         {}
1227 };
1228
1229 #define VULNBL(vendor, family, model, blacklist)        \
1230         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1231
1232 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1233         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1234                                             INTEL_FAM6_##model, steppings, \
1235                                             X86_FEATURE_ANY, issues)
1236
1237 #define VULNBL_AMD(family, blacklist)           \
1238         VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1239
1240 #define VULNBL_HYGON(family, blacklist)         \
1241         VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1242
1243 #define SRBDS           BIT(0)
1244 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1245 #define MMIO            BIT(1)
1246 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1247 #define MMIO_SBDS       BIT(2)
1248 /* CPU is affected by RETbleed, speculating where you would not expect it */
1249 #define RETBLEED        BIT(3)
1250 /* CPU is affected by SMT (cross-thread) return predictions */
1251 #define SMT_RSB         BIT(4)
1252 /* CPU is affected by SRSO */
1253 #define SRSO            BIT(5)
1254 /* CPU is affected by GDS */
1255 #define GDS             BIT(6)
1256
1257 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1258         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1259         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1260         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1261         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1262         VULNBL_INTEL_STEPPINGS(HASWELL_X,       X86_STEPPING_ANY,               MMIO),
1263         VULNBL_INTEL_STEPPINGS(BROADWELL_D,     X86_STEPPING_ANY,               MMIO),
1264         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1265         VULNBL_INTEL_STEPPINGS(BROADWELL_X,     X86_STEPPING_ANY,               MMIO),
1266         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1267         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               SRBDS | MMIO | RETBLEED),
1268         VULNBL_INTEL_STEPPINGS(SKYLAKE_X,       X86_STEPPING_ANY,               MMIO | RETBLEED | GDS),
1269         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               SRBDS | MMIO | RETBLEED),
1270         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPING_ANY,               SRBDS | MMIO | RETBLEED | GDS),
1271         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPING_ANY,               SRBDS | MMIO | RETBLEED | GDS),
1272         VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,    X86_STEPPING_ANY,               RETBLEED),
1273         VULNBL_INTEL_STEPPINGS(ICELAKE_L,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1274         VULNBL_INTEL_STEPPINGS(ICELAKE_D,       X86_STEPPING_ANY,               MMIO | GDS),
1275         VULNBL_INTEL_STEPPINGS(ICELAKE_X,       X86_STEPPING_ANY,               MMIO | GDS),
1276         VULNBL_INTEL_STEPPINGS(COMETLAKE,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1277         VULNBL_INTEL_STEPPINGS(COMETLAKE_L,     X86_STEPPINGS(0x0, 0x0),        MMIO | RETBLEED),
1278         VULNBL_INTEL_STEPPINGS(COMETLAKE_L,     X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1279         VULNBL_INTEL_STEPPINGS(TIGERLAKE_L,     X86_STEPPING_ANY,               GDS),
1280         VULNBL_INTEL_STEPPINGS(TIGERLAKE,       X86_STEPPING_ANY,               GDS),
1281         VULNBL_INTEL_STEPPINGS(LAKEFIELD,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED),
1282         VULNBL_INTEL_STEPPINGS(ROCKETLAKE,      X86_STEPPING_ANY,               MMIO | RETBLEED | GDS),
1283         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,    X86_STEPPING_ANY,               MMIO | MMIO_SBDS),
1284         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,  X86_STEPPING_ANY,               MMIO),
1285         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,  X86_STEPPING_ANY,               MMIO | MMIO_SBDS),
1286
1287         VULNBL_AMD(0x15, RETBLEED),
1288         VULNBL_AMD(0x16, RETBLEED),
1289         VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1290         VULNBL_HYGON(0x18, RETBLEED | SMT_RSB),
1291         VULNBL_AMD(0x19, SRSO),
1292         {}
1293 };
1294
1295 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1296 {
1297         const struct x86_cpu_id *m = x86_match_cpu(table);
1298
1299         return m && !!(m->driver_data & which);
1300 }
1301
1302 u64 x86_read_arch_cap_msr(void)
1303 {
1304         u64 ia32_cap = 0;
1305
1306         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1307                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1308
1309         return ia32_cap;
1310 }
1311
1312 static bool arch_cap_mmio_immune(u64 ia32_cap)
1313 {
1314         return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1315                 ia32_cap & ARCH_CAP_PSDP_NO &&
1316                 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1317 }
1318
1319 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1320 {
1321         u64 ia32_cap = x86_read_arch_cap_msr();
1322
1323         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1324         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1325             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1326                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1327
1328         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1329                 return;
1330
1331         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1332
1333         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1334                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1335
1336         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1337             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1338            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1339                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1340
1341         /*
1342          * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1343          * flag and protect from vendor-specific bugs via the whitelist.
