X-Git-Url: http://git.sourceforge.jp/view?p=pf3gnuchains%2Fgcc-fork.git;a=blobdiff_plain;f=gcc%2Ftree-data-ref.h;h=b24fd63095f37d6d37ded6f85f0b4dc1100753cb;hp=1f996f43097a7b8668dde698cb861e30335ca480;hb=a049d909ffb04dc8d44431d4499d23cc7c4f271e;hpb=b44d10464569641729bf31f7363aa4aae089947e diff --git a/gcc/tree-data-ref.h b/gcc/tree-data-ref.h index 1f996f43097..b24fd63095f 100644 --- a/gcc/tree-data-ref.h +++ b/gcc/tree-data-ref.h @@ -1,12 +1,12 @@ /* Data references and dependences detectors. - Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc. + Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. Contributed by Sebastian Pop This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free -Software Foundation; either version 2, or (at your option) any later +Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY @@ -15,57 +15,86 @@ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GCC; see the file COPYING. If not, write to the Free -Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA -02110-1301, USA. */ +along with GCC; see the file COPYING3. If not see +. */ #ifndef GCC_TREE_DATA_REF_H #define GCC_TREE_DATA_REF_H +#include "graphds.h" #include "lambda.h" +#include "omega.h" +#include "tree-chrec.h" + +/* + innermost_loop_behavior describes the evolution of the address of the memory + reference in the innermost enclosing loop. The address is expressed as + BASE + STEP * # of iteration, and base is further decomposed as the base + pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and + constant offset (INIT). Examples, in loop nest + + for (i = 0; i < 100; i++) + for (j = 3; j < 100; j++) -/** {base_address + offset + init} is the first location accessed by data-ref - in the loop, and step is the stride of data-ref in the loop in bytes; - e.g.: - Example 1 Example 2 - data-ref a[j].b[i][j] a + x + 16B (a is int*) + data-ref a[j].b[i][j] *(p + x + 16B + 4B * j) -First location info: - base_address &a a - offset j_0*D_j + i_0*D_i + C_a x - init C_b 16 - step D_j 4 - access_fn NULL {16, +, 1} -Base object info: - base_object a NULL - access_fn NULL + innermost_loop_behavior + base_address &a p + offset i * D_i x + init 3 * D_j + offsetof (b) 28 + step D_j 4 - **/ -struct first_location_in_loop + */ +struct innermost_loop_behavior { tree base_address; tree offset; tree init; tree step; - /* Access function related to first location in the loop. */ - VEC(tree,heap) *access_fns; + /* Alignment information. ALIGNED_TO is set to the largest power of two + that divides OFFSET. */ + tree aligned_to; }; -struct base_object_info +/* Describes the evolutions of indices of the memory reference. The indices + are indices of the ARRAY_REFs and the operands of INDIRECT_REFs. + For ARRAY_REFs, BASE_OBJECT is the reference with zeroed indices + (note that this reference does not have to be valid, if zero does not + belong to the range of the array; hence it is not recommended to use + BASE_OBJECT in any code generation). For INDIRECT_REFs, the address is + set to the loop-invariant part of the address of the object, except for + the constant offset. For the examples above, + + base_object: a[0].b[0][0] *(p + x + 4B * j_0) + indices: {j_0, +, 1}_2 {16, +, 4}_2 + {i_0, +, 1}_1 + {j_0, +, 1}_2 +*/ + +struct indices { /* The object. */ tree base_object; - /* A list of chrecs. Access functions related to BASE_OBJECT. */ + /* A list of chrecs. Access functions of the indices. */ VEC(tree,heap) *access_fns; }; -enum data_ref_type { - ARRAY_REF_TYPE, - POINTER_REF_TYPE +struct dr_alias +{ + /* The alias information that should be used for new pointers to this + location. SYMBOL_TAG is either a DECL or a SYMBOL_MEMORY_TAG. */ + tree symbol_tag; + subvar_t subvars; + struct ptr_info_def *ptr_info; + + /* The set of virtual operands corresponding to this memory reference, + serving as a description of the alias information for the memory + reference. This could be eliminated if we had alias oracle. */ + bitmap vops; }; struct data_reference @@ -73,77 +102,45 @@ struct data_reference /* A pointer to the statement that contains this DR. */ tree stmt; - /* A pointer to the ARRAY_REF node. */ + /* A pointer to the memory reference. */ tree ref; /* Auxiliary info specific to a pass. */ - int aux; + void *aux; /* True when the data reference is in RHS of a stmt. */ bool is_read; - /* First location accessed by the data-ref in the loop. */ - struct first_location_in_loop first_location; + /* Behavior of the memory reference in the innermost loop. */ + struct