X-Git-Url: http://git.sourceforge.jp/view?p=pf3gnuchains%2Fgcc-fork.git;a=blobdiff_plain;f=gcc%2Ftree-data-ref.h;h=2ae58266db627ddb48bef02376b13dd2962daaae;hp=bc069c1b7e06bd48e2f085e852768914e2e13f39;hb=79d7a29d96471dd21e913afd1af615bed9533d15;hpb=c91e822398d80d51e7b0e0884fa3e8c7c32d6ae7 diff --git a/gcc/tree-data-ref.h b/gcc/tree-data-ref.h index bc069c1b7e0..2ae58266db6 100644 --- a/gcc/tree-data-ref.h +++ b/gcc/tree-data-ref.h @@ -1,12 +1,12 @@ /* Data references and dependences detectors. - Copyright (C) 2003, 2004 Free Software Foundation, Inc. - Contributed by Sebastian Pop + Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. + Contributed by Sebastian Pop This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free -Software Foundation; either version 2, or (at your option) any later +Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY @@ -15,46 +15,130 @@ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GCC; see the file COPYING. If not, write to the Free -Software Foundation, 59 Temple Place - Suite 330, Boston, MA -02111-1307, USA. */ +along with GCC; see the file COPYING3. If not see +. */ #ifndef GCC_TREE_DATA_REF_H #define GCC_TREE_DATA_REF_H -struct data_reference GTY(()) +#include "graphds.h" +#include "lambda.h" +#include "omega.h" + +/* + innermost_loop_behavior describes the evolution of the address of the memory + reference in the innermost enclosing loop. The address is expressed as + BASE + STEP * # of iteration, and base is further decomposed as the base + pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and + constant offset (INIT). Examples, in loop nest + + for (i = 0; i < 100; i++) + for (j = 3; j < 100; j++) + + Example 1 Example 2 + data-ref a[j].b[i][j] *(p + x + 16B + 4B * j) + + innermost_loop_behavior + base_address &a p + offset i * D_i x + init 3 * D_j + offsetof (b) 28 + step D_j 4 + + */ +struct innermost_loop_behavior { - /* An identifier. */ - unsigned int id; + tree base_address; + tree offset; + tree init; + tree step; + + /* Alignment information. ALIGNED_TO is set to the largest power of two + that divides OFFSET. */ + tree aligned_to; +}; + +/* Describes the evolutions of indices of the memory reference. The indices + are indices of the ARRAY_REFs and the operands of INDIRECT_REFs. + For ARRAY_REFs, BASE_OBJECT is the reference with zeroed indices + (note that this reference does not have to be valid, if zero does not + belong to the range of the array; hence it is not recommended to use + BASE_OBJECT in any code generation). For INDIRECT_REFs, the address is + set to the loop-invariant part of the address of the object, except for + the constant offset. For the examples above, + + base_object: a[0].b[0][0] *(p + x + 4B * j_0) + indices: {j_0, +, 1}_2 {16, +, 4}_2 + {i_0, +, 1}_1 + {j_0, +, 1}_2 +*/ + +struct indices +{ + /* The object. */ + tree base_object; + /* A list of chrecs. Access functions of the indices. */ + VEC(tree,heap) *access_fns; +}; + +struct dr_alias +{ + /* The alias information that should be used for new pointers to this + location. SYMBOL_TAG is either a DECL or a SYMBOL_MEMORY_TAG. */ + tree symbol_tag; + subvar_t subvars; + struct ptr_info_def *ptr_info; + + /* The set of virtual operands corresponding to this memory reference, + serving as a description of the alias information for the memory + reference. This could be eliminated if we had alias oracle. */ + bitmap vops; +}; + +struct data_reference +{ /* A pointer to the statement that contains this DR. */ tree stmt; - /* A pointer to the ARRAY_REF node. */ + /* A pointer to the memory reference. */ tree ref; - /* The name of the array. */ - tree base_name; - - /* A list of chrecs. */ - varray_type access_fns; - /* Auxiliary info specific to a pass. */ - int aux; + void *aux; /* True when the data reference is in RHS of a stmt. */ bool is_read; + /* Behavior of the memory reference in the innermost loop. */ + struct innermost_loop_behavior innermost; + + /* Decomposition to indices for alias analysis. */ + struct indices indices; + + /* Alias information for the data reference. */ + struct dr_alias alias; }; -#define DR_ID(DR) DR->id -#define DR_STMT(DR) DR->stmt -#define DR_REF(DR) DR->ref -#define DR_BASE_NAME(DR) DR->base_name -#define DR_ACCESS_FNS(DR) DR->access_fns -#define DR_ACCESS_FN(DR, I) VARRAY_TREE (DR_ACCESS_FNS (DR), I) -#define DR_NUM_DIMENSIONS(DR) VARRAY_ACTIVE_SIZE (DR_ACCESS_FNS (DR)) -#define DR_IS_READ(DR) DR->is_read +typedef struct data_reference *data_reference_p; +DEF_VEC_P(data_reference_p); +DEF_VEC_ALLOC_P (data_reference_p, heap); + +#define DR_STMT(DR) (DR)->stmt +#define DR_REF(DR) (DR)->ref +#define DR_BASE_OBJECT(DR) (DR)->indices.base_object +#define DR_ACCESS_FNS(DR) (DR)->indices.access_fns +#define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I) +#define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR)) +#define