1344          */
1345         if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1346                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1347                 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1348                     !(ia32_cap & ARCH_CAP_PBRSB_NO))
1349                         setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1350         }
1351
1352         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1353             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1354                 setup_force_cpu_bug(X86_BUG_MDS);
1355                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1356                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1357         }
1358
1359         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1360                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1361
1362         /*
1363          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1364          *      - TSX is supported or
1365          *      - TSX_CTRL is present
1366          *
1367          * TSX_CTRL check is needed for cases when TSX could be disabled before
1368          * the kernel boot e.g. kexec.
1369          * TSX_CTRL check alone is not sufficient for cases when the microcode
1370          * update is not present or running as guest that don't get TSX_CTRL.
1371          */
1372         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1373             (cpu_has(c, X86_FEATURE_RTM) ||
1374              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1375                 setup_force_cpu_bug(X86_BUG_TAA);
1376
1377         /*
1378          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1379          * in the vulnerability blacklist.
1380          *
1381          * Some of the implications and mitigation of Shared Buffers Data
1382          * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1383          * SRBDS.
1384          */
1385         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1386              cpu_has(c, X86_FEATURE_RDSEED)) &&
1387             cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1388                     setup_force_cpu_bug(X86_BUG_SRBDS);
1389
1390         /*
1391          * Processor MMIO Stale Data bug enumeration
1392          *
1393          * Affected CPU list is generally enough to enumerate the vulnerability,
1394          * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1395          * not want the guest to enumerate the bug.
1396          *
1397          * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1398          * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1399          */
1400         if (!arch_cap_mmio_immune(ia32_cap)) {
1401                 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1402                         setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1403                 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1404                         setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1405         }
1406
1407         if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1408                 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1409                         setup_force_cpu_bug(X86_BUG_RETBLEED);
1410         }
1411
1412         if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1413                 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1414
1415         if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1416                 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1417                         setup_force_cpu_bug(X86_BUG_SRSO);
1418         }
1419
1420         /*
1421          * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1422          * an affected processor, the VMM may have disabled the use of GATHER by
1423          * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1424          * which means that AVX will be disabled.
1425          */
1426         if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) &&
1427             boot_cpu_has(X86_FEATURE_AVX))
1428                 setup_force_cpu_bug(X86_BUG_GDS);
1429
1430         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1431                 return;
1432
1433         /* Rogue Data Cache Load? No! */
1434         if (ia32_cap & ARCH_CAP_RDCL_NO)
1435                 return;
1436
1437         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1438
1439         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1440                 return;
1441
1442         setup_force_cpu_bug(X86_BUG_L1TF);
1443 }
1444
1445 /*
1446  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1447  * unfortunately, that's not true in practice because of early VIA
1448  * chips and (more importantly) broken virtualizers that are not easy
1449  * to detect. In the latter case it doesn't even *fail* reliably, so
1450  * probing for it doesn't even work. Disable it completely on 32-bit
1451  * unless we can find a reliable way to detect all the broken cases.
1452  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1453  */
1454 static void detect_nopl(void)
1455 {
1456 #ifdef CONFIG_X86_32
1457         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1458 #else
1459         setup_force_cpu_cap(X86_FEATURE_NOPL);
1460 #endif
1461 }
1462
1463 /*
1464  * We parse cpu parameters early because fpu__init_system() is executed
1465  * before parse_early_param().
1466  */
1467 static void __init cpu_parse_early_param(void)
1468 {
1469         char arg[128];
1470         char *argptr = arg, *opt;
1471         int arglen, taint = 0;
1472
1473 #ifdef CONFIG_X86_32
1474         if (cmdline_find_option_bool(boot_command_line, "no387"))
1475 #ifdef CONFIG_MATH_EMULATION
1476                 setup_clear_cpu_cap(X86_FEATURE_FPU);
1477 #else
1478                 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1479 #endif
1480
1481         if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1482                 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1483 #endif
1484
1485         if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1486                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1487
1488         if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1489                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1490
1491         if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1492                 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1493
1494         arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1495         if (arglen <= 0)
1496                 return;
1497
1498         pr_info("Clearing CPUID bits:");
1499
1500         while (argptr) {
1501                 bool found __maybe_unused = false;
1502                 unsigned int bit;
1503
1504                 opt = strsep(&argptr, ",");
1505
1506                 /*
1507                  * Handle naked numbers first for feature flags which don't
1508                  * have names.
