X-Git-Url: http://git.sourceforge.jp/view?p=pf3gnuchains%2Fgcc-fork.git;a=blobdiff_plain;f=gcc%2Ftree-vectorizer.c;h=b449268682156df4f6c2256dcfa7f2955d1d62f1;hp=4b5b56fdf8af31c86295b9d6aa4a7141317d36aa;hb=9fecd9ccc3c0c3af4b6b98ddc342ac19f9ca7aac;hpb=56d36a490d33c48a2a64fa47d80f64b75b2a069d diff --git a/gcc/tree-vectorizer.c b/gcc/tree-vectorizer.c index 4b5b56fdf8a..b4492686821 100644 --- a/gcc/tree-vectorizer.c +++ b/gcc/tree-vectorizer.c @@ -1,12 +1,13 @@ -/* Loop Vectorization - Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc. +/* Vectorizer + Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 + Free Software Foundation, Inc. Contributed by Dorit Naishlos This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free -Software Foundation; either version 2, or (at your option) any later +Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY @@ -15,109 +16,43 @@ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GCC; see the file COPYING. If not, write to the Free -Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA -02110-1301, USA. */ - -/* Loop Vectorization Pass. - - This pass tries to vectorize loops. This first implementation focuses on - simple inner-most loops, with no conditional control flow, and a set of - simple operations which vector form can be expressed using existing - tree codes (PLUS, MULT etc). - - For example, the vectorizer transforms the following simple loop: - - short a[N]; short b[N]; short c[N]; int i; - - for (i=0; ihandlers[(int) V8HImode].insn_code). If - the value found is CODE_FOR_nothing, then there's no target support, and - we can't vectorize the stmt. - - For additional information on this project see: - http://gcc.gnu.org/projects/tree-ssa/vectorization.html +along with GCC; see the file COPYING3. If not see +. */ + +/* Loop and basic block vectorizer. + + This file contains drivers for the three vectorizers: + (1) loop vectorizer (inter-iteration parallelism), + (2) loop-aware SLP (intra-iteration parallelism) (invoked by the loop + vectorizer) + (3) BB vectorizer (out-of-loops), aka SLP + + The rest of the vectorizer's code is organized as follows: + - tree-vect-loop.c - loop specific parts such as reductions, etc. These are + used by drivers (1) and (2). + - tree-vect-loop-manip.c - vectorizer's loop control-flow utilities, used by + drivers (1) and (2). + - tree-vect-slp.c - BB vectorization specific analysis and transformation, + used by drivers (2) and (3). + - tree-vect-stmts.c - statements analysis and transformation (used by all). + - tree-vect-data-refs.c - vectorizer specific data-refs analysis and + manipulations (used by all). + - tree-vect-patterns.c - vectorizable code patterns detector (used by all) + + Here's a poor attempt at illustrating that: + + tree-vectorizer.c: + loop_vect() loop_aware_slp() slp_vect() + | / \ / + | / \ / + tree-vect-loop.c tree-vect-slp.c + | \ \ / / | + | \ \/ / | + | \ /\ / | + | \ / \ / | + tree-vect-stmts.c tree-vect-data-refs.c + \ / + tree-vect-patterns.c */ #include "config.h" @@ -126,1124 +61,35 @@ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA #include "tm.h" #include "ggc.h" #include "tree.h" -#include "target.h" -#include "rtl.h" -#include "basic-block.h" #include "diagnostic.h" +#include "tree-pretty-print.h" #include "tree-flow.h" #include "tree-dump.h" -#include "timevar.h" #include "cfgloop.h" #include "cfglayout.h" -#include "expr.h" -#include "optabs.h" -#include "toplev.h" -#include "tree-chrec.h" -#include "tree-data-ref.h" -#include "tree-scalar-evolution.h" -#include "input.h" #include "tree-vectorizer.h" #include "tree-pass.h" - -/************************************************************************* - Simple Loop Peeling Utilities - *************************************************************************/ -static struct loop *slpeel_tree_duplicate_loop_to_edge_cfg - (struct loop *, struct loops *, edge); -static void slpeel_update_phis_for_duplicate_loop - (struct loop *, struct loop *, bool after); -static void slpeel_update_phi_nodes_for_guard1 - (edge, struct loop *, bool, basic_block *, bitmap *); -static void slpeel_update_phi_nodes_for_guard2 - (edge, struct loop *, bool, basic_block *); -static edge slpeel_add_loop_guard (basic_block, tree, basic_block, basic_block); - -static void rename_use_op (use_operand_p); -static void rename_variables_in_bb (basic_block); -static void rename_variables_in_loop (struct loop *); - -/************************************************************************* - General Vectorization Utilities - *************************************************************************/ -static void vect_set_dump_settings (void); +#include "timevar.h" /* vect_dump will be set to stderr or dump_file if exist. */ FILE *vect_dump; -/* vect_verbosity_level set to an invalid value +/* vect_verbosity_level set to an invalid value to mark that it's uninitialized. */ -enum verbosity_levels vect_verbosity_level = MAX_VERBOSITY_LEVEL; - -/* Number of loops, at the beginning of vectorization. */ -unsigned int vect_loops_num; - -/************************************************************************* - Simple Loop Peeling Utilities - - Utilities to support loop peeling for vectorization purposes. - *************************************************************************/ - - -/* Renames the use *OP_P. */ - -static void -rename_use_op (use_operand_p op_p) -{ - tree new_name; - - if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME) - return; - - new_name = get_current_def (USE_FROM_PTR (op_p)); - - /* Something defined outside of the loop. */ - if (!new_name) - return; - - /* An ordinary ssa name defined in the loop. */ - - SET_USE (op_p, new_name); -} - - -/* Renames the variables in basic block BB. */ - -static void -rename_variables_in_bb (basic_block bb) -{ - tree phi; - block_stmt_iterator bsi; - tree stmt; - use_operand_p use_p; - ssa_op_iter iter; - edge e; - edge_iterator ei; - struct loop *loop = bb->loop_father; - - for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi)) - { - stmt = bsi_stmt (bsi); - FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, - (SSA_OP_ALL_USES | SSA_OP_ALL_KILLS)) - rename_use_op (use_p); - } - - FOR_EACH_EDGE (e, ei, bb->succs) - { - if (!flow_bb_inside_loop_p (loop, e->dest)) - continue; - for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi)) - rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e)); - } -} - - -/* Renames variables in new generated LOOP. */ - -static void -rename_variables_in_loop (struct loop *loop) -{ - unsigned i; - basic_block *bbs; - - bbs = get_loop_body (loop); - - for (i = 0; i < loop->num_nodes; i++) - rename_variables_in_bb (bbs[i]); - - free (bbs); -} - - -/* Update the PHI nodes of NEW_LOOP. - - NEW_LOOP is a duplicate of ORIG_LOOP. - AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP: - AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it - executes before it. */ - -static void -slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop, - struct loop *new_loop, bool after) -{ - tree new_ssa_name; - tree phi_new, phi_orig; - tree def; - edge orig_loop_latch = loop_latch_edge (orig_loop); - edge orig_entry_e = loop_preheader_edge (orig_loop); - edge new_loop_exit_e = new_loop->single_exit; - edge new_loop_entry_e = loop_preheader_edge (new_loop); - edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e); - - /* - step 1. For each loop-header-phi: - Add the first phi argument for the phi in NEW_LOOP - (the one associated with the entry of NEW_LOOP) - - step 2. For each loop-header-phi: - Add the second phi argument for the phi in NEW_LOOP - (the one associated with the latch of NEW_LOOP) - - step 3. Update the phis in the successor block of NEW_LOOP. - - case 1: NEW_LOOP was placed before ORIG_LOOP: - The successor block of NEW_LOOP is the header of ORIG_LOOP. - Updating the phis in the successor block can therefore be done - along with the scanning of the loop header phis, because the - header blocks of ORIG_LOOP and NEW_LOOP have exactly the same - phi nodes, organized in the same