X-Git-Url: http://git.sourceforge.jp/view?p=pf3gnuchains%2Fgcc-fork.git;a=blobdiff_plain;f=gcc%2Freal.h;h=e482c888f34da044562004ebcbc29e2f1a2e30a1;hp=848ef184f2f72fc53dc1b66a1d307761da7f8241;hb=99c77e3269d98e7f598895ae3a9f3ee34dc7b9e6;hpb=c5aa1e92211d8e1c3768a94c7a1fcf7e72e8cf80 diff --git a/gcc/real.h b/gcc/real.h index 848ef184f2f..e482c888f34 100644 --- a/gcc/real.h +++ b/gcc/real.h @@ -1,471 +1,442 @@ /* Definitions of floating-point access for GNU compiler. - Copyright (C) 1989, 1991, 1994, 1996, 1997 Free Software Foundation, Inc. + Copyright (C) 1989, 1991, 1994, 1996, 1997, 1998, 1999, + 2000, 2002, 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc. -This file is part of GNU CC. + This file is part of GCC. -GNU CC is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2, or (at your option) -any later version. + GCC is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation; either version 3, or (at your option) any later + version. -GNU CC is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. + GCC is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. -You should have received a copy of the GNU General Public License -along with GNU CC; see the file COPYING. If not, write to -the Free Software Foundation, 59 Temple Place - Suite 330, -Boston, MA 02111-1307, USA. */ + You should have received a copy of the GNU General Public License + along with GCC; see the file COPYING3. If not see + . */ -#ifndef REAL_H_INCLUDED -#define REAL_H_INCLUDED +#ifndef GCC_REAL_H +#define GCC_REAL_H -/* Define codes for all the float formats that we know of. */ -#define UNKNOWN_FLOAT_FORMAT 0 -#define IEEE_FLOAT_FORMAT 1 -#define VAX_FLOAT_FORMAT 2 -#define IBM_FLOAT_FORMAT 3 -#define C4X_FLOAT_FORMAT 4 +#include +#include +#include "machmode.h" -/* Default to IEEE float if not specified. Nearly all machines use it. */ +/* An expanded form of the represented number. */ -#ifndef TARGET_FLOAT_FORMAT -#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT -#endif +/* Enumerate the special cases of numbers that we encounter. */ +enum real_value_class { + rvc_zero, + rvc_normal, + rvc_inf, + rvc_nan +}; -#ifndef HOST_FLOAT_FORMAT -#define HOST_FLOAT_FORMAT IEEE_FLOAT_FORMAT -#endif +#define SIGNIFICAND_BITS (128 + HOST_BITS_PER_LONG) +#define EXP_BITS (32 - 6) +#define MAX_EXP ((1 << (EXP_BITS - 1)) - 1) +#define SIGSZ (SIGNIFICAND_BITS / HOST_BITS_PER_LONG) +#define SIG_MSB ((unsigned long)1 << (HOST_BITS_PER_LONG - 1)) -#if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT -#define REAL_INFINITY -#endif +struct real_value GTY(()) +{ + /* Use the same underlying type for all bit-fields, so as to make + sure they're packed together, otherwise REAL_VALUE_TYPE_SIZE will + be miscomputed. */ + unsigned int /* ENUM_BITFIELD (real_value_class) */ cl : 2; + unsigned int decimal : 1; + unsigned int sign : 1; + unsigned int signalling : 1; + unsigned int canonical : 1; + unsigned int uexp : EXP_BITS; + unsigned long sig[SIGSZ]; +}; -/* If FLOAT_WORDS_BIG_ENDIAN and HOST_FLOAT_WORDS_BIG_ENDIAN are not defined - in the header files, then this implies the word-endianness is the same as - for integers. */ +#define REAL_EXP(REAL) \ + ((int)((REAL)->uexp ^ (unsigned int)(1 << (EXP_BITS - 1))) \ + - (1 << (EXP_BITS - 1))) +#define SET_REAL_EXP(REAL, EXP) \ + ((REAL)->uexp = ((unsigned int)(EXP) & (unsigned int)((1 << EXP_BITS) - 1))) -/* This is defined 0 or 1, like WORDS_BIG_ENDIAN. */ -#ifndef FLOAT_WORDS_BIG_ENDIAN -#define FLOAT_WORDS_BIG_ENDIAN WORDS_BIG_ENDIAN -#endif +/* Various headers condition prototypes on #ifdef REAL_VALUE_TYPE, so it + needs to be a macro. We do need to continue to have a structure tag + so that other headers can forward declare it. */ +#define REAL_VALUE_TYPE struct real_value -/* This is defined 0 or 1, unlike HOST_WORDS_BIG_ENDIAN. */ -#ifndef HOST_FLOAT_WORDS_BIG_ENDIAN -#ifdef HOST_WORDS_BIG_ENDIAN -#define HOST_FLOAT_WORDS_BIG_ENDIAN 1 -#else -#define HOST_FLOAT_WORDS_BIG_ENDIAN 0 -#endif -#endif +/* We store a REAL_VALUE_TYPE into an rtx, and we do