X-Git-Url: http://git.sourceforge.jp/view?p=pf3gnuchains%2Fgcc-fork.git;a=blobdiff_plain;f=libgfortran%2Fgenerated%2Fsum_c4.c;h=4bd6e428e39ed4141df7fe152fab9dd661ad8071;hp=6507de88797136896d9bebdfb6d09c8e26c8703b;hb=4055b3674a094901edee337be5e2001c274f2845;hpb=ae48a63d5a3115bd99ef7384f28224be62fee055 diff --git a/libgfortran/generated/sum_c4.c b/libgfortran/generated/sum_c4.c index 6507de88797..4bd6e428e39 100644 --- a/libgfortran/generated/sum_c4.c +++ b/libgfortran/generated/sum_c4.c @@ -1,107 +1,149 @@ /* Implementation of the SUM intrinsic - Copyright 2002 Free Software Foundation, Inc. + Copyright 2002, 2007, 2009 Free Software Foundation, Inc. Contributed by Paul Brook -This file is part of the GNU Fortran 95 runtime library (libgfor). +This file is part of the GNU Fortran 95 runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or -modify it under the terms of the GNU Lesser General Public +modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either -version 2.1 of the License, or (at your option) any later version. +version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU Lesser General Public License for more details. +GNU General Public License for more details. -You should have received a copy of the GNU Lesser General Public -License along with libgfor; see the file COPYING.LIB. If not, -write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, -Boston, MA 02111-1307, USA. */ +Under Section 7 of GPL version 3, you are granted additional +permissions described in the GCC Runtime Library Exception, version +3.1, as published by the Free Software Foundation. -#include "config.h" +You should have received a copy of the GNU General Public License and +a copy of the GCC Runtime Library Exception along with this program; +see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +. */ + +#include "libgfortran.h" #include #include -#include "libgfortran.h" + + +#if defined (HAVE_GFC_COMPLEX_4) && defined (HAVE_GFC_COMPLEX_4) + + +extern void sum_c4 (gfc_array_c4 * const restrict, + gfc_array_c4 * const restrict, const index_type * const restrict); +export_proto(sum_c4); void -__sum_c4 (gfc_array_c4 * retarray, gfc_array_c4 *array, index_type *pdim) +sum_c4 (gfc_array_c4 * const restrict retarray, + gfc_array_c4 * const restrict array, + const index_type * const restrict pdim) { - index_type count[GFC_MAX_DIMENSIONS - 1]; - index_type extent[GFC_MAX_DIMENSIONS - 1]; - index_type sstride[GFC_MAX_DIMENSIONS - 1]; - index_type dstride[GFC_MAX_DIMENSIONS - 1]; - GFC_COMPLEX_4 *base; - GFC_COMPLEX_4 *dest; + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type sstride[GFC_MAX_DIMENSIONS]; + index_type dstride[GFC_MAX_DIMENSIONS]; + const GFC_COMPLEX_4 * restrict base; + GFC_COMPLEX_4 * restrict dest; index_type rank; index_type n; index_type len; index_type delta; index_type dim; + int continue_loop; /* Make dim zero based to avoid confusion. */ dim = (*pdim) - 1; rank = GFC_DESCRIPTOR_RANK (array) - 1; - assert (rank == GFC_DESCRIPTOR_RANK (retarray)); - if (array->dim[0].stride == 0) - array->dim[0].stride = 1; - if (retarray->dim[0].stride == 0) - retarray->dim[0].stride = 1; - len = array->dim[dim].ubound + 1 - array->dim[dim].lbound; - delta = array->dim[dim].stride; + len = GFC_DESCRIPTOR_EXTENT(array,dim); + if (len < 0) + len = 0; + delta = GFC_DESCRIPTOR_STRIDE(array,dim); for (n = 0; n < dim; n++) { - sstride[n] = array->dim[n].stride; - extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; + sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); + extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); + + if (extent[n] < 0) + extent[n] = 0; } for (n = dim; n < rank; n++) { - sstride[n] = array->dim[n + 