order. - - case 2: NEW_LOOP was placed after ORIG_LOOP: - The successor block of NEW_LOOP is the original exit block of - ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis. - We postpone updating these phis to a later stage (when - loop guards are added). - */ - - - /* Scan the phis in the headers of the old and new loops - (they are organized in exactly the same order). */ - - for (phi_new = phi_nodes (new_loop->header), - phi_orig = phi_nodes (orig_loop->header); - phi_new && phi_orig; - phi_new = PHI_CHAIN (phi_new), phi_orig = PHI_CHAIN (phi_orig)) - { - /* step 1. */ - def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e); - add_phi_arg (phi_new, def, new_loop_entry_e); - - /* step 2. */ - def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch); - if (TREE_CODE (def) != SSA_NAME) - continue; - - new_ssa_name = get_current_def (def); - if (!new_ssa_name) - { - /* This only happens if there are no definitions - inside the loop. use the phi_result in this case. */ - new_ssa_name = PHI_RESULT (phi_new); - } - - /* An ordinary ssa name defined in the loop. */ - add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop)); - - /* step 3 (case 1). */ - if (!after) - { - gcc_assert (new_loop_exit_e == orig_entry_e); - SET_PHI_ARG_DEF (phi_orig, - new_loop_exit_e->dest_idx, - new_ssa_name); - } - } -} - - -/* Update PHI nodes for a guard of the LOOP. - - Input: - - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that - controls whether LOOP is to be executed. GUARD_EDGE is the edge that - originates from the guard-bb, skips LOOP and reaches the (unique) exit - bb of LOOP. This loop-exit-bb is an empty bb with one successor. - We denote this bb NEW_MERGE_BB because before the guard code was added - it had a single predecessor (the LOOP header), and now it became a merge - point of two paths - the path that ends with the LOOP exit-edge, and - the path that ends with GUARD_EDGE. - - NEW_EXIT_BB: New basic block that is added by this function between LOOP - and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis. - - ===> The CFG before the guard-code was added: - LOOP_header_bb: - loop_body - if (exit_loop) goto update_bb - else goto LOOP_header_bb - update_bb: - - ==> The CFG after the guard-code was added: - guard_bb: - if (LOOP_guard_condition) goto new_merge_bb - else goto LOOP_header_bb - LOOP_header_bb: - loop_body - if (exit_loop_condition) goto new_merge_bb - else goto LOOP_header_bb - new_merge_bb: - goto update_bb - update_bb: - - ==> The CFG after this function: - guard_bb: - if (LOOP_guard_condition) goto new_merge_bb - else goto LOOP_header_bb - LOOP_header_bb: - loop_body - if (exit_loop_condition) goto new_exit_bb - else goto LOOP_header_bb - new_exit_bb: - new_merge_bb: - goto update_bb - update_bb: - - This function: - 1. creates and updates the relevant phi nodes to account for the new - incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves: - 1.1. Create phi nodes at NEW_MERGE_BB. - 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted - UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB - 2. preserves loop-closed-ssa-form by creating the required phi nodes - at the exit of LOOP (i.e, in NEW_EXIT_BB). - - There are two flavors to this function: - - slpeel_update_phi_nodes_for_guard1: - Here the guard controls whether we enter or skip LOOP, where LOOP is a - prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are - for variables that have phis in the loop header. - - slpeel_update_phi_nodes_for_guard2: - Here the guard controls whether we enter or skip LOOP, where LOOP is an - epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are - for variables that have phis in the loop exit. - - I.E., the overall structure is: - - loop1_preheader_bb: - guard1 (goto loop1/merg1_bb) - loop1 - loop1_exit_bb: - guard2 (goto merge1_bb/merge2_bb) - merge1_bb - loop2 - loop2_exit_bb - merge2_bb - next_bb - - slpeel_update_phi_nodes_for_guard1 takes care of creating phis in - loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars - that have phis in loop1->header). - - slpeel_update_phi_nodes_for_guard2 takes care of creating phis in - loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars - that have phis in next_bb). It also adds some of these phis to - loop1_exit_bb. - - slpeel_update_phi_nodes_for_guard1 is always called before - slpeel_update_phi_nodes_for_guard2. They are both needed in order - to create correct data-flow and loop-closed-ssa-form. - - Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables - that change between iterations of a loop (and therefore have a phi-node - at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates - phis for variables that are used out of the loop (and therefore have - loop-closed exit phis). Some variables may be both updated between - iterations and used after the loop. This is why in loop1_exit_bb we - may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1) - and exit phis (created by slpeel_update_phi_nodes_for_guard2). - - - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of - an original loop. i.e., we have: - - orig_loop - guard_bb (goto LOOP/new_merge) - new_loop <-- LOOP - new_exit - new_merge - next_bb - - If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we - have: - - new_loop - guard_bb (goto LOOP/new_merge) - orig_loop <-- LOOP - new_exit - new_merge - next_bb - - The SSA names defined in the original loop have a current - reaching definition that that records the corresponding new - ssa-name used in the new duplicated loop copy. - */ - -/* Function slpeel_update_phi_nodes_for_guard1 - - Input: - - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above. - - DEFS - a bitmap of ssa names to mark new names for which we recorded - information. - - In the context of the overall structure, we have: - - loop1_preheader_bb: - guard1 (goto loop1/merg1_bb) -LOOP-> loop1 - loop1_exit_bb: - guard2 (goto merge1_bb/merge2_bb) - merge1_bb - loop2 - loop2_exit_bb - merge2_bb - next_bb - - For each name updated between loop iterations (i.e - for each name that has - an entry (loop-header) phi in LOOP) we create a new phi in: - 1. merge1_bb (to account for the edge from guard1) - 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form) -*/ - -static void -slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop, - bool is_new_loop, basic_block *new_exit_bb, - bitmap *defs) -{ - tree orig_phi, new_phi; - tree update_phi, update_phi2; - tree guard_arg, loop_arg; - basic_block new_merge_bb = guard_edge->dest; - edge e = EDGE_SUCC (new_merge_bb, 0); - basic_block update_bb = e->dest; - basic_block orig_bb = loop->header; - edge new_exit_e; - tree current_new_name; - - /* Create new bb between loop and new_merge_bb. */ - *new_exit_bb = split_edge (loop->single_exit); - add_bb_to_loop (*new_exit_bb, loop->outer); - - new_exit_e = EDGE_SUCC (*new_exit_bb, 0); - - for (orig_phi = phi_nodes (orig_bb), update_phi = phi_nodes (update_bb); - orig_phi && update_phi; - orig_phi = PHI_CHAIN (orig_phi), update_phi = PHI_CHAIN (update_phi)) - { - /** 1. Handle new-merge-point phis **/ - - /* 1.1. Generate new phi node in NEW_MERGE_BB: */ - new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)), - new_merge_bb); - - /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge - of LOOP. Set the two phi args in NEW_PHI for these edges: */ - loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0)); - guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop)); - - add_phi_arg (new_phi, loop_arg, new_exit_e); - add_phi_arg (new_phi, guard_arg, guard_edge); - - /* 1.3. Update phi in successor block. */ - gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg - || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg); - SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi)); - update_phi2 = new_phi; - - - /** 2. Handle loop-closed-ssa-form phis **/ - - /* 2.1. Generate new phi node in NEW_EXIT_BB: */ - new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)), - *new_exit_bb); - - /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */ - add_phi_arg (new_phi, loop_arg, loop->single_exit); - - /* 2.3. Update phi in successor of NEW_EXIT_BB: */ - gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg); - SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi)); - - /* 2.4. Record the newly created name with set_current_def. - We want to find a name such that - name = get_current_def (orig_loop_name) - and to set its current definition as follows: - set_current_def (name, new_phi_name) - - If LOOP is a new loop then loop_arg is already the name we're - looking for. If LOOP is the original loop, then loop_arg is - the orig_loop_name and the relevant name is recorded in its - current reaching definition. */ - if (is_new_loop) - current_new_name = loop_arg; - else - { - current_new_name = get_current_def (loop_arg); - /* current_def is not available only if the variable does not - change inside the loop, in which case we also don't care - about recording a current_def for it because we won't be - trying to create loop-exit-phis for it. */ - if (!current_new_name) - continue; - } - gcc_assert (get_current_def (current_new_name) == NULL_TREE); - - set_current_def (current_new_name, PHI_RESULT (new_phi)); - bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name)); - } - - set_phi_nodes (new_merge_bb, phi_reverse (phi_nodes (new_merge_bb))); -} - - -/* Function slpeel_update_phi_nodes_for_guard2 - - Input: - - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above. - - In the context of the overall structure, we have: - - loop1_preheader_bb: - guard1 (goto loop1/merg1_bb) - loop1 - loop1_exit_bb: - guard2 (goto merge1_bb/merge2_bb) - merge1_bb -LOOP-> loop2 - loop2_exit_bb - merge2_bb - next_bb - - For each name used out side the loop (i.e - for each name that has an exit - phi in next_bb) we create a new phi in: - 1. merge2_bb (to account for the edge from guard_bb) - 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form) - 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form), - if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1). -*/ - -static void -slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop, - bool is_new_loop, basic_block *new_exit_bb) -{ - tree orig_phi, new_phi; - tree update_phi, update_phi2; - tree guard_arg, loop_arg; - basic_block new_merge_bb = guard_edge->dest; - edge e = EDGE_SUCC (new_merge_bb, 0); - basic_block update_bb = e->dest; - edge new_exit_e; - tree orig_def, orig_def_new_name; - tree new_name, new_name2; - tree arg; - - /* Create new bb between loop and new_merge_bb. */ - *new_exit_bb = split_edge (loop->single_exit); - add_bb_to_loop (*new_exit_bb, loop->outer); - - new_exit_e = EDGE_SUCC (*new_exit_bb, 0); - - for (update_phi = phi_nodes (update_bb); update_phi; - update_phi = PHI_CHAIN (update_phi)) - { - orig_phi = update_phi; - orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e); - orig_def_new_name = get_current_def (orig_def); - arg = NULL_TREE; - - /** 1. Handle new-merge-point phis **/ - - /* 1.1. Generate new phi node in NEW_MERGE_BB: */ - new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)), - new_merge_bb); - - /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge - of LOOP. Set the two PHI args in NEW_PHI for these edges: */ - new_name = orig_def; - new_name2 = NULL_TREE; - if (orig_def_new_name) - { - new_name = orig_def_new_name; - /* Some variables have both loop-entry-phis and loop-exit-phis. - Such variables were given yet newer names by phis placed in - guard_bb by slpeel_update_phi_nodes_for_guard1. I.e: - new_name2 = get_current_def (get_current_def (orig_name)). */ - new_name2 = get_current_def (new_name); - } - - if (is_new_loop) - { - guard_arg = orig_def; - loop_arg = new_name; - } - else - { - guard_arg = new_name; - loop_arg = orig_def; - } - if (new_name2) - guard_arg = new_name2; - - add_phi_arg (new_phi, loop_arg, new_exit_e); - add_phi_arg (new_phi, guard_arg, guard_edge); - - /* 1.3. Update phi in successor block. */ - gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def); - SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi)); - update_phi2 = new_phi; - - - /** 2. Handle loop-closed-ssa-form phis **/ - - /* 2.1. Generate new phi node in NEW_EXIT_BB: */ - new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)), - *new_exit_bb); - - /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */ - add_phi_arg (new_phi, loop_arg, loop->single_exit); - - /* 2.3. Update phi in successor of NEW_EXIT_BB: */ - gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg); - SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi)); - - - /** 3. Handle loop-closed-ssa-form phis for first loop **/ - - /* 3.1. Find the relevant names that need an exit-phi in - GUARD_BB, i.e. names for which - slpeel_update_phi_nodes_for_guard1 had not already created a - phi node. This is the case for names that are used outside - the loop (and therefore need an exit phi) but are not updated - across loop iterations (and therefore don't have a - loop-header-phi). - - slpeel_update_phi_nodes_for_guard1 is responsible for - creating loop-exit phis in GUARD_BB for names that have a - loop-header-phi. When such a phi is created we also record - the new name in its current definition. If this new name - exists, then guard_arg was set to this new name (see 1.2 - above). Therefore, if guard_arg is not this new name, this - is an indication that an exit-phi in GUARD_BB was not yet - created, so we take care of it here. */ - if (guard_arg == new_name2) - continue; - arg = guard_arg; - - /* 3.2. Generate new phi node in GUARD_BB: */ - new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)), - guard_edge->src); - - /* 3.3. GUARD_BB has one incoming edge: */ - gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1); - add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0)); - - /* 3.4. Update phi in successor of GUARD_BB: */ - gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge) - == guard_arg); - SET_PHI_ARG_DEF (update_phi2, guard_edge->dest_idx, PHI_RESULT (new_phi)); - } - - set_phi_nodes (new_merge_bb, phi_reverse (phi_nodes (new_merge_bb))); -} - - -/* Make the LOOP iterate NITERS times. This is done by adding a new IV - that starts at zero, increases by one and its limit is NITERS. - - Assumption: the exit-condition of LOOP is the last stmt in the loop. */ - -void -slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters) -{ - tree indx_before_incr, indx_after_incr, cond_stmt, cond; - tree orig_cond; - edge exit_edge = loop->single_exit; - block_stmt_iterator loop_cond_bsi; - block_stmt_iterator incr_bsi; - bool insert_after; - tree begin_label = tree_block_label (loop->latch); - tree exit_label = tree_block_label (loop->single_exit->dest); - tree init = build_int_cst (TREE_TYPE (niters), 0); - tree step = build_int_cst (TREE_TYPE (niters), 1); - tree then_label; - tree else_label; - LOC loop_loc; - - orig_cond = get_loop_exit_condition (loop); - gcc_assert (orig_cond); - loop_cond_bsi = bsi_for_stmt (orig_cond); - - standard_iv_increment_position (loop, &incr_bsi, &insert_after); - create_iv (init, step, NULL_TREE, loop, - &incr_bsi, insert_after, &indx_before_incr, &indx_after_incr); - - if (exit_edge->flags & EDGE_TRUE_VALUE) /* 'then' edge exits the loop. */ - { - cond = build2 (GE_EXPR, boolean_type_node, indx_after_incr, niters); - then_label = build1 (GOTO_EXPR, void_type_node, exit_label); - else_label = build1 (GOTO_EXPR, void_type_node, begin_label); - } - else /* 'then' edge loops back. */ - { - cond = build2 (LT_EXPR, boolean_type_node, indx_after_incr, niters); - then_label = build1 (GOTO_EXPR, void_type_node, begin_label); - else_label = build1 (GOTO_EXPR, void_type_node, exit_label); - } - - cond_stmt = build3 (COND_EXPR, TREE_TYPE (orig_cond), cond, - then_label, else_label); - bsi_insert_before (&loop_cond_bsi, cond_stmt, BSI_SAME_STMT); - - /* Remove old loop exit test: */ - bsi_remove (&loop_cond_bsi); - - loop_loc = find_loop_location (loop); - if (dump_file && (dump_flags & TDF_DETAILS)) - { - if (loop_loc != UNKNOWN_LOC) - fprintf (dump_file, "\nloop