this by putting it in + consecutive "w" slots. Moreover, we've got to compute the number of "w" + slots at preprocessor time, which means we can't use sizeof. Guess. */ -/* Defining REAL_ARITHMETIC invokes a floating point emulator - that can produce a target machine format differing by more - than just endian-ness from the host's format. The emulator - is also used to support extended real XFmode. */ -#ifndef LONG_DOUBLE_TYPE_SIZE -#define LONG_DOUBLE_TYPE_SIZE 64 -#endif -#if (LONG_DOUBLE_TYPE_SIZE == 96) || (LONG_DOUBLE_TYPE_SIZE == 128) -#ifndef REAL_ARITHMETIC -#define REAL_ARITHMETIC -#endif -#endif -#ifdef REAL_ARITHMETIC -/* **** Start of software floating point emulator interface macros **** */ - -/* Support 80-bit extended real XFmode if LONG_DOUBLE_TYPE_SIZE - has been defined to be 96 in the tm.h machine file. */ -#if (LONG_DOUBLE_TYPE_SIZE == 96) -#define REAL_IS_NOT_DOUBLE -#define REAL_ARITHMETIC -typedef struct { - HOST_WIDE_INT r[(11 + sizeof (HOST_WIDE_INT))/(sizeof (HOST_WIDE_INT))]; -} realvaluetype; -#define REAL_VALUE_TYPE realvaluetype - -#else /* no XFmode support */ - -#if (LONG_DOUBLE_TYPE_SIZE == 128) - -#define REAL_IS_NOT_DOUBLE -#define REAL_ARITHMETIC -typedef struct { - HOST_WIDE_INT r[(19 + sizeof (HOST_WIDE_INT))/(sizeof (HOST_WIDE_INT))]; -} realvaluetype; -#define REAL_VALUE_TYPE realvaluetype - -#else /* not TFmode */ - -#if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT -/* If no XFmode support, then a REAL_VALUE_TYPE is 64 bits wide - but it is not necessarily a host machine double. */ -#define REAL_IS_NOT_DOUBLE -typedef struct { - HOST_WIDE_INT r[(7 + sizeof (HOST_WIDE_INT))/(sizeof (HOST_WIDE_INT))]; -} realvaluetype; -#define REAL_VALUE_TYPE realvaluetype -#else -/* If host and target formats are compatible, then a REAL_VALUE_TYPE - is actually a host machine double. */ -#define REAL_VALUE_TYPE double -#endif +#define REAL_VALUE_TYPE_SIZE (SIGNIFICAND_BITS + 32) +#define REAL_WIDTH \ + (REAL_VALUE_TYPE_SIZE/HOST_BITS_PER_WIDE_INT \ + + (REAL_VALUE_TYPE_SIZE%HOST_BITS_PER_WIDE_INT ? 1 : 0)) /* round up */ -#endif /* no TFmode support */ -#endif /* no XFmode support */ +/* Verify the guess. */ +extern char test_real_width + [sizeof(REAL_VALUE_TYPE) <= REAL_WIDTH*sizeof(HOST_WIDE_INT) ? 1 : -1]; -extern int significand_size PROTO((enum machine_mode)); +/* Calculate the format for CONST_DOUBLE. We need as many slots as + are necessary to overlay a REAL_VALUE_TYPE on them. This could be + as many as four (32-bit HOST_WIDE_INT, 128-bit REAL_VALUE_TYPE). -/* If emulation has been enabled by defining REAL_ARITHMETIC or by - setting LONG_DOUBLE_TYPE_SIZE to 96 or 128, then define macros so that - they invoke emulator functions. This will succeed only if the machine - files have been updated to use these macros in place of any - references to host machine `double' or `float' types. */ -#ifdef REAL_ARITHMETIC -#undef REAL_ARITHMETIC -#define REAL_ARITHMETIC(value, code, d1, d2) \ - earith (&(value), (code), &(d1), &(d2)) - -/* Declare functions in real.c. */ -extern void earith PROTO((REAL_VALUE_TYPE *, int, - REAL_VALUE_TYPE *, REAL_VALUE_TYPE *)); -extern REAL_VALUE_TYPE etrunci PROTO((REAL_VALUE_TYPE)); -extern REAL_VALUE_TYPE etruncui PROTO((REAL_VALUE_TYPE)); -extern REAL_VALUE_TYPE ereal_atof PROTO((char *, enum machine_mode)); -extern REAL_VALUE_TYPE ereal_negate PROTO((REAL_VALUE_TYPE)); -extern HOST_WIDE_INT efixi PROTO((REAL_VALUE_TYPE)); -extern unsigned HOST_WIDE_INT efixui PROTO((REAL_VALUE_TYPE)); -extern void ereal_from_int PROTO((REAL_VALUE_TYPE *, - HOST_WIDE_INT, HOST_WIDE_INT, - enum machine_mode)); -extern void ereal_from_uint PROTO((REAL_VALUE_TYPE *, - unsigned HOST_WIDE_INT, - unsigned HOST_WIDE_INT, - enum machine_mode)); -extern void ereal_to_int PROTO((HOST_WIDE_INT *, HOST_WIDE_INT *, - REAL_VALUE_TYPE)); -extern REAL_VALUE_TYPE ereal_ldexp PROTO((REAL_VALUE_TYPE, int)); - -extern void etartdouble PROTO((REAL_VALUE_TYPE, long *)); -extern void etarldouble PROTO((REAL_VALUE_TYPE, long *)); -extern void etardouble