1].stride; - extent[n] = - array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound; + sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1); + extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); + + if (extent[n] < 0) + extent[n] = 0; } if (retarray->data == NULL) { + size_t alloc_size, str; + for (n = 0; n < rank; n++) - { - retarray->dim[n].lbound = 0; - retarray->dim[n].ubound = extent[n]-1; - if (n == 0) - retarray->dim[n].stride = 1; - else - retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1]; - } - - retarray->data - = internal_malloc_size (sizeof (GFC_COMPLEX_4) - * retarray->dim[rank-1].stride - * extent[rank-1]); - retarray->base = 0; + { + if (n == 0) + str = 1; + else + str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; + + GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); + + } + + retarray->offset = 0; + retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; + + alloc_size = sizeof (GFC_COMPLEX_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1) + * extent[rank-1]; + + if (alloc_size == 0) + { + /* Make sure we have a zero-sized array. */ + GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); + return; + + } + else + retarray->data = internal_malloc_size (alloc_size); } - + else + { + if (rank != GFC_DESCRIPTOR_RANK (retarray)) + runtime_error ("rank of return array incorrect in" + " SUM intrinsic: is %ld, should be %ld", + (long int) (GFC_DESCRIPTOR_RANK (retarray)), + (long int) rank); + + if (unlikely (compile_options.bounds_check)) + bounds_ifunction_return ((array_t *) retarray, extent, + "return value", "SUM"); + } + for (n = 0; n < rank; n++) { count[n] = 0; - dstride[n] = retarray->dim[n].stride; + dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); if (extent[n] <= 0) - len = 0; + len = 0; } base = array->data; dest = retarray->data; - while (base) + continue_loop = 1; + while (continue_loop) { - GFC_COMPLEX_4 *src; + const GFC_COMPLEX_4 * restrict src; GFC_COMPLEX_4 result; src = base; { result = 0; - if (len <= 0) + if (len <= 0) *dest = 0; else { @@ -109,7 +151,7 @@ __sum_c4 (gfc_array_c4 * retarray, gfc_array_c4 *array, index_type *pdim) { result += *src; - } + } *dest = result; } } @@ -119,110 +161,169 @@ __sum_c4 (gfc_array_c4 * retarray, gfc_array_c4 *array, index_type *pdim) dest += dstride[0]; n = 0; while (count[n] == extent[n]) - { - /* When we get to the end of a dimension, reset it and increment - the next dimension. */ - count[n] = 0; - /* We could precalculate these products, but this is a less - frequently used path so proabably not worth it. */ - base -= sstride[n] * extent[n]; - dest -= dstride[n] * extent[n]; - n++; - if (n == rank) - { - /* Break out of the look. */ - base = NULL; - break; - } - else - { - count[n]++; - base += sstride[n]; - dest += dstride[n]; - } - } + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + base -= sstride[n] * extent[n]; + dest -= dstride[n] * extent[n]; + n++; + if (n == rank) + { + /* Break out of the look. */ + continue_loop = 0; + break; + } + else + { + count[n]++; + base += sstride[n]; + dest += dstride[n]; + } + } } } + +extern void msum_c4 (gfc_array_c4 * const restrict, + gfc_array_c4 * const restrict, const index_type * const restrict, + gfc_array_l1 * const restrict); +export_proto(msum_c4); + void -__msum_c4 (gfc_array_c4 * retarray, gfc_array_c4 * array, index_type *pdim, gfc_array_l4 * mask) +msum_c4 (gfc_array_c4 * const restrict retarray, + gfc_array_c4 * const restrict array, + const index_type * const restrict pdim, + gfc_array_l1 * const restrict mask) { - index_type count[GFC_MAX_DIMENSIONS - 1]; - index_type extent[GFC_MAX_DIMENSIONS - 1]; - index_type sstride[GFC_MAX_DIMENSIONS - 1]; - index_type dstride[GFC_MAX_DIMENSIONS - 1]; - index_type mstride[GFC_MAX_DIMENSIONS - 1]; - GFC_COMPLEX_4 *dest; - GFC_COMPLEX_4 *base; - GFC_LOGICAL_4 *mbase; + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type