at %s:%d: ", - LOC_FILE (loop_loc), LOC_LINE (loop_loc)); - print_generic_expr (dump_file, cond_stmt, TDF_SLIM); - } - - loop->nb_iterations = niters; -} - - -/* Given LOOP this function generates a new copy of it and puts it - on E which is either the entry or exit of LOOP. */ - -static struct loop * -slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, struct loops *loops, - edge e) -{ - struct loop *new_loop; - basic_block *new_bbs, *bbs; - bool at_exit; - bool was_imm_dom; - basic_block exit_dest; - tree phi, phi_arg; - - at_exit = (e == loop->single_exit); - if (!at_exit && e != loop_preheader_edge (loop)) - return NULL; - - bbs = get_loop_body (loop); - - /* Check whether duplication is possible. */ - if (!can_copy_bbs_p (bbs, loop->num_nodes)) - { - free (bbs); - return NULL; - } - - /* Generate new loop structure. */ - new_loop = duplicate_loop (loops, loop, loop->outer); - if (!new_loop) - { - free (bbs); - return NULL; - } - - exit_dest = loop->single_exit->dest; - was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS, - exit_dest) == loop->header ? - true : false); - - new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes); - - copy_bbs (bbs, loop->num_nodes, new_bbs, - &loop->single_exit, 1, &new_loop->single_exit, NULL); - - /* Duplicating phi args at exit bbs as coming - also from exit of duplicated loop. */ - for (phi = phi_nodes (exit_dest); phi; phi = PHI_CHAIN (phi)) - { - phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, loop->single_exit); - if (phi_arg) - { - edge new_loop_exit_edge; - - if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch) - new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1); - else - new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0); - - add_phi_arg (phi, phi_arg, new_loop_exit_edge); - } - } - - if (at_exit) /* Add the loop copy at exit. */ - { - redirect_edge_and_branch_force (e, new_loop->header); - set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src); - if (was_imm_dom) - set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header); - } - else /* Add the copy at entry. */ - { - edge new_exit_e; - edge entry_e = loop_preheader_edge (loop); - basic_block preheader = entry_e->src; - - if (!flow_bb_inside_loop_p (new_loop, - EDGE_SUCC (new_loop->header, 0)->dest)) - new_exit_e = EDGE_SUCC (new_loop->header, 0); - else - new_exit_e = EDGE_SUCC (new_loop->header, 1); - - redirect_edge_and_branch_force (new_exit_e, loop->header); - set_immediate_dominator (CDI_DOMINATORS, loop->header, - new_exit_e->src); - - /* We have to add phi args to the loop->header here as coming - from new_exit_e edge. */ - for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi)) - { - phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e); - if (phi_arg) - add_phi_arg (phi, phi_arg, new_exit_e); - } - - redirect_edge_and_branch_force (entry_e, new_loop->header); - set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader); - } - - free (new_bbs); - free (bbs); - - return new_loop; -} - - -/* Given the condition statement COND, put it as the last statement - of GUARD_BB; EXIT_BB is the basic block to skip the loop; - Assumes that this is the single exit of the guarded loop. - Returns the skip edge. */ +static enum verbosity_levels vect_verbosity_level = MAX_VERBOSITY_LEVEL; +static enum verbosity_levels user_vect_verbosity_level = MAX_VERBOSITY_LEVEL; -static edge -slpeel_add_loop_guard (basic_block guard_bb, tree cond, basic_block exit_bb, - basic_block dom_bb) -{ - block_stmt_iterator bsi; - edge new_e, enter_e; - tree cond_stmt, then_label, else_label; - - enter_e = EDGE_SUCC (guard_bb, 0); - enter_e->flags &= ~EDGE_FALLTHRU; - enter_e->flags |= EDGE_FALSE_VALUE; - bsi = bsi_last (guard_bb); - - then_label = build1 (GOTO_EXPR, void_type_node, - tree_block_label (exit_bb)); - else_label = build1 (GOTO_EXPR, void_type_node, - tree_block_label (enter_e->dest)); - cond_stmt = build3 (COND_EXPR, void_type_node, cond, - then_label, else_label); - bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT); - /* Add new edge to connect guard block to the merge/loop-exit block. */ - new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE); - set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb); - return new_e; -} - - -/* This function verifies that the following restrictions apply to LOOP: - (1) it is innermost - (2) it consists of exactly 2 basic blocks - header, and an empty latch. - (3) it is single entry, single exit - (4) its exit condition is the last stmt in the header - (5) E is the entry/exit edge of LOOP. - */ - -bool -slpeel_can_duplicate_loop_p (struct loop *loop, edge e) -{ - edge exit_e = loop->single_exit; - edge entry_e = loop_preheader_edge (loop); - tree orig_cond = get_loop_exit_condition (loop); - block_stmt_iterator loop_exit_bsi = bsi_last (exit_e->src); - - if (need_ssa_update_p ()) - return false; - - if (loop->inner - /* All loops have an outer scope; the only case loop->outer is NULL is for - the function itself. */ - || !loop->outer - || loop->num_nodes != 2 - || !empty_block_p (loop->latch) - || !loop->single_exit - /* Verify that new loop exit condition can be trivially modified. */ - || (!orig_cond || orig_cond != bsi_stmt (loop_exit_bsi)) - || (e != exit_e && e != entry_e)) - return false; - - return true; -} - -#ifdef ENABLE_CHECKING -void -slpeel_verify_cfg_after_peeling (struct loop *first_loop, - struct loop *second_loop) -{ - basic_block loop1_exit_bb = first_loop->single_exit->dest; - basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src; - basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src; - - /* A guard that controls whether the second_loop is to be executed or skipped - is placed in first_loop->exit. first_loopt->exit therefore has two - successors - one is the preheader of second_loop, and the other is a bb - after second_loop. - */ - gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2); - - /* 1. Verify that one of the successors of first_loopt->exit is the preheader - of second_loop. */ - - /* The preheader of new_loop is expected to have two predecessors: - first_loop->exit and the block that precedes first_loop. */ - - gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2 - && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb - && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb) - || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb - && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb))); - - /* Verify that the other successor of first_loopt->exit is after the - second_loop. */ - /* TODO */ -} -#endif - -/* Function slpeel_tree_peel_loop_to_edge. - - Peel the first (last) iterations of LOOP into a new prolog (epilog) loop - that is placed on the entry (exit) edge E of LOOP. After this transformation - we have two loops one after the other - first-loop iterates FIRST_NITERS - times, and second-loop iterates the remainder NITERS - FIRST_NITERS times. - - Input: - - LOOP: the loop to be peeled. - - E: the exit or entry edge of LOOP. - If it is the entry edge, we peel the first iterations of LOOP. In this - case first-loop is LOOP, and second-loop is the newly created loop. - If it is the exit edge, we peel the last iterations of LOOP. In this - case, first-loop is the newly created loop, and second-loop is LOOP. - - NITERS: the number of iterations that LOOP iterates. - - FIRST_NITERS: the number of iterations that the first-loop should iterate. - - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible - for updating the loop bound of the first-loop to FIRST_NITERS. If it - is false, the caller of this function may want to take care of this - (this can be useful if we don't want new stmts added to first-loop). - - Output: - The function returns a pointer to the new loop-copy, or NULL if it failed - to perform the transformation. - - The function generates two if-then-else guards: one before the first loop, - and the other before the second loop: - The first guard is: - if (FIRST_NITERS == 0) then skip the first loop, - and go directly to the second loop. - The second