PROTO((REAL_VALUE_TYPE, long *)); -extern long etarsingle PROTO((REAL_VALUE_TYPE)); -extern void ereal_to_decimal PROTO((REAL_VALUE_TYPE, char *)); -extern int ereal_cmp PROTO((REAL_VALUE_TYPE, REAL_VALUE_TYPE)); -extern int ereal_isneg PROTO((REAL_VALUE_TYPE)); -extern REAL_VALUE_TYPE ereal_unto_float PROTO((long)); -extern REAL_VALUE_TYPE ereal_unto_double PROTO((long *)); -extern REAL_VALUE_TYPE ereal_from_float PROTO((HOST_WIDE_INT)); -extern REAL_VALUE_TYPE ereal_from_double PROTO((HOST_WIDE_INT *)); - -#define REAL_VALUES_EQUAL(x, y) (ereal_cmp ((x), (y)) == 0) -/* true if x < y : */ -#define REAL_VALUES_LESS(x, y) (ereal_cmp ((x), (y)) == -1) -#define REAL_VALUE_LDEXP(x, n) ereal_ldexp (x, n) - -/* These return REAL_VALUE_TYPE: */ -#define REAL_VALUE_RNDZINT(x) (etrunci (x)) -#define REAL_VALUE_UNSIGNED_RNDZINT(x) (etruncui (x)) -extern REAL_VALUE_TYPE real_value_truncate PROTO ((enum machine_mode, - REAL_VALUE_TYPE)); -#define REAL_VALUE_TRUNCATE(mode, x) real_value_truncate (mode, x) - -/* These return HOST_WIDE_INT: */ -/* Convert a floating-point value to integer, rounding toward zero. */ -#define REAL_VALUE_FIX(x) (efixi (x)) -/* Convert a floating-point value to unsigned integer, rounding - toward zero. */ -#define REAL_VALUE_UNSIGNED_FIX(x) (efixui (x)) - -#define REAL_VALUE_ATOF ereal_atof -#define REAL_VALUE_NEGATE ereal_negate - -#define REAL_VALUE_MINUS_ZERO(x) \ - ((ereal_cmp (x, dconst0) == 0) && (ereal_isneg (x) != 0 )) - -#define REAL_VALUE_TO_INT ereal_to_int - -/* Here the cast to HOST_WIDE_INT sign-extends arguments such as ~0. */ -#define REAL_VALUE_FROM_INT(d, lo, hi, mode) \ - ereal_from_int (&d, (HOST_WIDE_INT) (lo), (HOST_WIDE_INT) (hi), mode) - -#define REAL_VALUE_FROM_UNSIGNED_INT(d, lo, hi, mode) \ - ereal_from_uint (&d, lo, hi, mode) - -/* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */ -#if LONG_DOUBLE_TYPE_SIZE == 96 -#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) (etarldouble ((IN), (OUT))) + A number of places assume that there are always at least two 'w' + slots in a CONST_DOUBLE, so we provide them even if one would suffice. */ + +#if REAL_WIDTH == 1 +# define CONST_DOUBLE_FORMAT "ww" #else -#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) (etartdouble ((IN), (OUT))) -#endif -#define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) (etardouble ((IN), (OUT))) +# if REAL_WIDTH == 2 +# define CONST_DOUBLE_FORMAT "ww" +# else +# if REAL_WIDTH == 3 +# define CONST_DOUBLE_FORMAT "www" +# else +# if REAL_WIDTH == 4 +# define CONST_DOUBLE_FORMAT "wwww" +# else +# if REAL_WIDTH == 5 +# define CONST_DOUBLE_FORMAT "wwwww" +# else +# if REAL_WIDTH == 6 +# define CONST_DOUBLE_FORMAT "wwwwww" +# else + #error "REAL_WIDTH > 6 not supported" +# endif +# endif +# endif +# endif +# endif +#endif + + +/* Describes the properties of the specific target format in use. */ +struct real_format +{ + /* Move to and from the target bytes. */ + void (*encode) (const struct real_format *, long *, + const REAL_VALUE_TYPE *); + void (*decode) (const struct real_format *, REAL_VALUE_TYPE *, + const long *); + + /* The radix of the exponent and digits of the significand. */ + int b; + + /* Size of the significand in digits of radix B. */ + int p; + + /* Size of the significant of a NaN, in digits of radix B. */ + int pnan; + + /* The minimum negative integer, x, such that b**(x-1) is normalized. */ + int emin; + + /* The maximum integer, x, such that b**(x-1) is representable. */ + int emax; + + /* The bit position of the sign bit, for determining whether a value + is positive/negative, or -1 for a complex encoding. */ + int signbit_ro; + + /* The bit position of the sign bit, for changing the sign of a number, + or -1 for a complex encoding. */ + int signbit_rw; + + /* Properties of the format. */ + bool has_nans; + bool has_inf; + bool has_denorm; + bool has_signed_zero; + bool qnan_msb_set; + bool canonical_nan_lsbs_set; +}; -/* IN is a REAL_VALUE_TYPE. OUT is a long. */ -#define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) ((OUT) = etarsingle ((IN))) -/* Inverse of REAL_VALUE_TO_TARGET_DOUBLE. */ -#define REAL_VALUE_UNTO_TARGET_DOUBLE(d) (ereal_unto_double (d)) +/* The target format used for each floating point mode. + Float modes are followed by decimal float modes, with entries for + float modes indexed by (MODE - first float mode), and entries for + decimal float modes indexed by (MODE - first decimal float mode) + + the number of float modes. */ +extern const struct real_format * + real_format_for_mode[MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1 + + MAX_MODE_DECIMAL_FLOAT - MIN_MODE_DECIMAL_FLOAT + 1]; -/* Inverse of REAL_VALUE_TO_TARGET_SINGLE. */ -#define REAL_VALUE_UNTO_TARGET_SINGLE(f) (ereal_unto_float (f)) +#define REAL_MODE_FORMAT(MODE) \ + (real_format_for_mode[DECIMAL_FLOAT_MODE_P (MODE) \ + ? ((MODE - MIN_MODE_DECIMAL_FLOAT) \ + + (MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1)) \ + : (MODE - MIN_MODE_FLOAT)]) -/* d is an array of HOST_WIDE_INT that holds a double precision - value in the target computer's floating point format. */ -#define REAL_VALUE_FROM_TARGET_DOUBLE(d) (ereal_from_double (d)) +/* The following macro determines whether the floating point format is + composite, i.e. may contain non-consecutive mantissa bits, in which + case compile-time FP overflow may not model run-time overflow. */ +#define REAL_MODE_FORMAT_COMPOSITE_P(MODE) \ + ((REAL_MODE_FORMAT(MODE))->pnan < (REAL_MODE_FORMAT (MODE))->p) -/* f is a HOST_WIDE_INT containing a single precision target float value. */ -#define REAL_VALUE_FROM_TARGET_SINGLE(f) (ereal_from_float (f)) +/* Declare functions in real.c. */ -/* Conversions to decimal ASCII string. */ -#define REAL_VALUE_TO_DECIMAL(r, fmt, s) (ereal_to_decimal (r, s)) +/* Binary or unary arithmetic on tree_code. */ +extern bool real_arithmetic (REAL_VALUE_TYPE *, int, const REAL_VALUE_TYPE *, + const REAL_VALUE_TYPE *); -#endif /* REAL_ARITHMETIC defined */ +/* Compare reals by tree_code. */ +extern bool real_compare (int, const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); -/* **** End of software floating point emulator interface macros **** */ -#else /* No XFmode or TFmode and REAL_ARITHMETIC not defined */ - -/* old interface */ -#ifdef REAL_ARITHMETIC -/* Defining REAL_IS_NOT_DOUBLE breaks certain initializations - when REAL_ARITHMETIC etc. are not defined. */ - -/* Now see if the host and target machines use the same format. - If not, define REAL_IS_NOT_DOUBLE (even if we end up representing - reals as doubles because we have no better way in this cross compiler.) - This turns off various optimizations that can happen when we know the - compiler's float format matches the target's float format. - */ -#if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT -#define REAL_IS_NOT_DOUBLE -#ifndef REAL_VALUE_TYPE -typedef struct { - HOST_WIDE_INT r[sizeof (double)/sizeof (HOST_WIDE_INT)]; - } realvaluetype; -#define REAL_VALUE_TYPE realvaluetype -#endif /* no REAL_VALUE_TYPE */ -#endif /* formats differ */ -#endif /* 0 */ - -#endif /* emulator not used */ - -/* If we are not cross-compiling, use a `double' to represent the - floating-point value. Otherwise, use some other type - (probably a struct containing an array of longs). */ -#ifndef REAL_VALUE_TYPE -#define REAL_VALUE_TYPE double -#else -#define REAL_IS_NOT_DOUBLE -#endif +/* Determine whether a floating-point value X is infinite. */ +extern bool real_isinf (const REAL_VALUE_TYPE *); -#if HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT +/* Determine whether a floating-point value X is a NaN. */ +extern bool real_isnan (const REAL_VALUE_TYPE *); -/* Convert a type `double' value in host format first to a type `float' - value in host format and then to a single type `long' value which - is the bitwise equivalent of the `float' value. */ -#ifndef REAL_VALUE_TO_TARGET_SINGLE -#define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \ -do { float f = (float) (IN); \ - (OUT) = *(long *) &f; \ - } while (0) -#endif +/* Determine whether a floating-point