DR_IS_READ(DR) (DR)->is_read +#define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address +#define DR_OFFSET(DR) (DR)->innermost.offset +#define DR_INIT(DR) (DR)->innermost.init +#define DR_STEP(DR) (DR)->innermost.step +#define DR_SYMBOL_TAG(DR) (DR)->alias.symbol_tag +#define DR_PTR_INFO(DR) (DR)->alias.ptr_info +#define DR_SUBVARS(DR) (DR)->alias.subvars +#define DR_VOPS(DR) (DR)->alias.vops +#define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to enum data_dependence_direction { dir_positive, @@ -67,6 +151,29 @@ enum data_dependence_direction { dir_independent }; +/* The description of the grid of iterations that overlap. At most + two loops are considered at the same time just now, hence at most + two functions are needed. For each of the functions, we store + the vector of coefficients, f[0] + x * f[1] + y * f[2] + ..., + where x, y, ... are variables. */ + +#define MAX_DIM 2 + +/* Special values of N. */ +#define NO_DEPENDENCE 0 +#define NOT_KNOWN (MAX_DIM + 1) +#define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN) +#define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN) +#define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE) + +typedef VEC (tree, heap) *affine_fn; + +typedef struct +{ + unsigned n; + affine_fn fns[MAX_DIM]; +} conflict_function; + /* What is a subscript? Given two array accesses a subscript is the tuple composed of the access functions for a given dimension. Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three @@ -74,46 +181,46 @@ enum data_dependence_direction { are stored in the data_dependence_relation structure under the form of an array of subscripts. */ -struct subscript GTY(()) +struct subscript { /* A description of the iterations for which the elements are accessed twice. */ - tree conflicting_iterations_in_a; - tree conflicting_iterations_in_b; + conflict_function *conflicting_iterations_in_a; + conflict_function *conflicting_iterations_in_b; - /* These fields store the information about the iteration domain + /* This field stores the information about the iteration domain validity of the dependence relation. */ - tree last_conflict_in_a; - tree last_conflict_in_b; + tree last_conflict; /* Distance from the iteration that access a conflicting element in A to the iteration that access this same conflicting element in - B. The distance is a tree scalar expression, ie. a constant or a + B. The distance is a tree scalar expression, i.e. a constant or a symbolic expression, but certainly not a chrec function. */ tree distance; - - /* Direction (or sign) of the distance. This more abstract (less - precise) information is extracted from the distance field, for - the convenience of some analyzers. */ - enum data_dependence_direction direction; }; +typedef struct subscript *subscript_p; +DEF_VEC_P(subscript_p); +DEF_VEC_ALLOC_P (subscript_p, heap); + #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b -#define SUB_LAST_CONFLICT_IN_A(SUB) SUB->last_conflict_in_a -#define SUB_LAST_CONFLICT_IN_B(SUB) SUB->last_conflict_in_b +#define SUB_LAST_CONFLICT(SUB) SUB->last_conflict #define SUB_DISTANCE(SUB) SUB->distance -#define SUB_DIRECTION(SUB) SUB->direction /* A data_dependence_relation represents a relation between two data_references A and B. */ -struct data_dependence_relation GTY(()) +struct data_dependence_relation { struct data_reference *a; struct data_reference *b; + /* When the dependence relation is affine, it can be represented by + a distance vector. */ + bool affine_p; + /* A "yes/no/maybe" field for the dependence relation: - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence @@ -130,40 +237,158 @@ struct data_dependence_relation GTY(()) /* For each subscript in the dependence test, there is an element in this array. This is the attribute that labels the edge A->B of the data_dependence_relation. */ - varray_type subscripts; + VEC (subscript_p, heap) *subscripts; + + /* The analyzed loop nest. */ + VEC (loop_p, heap) *loop_nest; + + /* An index in loop_nest for the innermost loop that varies for + this data dependence relation. */ + unsigned inner_loop; + + /* The classic direction vector. */ + VEC (lambda_vector, heap) *dir_vects; + + /* The classic distance vector. */ + VEC (lambda_vector, heap) *dist_vects; + + /* Is the dependence reversed with respect to the lexicographic order? */ + bool reversed_p; }; +typedef struct data_dependence_relation *ddr_p; +DEF_VEC_P(ddr_p); +DEF_VEC_ALLOC_P(ddr_p,heap); + #define DDR_A(DDR) DDR->a #define DDR_B(DDR) DDR->b +#define DDR_AFFINE_P(DDR) DDR->affine_p #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent #define DDR_SUBSCRIPTS(DDR) DDR->subscripts -#define DDR_SUBSCRIPTS_VECTOR_INIT(DDR, N) \ - VARRAY_GENERIC_PTR_INIT (DDR_SUBSCRIPTS (DDR), N, "subscripts_vector"); -#define DDR_SUBSCRIPT(DDR, I) VARRAY_GENERIC_PTR (DDR_SUBSCRIPTS (DDR), I) -#define