5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7 * Derived from "arch/i386/mm/fault.c"
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
10 * Modified by Cort Dougan and Paul Mackerras.
12 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
20 #include <linux/config.h>
21 #include <linux/signal.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/mman.h>
29 #include <linux/interrupt.h>
30 #include <linux/smp_lock.h>
31 #include <linux/module.h>
34 #include <asm/pgtable.h>
36 #include <asm/mmu_context.h>
37 #include <asm/system.h>
38 #include <asm/uaccess.h>
39 #include <asm/kdebug.h>
42 * Check whether the instruction at regs->nip is a store using
43 * an update addressing form which will update r1.
45 static int store_updates_sp(struct pt_regs *regs)
49 if (get_user(inst, (unsigned int __user *)regs->nip))
51 /* check for 1 in the rA field */
52 if (((inst >> 16) & 0x1f) != 1)
54 /* check major opcode */
62 case 62: /* std or stdu */
63 return (inst & 3) == 1;
65 /* check minor opcode */
66 switch ((inst >> 1) & 0x3ff) {
71 case 695: /* stfsux */
72 case 759: /* stfdux */
80 * The error_code parameter is
81 * - DSISR for a non-SLB data access fault,
82 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
84 * The return value is 0 if the fault was handled, or the signal
85 * number if this is a kernel fault that can't be handled here.
87 int do_page_fault(struct pt_regs *regs, unsigned long address,
88 unsigned long error_code)
90 struct vm_area_struct * vma;
91 struct mm_struct *mm = current->mm;
93 unsigned long code = SEGV_MAPERR;
94 unsigned long is_write = error_code & DSISR_ISSTORE;
95 unsigned long trap = TRAP(regs);
96 unsigned long is_exec = trap == 0x400;
98 BUG_ON((trap == 0x380) || (trap == 0x480));
100 if (notify_die(DIE_PAGE_FAULT, "page_fault", regs, error_code,
101 11, SIGSEGV) == NOTIFY_STOP)
105 if (debugger_fault_handler(regs))
109 /* On a kernel SLB miss we can only check for a valid exception entry */
110 if (!user_mode(regs) && (address >= TASK_SIZE))
113 if (error_code & DSISR_DABRMATCH) {
114 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
115 11, SIGSEGV) == NOTIFY_STOP)
117 if (debugger_dabr_match(regs))
121 if (in_atomic() || mm == NULL) {
122 if (!user_mode(regs))
124 /* in_atomic() in user mode is really bad,
125 as is current->mm == NULL. */
126 printk(KERN_EMERG "Page fault in user mode with"
127 "in_atomic() = %d mm = %p\n", in_atomic(), mm);
128 printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
129 regs->nip, regs->msr);
130 die("Weird page fault", regs, SIGSEGV);
133 /* When running in the kernel we expect faults to occur only to
134 * addresses in user space. All other faults represent errors in the
135 * kernel and should generate an OOPS. Unfortunatly, in the case of an
136 * erroneous fault occuring in a code path which already holds mmap_sem
137 * we will deadlock attempting to validate the fault against the
138 * address space. Luckily the kernel only validly references user
139 * space from well defined areas of code, which are listed in the
142 * As the vast majority of faults will be valid we will only perform
143 * the source reference check when there is a possibilty of a deadlock.
144 * Attempt to lock the address space, if we cannot we then validate the
145 * source. If this is invalid we can skip the address space check,
146 * thus avoiding the deadlock.
148 if (!down_read_trylock(&mm->mmap_sem)) {
149 if (!user_mode(regs) && !search_exception_tables(regs->nip))
150 goto bad_area_nosemaphore;
152 down_read(&mm->mmap_sem);
155 vma = find_vma(mm, address);
159 if (vma->vm_start <= address) {
162 if (!(vma->vm_flags & VM_GROWSDOWN))
166 * N.B. The POWER/Open ABI allows programs to access up to
167 * 288 bytes below the stack pointer.
168 * The kernel signal delivery code writes up to about 1.5kB
169 * below the stack pointer (r1) before decrementing it.
170 * The exec code can write slightly over 640kB to the stack
171 * before setting the user r1. Thus we allow the stack to
172 * expand to 1MB without further checks.
174 if (address + 0x100000 < vma->vm_end) {
175 /* get user regs even if this fault is in kernel mode */
176 struct pt_regs *uregs = current->thread.regs;
181 * A user-mode access to an address a long way below
182 * the stack pointer is only valid if the instruction
183 * is one which would update the stack pointer to the
184 * address accessed if the instruction completed,
185 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
186 * (or the byte, halfword, float or double forms).
188 * If we don't check this then any write to the area
189 * between the last mapped region and the stack will
190 * expand the stack rather than segfaulting.
192 if (address + 2048 < uregs->gpr[1]
193 && (!user_mode(regs) || !store_updates_sp(regs)))
197 if (expand_stack(vma, address))
204 /* protection fault */
205 if (error_code & DSISR_PROTFAULT)
207 if (!(vma->vm_flags & VM_EXEC))
210 } else if (is_write) {
211 if (!(vma->vm_flags & VM_WRITE))
215 if (!(vma->vm_flags & VM_READ))
221 * If for any reason at all we couldn't handle the fault,
222 * make sure we exit gracefully rather than endlessly redo
225 switch (handle_mm_fault(mm, vma, address, is_write)) {
233 case VM_FAULT_SIGBUS:
241 up_read(&mm->mmap_sem);
245 up_read(&mm->mmap_sem);
247 bad_area_nosemaphore:
248 /* User mode accesses cause a SIGSEGV */
249 if (user_mode(regs)) {
250 info.si_signo = SIGSEGV;
253 info.si_addr = (void __user *) address;
254 force_sig_info(SIGSEGV, &info, current);
258 if (trap == 0x400 && (error_code & DSISR_PROTFAULT)
259 && printk_ratelimit())
260 printk(KERN_CRIT "kernel tried to execute NX-protected"
261 " page (%lx) - exploit attempt? (uid: %d)\n",
262 address, current->uid);
267 * We ran out of memory, or some other thing happened to us that made
268 * us unable to handle the page fault gracefully.
271 up_read(&mm->mmap_sem);
272 if (current->pid == 1) {
274 down_read(&mm->mmap_sem);
277 printk("VM: killing process %s\n", current->comm);
283 up_read(&mm->mmap_sem);
284 if (user_mode(regs)) {
285 info.si_signo = SIGBUS;
287 info.si_code = BUS_ADRERR;
288 info.si_addr = (void __user *)address;
289 force_sig_info(SIGBUS, &info, current);
296 * bad_page_fault is called when we have a bad access from the kernel.
297 * It is called from do_page_fault above and from some of the procedures
300 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
302 const struct exception_table_entry *entry;
304 /* Are we prepared to handle this fault? */
305 if ((entry = search_exception_tables(regs->nip)) != NULL) {
306 regs->nip = entry->fixup;
310 /* kernel has accessed a bad area */
311 die("Kernel access of bad area", regs, sig);