1509                  */
1510                 if (!kstrtouint(opt, 10, &bit)) {
1511                         if (bit < NCAPINTS * 32) {
1512
1513                                 /* empty-string, i.e., ""-defined feature flags */
1514                                 if (!x86_cap_flags[bit])
1515                                         pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1516                                 else
1517                                         pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1518
1519                                 setup_clear_cpu_cap(bit);
1520                                 taint++;
1521                         }
1522                         /*
1523                          * The assumption is that there are no feature names with only
1524                          * numbers in the name thus go to the next argument.
1525                          */
1526                         continue;
1527                 }
1528
1529                 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1530                         if (!x86_cap_flag(bit))
1531                                 continue;
1532
1533                         if (strcmp(x86_cap_flag(bit), opt))
1534                                 continue;
1535
1536                         pr_cont(" %s", opt);
1537                         setup_clear_cpu_cap(bit);
1538                         taint++;
1539                         found = true;
1540                         break;
1541                 }
1542
1543                 if (!found)
1544                         pr_cont(" (unknown: %s)", opt);
1545         }
1546         pr_cont("\n");
1547
1548         if (taint)
1549                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1550 }
1551
1552 /*
1553  * Do minimum CPU detection early.
1554  * Fields really needed: vendor, cpuid_level, family, model, mask,
1555  * cache alignment.
1556  * The others are not touched to avoid unwanted side effects.
1557  *
1558  * WARNING: this function is only called on the boot CPU.  Don't add code
1559  * here that is supposed to run on all CPUs.
1560  */
1561 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1562 {
1563 #ifdef CONFIG_X86_64
1564         c->x86_clflush_size = 64;
1565         c->x86_phys_bits = 36;
1566         c->x86_virt_bits = 48;
1567 #else
1568         c->x86_clflush_size = 32;
1569         c->x86_phys_bits = 32;
1570         c->x86_virt_bits = 32;
1571 #endif
1572         c->x86_cache_alignment = c->x86_clflush_size;
1573
1574         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1575         c->extended_cpuid_level = 0;
1576
1577         if (!have_cpuid_p())
1578                 identify_cpu_without_cpuid(c);
1579
1580         /* cyrix could have cpuid enabled via c_identify()*/
1581         if (have_cpuid_p()) {
1582                 cpu_detect(c);
1583                 get_cpu_vendor(c);
1584                 get_cpu_cap(c);
1585                 get_cpu_address_sizes(c);
1586                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1587                 cpu_parse_early_param();
1588
1589                 if (this_cpu->c_early_init)
1590                         this_cpu->c_early_init(c);
1591
1592                 c->cpu_index = 0;
1593                 filter_cpuid_features(c, false);
1594
1595                 if (this_cpu->c_bsp_init)
1596                         this_cpu->c_bsp_init(c);
1597         } else {
1598                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1599         }
1600
1601         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1602
1603         cpu_set_bug_bits(c);
1604
1605         sld_setup(c);
1606
1607 #ifdef CONFIG_X86_32
1608         /*
1609          * Regardless of whether PCID is enumerated, the SDM says
1610          * that it can't be enabled in 32-bit mode.
1611          */
1612         setup_clear_cpu_cap(X86_FEATURE_PCID);
1613 #endif
1614
1615         /*
1616          * Later in the boot process pgtable_l5_enabled() relies on
1617          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1618          * enabled by this point we need to clear the feature bit to avoid
1619          * false-positives at the later stage.
1620          *
1621          * pgtable_l5_enabled() can be false here for several reasons:
1622          *  - 5-level paging is disabled compile-time;
1623          *  - it's 32-bit kernel;
1624          *  - machine doesn't support 5-level paging;
1625          *  - user specified 'no5lvl' in kernel command line.
1626          */
1627         if (!pgtable_l5_enabled())
1628                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1629
1630         detect_nopl();
1631 }
1632
1633 void __init early_cpu_init(void)
1634 {
1635         const struct cpu_dev *const *cdev;
1636         int count = 0;
1637
1638 #ifdef CONFIG_PROCESSOR_SELECT
1639         pr_info("KERNEL supported cpus:\n");
1640 #endif
1641
1642         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1643                 const struct cpu_dev *cpudev = *cdev;
1644
1645                 if (count >= X86_VENDOR_NUM)
1646                         break;
1647                 cpu_devs[count] = cpudev;
1648                 count++;
1649
1650 #ifdef CONFIG_PROCESSOR_SELECT
1651                 {
1652                         unsigned int j;
1653
1654                         for (j = 0; j < 2; j++) {
1655                                 if (!cpudev->c_ident[j])
1656                                         continue;
1657                                 pr_info("  %s %s\n", cpudev->c_vendor,
1658                                         cpudev->c_ident[j]);
1659                         }
1660                 }
1661 #endif
1662         }
1663         early_identify_cpu(&boot_cpu_data);
1664 }
1665
1666 static bool detect_null_seg_behavior(void)
1667 {
1668         /*
1669          * Empirically, writing zero to a segment selector on AMD does
1670          * not clear the base, whereas writing zero to a segment
1671          * selector on Intel does clear the base.  Intel's behavior
1672          * allows slightly faster context switches in the common case
1673          * where GS is unused by the prev and next threads.