value X is finite. */ +extern bool real_isfinite (const REAL_VALUE_TYPE *); -/* Convert a type `double' value in host format to a pair of type `long' - values which is its bitwise equivalent, but put the two words into - proper word order for the target. */ -#ifndef REAL_VALUE_TO_TARGET_DOUBLE -#define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \ -do { REAL_VALUE_TYPE in = (IN); /* Make sure it's not in a register. */\ - if (HOST_FLOAT_WORDS_BIG_ENDIAN == FLOAT_WORDS_BIG_ENDIAN) \ - { \ - (OUT)[0] = ((long *) &in)[0]; \ - (OUT)[1] = ((long *) &in)[1]; \ - } \ - else \ - { \ - (OUT)[1] = ((long *) &in)[0]; \ - (OUT)[0] = ((long *) &in)[1]; \ - } \ - } while (0) -#endif -#endif /* HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT */ +/* Determine whether a floating-point value X is negative. */ +extern bool real_isneg (const REAL_VALUE_TYPE *); -/* In this configuration, double and long double are the same. */ -#ifndef REAL_VALUE_TO_TARGET_LONG_DOUBLE -#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(a, b) REAL_VALUE_TO_TARGET_DOUBLE (a, b) -#endif +/* Determine whether a floating-point value X is minus zero. */ +extern bool real_isnegzero (const REAL_VALUE_TYPE *); -/* Compare two floating-point objects for bitwise identity. - This is not the same as comparing for equality on IEEE hosts: - -0.0 equals 0.0 but they are not identical, and conversely - two NaNs might be identical but they cannot be equal. */ -#define REAL_VALUES_IDENTICAL(x, y) \ - (!bcmp ((char *) &(x), (char *) &(y), sizeof (REAL_VALUE_TYPE))) +/* Compare two floating-point objects for bitwise identity. */ +extern bool real_identical (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); -/* Compare two floating-point values for equality. */ -#ifndef REAL_VALUES_EQUAL -#define REAL_VALUES_EQUAL(x, y) ((x) == (y)) -#endif +/* Extend or truncate to a new mode. */ +extern void real_convert (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); -/* Compare two floating-point values for less than. */ -#ifndef REAL_VALUES_LESS -#define REAL_VALUES_LESS(x, y) ((x) < (y)) -#endif +/* Return true if truncating to NEW is exact. */ +extern bool exact_real_truncate (enum machine_mode, const REAL_VALUE_TYPE *); -/* Truncate toward zero to an integer floating-point value. */ -#ifndef REAL_VALUE_RNDZINT -#define REAL_VALUE_RNDZINT(x) ((double) ((int) (x))) -#endif +/* Render R as a decimal floating point constant. */ +extern void real_to_decimal (char *, const REAL_VALUE_TYPE *, size_t, + size_t, int); -/* Truncate toward zero to an unsigned integer floating-point value. */ -#ifndef REAL_VALUE_UNSIGNED_RNDZINT -#define REAL_VALUE_UNSIGNED_RNDZINT(x) ((double) ((unsigned int) (x))) -#endif +/* Render R as a hexadecimal floating point constant. */ +extern void real_to_hexadecimal (char *, const REAL_VALUE_TYPE *, + size_t, size_t, int); -/* Convert a floating-point value to integer, rounding toward zero. */ -#ifndef REAL_VALUE_FIX -#define REAL_VALUE_FIX(x) ((int) (x)) -#endif +/* Render R as an integer. */ +extern HOST_WIDE_INT real_to_integer (const REAL_VALUE_TYPE *); +extern void real_to_integer2 (HOST_WIDE_INT *, HOST_WIDE_INT *, + const REAL_VALUE_TYPE *); -/* Convert a floating-point value to unsigned integer, rounding - toward zero. */ -#ifndef REAL_VALUE_UNSIGNED_FIX -#define REAL_VALUE_UNSIGNED_FIX(x) ((unsigned int) (x)) -#endif +/* Initialize R from a decimal or hexadecimal string. Return -1 if + the value underflows, +1 if overflows, and 0 otherwise. */ +extern int real_from_string (REAL_VALUE_TYPE *, const char *); +/* Wrapper to allow different internal representation for decimal floats. */ +extern void real_from_string3 (REAL_VALUE_TYPE *, const char *, enum machine_mode); -/* Scale X by Y powers of 2. */ -#ifndef REAL_VALUE_LDEXP -#define REAL_VALUE_LDEXP(x, y) ldexp (x, y) -extern double ldexp (); -#endif +/* Initialize R from an integer pair HIGH/LOW. */ +extern void real_from_integer (REAL_VALUE_TYPE *, enum machine_mode, + unsigned HOST_WIDE_INT, HOST_WIDE_INT, int); -/* Convert