innermost_loop_behavior innermost; - /* Base object related info. */ - struct base_object_info object_info; + /* Decomposition to indices for alias analysis. */ + struct indices indices; - /* Aliasing information. This field represents the symbol that - should be aliased by a pointer holding the address of this data - reference. If the original data reference was a pointer - dereference, then this field contains the memory tag that should - be used by the new vector-pointer. */ - tree memtag; - struct ptr_info_def *ptr_info; - subvar_t subvars; - - /* Alignment information. */ - /* The offset of the data-reference from its base in bytes. */ - tree misalignment; - /* The maximum data-ref's alignment. */ - tree aligned_to; - - /* The type of the data-ref. */ - enum data_ref_type type; + /* Alias information for the data reference. */ + struct dr_alias alias; }; +typedef struct data_reference *data_reference_p; +DEF_VEC_P(data_reference_p); +DEF_VEC_ALLOC_P (data_reference_p, heap); + #define DR_STMT(DR) (DR)->stmt #define DR_REF(DR) (DR)->ref -#define DR_BASE_OBJECT(DR) (DR)->object_info.base_object -#define DR_TYPE(DR) (DR)->type -#define DR_ACCESS_FNS(DR)\ - (DR_TYPE(DR) == ARRAY_REF_TYPE ? \ - (DR)->object_info.access_fns : (DR)->first_location.access_fns) +#define DR_BASE_OBJECT(DR) (DR)->indices.base_object +#define DR_ACCESS_FNS(DR) (DR)->indices.access_fns #define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I) #define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR)) #define DR_IS_READ(DR) (DR)->is_read -#define DR_BASE_ADDRESS(DR) (DR)->first_location.base_address -#define DR_OFFSET(DR) (DR)->first_location.offset -#define DR_INIT(DR) (DR)->first_location.init -#define DR_STEP(DR) (DR)->first_location.step -#define DR_MEMTAG(DR) (DR)->memtag -#define DR_ALIGNED_TO(DR) (DR)->aligned_to -#define DR_OFFSET_MISALIGNMENT(DR) (DR)->misalignment -#define DR_PTR_INFO(DR) (DR)->ptr_info -#define DR_SUBVARS(DR) (DR)->subvars - -#define DR_ACCESS_FNS_ADDR(DR) \ - (DR_TYPE(DR) == ARRAY_REF_TYPE ? \ - &((DR)->object_info.access_fns) : &((DR)->first_location.access_fns)) -#define DR_SET_ACCESS_FNS(DR, ACC_FNS) \ -{ \ - if (DR_TYPE(DR) == ARRAY_REF_TYPE) \ - (DR)->object_info.access_fns = ACC_FNS; \ - else \ - (DR)->first_location.access_fns = ACC_FNS; \ -} -#define DR_FREE_ACCESS_FNS(DR) \ -{ \ - if (DR_TYPE(DR) == ARRAY_REF_TYPE) \ - VEC_free (tree, heap, (DR)->object_info.access_fns); \ - else \ - VEC_free (tree, heap, (DR)->first_location.access_fns); \ -} +#define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address +#define DR_OFFSET(DR) (DR)->innermost.offset +#define DR_INIT(DR) (DR)->innermost.init +#define DR_STEP(DR) (DR)->innermost.step +#define DR_SYMBOL_TAG(DR) (DR)->alias.symbol_tag +#define DR_PTR_INFO(DR) (DR)->alias.ptr_info +#define DR_SUBVARS(DR) (DR)->alias.subvars +#define DR_VOPS(DR) (DR)->alias.vops +#define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to enum data_dependence_direction { dir_positive, @@ -156,6 +153,29 @@ enum data_dependence_direction { dir_independent }; +/* The description of the grid of iterations that overlap. At most + two loops are considered at the same time just now, hence at most + two functions are needed. For each of the functions, we store + the vector of coefficients, f[0] + x * f[1] + y * f[2] + ..., + where x, y, ... are variables. */ + +#define MAX_DIM 2 + +/* Special values of N. */ +#define NO_DEPENDENCE 0 +#define NOT_KNOWN (MAX_DIM + 1) +#define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN) +#define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN) +#define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE) + +typedef VEC (tree, heap) *affine_fn; + +typedef struct +{ + unsigned n; + affine_fn fns[MAX_DIM]; +} conflict_function; + /* What is a subscript? Given two array accesses a subscript is the tuple composed of the access functions for a given dimension. Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three @@ -167,8 +187,8 @@ struct subscript { /* A description of the iterations for which the elements are accessed twice. */ - tree conflicting_iterations_in_a; - tree conflicting_iterations_in_b; + conflict_function *conflicting_iterations_in_a; + conflict_function *conflicting_iterations_in_b; /* This field stores the information about the iteration domain validity of the dependence relation. */ @@ -181,15 +201,15 @@ struct subscript tree distance; }; +typedef struct subscript *subscript_p; +DEF_VEC_P(subscript_p); +DEF_VEC_ALLOC_P (subscript_p, heap); + #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict #define SUB_DISTANCE(SUB) SUB->distance -typedef struct loop *loop_p; -DEF_VEC_P(loop_p); -DEF_VEC_ALLOC_P (loop_p, heap); - /* A data_dependence_relation represents a relation between two data_references A and B. */ @@ -219,16 +239,23 @@ struct data_dependence_relation /* For each subscript in the dependence test, there is an element in this array. This is the attribute that labels the edge A->B of the data_dependence_relation. */ - varray_type subscripts; + VEC (subscript_p, heap) *subscripts; /* The analyzed loop nest. */ VEC (loop_p, heap) *loop_nest; + /* An index in loop_nest for the innermost loop that varies for + this data dependence relation. */ + unsigned inner_loop; + /* The classic direction vector. */ - VEC(lambda_vector,heap) *dir_vects; + VEC (lambda_vector, heap) *dir_vects; /* The classic distance vector. */ - VEC(lambda_vector,heap) *dist_vects; + VEC (lambda_vector, heap) *dist_vects; + + /* Is the dependence reversed with respect to the lexicographic order? */ + bool reversed_p; }; typedef struct data_dependence_relation *ddr_p; @@ -240,15 +267,14 @@ DEF_VEC_ALLOC_P(ddr_p,heap); #define DDR_AFFINE_P(DDR) DDR->affine_p #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent #define DDR_SUBSCRIPTS(DDR) DDR->subscripts -#define DDR_SUBSCRIPTS_VECTOR_INIT(DDR, N) \ - VARRAY_GENERIC_PTR_INIT (DDR_SUBSCRIPTS (DDR), N, "subscripts_vector"); -#define DDR_SUBSCRIPT(DDR, I) VARRAY_GENERIC_PTR (DDR_SUBSCRIPTS (DDR), I) -#define DDR_NUM_SUBSCRIPTS(DDR) VARRAY_ACTIVE_SIZE (DDR_SUBSCRIPTS (DDR)) +#define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I) +#define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR)) #define DDR_LOOP_NEST(DDR) DDR->loop_nest /* The size of the direction/distance vectors: the number of loops in the loop nest. */ #define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR))) +#define DDR_INNER_LOOP(DDR) DDR->inner_loop #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects) #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects) @@ -260,31 +286,177 @@ DEF_VEC_ALLOC_P(ddr_p,heap); VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I) #define DDR_DIST_VECT(DDR, I) \ VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I) +#define DDR_REVERSED_P(DDR) DDR->reversed_p -extern tree find_data_references_in_loop (struct loop *, varray_type *); +/* Describes a location of a memory reference. */ + +typedef struct data_ref_loc_d +{ + /* Position of the memory reference. */ + tree *pos; + + /* True if the memory reference is read. */ + bool is_read; +} data_ref_loc; + +DEF_VEC_O (data_ref_loc); +DEF_VEC_ALLOC_O (data_ref_loc, heap); + +bool get_references_in_stmt (tree, VEC (data_ref_loc, heap) **); +void dr_analyze_innermost (struct data_reference *); extern void compute_data_dependences_for_loop (struct loop *, bool, - varray_type *, varray_type *); + VEC (data_reference_p, heap) **, + VEC (ddr_p, heap) **); extern void print_direction_vector (FILE *, lambda_vector, int); extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int); extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int); extern void dump_subscript (FILE *, struct subscript *); -extern void dump_ddrs (FILE *, varray_type); -extern void dump_dist_dir_vectors (FILE *, varray_type); +extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *); +extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *); extern void dump_data_reference (FILE *, struct data_reference *); -extern void dump_data_references (FILE *, varray_type); +extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *); extern void debug_data_dependence_relation (struct data_dependence_relation *); extern void dump_data_dependence_relation (FILE *, struct data_dependence_relation *); -extern void dump_data_dependence_relations (FILE *, varray_type); +extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *); +extern void debug_data_dependence_relations (VEC (ddr_p, heap) *); extern void dump_data_dependence_direction (FILE *, enum data_dependence_direction); extern void free_dependence_relation (struct data_dependence_relation *); -extern void free_dependence_relations (varray_type); -extern void free_data_refs (varray_type); -extern struct data_reference *analyze_array (tree, tree, bool); -extern void estimate_iters_using_array (tree, tree); +extern void free_dependence_relations (VEC (ddr_p, heap) *); +extern void free_data_ref (data_reference_p); +extern void free_data_refs (VEC (data_reference_p, heap) *); +struct data_reference *create_data_ref (struct loop *, tree, tree, bool); +bool find_loop_nest (struct loop *, VEC (loop_p, heap) **); +void compute_all_dependences (VEC (data_reference_p, heap) *, + VEC (ddr_p, heap) **, VEC (loop_p, heap) *, bool); + +/* Return true when the DDR contains two data references that have the + same access functions. */ + +static inline bool +same_access_functions (const struct data_dependence_relation *ddr) +{ + unsigned i; + + for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) + if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i), + DR_ACCESS_FN (DDR_B (ddr), i))) + return false; + + return true; +} + +/* Return true when DDR is an anti-dependence relation. */ + +static inline bool +ddr_is_anti_dependent (ddr_p ddr) +{ + return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE + && DR_IS_READ (DDR_A (ddr)) + && !DR_IS_READ (DDR_B (ddr)) + && !same_access_functions (ddr)); +} + +/* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */ + +static inline bool +ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations) +{ + unsigned i; + ddr_p ddr; + + for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++) + if (ddr_is_anti_dependent (ddr)) + return true; + + return false; +} + +/* Return the dependence level for the DDR relation. */ + +static inline unsigned +ddr_dependence_level (ddr_p ddr) +{ + unsigned vector; + unsigned level = 0; + + if (DDR_DIST_VECTS (ddr)) + level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr)); + + for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++) + level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector), + DDR_NB_LOOPS (ddr))); + return level; +} + + + +/* A Reduced Dependence Graph (RDG) vertex representing a statement. */ +typedef struct rdg_vertex +{ + /* The statement represented by this vertex. */ + tree stmt; + + /* True when the statement contains a write to memory. */ + bool has_mem_write; + + /* True when the statement contains a read from memory. */ + bool has_mem_reads; +} *rdg_vertex_p; + +#define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt +#define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write +#define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads +#define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I])) +#define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I])) +#define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I])) + +void dump_rdg_vertex (FILE *, struct graph *, int); +void debug_rdg_vertex (struct graph *, int); +void dump_rdg_component (FILE *, struct graph *, int, bitmap); +void debug_rdg_component (struct graph *, int); +void dump_rdg (FILE *, struct graph *); +void debug_rdg (struct graph *); +void dot_rdg (struct graph *); +int rdg_vertex_for_stmt (struct graph *, tree); + +/* Data dependence type. */ + +enum rdg_dep_type +{ + /* Read After Write (RAW). */ + flow_dd = 'f', + + /* Write After Read (WAR). */ + anti_dd = 'a', + + /* Write After Write (WAW). */ + output_dd = 'o', + + /* Read After Read (RAR). */ + input_dd = 'i' +}; + +/* Dependence information attached to an edge of the RDG. */ + +typedef struct rdg_edge +{ + /* Type of the dependence. */ + enum rdg_dep_type type; + + /* Levels of the dependence: the depth of the loops that + carry the dependence. */ + unsigned level; +} *rdg_edge_p; + +#define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type +#define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level + +struct graph *build_rdg (struct loop *); +void free_rdg (struct graph *); /* Return the index of the variable VAR in the LOOP_NEST array. */ @@ -302,6 +474,25 @@ index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest) return var_index; } - +void stores_from_loop (struct loop *, VEC (tree, heap) **); +void remove_similar_memory_refs (VEC (tree, heap) **); +bool rdg_defs_used_in_other_loops_p (struct graph *, int); +bool have_similar_memory_accesses (tree, tree); + +/* Determines whether RDG vertices V1 and V2 access to similar memory + locations, in which case they have to be in the same partition. */ + +static inline bool +rdg_has_similar_memory_accesses (struct graph *rdg, int v1, int v2) +{ + return have_similar_memory_accesses (RDG_STMT (rdg, v1), + RDG_STMT (rdg, v2)); +} + +/* In lambda-code.c */ +bool lambda_transform_legal_p (lambda_trans_matrix, int, VEC (ddr_p, heap) *); + +/* In tree-data-refs.c */ +void split_constant_offset (tree , tree *, tree *); #endif /* GCC_TREE_DATA_REF_H */