1674          *
1675          * Since neither vendor documents this anywhere that I can see,
1676          * detect it directly instead of hard-coding the choice by
1677          * vendor.
1678          *
1679          * I've designated AMD's behavior as the "bug" because it's
1680          * counterintuitive and less friendly.
1681          */
1682
1683         unsigned long old_base, tmp;
1684         rdmsrl(MSR_FS_BASE, old_base);
1685         wrmsrl(MSR_FS_BASE, 1);
1686         loadsegment(fs, 0);
1687         rdmsrl(MSR_FS_BASE, tmp);
1688         wrmsrl(MSR_FS_BASE, old_base);
1689         return tmp == 0;
1690 }
1691
1692 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1693 {
1694         /* BUG_NULL_SEG is only relevant with 64bit userspace */
1695         if (!IS_ENABLED(CONFIG_X86_64))
1696                 return;
1697
1698         if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1699                 return;
1700
1701         /*
1702          * CPUID bit above wasn't set. If this kernel is still running
1703          * as a HV guest, then the HV has decided not to advertize
1704          * that CPUID bit for whatever reason.  For example, one
1705          * member of the migration pool might be vulnerable.  Which
1706          * means, the bug is present: set the BUG flag and return.
1707          */
1708         if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1709                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1710                 return;
1711         }
1712
1713         /*
1714          * Zen2 CPUs also have this behaviour, but no CPUID bit.
1715          * 0x18 is the respective family for Hygon.
1716          */
1717         if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1718             detect_null_seg_behavior())
1719                 return;
1720
1721         /* All the remaining ones are affected */
1722         set_cpu_bug(c, X86_BUG_NULL_SEG);
1723 }
1724
1725 static void generic_identify(struct cpuinfo_x86 *c)
1726 {
1727         c->extended_cpuid_level = 0;
1728
1729         if (!have_cpuid_p())
1730                 identify_cpu_without_cpuid(c);
1731
1732         /* cyrix could have cpuid enabled via c_identify()*/
1733         if (!have_cpuid_p())
1734                 return;
1735
1736         cpu_detect(c);
1737
1738         get_cpu_vendor(c);
1739
1740         get_cpu_cap(c);
1741
1742         get_cpu_address_sizes(c);
1743
1744         if (c->cpuid_level >= 0x00000001) {
1745                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1746 #ifdef CONFIG_X86_32
1747 # ifdef CONFIG_SMP
1748                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1749 # else
1750                 c->apicid = c->initial_apicid;
1751 # endif
1752 #endif
1753                 c->phys_proc_id = c->initial_apicid;
1754         }
1755
1756         get_model_name(c); /* Default name */
1757
1758         /*
1759          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1760          * systems that run Linux at CPL > 0 may or may not have the
1761          * issue, but, even if they have the issue, there's absolutely
1762          * nothing we can do about it because we can't use the real IRET
1763          * instruction.
1764          *
1765          * NB: For the time being, only 32-bit kernels support
1766          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1767          * whether to apply espfix using paravirt hooks.  If any
1768          * non-paravirt system ever shows up that does *not* have the
1769          * ESPFIX issue, we can change this.
1770          */
1771 #ifdef CONFIG_X86_32
1772         set_cpu_bug(c, X86_BUG_ESPFIX);
1773 #endif
1774 }
1775
1776 /*
1777  * Validate that ACPI/mptables have the same information about the
1778  * effective APIC id and update the package map.
1779  */
1780 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1781 {
1782 #ifdef CONFIG_SMP
1783         unsigned int apicid, cpu = smp_processor_id();
1784
1785         apicid = apic->cpu_present_to_apicid(cpu);
1786
1787         if (apicid != c->apicid) {
1788                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1789                        cpu, apicid, c->initial_apicid);
1790         }
1791         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1792         BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1793 #else
1794         c->logical_proc_id = 0;
1795 #endif
1796 }
1797
1798 /*
1799  * This does the hard work of actually picking apart the CPU stuff...