the string X to a floating-point value. */ -#ifndef REAL_VALUE_ATOF -#if 1 -/* Use real.c to convert decimal numbers to binary, ... */ -REAL_VALUE_TYPE ereal_atof (); -#define REAL_VALUE_ATOF(x, s) ereal_atof (x, s) -#else -/* ... or, if you like the host computer's atof, go ahead and use it: */ -#define REAL_VALUE_ATOF(x, s) atof (x) -#if defined (MIPSEL) || defined (MIPSEB) -/* MIPS compiler can't handle parens around the function name. - This problem *does not* appear to be connected with any - macro definition for atof. It does not seem there is one. */ -extern double atof (); -#else -extern double (atof) (); -#endif -#endif -#endif +extern long real_to_target_fmt (long *, const REAL_VALUE_TYPE *, + const struct real_format *); +extern long real_to_target (long *, const REAL_VALUE_TYPE *, enum machine_mode); -/* Negate the floating-point value X. */ -#ifndef REAL_VALUE_NEGATE -#define REAL_VALUE_NEGATE(x) (- (x)) -#endif +extern void real_from_target_fmt (REAL_VALUE_TYPE *, const long *, + const struct real_format *); +extern void real_from_target (REAL_VALUE_TYPE *, const long *, + enum machine_mode); -/* Truncate the floating-point value X to mode MODE. This is correct only - for the most common case where the host and target have objects of the same - size and where `float' is SFmode. */ +extern void real_inf (REAL_VALUE_TYPE *); -/* Don't use REAL_VALUE_TRUNCATE directly--always call real_value_truncate. */ -extern REAL_VALUE_TYPE real_value_truncate PROTO((enum machine_mode, REAL_VALUE_TYPE)); +extern bool real_nan (REAL_VALUE_TYPE *, const char *, int, enum machine_mode); -#ifndef REAL_VALUE_TRUNCATE -#define REAL_VALUE_TRUNCATE(mode, x) \ - (GET_MODE_BITSIZE (mode) == sizeof (float) * HOST_BITS_PER_CHAR \ - ? (float) (x) : (x)) -#endif +extern void real_maxval (REAL_VALUE_TYPE *, int, enum machine_mode); -/* Determine whether a floating-point value X is infinite. */ -#ifndef REAL_VALUE_ISINF -#define REAL_VALUE_ISINF(x) (target_isinf (x)) -#endif +extern void real_2expN (REAL_VALUE_TYPE *, int, enum machine_mode); -/* Determine whether a floating-point value X is a NaN. */ -#ifndef REAL_VALUE_ISNAN -#define REAL_VALUE_ISNAN(x) (target_isnan (x)) -#endif +extern unsigned int real_hash (const REAL_VALUE_TYPE *); -/* Determine whether a floating-point value X is negative. */ -#ifndef REAL_VALUE_NEGATIVE -#define REAL_VALUE_NEGATIVE(x) (target_negative (x)) -#endif -extern int target_isnan PROTO ((REAL_VALUE_TYPE)); -extern int target_isinf PROTO ((REAL_VALUE_TYPE)); -extern int target_negative PROTO ((REAL_VALUE_TYPE)); +/* Target formats defined in real.c. */ +extern const struct real_format ieee_single_format; +extern const struct real_format mips_single_format; +extern const struct real_format motorola_single_format; +extern const struct real_format ieee_double_format; +extern const struct real_format mips_double_format; +extern const struct real_format motorola_double_format; +extern const struct real_format ieee_extended_motorola_format; +extern const struct real_format ieee_extended_intel_96_format; +extern const struct real_format ieee_extended_intel_96_round_53_format; +extern const struct real_format ieee_extended_intel_128_format; +extern const struct real_format ibm_extended_format; +extern const struct real_format mips_extended_format; +extern const struct real_format ieee_quad_format; +extern const struct real_format mips_quad_format; +extern const struct real_format vax_f_format; +extern const struct real_format vax_d_format; +extern const struct real_format vax_g_format; +extern const struct real_format real_internal_format; +extern const struct real_format decimal_single_format; +extern const struct real_format decimal_double_format; +extern const struct real_format decimal_quad_format; -/* Determine whether a floating-point value X is minus 0. */ -#ifndef REAL_VALUE_MINUS_ZERO -#define REAL_VALUE_MINUS_ZERO(x) ((x) == 0 && REAL_VALUE_NEGATIVE (x)) -#endif + +/* ====================================================================== */ +/* Crap. */ + +#define REAL_ARITHMETIC(value, code, d1, d2) \ + real_arithmetic (&(value), code, &(d1), &(d2)) + +#define REAL_VALUES_IDENTICAL(x, y) real_identical (&(x), &(y)) +#define REAL_VALUES_EQUAL(x, y) real_compare (EQ_EXPR, &(x), &(y)) +#define REAL_VALUES_LESS(x, y) real_compare (LT_EXPR, &(x), &(y)) + +/* Determine whether a floating-point value X is infinite. */ +#define REAL_VALUE_ISINF(x) real_isinf (&(x)) + +/* Determine whether a floating-point value X is a NaN. */ +#define REAL_VALUE_ISNAN(x) real_isnan (&(x)) + +/* Determine whether a floating-point value X is negative. */ +#define REAL_VALUE_NEGATIVE(x) real_isneg (&(x)) + +/* Determine whether a floating-point value X is minus zero. */ +#define REAL_VALUE_MINUS_ZERO(x) real_isnegzero (&(x)) + +/* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */ +#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) \ + real_to_target (OUT, &(IN), \ + mode_for_size (LONG_DOUBLE_TYPE_SIZE, MODE_FLOAT, 0)) + +#define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \ + real_to_target (OUT, &(IN), mode_for_size (64, MODE_FLOAT, 0)) + +/* IN is a REAL_VALUE_TYPE. OUT is a long. */ +#define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \ + ((OUT) = real_to_target (NULL, &(IN), mode_for_size (32, MODE_FLOAT, 0))) + +#define REAL_VALUE_FROM_INT(r, lo, hi, mode) \ + real_from_integer (&(r), mode, lo, hi, 0) + +#define REAL_VALUE_FROM_UNSIGNED_INT(r, lo, hi, mode) \ + real_from_integer (&(r), mode, lo, hi, 1) + +/* Real values to IEEE 754R decimal floats. */ + +/* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */ +#define REAL_VALUE_TO_TARGET_DECIMAL128(IN, OUT) \ + real_to_target (OUT, &(IN), mode_for_size (128, MODE_DECIMAL_FLOAT, 0)) + +#define REAL_VALUE_TO_TARGET_DECIMAL64(IN, OUT) \ + real_to_target (OUT, &(IN), mode_for_size (64, MODE_DECIMAL_FLOAT, 0)) + +/* IN is a REAL_VALUE_TYPE. OUT is a long. */ +#define REAL_VALUE_TO_TARGET_DECIMAL32(IN, OUT) \ + ((OUT) = real_to_target (NULL, &(IN), mode_for_size (32, MODE_DECIMAL_FLOAT, 0))) + +extern REAL_VALUE_TYPE real_value_truncate (enum machine_mode, + REAL_VALUE_TYPE); + +#define REAL_VALUE_TO_INT(plow, phigh, r) \ + real_to_integer2 (plow, phigh, &(r)) + +extern REAL_VALUE_TYPE real_arithmetic2 (int, const REAL_VALUE_TYPE *, + const REAL_VALUE_TYPE *); + +#define REAL_VALUE_NEGATE(X) \ + real_arithmetic2 (NEGATE_EXPR, &(X), NULL) + +#define REAL_VALUE_ABS(X) \ + real_arithmetic2 (ABS_EXPR, &(X), NULL) + +extern int significand_size (enum machine_mode); + +extern REAL_VALUE_TYPE real_from_string2 (const char *, enum machine_mode); + +#define REAL_VALUE_ATOF(s, m) \ + real_from_string2 (s, m) + +#define CONST_DOUBLE_ATOF(s, m) \ + CONST_DOUBLE_FROM_REAL_VALUE (real_from_string2 (s, m), m) + +#define REAL_VALUE_FIX(r) \ + real_to_integer (&(r)) + +/* ??? Not quite right. */ +#define REAL_VALUE_UNSIGNED_FIX(r) \ + real_to_integer (&(r)) + +/* ??? These were added for Paranoia support. */ + +/* Return floor log2(R). */ +extern int real_exponent (const REAL_VALUE_TYPE *); + +/* R = A * 2**EXP. */ +extern void real_ldexp (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int); + +/* **** End of software floating point emulator interface macros **** */ -/* Constant real values 0, 1, 2, and -1. */ +/* Constant real values 0, 1, 2, 3, 10, -1, -2, 0.5 and 1/3. */ extern REAL_VALUE_TYPE dconst0; extern REAL_VALUE_TYPE dconst1; extern REAL_VALUE_TYPE dconst2; +extern REAL_VALUE_TYPE dconst3; +extern REAL_VALUE_TYPE dconst10; extern REAL_VALUE_TYPE dconstm1; +extern REAL_VALUE_TYPE dconstm2; +extern REAL_VALUE_TYPE dconsthalf; +extern REAL_VALUE_TYPE dconstthird; +extern REAL_VALUE_TYPE dconstsqrt2; +extern REAL_VALUE_TYPE dconste; -/* Union type used for extracting real values from CONST_DOUBLEs - or putting them in. */ - -union real_extract -{ - REAL_VALUE_TYPE d; - HOST_WIDE_INT i[sizeof (REAL_VALUE_TYPE) / sizeof (HOST_WIDE_INT)]; -}; - -/* For a CONST_DOUBLE: - The usual two ints that hold the value. - For a DImode, that is all there are; - and CONST_DOUBLE_LOW is the