DDR_NUM_SUBSCRIPTS(DDR) VARRAY_ACTIVE_SIZE (DDR_SUBSCRIPTS (DDR)) +#define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I) +#define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR)) + +#define DDR_LOOP_NEST(DDR) DDR->loop_nest +/* The size of the direction/distance vectors: the number of loops in + the loop nest. */ +#define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR))) +#define DDR_INNER_LOOP(DDR) DDR->inner_loop + +#define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects) +#define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects) +#define DDR_NUM_DIST_VECTS(DDR) \ + (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR))) +#define DDR_NUM_DIR_VECTS(DDR) \ + (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR))) +#define DDR_DIR_VECT(DDR, I) \ + VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I) +#define DDR_DIST_VECT(DDR, I) \ + VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I) +#define DDR_REVERSED_P(DDR) DDR->reversed_p -struct data_dependence_relation *initialize_data_dependence_relation -(struct data_reference *, struct data_reference *); -void compute_affine_dependence (struct data_dependence_relation *); -extern void analyze_all_data_dependences (struct loops *); -extern void compute_data_dependences_for_loop (unsigned, struct loop *, - varray_type *, varray_type *, - varray_type *, varray_type *); -extern struct data_reference * init_data_ref (tree, tree, tree, tree, bool); -extern struct data_reference *analyze_array (tree, tree, bool); +/* Describes a location of a memory reference. */ + +typedef struct data_ref_loc_d +{ + /* Position of the memory reference. */ + tree *pos; + + /* True if the memory reference is read. */ + bool is_read; +} data_ref_loc; +DEF_VEC_O (data_ref_loc); +DEF_VEC_ALLOC_O (data_ref_loc, heap); + +bool get_references_in_stmt (tree, VEC (data_ref_loc, heap) **); +void dr_analyze_innermost (struct data_reference *); +extern void compute_data_dependences_for_loop (struct loop *, bool, + VEC (data_reference_p, heap) **, + VEC (ddr_p, heap) **); +extern void print_direction_vector (FILE *, lambda_vector, int); +extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int); +extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int); +extern void dump_subscript (FILE *, struct subscript *); +extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *); +extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *); extern void dump_data_reference (FILE *, struct data_reference *); -extern void dump_data_references (FILE *, varray_type); +extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *); +extern void debug_data_dependence_relation (struct data_dependence_relation *); extern void dump_data_dependence_relation (FILE *, struct data_dependence_relation *); -extern void dump_data_dependence_relations (FILE *, varray_type); +extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *); extern void dump_data_dependence_direction (FILE *, enum data_dependence_direction); -extern bool array_base_name_differ_p (struct data_reference *, - struct data_reference *, bool *p); +extern void free_dependence_relation (struct data_dependence_relation *); +extern void free_dependence_relations (VEC (ddr_p, heap) *); +extern void free_data_refs (VEC (data_reference_p, heap) *); +struct data_reference *create_data_ref (struct loop *, tree, tree, bool); +bool find_loop_nest (struct loop *, VEC (loop_p, heap) **); +void compute_all_dependences (VEC (data_reference_p, heap) *, + VEC (ddr_p, heap) **, VEC (loop_p, heap) *, bool); +/* A RDG vertex representing a statement. */ +typedef struct rdg_vertex +{ + /* The statement represented by this vertex. */ + tree stmt; +} *rdg_vertex_p; + +#define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt + +/* Data dependence type. */ + +enum rdg_dep_type +{ + /* Read After Write (RAW). */ + flow_dd = 'f', + + /* Write After Read (WAR). */ + anti_dd = 'a', + + /* Write After Write (WAW). */ + output_dd = 'o', + + /* Read After Read (RAR). */ + input_dd = 'i' +}; + +/* Dependence information attached to an edge of the RDG. */ + +typedef struct rdg_edge +{ + /* Type of the dependence. */ + enum rdg_dep_type type; +} *rdg_edge_p; + +#define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type + +struct graph *build_rdg (struct loop *); + +/* Return the index of the variable VAR in the LOOP_NEST array. */ + +static inline int +index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest) +{ + struct loop *loopi; + int var_index; + + for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi); + var_index++) + if (loopi->num == var) + break; + + return var_index; +} + +/* In lambda-code.c */ +bool lambda_transform_legal_p (lambda_trans_matrix, int, VEC (ddr_p, heap) *); + +/* In tree-data-refs.c */ +void split_constant_offset (tree , tree *, tree *); + #endif /* GCC_TREE_DATA_REF_H */