1800  */
1801 static void identify_cpu(struct cpuinfo_x86 *c)
1802 {
1803         int i;
1804
1805         c->loops_per_jiffy = loops_per_jiffy;
1806         c->x86_cache_size = 0;
1807         c->x86_vendor = X86_VENDOR_UNKNOWN;
1808         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1809         c->x86_vendor_id[0] = '\0'; /* Unset */
1810         c->x86_model_id[0] = '\0';  /* Unset */
1811         c->x86_max_cores = 1;
1812         c->x86_coreid_bits = 0;
1813         c->cu_id = 0xff;
1814 #ifdef CONFIG_X86_64
1815         c->x86_clflush_size = 64;
1816         c->x86_phys_bits = 36;
1817         c->x86_virt_bits = 48;
1818 #else
1819         c->cpuid_level = -1;    /* CPUID not detected */
1820         c->x86_clflush_size = 32;
1821         c->x86_phys_bits = 32;
1822         c->x86_virt_bits = 32;
1823 #endif
1824         c->x86_cache_alignment = c->x86_clflush_size;
1825         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1826 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1827         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1828 #endif
1829
1830         generic_identify(c);
1831
1832         if (this_cpu->c_identify)
1833                 this_cpu->c_identify(c);
1834
1835         /* Clear/Set all flags overridden by options, after probe */
1836         apply_forced_caps(c);
1837
1838 #ifdef CONFIG_X86_64
1839         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1840 #endif
1841
1842         /*
1843          * Vendor-specific initialization.  In this section we
1844          * canonicalize the feature flags, meaning if there are
1845          * features a certain CPU supports which CPUID doesn't
1846          * tell us, CPUID claiming incorrect flags, or other bugs,
1847          * we handle them here.
1848          *
1849          * At the end of this section, c->x86_capability better
1850          * indicate the features this CPU genuinely supports!
1851          */
1852         if (this_cpu->c_init)
1853                 this_cpu->c_init(c);
1854
1855         /* Disable the PN if appropriate */
1856         squash_the_stupid_serial_number(c);
1857
1858         /* Set up SMEP/SMAP/UMIP */
1859         setup_smep(c);
1860         setup_smap(c);
1861         setup_umip(c);
1862
1863         /* Enable FSGSBASE instructions if available. */
1864         if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1865                 cr4_set_bits(X86_CR4_FSGSBASE);
1866                 elf_hwcap2 |= HWCAP2_FSGSBASE;
1867         }
1868
1869         /*
1870          * The vendor-specific functions might have changed features.
1871          * Now we do "generic changes."
1872          */
1873
1874         /* Filter out anything that depends on CPUID levels we don't have */
1875         filter_cpuid_features(c, true);
1876
1877         /* If the model name is still unset, do table lookup. */
1878         if (!c->x86_model_id[0]) {
1879                 const char *p;
1880                 p = table_lookup_model(c);
1881                 if (p)
1882                         strcpy(c->x86_model_id, p);
1883                 else
1884                         /* Last resort... */
1885                         sprintf(c->x86_model_id, "%02x/%02x",
1886                                 c->x86, c->x86_model);
1887         }
1888
1889 #ifdef CONFIG_X86_64
1890         detect_ht(c);
1891 #endif
1892
1893         x86_init_rdrand(c);
1894         setup_pku(c);
1895         setup_cet(c);
1896
1897         /*
1898          * Clear/Set all flags overridden by options, need do it
1899          * before following smp all cpus cap AND.
1900          */
1901         apply_forced_caps(c);
1902
1903         /*
1904          * On SMP, boot_cpu_data holds the common feature set between
1905          * all CPUs; so make sure that we indicate which features are
1906          * common between the CPUs.  The first time this routine gets
1907          * executed, c == &boot_cpu_data.
1908          */
1909         if (c != &boot_cpu_data) {
1910                 /* AND the already accumulated flags with these */
1911                 for (i = 0; i < NCAPINTS; i++)
1912                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1913
1914                 /* OR, i.e. replicate the bug flags */
1915                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1916                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1917         }
1918
1919         ppin_init(c);
1920
1921         /* Init Machine Check Exception if available. */
1922         mcheck_cpu_init(c);
1923
1924         select_idle_routine(c);
1925
1926 #ifdef CONFIG_NUMA
1927         numa_add_cpu(smp_processor_id());
1928 #endif
1929 }
1930
1931 /*
1932  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1933  * on 32-bit kernels:
1934  */
1935 #ifdef CONFIG_X86_32
1936 void enable_sep_cpu(void)
1937 {
1938         struct tss_struct *tss;
1939         int cpu;
1940
1941         if (!boot_cpu_has(X86_FEATURE_SEP))
1942                 return;
1943
1944         cpu = get_cpu();
1945         tss = &per_cpu(cpu_tss_rw, cpu);
1946
1947         /*
1948          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1949          * see the big comment in struct x86_hw_tss's definition.