guard is: - if (FIRST_NITERS == NITERS) then skip the second loop. - - FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p). - FORNOW the resulting code will not be in loop-closed-ssa form. -*/ - -struct loop* -slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loops *loops, - edge e, tree first_niters, - tree niters, bool update_first_loop_count) -{ - struct loop *new_loop = NULL, *first_loop, *second_loop; - edge skip_e; - tree pre_condition; - bitmap definitions; - basic_block bb_before_second_loop, bb_after_second_loop; - basic_block bb_before_first_loop; - basic_block bb_between_loops; - basic_block new_exit_bb; - edge exit_e = loop->single_exit; - LOC loop_loc; - - if (!slpeel_can_duplicate_loop_p (loop, e)) - return NULL; - - /* We have to initialize cfg_hooks. Then, when calling - cfg_hooks->split_edge, the function tree_split_edge - is actually called and, when calling cfg_hooks->duplicate_block, - the function tree_duplicate_bb is called. */ - tree_register_cfg_hooks (); - - - /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP). - Resulting CFG would be: - - first_loop: - do { - } while ... - - second_loop: - do { - } while ... - - orig_exit_bb: - */ - - if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, loops, e))) - { - loop_loc = find_loop_location (loop); - if (dump_file && (dump_flags & TDF_DETAILS)) - { - if (loop_loc != UNKNOWN_LOC) - fprintf (dump_file, "\n%s:%d: note: ", - LOC_FILE (loop_loc), LOC_LINE (loop_loc)); - fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n"); - } - return NULL; - } - - if (e == exit_e) - { - /* NEW_LOOP was placed after LOOP. */ - first_loop = loop; - second_loop = new_loop; - } - else - { - /* NEW_LOOP was placed before LOOP. */ - first_loop = new_loop; - second_loop = loop; - } +/* Loop or bb location. */ +LOC vect_location; - definitions = ssa_names_to_replace (); - slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e); - rename_variables_in_loop (new_loop); +/* Vector mapping GIMPLE stmt to stmt_vec_info. */ +VEC(vec_void_p,heap) *stmt_vec_info_vec; - - /* 2. Add the guard that controls whether the first loop is executed. - Resulting CFG would be: - - bb_before_first_loop: - if (FIRST_NITERS == 0) GOTO bb_before_second_loop - GOTO first-loop - - first_loop: - do { - } while ... - - bb_before_second_loop: - - second_loop: - do { - } while ... - - orig_exit_bb: - */ - - bb_before_first_loop = split_edge (loop_preheader_edge (first_loop)); - add_bb_to_loop (bb_before_first_loop, first_loop->outer); - bb_before_second_loop = split_edge (first_loop->single_exit); - add_bb_to_loop (bb_before_second_loop, first_loop->outer); - - pre_condition = - fold_build2 (LE_EXPR, boolean_type_node, first_niters, integer_zero_node); - skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition, - bb_before_second_loop, bb_before_first_loop); - slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop, - first_loop == new_loop, - &new_exit_bb, &definitions); - - - /* 3. Add the guard that controls whether the second loop is executed. - Resulting CFG would be: - - bb_before_first_loop: - if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop) - GOTO first-loop - - first_loop: - do { - } while ... - - bb_between_loops: - if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop) - GOTO bb_before_second_loop - - bb_before_second_loop: - - second_loop: - do { - } while ... - - bb_after_second_loop: - - orig_exit_bb: - */ - - bb_between_loops = new_exit_bb; - bb_after_second_loop = split_edge (second_loop->single_exit); - add_bb_to_loop (bb_after_second_loop, second_loop->outer); - - pre_condition = - fold_build2 (EQ_EXPR, boolean_type_node, first_niters, niters); - skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, - bb_after_second_loop, bb_before_first_loop); - slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop, - second_loop == new_loop, &new_exit_bb); - - /* 4. Make first-loop iterate FIRST_NITERS times, if requested. - */ - if (update_first_loop_count) - slpeel_make_loop_iterate_ntimes (first_loop, first_niters); - - BITMAP_FREE (definitions); - delete_update_ssa (); - - return new_loop; -} - -/* Function vect_get_loop_location. - - Extract the location of the loop in the source code. - If the loop is not well formed for vectorization, an estimated - location is calculated. - Return the loop location if succeed and NULL if not. */ - -LOC -find_loop_location (struct loop *loop) -{ - tree node = NULL_TREE; - basic_block bb; - block_stmt_iterator si; - - if (!loop) - return UNKNOWN_LOC; - - node = get_loop_exit_condition (loop); - - if (node && EXPR_P (node) && EXPR_HAS_LOCATION (node) - && EXPR_FILENAME (node) && EXPR_LINENO (node)) - return EXPR_LOC (node); - - /* If we got here the loop is probably not "well formed", - try to estimate the loop location */ - - if (!loop->header) - return UNKNOWN_LOC; - - bb = loop->header; - - for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si)) - { - node = bsi_stmt (si); - if (node && EXPR_P (node) && EXPR_HAS_LOCATION (node)) - return EXPR_LOC (node); - } - - return UNKNOWN_LOC; -} - - -/************************************************************************* - Vectorization Debug Information. - *************************************************************************/ + /* Function vect_set_verbosity_level. - Called from toplev.c upon detection of the + Called from opts.c upon detection of the -ftree-vectorizer-verbose=N option. */ void @@ -1253,9 +99,10 @@ vect_set_verbosity_level (const char *val) vl = atoi (val); if (vl < MAX_VERBOSITY_LEVEL) - vect_verbosity_level = vl; + user_vect_verbosity_level = (enum verbosity_levels) vl; else - vect_verbosity_level = MAX_VERBOSITY_LEVEL - 1; + user_vect_verbosity_level + = (enum verbosity_levels) (MAX_VERBOSITY_LEVEL - 1); } @@ -1269,24 +116,40 @@ vect_set_verbosity_level (const char *val) print to stderr, otherwise print to the dump file. */ static void -vect_set_dump_settings (void) +vect_set_dump_settings (bool slp) { vect_dump = dump_file; /* Check if the verbosity level was defined by the user: */ - if (vect_verbosity_level != MAX_VERBOSITY_LEVEL) + if (user_vect_verbosity_level != MAX_VERBOSITY_LEVEL) { - /* If there is no dump file, print to stderr. */ - if (!dump_file) - vect_dump = stderr; - return; + vect_verbosity_level = user_vect_verbosity_level; + /* Ignore user defined verbosity if dump flags require higher level of + verbosity. */ + if (dump_file) + { + if (((dump_flags & TDF_DETAILS) + && vect_verbosity_level >= REPORT_DETAILS) + || ((dump_flags & TDF_STATS) + && vect_verbosity_level >= REPORT_UNVECTORIZED_LOCATIONS)) + return; + } + else + { + /* If there is no dump file, print to stderr in case of loop + vectorization. */ + if (!slp) + vect_dump = stderr; + + return; + } } /* User didn't specify verbosity level: */ if (dump_file && (dump_flags & TDF_DETAILS)) vect_verbosity_level = REPORT_DETAILS; else if (dump_file && (dump_flags & TDF_STATS)) - vect_verbosity_level = REPORT_UNVECTORIZED_LOOPS; + vect_verbosity_level = REPORT_UNVECTORIZED_LOCATIONS; else vect_verbosity_level = REPORT_NONE; @@ -1299,784 +162,233 @@ vect_set_dump_settings (void) For vectorization debug dumps. */ bool -vect_print_dump_info (enum verbosity_levels vl, LOC loc) +vect_print_dump_info (enum verbosity_levels vl) { if (vl > vect_verbosity_level) return false; - if (loc == UNKNOWN_LOC) + if (!current_function_decl || !vect_dump) + return false; + + if (vect_location == UNKNOWN_LOC) fprintf (vect_dump, "\n%s:%d: note: ", - DECL_SOURCE_FILE (current_function_decl), - DECL_SOURCE_LINE (current_function_decl)); + DECL_SOURCE_FILE (current_function_decl), + DECL_SOURCE_LINE (current_function_decl)); else - fprintf (vect_dump, "\n%s:%d: note: ", LOC_FILE (loc), LOC_LINE (loc)); - + fprintf (vect_dump, "\n%s:%d: note: ", + LOC_FILE (vect_location), LOC_LINE (vect_location)); return true; } -/************************************************************************* - Vectorization Utilities. - *************************************************************************/ - -/* Function new_stmt_vec_info. - - Create and initialize a new stmt_vec_info struct for STMT. */ - -stmt_vec_info -new_stmt_vec_info (tree stmt, loop_vec_info loop_vinfo) -{ - stmt_vec_info res; - res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info)); - - STMT_VINFO_TYPE (res) = undef_vec_info_type; - STMT_VINFO_STMT (res) = stmt; - STMT_VINFO_LOOP_VINFO (res) = loop_vinfo; - STMT_VINFO_RELEVANT_P (res) = 0; - STMT_VINFO_LIVE_P (res) = 0; - STMT_VINFO_VECTYPE (res) = NULL; - STMT_VINFO_VEC_STMT (res) = NULL; - STMT_VINFO_DATA_REF (res) = NULL; - if (TREE_CODE (stmt) == PHI_NODE) - STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type; - else - STMT_VINFO_DEF_TYPE (res) = vect_loop_def; - STMT_VINFO_MEMTAG (res) = NULL; - STMT_VINFO_PTR_INFO (res) = NULL; - STMT_VINFO_SUBVARS (res) = NULL; - STMT_VINFO_VECT_DR_BASE_ADDRESS (res) = NULL; - STMT_VINFO_VECT_INIT_OFFSET (res) = NULL_TREE; - STMT_VINFO_VECT_STEP (res) = NULL_TREE; - STMT_VINFO_VECT_BASE_ALIGNED_P (res) = false; - STMT_VINFO_VECT_MISALIGNMENT (res) = NULL_TREE; - STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5); - - return res; -} - - -/* Function new_loop_vec_info. +/* Function vectorize_loops. - Create and initialize a new loop_vec_info struct for LOOP, as well as - stmt_vec_info structs for all the stmts in LOOP. */ + Entry point to loop vectorization phase. */ -loop_vec_info -new_loop_vec_info (struct loop *loop) +unsigned +vectorize_loops (void) { - loop_vec_info res; - basic_block *bbs; - block_stmt_iterator si; unsigned int i; - - res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info)); - - bbs = get_loop_body (loop); - - /* Create stmt_info for all stmts in the loop. */ - for (i = 0; i < loop->num_nodes; i++) - { - basic_block bb = bbs[i]; - tree phi; - - for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi)) - { - tree_ann_t ann = get_tree_ann (phi); - set_stmt_info (ann, new_stmt_vec_info (phi, res)); - } - - for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si)) - { - tree stmt = bsi_stmt (si); - stmt_ann_t ann; - - ann = stmt_ann (stmt); - set_stmt_info ((tree_ann_t)ann, new_stmt_vec_info (stmt, res)); - } - } - - LOOP_VINFO_LOOP (res) = loop; - LOOP_VINFO_BBS (res) = bbs; - LOOP_VINFO_EXIT_COND (res) = NULL; - LOOP_VINFO_NITERS (res) = NULL; - LOOP_VINFO_VECTORIZABLE_P (res) = 0; - LOOP_PEELING_FOR_ALIGNMENT (res) = 0; - LOOP_VINFO_VECT_FACTOR (res) = 0; - VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_WRITES (res), 20, - "loop_write_datarefs"); - VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_READS (res), 20, - "loop_read_datarefs"); - LOOP_VINFO_UNALIGNED_DR (res) = NULL; - LOOP_VINFO_LOC (res) = UNKNOWN_LOC; - - return res; -} - - -/* Function destroy_loop_vec_info. - - Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the - stmts in the loop. */ - -void -destroy_loop_vec_info (loop_vec_info loop_vinfo) -{ + unsigned int num_vectorized_loops = 0; + unsigned int vect_loops_num; + loop_iterator li; struct loop *loop; - basic_block *bbs; - int nbbs; - block_stmt_iterator si; - int j; - - if (!loop_vinfo) - return; - - loop = LOOP_VINFO_LOOP (loop_vinfo); - - bbs = LOOP_VINFO_BBS (loop_vinfo); - nbbs = loop->num_nodes; - - for (j = 0; j < nbbs; j++) - { - basic_block bb = bbs[j]; - tree phi; - stmt_vec_info stmt_info; - - for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi)) - { - tree_ann_t ann = get_tree_ann (phi); - - stmt_info = vinfo_for_stmt (phi); - free (stmt_info); - set_stmt_info (ann, NULL); - } - - for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si)) - { - tree stmt = bsi_stmt (si); - stmt_ann_t ann = stmt_ann (stmt); - stmt_vec_info stmt_info = vinfo_for_stmt (stmt); - - if (stmt_info) - { - VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info)); - free (stmt_info); - set_stmt_info ((tree_ann_t)ann, NULL); - } - } - } - - free (LOOP_VINFO_BBS (loop_vinfo)); - varray_clear (LOOP_VINFO_DATAREF_WRITES (loop_vinfo)); - varray_clear (LOOP_VINFO_DATAREF_READS (loop_vinfo)); - - free (loop_vinfo); -} + vect_loops_num = number_of_loops (); -/* Function vect_strip_conversions + /* Bail out if there are no loops. */ + if (vect_loops_num <= 1) + return 0; - Strip conversions that don't narrow the mode. */ - -tree -vect_strip_conversion (tree expr) -{ - tree to, ti, oprnd0; - - while (TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR) - { - to = TREE_TYPE (expr); - oprnd0 = TREE_OPERAND (expr, 0); - ti = TREE_TYPE (oprnd0); - - if (!INTEGRAL_TYPE_P (to) || !INTEGRAL_TYPE_P (ti)) - return NULL_TREE; - if (GET_MODE_SIZE (TYPE_MODE (to)) < GET_MODE_SIZE (TYPE_MODE (ti))) - return NULL_TREE; - - expr = oprnd0; - } - return expr; -} - - -/* Function vect_force_dr_alignment_p. - - Returns whether the alignment of a DECL can be forced to be aligned - on ALIGNMENT bit boundary. */ + /* Fix the verbosity level if not defined explicitly by the user. */ + vect_set_dump_settings (false); -bool -vect_can_force_dr_alignment_p (tree decl, unsigned int alignment) -{ - if (TREE_CODE (decl) != VAR_DECL) - return false; + init_stmt_vec_info_vec (); - if (DECL_EXTERNAL (decl)) - return false; + /* ----------- Analyze loops. ----------- */ - if (TREE_ASM_WRITTEN (decl)) - return false; + /* If some loop was duplicated, it gets bigger number + than all previously defined loops. This fact allows us to run + only over initial loops skipping newly generated ones. */ + FOR_EACH_LOOP (li, loop, 0) + if (optimize_loop_nest_for_speed_p (loop)) + { + loop_vec_info loop_vinfo; - if (TREE_STATIC (decl)) - return (alignment <= MAX_OFILE_ALIGNMENT); - else - /* This is not 100% correct. The absolute correct stack alignment - is STACK_BOUNDARY. We're supposed to hope, but not assume, that - PREFERRED_STACK_BOUNDARY is honored by all translation units. - However, until someone implements forced stack alignment, SSE - isn't really usable without this. */ - return (alignment <= PREFERRED_STACK_BOUNDARY); -} + vect_location = find_loop_location (loop); + loop_vinfo = vect_analyze_loop (loop); + loop->aux = loop_vinfo; + if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo)) + continue; -/* Function get_vectype_for_scalar_type. + vect_transform_loop (loop_vinfo); + num_vectorized_loops++; + } - Returns the vector type corresponding to SCALAR_TYPE as supported - by the target. */ + vect_location = UNKNOWN_LOC; -tree -get_vectype_for_scalar_type (tree scalar_type) -{ - enum machine_mode inner_mode = TYPE_MODE (scalar_type); - int nbytes = GET_MODE_SIZE (inner_mode); - int nunits; - tree vectype; + statistics_counter_event (cfun, "Vectorized loops", num_vectorized_loops); + if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS) + || (num_vectorized_loops > 0 + && vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))) + fprintf (vect_dump, "vectorized %u loops in function.\n", + num_vectorized_loops); - if (nbytes == 0 || nbytes >= UNITS_PER_SIMD_WORD) - return NULL_TREE; + /* ----------- Finalize. ----------- */ - /* FORNOW: Only a single vector size per target (UNITS_PER_SIMD_WORD) - is expected. */ - nunits = UNITS_PER_SIMD_WORD / nbytes; + mark_sym_for_renaming (gimple_vop (cfun)); - vectype = build_vector_type (scalar_type, nunits); - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) + for (i = 1; i < vect_loops_num; i++) { - fprintf (vect_dump, "get vectype with %d units of type ", nunits); - print_generic_expr (vect_dump, scalar_type, TDF_SLIM); - } - - if (!vectype) - return NULL_TREE; + loop_vec_info loop_vinfo; - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - { - fprintf (vect_dump, "vectype: "); - print_generic_expr (vect_dump, vectype, TDF_SLIM); + loop = get_loop (i); + if (!loop) + continue; + loop_vinfo = (loop_vec_info) loop->aux; + destroy_loop_vec_info (loop_vinfo, true); + loop->aux = NULL; } - if (!VECTOR_MODE_P (TYPE_MODE (vectype)) - && !INTEGRAL_MODE_P (TYPE_MODE (vectype))) - { - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - fprintf (vect_dump, "mode not supported by target."); - return NULL_TREE; - } + free_stmt_vec_info_vec (); - return vectype; + return