sstride[GFC_MAX_DIMENSIONS]; + index_type dstride[GFC_MAX_DIMENSIONS]; + index_type mstride[GFC_MAX_DIMENSIONS]; + GFC_COMPLEX_4 * restrict dest; + const GFC_COMPLEX_4 * restrict base; + const GFC_LOGICAL_1 * restrict mbase; int rank; int dim; index_type n; index_type len; index_type delta; index_type mdelta; + int mask_kind; dim = (*pdim) - 1; rank = GFC_DESCRIPTOR_RANK (array) - 1; - assert (rank == GFC_DESCRIPTOR_RANK (retarray)); - if (array->dim[0].stride == 0) - array->dim[0].stride = 1; - if (retarray->dim[0].stride == 0) - retarray->dim[0].stride = 1; - len = array->dim[dim].ubound + 1 - array->dim[dim].lbound; + len = GFC_DESCRIPTOR_EXTENT(array,dim); if (len <= 0) return; - delta = array->dim[dim].stride; - mdelta = mask->dim[dim].stride; + + mbase = mask->data; + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); + else + runtime_error ("Funny sized logical array"); + + delta = GFC_DESCRIPTOR_STRIDE(array,dim); + mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim); for (n = 0; n < dim; n++) { - sstride[n] = array->dim[n].stride; - mstride[n] = mask->dim[n].stride; - extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; + sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); + mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); + extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); + + if (extent[n] < 0) + extent[n] = 0; + } for (n = dim; n < rank; n++) { - sstride[n] = array->dim[n + 1].stride; - mstride[n] = mask->dim[n + 1].stride; - extent[n] = - array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound; + sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1); + mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1); + extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); + + if (extent[n] < 0) + extent[n] = 0; + } + + if (retarray->data == NULL) + { + size_t alloc_size, str; + + for (n = 0; n < rank; n++) + { + if (n == 0) + str = 1; + else + str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; + + GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); + + } + + alloc_size = sizeof (GFC_COMPLEX_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1) + * extent[rank-1]; + + retarray->offset = 0; + retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; + + if (alloc_size == 0) + { + /* Make sure we have a zero-sized array. */ + GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); + return; + } + else + retarray->data = internal_malloc_size (alloc_size); + + } + else + { + if (rank != GFC_DESCRIPTOR_RANK (retarray)) + runtime_error ("rank of return array incorrect in SUM intrinsic"); + + if (unlikely (compile_options.bounds_check)) + { + bounds_ifunction_return ((array_t *) retarray, extent, + "return value", "SUM"); + bounds_equal_extents ((array_t *) mask, (array_t *) array, + "MASK argument", "SUM"); + } } for (n = 0; n < rank; n++) { count[n] = 0; - dstride[n] = retarray->dim[n].stride; + dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); if (extent[n] <= 0) - return; + return; } dest = retarray->data; base = array->data; - mbase = mask->data; - - if (GFC_DESCRIPTOR_SIZE (mask) != 4) - { - /* This allows the same loop to be used for all logical types. */ - assert (GFC_DESCRIPTOR_SIZE (mask) == 8); - for (n = 0; n < rank; n++) - mstride[n] <<= 1; - mdelta <<= 1; - mbase = (GFOR_POINTER_L8_TO_L4 (mbase)); - } while (base) { - GFC_COMPLEX_4 *src; - GFC_LOGICAL_4 *msrc; + const GFC_COMPLEX_4 * restrict src; + const GFC_LOGICAL_1 * restrict msrc; GFC_COMPLEX_4 result; src = base; msrc = mbase; { result = 0; - if (len <= 0) + if (len <= 0) *dest = 0; else { @@ -231,7 +332,7 @@ __msum_c4 (gfc_array_c4 * retarray, gfc_array_c4 * array, index_type *pdim, gfc_ if (*msrc) result += *src; - } + } *dest = result; } } @@ -242,29 +343,169 @@ __msum_c4 (gfc_array_c4 * retarray, gfc_array_c4 * array, index_type *pdim, gfc_ dest += dstride[0]; n = 0; while (count[n] == extent[n]) - { - /* When we get to the end of a dimension, reset it and increment - the next dimension. */ - count[n] = 0; - /* We could precalculate these products, but this is a less - frequently used path so proabably not worth it. */ - base -= sstride[n] * extent[n]; - mbase -= mstride[n] * extent[n]; - dest -= dstride[n] * extent[n]; - n++; - if (n == rank) - { - /* Break out of the look. */ - base = NULL; - break; - } - else - { - count[n]++; - base += sstride[n]; - mbase += mstride[n]; - dest += dstride[n]; - } - } + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + base -= sstride[n] * extent[n]; + mbase -= mstride[n] * extent[n]; + dest -= dstride[n] * extent[n]; + n++; + if (n == rank) + { + /* Break out of the look. */ + base = NULL; + break; + } + else + { + count[n]++; + base += sstride[n]; + mbase += mstride[n]; + dest += dstride[n]; + } + } + } +} + + +extern void ssum_c4 (gfc_array_c4 * const restrict, + gfc_array_c4 * const restrict, const index_type * const restrict, + GFC_LOGICAL_4 *); +export_proto(ssum_c4); + +void +ssum_c4 (gfc_array_c4 * const restrict retarray, + gfc_array_c4 * const restrict array, + const index_type * const restrict pdim, + GFC_LOGICAL_4 * mask) +{ + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type sstride[GFC_MAX_DIMENSIONS]; + index_type dstride[GFC_MAX_DIMENSIONS]; + GFC_COMPLEX_4 * restrict dest; + index_type rank; + index_type n; + index_type dim; + + + if (*mask) + { + sum_c4 (retarray, array, pdim); + return; + } + /* Make dim zero based to avoid confusion. */ + dim = (*pdim) - 1; + rank = GFC_DESCRIPTOR_RANK (array) - 1; + + for (n = 0; n < dim; n++) + { + sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); + extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); + + if (extent[n] <= 0) + extent[n] = 0; + } + + for (n = dim; n < rank; n++) + { + sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1); + extent[n] = + GFC_DESCRIPTOR_EXTENT(array,n + 1); + + if (extent[n] <= 0) + extent[n] = 0; + } + + if (retarray->data == NULL) + { + size_t alloc_size, str; + + for (n = 0; n < rank; n++) + { + if (n == 0) + str = 1; + else + str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; + + GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); + + } + + retarray->offset = 0; + retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; + + alloc_size = sizeof (GFC_COMPLEX_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1) + * extent[rank-1]; + + if (alloc_size == 0) + { + /* Make sure we have a zero-sized array. */ + GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); + return; + } + else + retarray->data = internal_malloc_size (alloc_size); + } + else + { + if (rank != GFC_DESCRIPTOR_RANK (retarray)) + runtime_error ("rank of return array incorrect in" + " SUM intrinsic: is %ld, should be %ld", + (long int) (GFC_DESCRIPTOR_RANK (retarray)), + (long int) rank); + + if (unlikely (compile_options.bounds_check)) + { + for (n=0; n < rank; n++) + { + index_type ret_extent; + + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n); + if (extent[n] != ret_extent) + runtime_error ("Incorrect extent in return value of" + " SUM intrinsic in dimension %ld:" + " is %ld, should be %ld", (long int) n + 1, + (long int) ret_extent, (long int) extent[n]); + } + } + } + + for (n = 0; n < rank; n++) + { + count[n] = 0; + dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); + } + + dest = retarray->data; + + while(1) + { + *dest = 0; + count[0]++; + dest += dstride[0]; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + dest -= dstride[n] * extent[n]; + n++; + if (n == rank) + return; + else + { + count[n]++; + dest += dstride[n]; + } + } } } + +#endif