1950          */
1951
1952         tss->x86_tss.ss1 = __KERNEL_CS;
1953         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1954         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1955         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1956
1957         put_cpu();
1958 }
1959 #endif
1960
1961 void __init identify_boot_cpu(void)
1962 {
1963         identify_cpu(&boot_cpu_data);
1964         if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1965                 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1966 #ifdef CONFIG_X86_32
1967         enable_sep_cpu();
1968 #endif
1969         cpu_detect_tlb(&boot_cpu_data);
1970         setup_cr_pinning();
1971
1972         tsx_init();
1973         lkgs_init();
1974 }
1975
1976 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1977 {
1978         BUG_ON(c == &boot_cpu_data);
1979         identify_cpu(c);
1980 #ifdef CONFIG_X86_32
1981         enable_sep_cpu();
1982 #endif
1983         validate_apic_and_package_id(c);
1984         x86_spec_ctrl_setup_ap();
1985         update_srbds_msr();
1986         if (boot_cpu_has_bug(X86_BUG_GDS))
1987                 update_gds_msr();
1988
1989         tsx_ap_init();
1990 }
1991
1992 void print_cpu_info(struct cpuinfo_x86 *c)
1993 {
1994         const char *vendor = NULL;
1995
1996         if (c->x86_vendor < X86_VENDOR_NUM) {
1997                 vendor = this_cpu->c_vendor;
1998         } else {
1999                 if (c->cpuid_level >= 0)
2000                         vendor = c->x86_vendor_id;
2001         }
2002
2003         if (vendor && !strstr(c->x86_model_id, vendor))
2004                 pr_cont("%s ", vendor);
2005
2006         if (c->x86_model_id[0])
2007                 pr_cont("%s", c->x86_model_id);
2008         else
2009                 pr_cont("%d86", c->x86);
2010
2011         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2012
2013         if (c->x86_stepping || c->cpuid_level >= 0)
2014                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2015         else
2016                 pr_cont(")\n");
2017 }
2018
2019 /*
2020  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
2021  * function prevents it from becoming an environment variable for init.
2022  */
2023 static __init int setup_clearcpuid(char *arg)
2024 {
2025         return 1;
2026 }
2027 __setup("clearcpuid=", setup_clearcpuid);
2028
2029 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2030         .current_task   = &init_task,
2031         .preempt_count  = INIT_PREEMPT_COUNT,
2032         .top_of_stack   = TOP_OF_INIT_STACK,
2033 };
2034 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2035
2036 #ifdef CONFIG_X86_64
2037 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2038                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2039 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2040
2041 static void wrmsrl_cstar(unsigned long val)
2042 {
2043         /*
2044          * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2045          * is so far ignored by the CPU, but raises a #VE trap in a TDX
2046          * guest. Avoid the pointless write on all Intel CPUs.
2047          */
2048         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2049                 wrmsrl(MSR_CSTAR, val);
2050 }
2051
2052 /* May not be marked __init: used by software suspend */
2053 void syscall_init(void)
2054 {
2055         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2056         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2057
2058 #ifdef CONFIG_IA32_EMULATION
2059         wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2060         /*
2061          * This only works on Intel CPUs.
2062          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2063          * This does not cause SYSENTER to jump to the wrong location, because
2064          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2065          */
2066         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2067         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2068                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2069         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2070 #else
2071         wrmsrl_cstar((unsigned long)ignore_sysret);
2072         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2073         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2074         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2075 #endif
2076
2077         /*
2078          * Flags to clear on syscall; clear as much as possible
2079          * to minimize user space-kernel interference.
2080          */
2081         wrmsrl(MSR_SYSCALL_MASK,
2082                X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2083                X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2084                X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2085                X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2086                X86_EFLAGS_AC|X86_EFLAGS_ID);
2087 }
2088
2089 #else   /* CONFIG_X86_64 */
2090
2091 #ifdef CONFIG_STACKPROTECTOR
2092 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2093 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2094 #endif
2095
2096 #endif  /* CONFIG_X86_64 */
2097
2098 /*
2099  * Clear all 6 debug registers:
2100  */
2101 static void clear_all_debug_regs(void)
2102 {
2103         int i;
2104
2105         for (i = 0; i < 8; i++) {
2106                 /* Ignore db4, db5 */
2107                 if ((i == 4) || (i == 5))
2108                         continue;
2109
2110                 set_debugreg(0, i);
2111         }
2112 }
2113
2114 #ifdef CONFIG_KGDB
2115 /*
2116  * Restore debug regs if using kgdbwait and you have a kernel debugger
2117  * connection established.