low-order word and ..._HIGH the high-order. - For a float, the number of ints varies, - and CONST_DOUBLE_LOW is the one that should come first *in memory*. - So use &CONST_DOUBLE_LOW(r) as the address of an array of ints. */ -#define CONST_DOUBLE_LOW(r) XWINT (r, 2) -#define CONST_DOUBLE_HIGH(r) XWINT (r, 3) - -/* Link for chain of all CONST_DOUBLEs in use in current function. */ -#define CONST_DOUBLE_CHAIN(r) XEXP (r, 1) -/* The MEM which represents this CONST_DOUBLE's value in memory, - or const0_rtx if no MEM has been made for it yet, - or cc0_rtx if it is not on the chain. */ -#define CONST_DOUBLE_MEM(r) XEXP (r, 0) - -/* Given a CONST_DOUBLE in FROM, store into TO the value it represents. */ /* Function to return a real value (not a tree node) from a given integer constant. */ -union tree_node; -REAL_VALUE_TYPE real_value_from_int_cst PROTO ((union tree_node *, - union tree_node *)); +REAL_VALUE_TYPE real_value_from_int_cst (const_tree, const_tree); -#define REAL_VALUE_FROM_CONST_DOUBLE(to, from) \ -do { union real_extract u; \ - bcopy ((char *) &CONST_DOUBLE_LOW ((from)), (char *) &u, sizeof u); \ - to = u.d; } while (0) +/* Given a CONST_DOUBLE in FROM, store into TO the value it represents. */ +#define REAL_VALUE_FROM_CONST_DOUBLE(to, from) \ + ((to) = *CONST_DOUBLE_REAL_VALUE (from)) /* Return a CONST_DOUBLE with value R and mode M. */ - -#define CONST_DOUBLE_FROM_REAL_VALUE(r, m) immed_real_const_1 (r, m) -extern struct rtx_def *immed_real_const_1 PROTO((REAL_VALUE_TYPE, - enum machine_mode)); - - -/* Convert a floating point value `r', that can be interpreted - as a host machine float or double, to a decimal ASCII string `s' - using printf format string `fmt'. */ -#ifndef REAL_VALUE_TO_DECIMAL -#define REAL_VALUE_TO_DECIMAL(r, fmt, s) (sprintf (s, fmt, r)) -#endif +#define CONST_DOUBLE_FROM_REAL_VALUE(r, m) \ + const_double_from_real_value (r, m) +extern rtx const_double_from_real_value (REAL_VALUE_TYPE, enum machine_mode); /* Replace R by 1/R in the given machine mode, if the result is exact. */ -extern int exact_real_inverse PROTO((enum machine_mode, REAL_VALUE_TYPE *)); - -extern void debug_real PROTO ((REAL_VALUE_TYPE)); - -/* In varasm.c */ -extern void assemble_real PROTO ((REAL_VALUE_TYPE, - enum machine_mode)); -#endif /* Not REAL_H_INCLUDED */ +extern bool exact_real_inverse (enum machine_mode, REAL_VALUE_TYPE *); + +/* In tree.c: wrap up a REAL_VALUE_TYPE in a tree node. */ +extern tree build_real (tree, REAL_VALUE_TYPE); + +/* Calculate R as the square root of X in the given machine mode. */ +extern bool real_sqrt (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); + +/* Calculate R as X raised to the integer exponent N in mode MODE. */ +extern bool real_powi (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *, HOST_WIDE_INT); + +/* Standard round to integer value functions. */ +extern void real_trunc (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); +extern void real_floor (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); +extern void real_ceil (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); +extern void real_round (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); + +/* Set the sign of R to the sign of X. */ +extern void real_copysign (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); + +/* Convert between MPFR and REAL_VALUE_TYPE. The caller is + responsible for initializing and clearing the MPFR parameter. */ + +extern void real_from_mpfr (REAL_VALUE_TYPE *, mpfr_srcptr, tree, mp_rnd_t); +extern void mpfr_from_real (mpfr_ptr, const REAL_VALUE_TYPE *, mp_rnd_t); + +/* Check whether the real constant value given is an integer. */ +extern bool real_isinteger (const REAL_VALUE_TYPE *c, enum machine_mode mode); + +/* Write into BUF the maximum representable finite floating-point + number, (1 - b**-p) * b**emax for a given FP format FMT as a hex + float string. BUF must be large enough to contain the result. */ +extern void get_max_float (const struct real_format *, char *, size_t); +#endif /* ! GCC_REAL_H */