num_vectorized_loops > 0 ? TODO_cleanup_cfg : 0; } -/* Function vect_supportable_dr_alignment - - Return whether the data reference DR is supported with respect to its - alignment. */ +/* Entry point to basic block SLP phase. */ -enum dr_alignment_support -vect_supportable_dr_alignment (struct data_reference *dr) +static unsigned int +execute_vect_slp (void) { - tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))); - enum machine_mode mode = (int) TYPE_MODE (vectype); - - if (aligned_access_p (dr)) - return dr_aligned; - - /* Possibly unaligned access. */ - - if (DR_IS_READ (dr)) - { - if (vec_realign_load_optab->handlers[mode].insn_code != CODE_FOR_nothing - && (!targetm.vectorize.builtin_mask_for_load - || targetm.vectorize.builtin_mask_for_load ())) - return dr_unaligned_software_pipeline; - - if (movmisalign_optab->handlers[mode].insn_code != CODE_FOR_nothing) - /* Can't software pipeline the loads, but can at least do them. */ - return dr_unaligned_supported; - } - - /* Unsupported. */ - return dr_unaligned_unsupported; -} - - -/* Function vect_is_simple_use. - - Input: - LOOP - the loop that is being vectorized. - OPERAND - operand of a stmt in LOOP. - DEF - the defining stmt in case OPERAND is an SSA_NAME. - - Returns whether a stmt with OPERAND can be vectorized. - Supportable operands are constants, loop invariants, and operands that are - defined by the current iteration of the loop. Unsupportable operands are - those that are defined by a previous iteration of the loop (as is the case - in reduction/induction computations). */ - -bool -vect_is_simple_use (tree operand, loop_vec_info loop_vinfo, tree *def_stmt, - tree *def, enum vect_def_type *dt) -{ basic_block bb; - stmt_vec_info stmt_vinfo; - struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); - - *def_stmt = NULL_TREE; - *def = NULL_TREE; - - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - { - fprintf (vect_dump, "vect_is_simple_use: operand "); - print_generic_expr (vect_dump, operand, TDF_SLIM); - } - - if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST) - { - *dt = vect_constant_def; - return true; - } - - if (TREE_CODE (operand) != SSA_NAME) - { - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - fprintf (vect_dump, "not ssa-name."); - return false; - } - - *def_stmt = SSA_NAME_DEF_STMT (operand); - if (*def_stmt == NULL_TREE ) - { - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - fprintf (vect_dump, "no def_stmt."); - return false; - } - - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - { - fprintf (vect_dump, "def_stmt: "); - print_generic_expr (vect_dump, *def_stmt, TDF_SLIM); - } - /* empty stmt is expected only in case of a function argument. - (Otherwise - we expect a phi_node or a modify_expr). */ - if (IS_EMPTY_STMT (*def_stmt)) - { - tree arg = TREE_OPERAND (*def_stmt, 0); - if (TREE_CODE (arg) == INTEGER_CST || TREE_CODE (arg) == REAL_CST) - { - *def = operand; - *dt = vect_invariant_def; - return true; - } - - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - fprintf (vect_dump, "Unexpected empty stmt."); - return false; - } - - bb = bb_for_stmt (*def_stmt); - if (!flow_bb_inside_loop_p (loop, bb)) - *dt = vect_invariant_def; - else - { - stmt_vinfo = vinfo_for_stmt (*def_stmt); - *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo); - } + /* Fix the verbosity level if not defined explicitly by the user. */ + vect_set_dump_settings (true); - if (*dt == vect_unknown_def_type) - { - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - fprintf (vect_dump, "Unsupported pattern."); - return false; - } + init_stmt_vec_info_vec (); - /* stmts inside the loop that have been identified as performing - a reduction operation cannot have uses in the loop. */ - if (*dt == vect_reduction_def && TREE_CODE (*def_stmt) != PHI_NODE) + FOR_EACH_BB (bb) { - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - fprintf (vect_dump, "reduction used in loop."); - return false; - } - - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - fprintf (vect_dump, "type of def: %d.",*dt); + vect_location = find_bb_location (bb); - switch (TREE_CODE (*def_stmt)) - { - case PHI_NODE: - *def = PHI_RESULT (*def_stmt); - gcc_assert (*dt == vect_induction_def || *dt == vect_reduction_def - || *dt == vect_invariant_def); - break; - - case MODIFY_EXPR: - *def = TREE_OPERAND (*def_stmt, 0); - gcc_assert (*dt == vect_loop_def || *dt == vect_invariant_def); - break; - - default: - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - fprintf (vect_dump, "unsupported defining stmt: "); - return false; - } + if (vect_slp_analyze_bb (bb)) + { + vect_slp_transform_bb (bb); - if (*dt == vect_induction_def) - { - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - fprintf (vect_dump, "induction not supported."); - return false; + if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS)) + fprintf (vect_dump, "basic block vectorized using SLP\n"); + } } - return true; + free_stmt_vec_info_vec (); + return 0; } - -/* Function reduction_code_for_scalar_code - - Input: - CODE - tree_code of a reduction operations. - - Output: - REDUC_CODE - the corresponding tree-code to be used to reduce the - vector of partial results into a single scalar result (which - will also reside in a vector). - - Return TRUE if a corresponding REDUC_CODE was found, FALSE otherwise. */ - -bool -reduction_code_for_scalar_code (enum tree_code code, - enum tree_code *reduc_code) +static bool +gate_vect_slp (void) { - switch (code) - { - case MAX_EXPR: - *reduc_code = REDUC_MAX_EXPR; - return true; - - case MIN_EXPR: - *reduc_code = REDUC_MIN_EXPR; - return true; - - case PLUS_EXPR: - *reduc_code = REDUC_PLUS_EXPR; - return true; - - default: - return false; - } + /* Apply SLP either if the vectorizer is on and the user didn't specify + whether to run SLP or not, or if the SLP flag was set by the user. */ + return ((flag_tree_vectorize != 0 && flag_tree_slp_vectorize != 0) + || flag_tree_slp_vectorize == 1); } - -/* Function vect_is_simple_reduction - - Detect a cross-iteration def-use cucle that represents a simple - reduction computation. We look for the following pattern: - - loop_header: - a1 = phi < a0, a2 > - a3 = ... - a2 = operation (a3, a1) - - such that: - 1. operation is commutative and associative and it is safe to - change the the order of the computation. - 2. no uses for a2 in the loop (a2 is used out of the loop) - 3. no uses of a1 in the loop besides the reduction operation. - - Condition 1 is tested here. - Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized. */ - -tree -vect_is_simple_reduction (struct loop *loop ATTRIBUTE_UNUSED, - tree phi ATTRIBUTE_UNUSED) +struct gimple_opt_pass pass_slp_vectorize = { - edge latch_e = loop_latch_edge (loop); - tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e); - tree def_stmt, def1, def2; - enum tree_code code; - int op_type; - tree operation, op1, op2; - tree type; - - if (TREE_CODE (loop_arg) != SSA_NAME) - { - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - { - fprintf (vect_dump, "reduction: not ssa_name: "); - print_generic_expr (vect_dump, loop_arg, TDF_SLIM); - } - return NULL_TREE; - } - - def_stmt = SSA_NAME_DEF_STMT (loop_arg); - if (!def_stmt) - { - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - fprintf (vect_dump, "reduction: no def_stmt."); - return NULL_TREE; - } - - if (TREE_CODE (def_stmt) != MODIFY_EXPR) - { - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - { - print_generic_expr (vect_dump, def_stmt, TDF_SLIM); - } - return NULL_TREE; - } - - operation = TREE_OPERAND (def_stmt, 1); - code = TREE_CODE (operation); - if (!commutative_tree_code (code) || !associative_tree_code (code)) - { - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - { - fprintf (vect_dump, "reduction: not commutative/associative: "); - print_generic_expr (vect_dump, operation, TDF_SLIM); - } - return NULL_TREE; - } - - op_type = TREE_CODE_LENGTH (code); - if (op_type != binary_op) - { - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - { - fprintf (vect_dump, "reduction: not binary operation: "); - print_generic_expr (vect_dump, operation, TDF_SLIM); - } - return NULL_TREE; - } - - op1 = TREE_OPERAND (operation, 0); - op2 = TREE_OPERAND (operation, 1); - if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME) - { - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - { - fprintf (vect_dump, "reduction: uses not ssa_names: "); - print_generic_expr (vect_dump, operation, TDF_SLIM); - } - return NULL_TREE; - } - - /* Check that it's ok to change the order of the computation. */ - type = TREE_TYPE (operation); - if (TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op1)) - || TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op2))) - { - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - { - fprintf (vect_dump, "reduction: multiple types: operation type: "); - print_generic_expr (vect_dump, type, TDF_SLIM); - fprintf (vect_dump, ", operands types: "); - print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM); - fprintf (vect_dump, ","); - print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM); - } - return NULL_TREE; - } - - /* CHECKME: check for !flag_finite_math_only too? */ - if (SCALAR_FLOAT_TYPE_P (type) && !flag_unsafe_math_optimizations) - { - /* Changing the order of operations changes the sematics. */ - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - { - fprintf (vect_dump, "reduction: unsafe fp math optimization: "); - print_generic_expr (vect_dump, operation, TDF_SLIM); - } - return NULL_TREE; - } - else if (INTEGRAL_TYPE_P (type) && !TYPE_UNSIGNED (type) && flag_trapv) - { - /* Changing the order of operations changes the sematics. */ - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - { - fprintf (vect_dump, "reduction: unsafe int math optimization: "); - print_generic_expr (vect_dump, operation, TDF_SLIM); - } - return NULL_TREE; - } - - /* reduction is safe. we're dealing with one of the following: - 1) integer arithmetic and no trapv - 2) floating point arithmetic, and special flags permit this optimization. - */ - def1 = SSA_NAME_DEF_STMT (op1); - def2 = SSA_NAME_DEF_STMT (op2); - if (!def1 || !def2) - { - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - { - fprintf (vect_dump, "reduction: no defs for operands: "); - print_generic_expr (vect_dump, operation, TDF_SLIM); - } - return NULL_TREE; - } + { + GIMPLE_PASS, + "slp", /* name */ + gate_vect_slp, /* gate */ + execute_vect_slp, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_TREE_SLP_VECTORIZATION, /* tv_id */ + PROP_ssa | PROP_cfg, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_ggc_collect + | TODO_verify_ssa + | TODO_dump_func + | TODO_update_ssa + | TODO_verify_stmts /* todo_flags_finish */ + } +}; + + +/* Increase alignment of global arrays to improve vectorization potential. + TODO: + - Consider also structs that have an array field. + - Use ipa analysis to prune arrays that can't be vectorized? + This should involve global alignment analysis and in the future also + array padding. */ + +static unsigned int +increase_alignment (void) +{ + struct varpool_node *vnode; - if (TREE_CODE (def1) == MODIFY_EXPR - && flow_bb_inside_loop_p (loop, bb_for_stmt (def1)) - && def2 == phi) + /* Increase the alignment of all global arrays for vectorization. */ + for (vnode = varpool_nodes_queue; + vnode; + vnode = vnode->next_needed) { - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - { - fprintf (vect_dump, "detected reduction:"); - print_generic_expr (vect_dump, operation, TDF_SLIM); - } - return def_stmt; - } - else if (TREE_CODE (def2) == MODIFY_EXPR - && flow_bb_inside_loop_p (loop, bb_for_stmt (def2)) - && def1 == phi) - { - use_operand_p use; - ssa_op_iter iter; + tree vectype, decl = vnode->decl; + tree t; + unsigned int alignment; - /* Swap operands (just for simplicity - so that the rest of the code - can assume that the reduction variable is always the last (second) - argument). */ - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - { - fprintf (vect_dump, "detected reduction: need to swap operands:"); - print_generic_expr (vect_dump, operation, TDF_SLIM); - } + t = TREE_TYPE(decl); + if (TREE_CODE (t) != ARRAY_TYPE) + continue; + vectype = get_vectype_for_scalar_type (strip_array_types (t)); + if (!vectype) + continue; + alignment = TYPE_ALIGN (vectype); + if (DECL_ALIGN (decl) >= alignment) + continue; - /* CHECKME */ - FOR_EACH_SSA_USE_OPERAND (use, def_stmt, iter, SSA_OP_USE) - { - tree tuse = USE_FROM_PTR (use); - if (tuse == op1) - SET_USE (use, op2); - else if (tuse == op2) - SET_USE (use, op1); - } - return def_stmt; - } - else - { - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) + if (vect_can_force_dr_alignment_p (decl, alignment)) { - fprintf (vect_dump, "reduction: unknown pattern."); - print_generic_expr (vect_dump, operation, TDF_SLIM); + DECL_ALIGN (decl) = TYPE_ALIGN (vectype); + DECL_USER_ALIGN (decl) = 1; + if (dump_file) + { + fprintf (dump_file, "Increasing alignment of decl: "); + print_generic_expr (dump_file, decl, TDF_SLIM); + fprintf (dump_file, "\n"); + } } - return NULL_TREE; } + return 0; } -/* Function vect_is_simple_iv_evolution. - - FORNOW: A simple evolution of an induction variables in the loop is - considered a polynomial evolution with constant step. */ - -bool -vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init, - tree * step) +static bool +gate_increase_alignment (void) { - tree init_expr; - tree step_expr; - - tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb); - - /* When there is no evolution in this loop, the evolution function - is not "simple". */ - if (evolution_part == NULL_TREE) - return false; - - /* When the evolution is a polynomial of degree >= 2 - the evolution function is not "simple". */ - if (tree_is_chrec (evolution_part)) - return false; - - step_expr = evolution_part; - init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, - loop_nb)); - - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - { - fprintf (vect_dump, "step: "); - print_generic_expr (vect_dump, step_expr, TDF_SLIM); - fprintf (vect_dump, ", init: "); - print_generic_expr (vect_dump, init_expr, TDF_SLIM); - } - - *init = init_expr; - *step = step_expr; - - if (TREE_CODE (step_expr) != INTEGER_CST) - { - if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) - fprintf (vect_dump, "step unknown."); - return false; - } - - return true; + return flag_section_anchors && flag_tree_vectorize; } -/* Function vectorize_loops. - - Entry Point to loop vectorization phase. */ - -void -vectorize_loops (struct loops *loops) +struct simple_ipa_opt_pass pass_ipa_increase_alignment = { - unsigned int i; - unsigned int num_vectorized_loops = 0; - - /* Fix the verbosity level if not defined explicitly by the user. */ - vect_set_dump_settings (); - - /* ----------- Analyze loops. ----------- */ - - /* If some loop was duplicated, it gets bigger number - than all previously defined loops. This fact allows us to run - only over initial loops skipping newly generated ones. */ - vect_loops_num = loops->num; - for (i = 1; i < vect_loops_num; i++) - { - loop_vec_info loop_vinfo; - struct loop *loop = loops->parray[i]; - - if (!loop) - continue; - - loop_vinfo = vect_analyze_loop (loop); - loop->aux = loop_vinfo; - - if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo)) - continue; - - vect_transform_loop (loop_vinfo, loops); - num_vectorized_loops++; - } - - if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS, UNKNOWN_LOC)) - fprintf (vect_dump, "vectorized %u loops in function.\n", - num_vectorized_loops); - - /* ----------- Finalize. ----------- */ - - for (i = 1; i < vect_loops_num; i++) - { - struct loop *loop = loops->parray[i]; - loop_vec_info loop_vinfo; - - if (!loop) - continue; - loop_vinfo = loop->aux; - destroy_loop_vec_info (loop_vinfo); - loop->aux = NULL; - } -} + { + SIMPLE_IPA_PASS, + "increase_alignment", /* name */ + gate_increase_alignment, /* gate */ + increase_alignment, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_NONE, /* tv_id */ + 0, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + 0 /* todo_flags_finish */ + } +};