2118  */
2119 static void dbg_restore_debug_regs(void)
2120 {
2121         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2122                 arch_kgdb_ops.correct_hw_break();
2123 }
2124 #else /* ! CONFIG_KGDB */
2125 #define dbg_restore_debug_regs()
2126 #endif /* ! CONFIG_KGDB */
2127
2128 static inline void setup_getcpu(int cpu)
2129 {
2130         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2131         struct desc_struct d = { };
2132
2133         if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2134                 wrmsr(MSR_TSC_AUX, cpudata, 0);
2135
2136         /* Store CPU and node number in limit. */
2137         d.limit0 = cpudata;
2138         d.limit1 = cpudata >> 16;
2139
2140         d.type = 5;             /* RO data, expand down, accessed */
2141         d.dpl = 3;              /* Visible to user code */
2142         d.s = 1;                /* Not a system segment */
2143         d.p = 1;                /* Present */
2144         d.d = 1;                /* 32-bit */
2145
2146         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2147 }
2148
2149 #ifdef CONFIG_X86_64
2150 static inline void ucode_cpu_init(int cpu) { }
2151
2152 static inline void tss_setup_ist(struct tss_struct *tss)
2153 {
2154         /* Set up the per-CPU TSS IST stacks */
2155         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2156         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2157         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2158         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2159         /* Only mapped when SEV-ES is active */
2160         tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2161 }
2162
2163 #else /* CONFIG_X86_64 */
2164
2165 static inline void ucode_cpu_init(int cpu)
2166 {
2167         show_ucode_info_early();
2168 }
2169
2170 static inline void tss_setup_ist(struct tss_struct *tss) { }
2171
2172 #endif /* !CONFIG_X86_64 */
2173
2174 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2175 {
2176         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2177
2178 #ifdef CONFIG_X86_IOPL_IOPERM
2179         tss->io_bitmap.prev_max = 0;
2180         tss->io_bitmap.prev_sequence = 0;
2181         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2182         /*
2183          * Invalidate the extra array entry past the end of the all
2184          * permission bitmap as required by the hardware.
2185          */
2186         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2187 #endif
2188 }
2189
2190 /*
2191  * Setup everything needed to handle exceptions from the IDT, including the IST
2192  * exceptions which use paranoid_entry().
2193  */
2194 void cpu_init_exception_handling(void)
2195 {
2196         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2197         int cpu = raw_smp_processor_id();
2198
2199         /* paranoid_entry() gets the CPU number from the GDT */
2200         setup_getcpu(cpu);
2201
2202         /* IST vectors need TSS to be set up. */
2203         tss_setup_ist(tss);
2204         tss_setup_io_bitmap(tss);
2205         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2206
2207         load_TR_desc();
2208
2209         /* GHCB needs to be setup to handle #VC. */
2210         setup_ghcb();
2211
2212         /* Finally load the IDT */
2213         load_current_idt();
2214 }
2215
2216 /*
2217  * cpu_init() initializes state that is per-CPU. Some data is already
2218  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2219  * reload it nevertheless, this function acts as a 'CPU state barrier',
2220  * nothing should get across.
2221  */
2222 void cpu_init(void)
2223 {
2224         struct task_struct *cur = current;
2225         int cpu = raw_smp_processor_id();
2226
2227         ucode_cpu_init(cpu);
2228
2229 #ifdef CONFIG_NUMA
2230         if (this_cpu_read(numa_node) == 0 &&
2231             early_cpu_to_node(cpu) != NUMA_NO_NODE)
2232                 set_numa_node(early_cpu_to_node(cpu));
2233 #endif
2234         pr_debug("Initializing CPU#%d\n", cpu);
2235
2236         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2237             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2238                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2239
2240         if (IS_ENABLED(CONFIG_X86_64)) {
2241                 loadsegment(fs, 0);
2242                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2243                 syscall_init();
2244
2245                 wrmsrl(MSR_FS_BASE, 0);
2246                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2247                 barrier();
2248
2249                 x2apic_setup();
2250         }
2251
2252         mmgrab(&init_mm);
2253         cur->active_mm = &init_mm;
2254         BUG_ON(cur->mm);
2255         initialize_tlbstate_and_flush();
2256         enter_lazy_tlb(&init_mm, cur);
2257
2258         /*
2259          * sp0 points to the entry trampoline stack regardless of what task
2260          * is running.
2261          */
2262         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2263
2264         load_mm_ldt(&init_mm);
2265
2266         clear_all_debug_regs();
2267         dbg_restore_debug_regs();
2268
2269         doublefault_init_cpu_tss();
2270
2271         if (is_uv_system())
2272                 uv_cpu_init();
2273
2274         load_fixmap_gdt(cpu);
2275 }
2276
2277 #ifdef CONFIG_MICROCODE_LATE_LOADING
2278 /**
2279  * store_cpu_caps() - Store a snapshot of CPU capabilities
2280  * @curr_info: Pointer where to store it
2281  *
2282  * Returns: None
2283  */
2284 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2285 {
2286         /* Reload CPUID max function as it might've changed. */
2287         curr_info->cpuid_level = cpuid_eax(0);
2288
2289         /* Copy all capability leafs and pick up the synthetic ones. */
2290         memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2291                sizeof(curr_info->x86_capability));
2292
2293         /* Get the hardware CPUID leafs */
2294         get_cpu_cap(curr_info);
2295 }
2296
2297 /**
2298  * microcode_check() - Check if any CPU capabilities changed after an update.
2299  * @prev_info:  CPU capabilities stored before an update.
2300  *
2301  * The microcode loader calls this upon late microcode load to recheck features,
2302  * only when microcode has been updated. Caller holds and CPU hotplug lock.
2303  *
2304  * Return: None
2305  */
2306 void microcode_check(struct cpuinfo_x86 *prev_info)
2307 {
2308         struct cpuinfo_x86 curr_info;
2309
2310         perf_check_microcode();
2311
2312         amd_check_microcode();
2313
2314         store_cpu_caps(&curr_info);
2315
2316         if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2317                     sizeof(prev_info->x86_capability)))
2318                 return;
2319
2320         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2321         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2322 }
2323 #endif
2324
2325 /*
2326  * Invoked from core CPU hotplug code after hotplug operations
2327  */
2328 void arch_smt_update(void)
2329 {
2330         /* Handle the speculative execution misfeatures */
2331         cpu_bugs_smt_update();
2332         /* Check whether IPI broadcasting can be enabled */
2333         apic_smt_update();
2334 }
2335
2336 void __init arch_cpu_finalize_init(void)
2337 {
2338         identify_boot_cpu();
2339
2340         /*
2341          * identify_boot_cpu() initialized SMT support information, let the
2342          * core code know.
2343          */
2344         cpu_smt_set_num_threads(smp_num_siblings, smp_num_siblings);
2345
2346         if (!IS_ENABLED(CONFIG_SMP)) {
2347                 pr_info("CPU: ");
2348                 print_cpu_info(&boot_cpu_data);
2349         }
2350
2351         cpu_select_mitigations();
2352
2353         arch_smt_update();
2354
2355         if (IS_ENABLED(CONFIG_X86_32)) {
2356                 /*
2357                  * Check whether this is a real i386 which is not longer
2358                  * supported and fixup the utsname.
2359                  */
2360                 if (boot_cpu_data.x86 < 4)
2361                         panic("Kernel requires i486+ for 'invlpg' and other features");
2362
2363                 init_utsname()->machine[1] =
2364                         '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2365         }
2366
2367         /*
2368          * Must be before alternatives because it might set or clear
2369          * feature bits.
2370          */
2371         fpu__init_system();
2372         fpu__init_cpu();
2373
2374         alternative_instructions();
2375
2376         if (IS_ENABLED(CONFIG_X86_64)) {
2377                 /*
2378                  * Make sure the first 2MB area is not mapped by huge pages
2379                  * There are typically fixed size MTRRs in there and overlapping
2380                  * MTRRs into large pages causes slow downs.
2381                  *
2382                  * Right now we don't do that with gbpages because there seems
2383                  * very little benefit for that case.
2384                  */
2385                 if (!direct_gbpages)
2386                         set_memory_4k((unsigned long)__va(0), 1);
2387         } else {
2388                 fpu__init_check_bugs();
2389         }
2390
2391         /*
2392          * This needs to be called before any devices perform DMA
2393          * operations that might use the SWIOTLB bounce buffers. It will
2394          * mark the bounce buffers as decrypted so that their usage will
2395          * not cause "plain-text" data to be decrypted when accessed. It
2396          * must be called after late_time_init() so that Hyper-V x86/x64
2397          * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2398          */
2399         mem_encrypt_init();
2400 }