X-Git-Url: http://git.sourceforge.jp/view?p=pf3gnuchains%2Fgcc-fork.git;a=blobdiff_plain;f=gcc%2Fconvert.c;h=459d5337e35450bd24a6678dfc50ed9f632c7aee;hp=a268f3e1146548fdc7ebffeb1865e9dc6ad89f32;hb=a9601c934b0aa967797b3d43d2b12f7639508fac;hpb=89a1f6208ae5dfad72da15bcb5d8f1f53deb3ed6 diff --git a/gcc/convert.c b/gcc/convert.c index a268f3e1146..459d5337e35 100644 --- a/gcc/convert.c +++ b/gcc/convert.c @@ -1,12 +1,13 @@ /* Utility routines for data type conversion for GCC. Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998, - 2000, 2001, 2002, 2003 Free Software Foundation, Inc. + 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 + Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free -Software Foundation; either version 2, or (at your option) any later +Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY @@ -15,9 +16,8 @@ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GCC; see the file COPYING. If not, write to the Free -Software Foundation, 59 Temple Place - Suite 330, Boston, MA -02111-1307, USA. */ +along with GCC; see the file COPYING3. If not see +. */ /* These routines are somewhat language-independent utility function @@ -30,41 +30,59 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA #include "tree.h" #include "flags.h" #include "convert.h" -#include "toplev.h" +#include "diagnostic-core.h" #include "langhooks.h" -#include "real.h" -/* Convert EXPR to some pointer or reference type TYPE. +/* Convert EXPR to some pointer or reference type TYPE. EXPR must be pointer, reference, integer, enumeral, or literal zero; in other cases error is called. */ tree convert_to_pointer (tree type, tree expr) { + location_t loc = EXPR_LOCATION (expr); + if (TREE_TYPE (expr) == type) + return expr; + + /* Propagate overflow to the NULL pointer. */ if (integer_zerop (expr)) - { - expr = build_int_2 (0, 0); - TREE_TYPE (expr) = type; - return expr; - } + return force_fit_type_double (type, double_int_zero, 0, + TREE_OVERFLOW (expr)); switch (TREE_CODE (TREE_TYPE (expr))) { case POINTER_TYPE: case REFERENCE_TYPE: - return build1 (NOP_EXPR, type, expr); + { + /* If the pointers point to different address spaces, conversion needs + to be done via a ADDR_SPACE_CONVERT_EXPR instead of a NOP_EXPR. */ + addr_space_t to_as = TYPE_ADDR_SPACE (TREE_TYPE (type)); + addr_space_t from_as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (expr))); + + if (to_as == from_as) + return fold_build1_loc (loc, NOP_EXPR, type, expr); + else + return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, expr); + } case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: - case CHAR_TYPE: - if (TYPE_PRECISION (TREE_TYPE (expr)) == POINTER_SIZE) - return build1 (CONVERT_EXPR, type, expr); + { + /* If the input precision differs from the target pointer type + precision, first convert the input expression to an integer type of + the target precision. Some targets, e.g. VMS, need several pointer + sizes to coexist so the latter isn't necessarily POINTER_SIZE. */ + unsigned int pprec = TYPE_PRECISION (type); + unsigned int eprec = TYPE_PRECISION (TREE_TYPE (expr)); + + if (eprec != pprec) + expr = fold_build1_loc (loc, NOP_EXPR, + lang_hooks.types.type_for_size (pprec, 0), + expr); + } - return - convert_to_pointer (type, - convert ((*lang_hooks.types.type_for_size) - (POINTER_SIZE, 0), expr)); + return fold_build1_loc (loc, CONVERT_EXPR, type, expr); default: error ("cannot convert to a pointer type"); @@ -82,7 +100,7 @@ strip_float_extensions (tree exp) it properly and handle it like (type)(narrowest_type)constant. This way we can optimize for instance a=a*2.0 where "a" is float but 2.0 is double constant. */ - if (TREE_CODE (exp) == REAL_CST) + if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp))) { REAL_VALUE_TYPE orig; tree type = NULL; @@ -99,7 +117,7 @@ strip_float_extensions (tree exp) return build_real (type, real_value_truncate (TYPE_MODE (type), orig)); } - if (TREE_CODE (exp) != NOP_EXPR) + if (!CONVERT_EXPR_P (exp)) return exp; sub = TREE_OPERAND (exp, 0); @@ -109,6 +127,9 @@ strip_float_extensions (tree exp) if (!FLOAT_TYPE_P (subt)) return exp; + if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt)) + return exp; + if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt)) return exp; @@ -118,7 +139,7 @@ strip_float_extensions (tree exp) /* Convert EXPR to some floating-point type TYPE. - EXPR must be float, integer, or enumeral; + EXPR must be float, fixed-point, integer, or enumeral; in other cases error is called. */ tree @@ -131,57 +152,96 @@ convert_to_real (tree type, tree expr) present in runtime. */ /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */ if (optimize - && (fcode == BUILT_IN_SQRT - || fcode == BUILT_IN_SQRTL - || fcode == BUILT_IN_SIN - || fcode == BUILT_IN_SINL - || fcode == BUILT_IN_COS - || fcode == BUILT_IN_COSL - || fcode == BUILT_IN_EXP - || fcode == BUILT_IN_EXPL - || fcode == BUILT_IN_LOG - || fcode == BUILT_IN_LOGL) && (TYPE_MODE (type) == TYPE_MODE (double_type_node) || TYPE_MODE (type) == TYPE_MODE (float_type_node))) { - tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1))); - tree newtype = type; - - /* We have (outertype)sqrt((innertype)x). Choose the wider mode from - the both as the safe type for operation. */ - if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type)) - newtype = TREE_TYPE (arg0); - - /* Be curefull about integer to fp conversions. - These may overflow still. */ - if (FLOAT_TYPE_P (TREE_TYPE (arg0)) - && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype) - && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node) - || TYPE_MODE (newtype) == TYPE_MODE (float_type_node))) - { - tree arglist; - tree fn = mathfn_built_in (newtype, fcode); - - if (fn) + switch (fcode) + { +#define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L: + CASE_MATHFN (COSH) + CASE_MATHFN (EXP) + CASE_MATHFN (EXP10) + CASE_MATHFN (EXP2) + CASE_MATHFN (EXPM1) + CASE_MATHFN (GAMMA) + CASE_MATHFN (J0) + CASE_MATHFN (J1) + CASE_MATHFN (LGAMMA) + CASE_MATHFN (POW10) + CASE_MATHFN (SINH) + CASE_MATHFN (TGAMMA) + CASE_MATHFN (Y0) + CASE_MATHFN (Y1) + /* The above functions may set errno differently with float + input or output so this transformation is not safe with + -fmath-errno. */ + if (flag_errno_math) + break; + CASE_MATHFN (ACOS) + CASE_MATHFN (ACOSH) + CASE_MATHFN (ASIN) + CASE_MATHFN (ASINH) + CASE_MATHFN (ATAN) + CASE_MATHFN (ATANH) + CASE_MATHFN (CBRT) + CASE_MATHFN (COS) + CASE_MATHFN (ERF) + CASE_MATHFN (ERFC) + CASE_MATHFN (FABS) + CASE_MATHFN (LOG) + CASE_MATHFN (LOG10) + CASE_MATHFN (LOG2) + CASE_MATHFN (LOG1P) + CASE_MATHFN (LOGB) + CASE_MATHFN (SIN) + CASE_MATHFN (SQRT) + CASE_MATHFN (TAN) + CASE_MATHFN (TANH) +#undef CASE_MATHFN { - arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0))); - expr = build_function_call_expr (fn, arglist); - if (newtype == type) - return expr; + tree arg0 = strip_float_extensions (CALL_EXPR_ARG (expr, 0)); + tree newtype = type; + + /* We have (outertype)sqrt((innertype)x). Choose the wider mode from + the both as the safe type for operation. */ + if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type)) + newtype = TREE_TYPE (arg0); + + /* Be careful about integer to fp conversions. + These may overflow still. */ + if (FLOAT_TYPE_P (TREE_TYPE (arg0)) + && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype) + && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node) + || TYPE_MODE (newtype) == TYPE_MODE (float_type_node))) + { + tree fn = mathfn_built_in (newtype, fcode); + + if (fn) + { + tree arg = fold (convert_to_real (newtype, arg0)); + expr = build_call_expr (fn, 1, arg); + if (newtype == type) + return expr; + } + } } + default: + break; } } if (optimize && (((fcode == BUILT_IN_FLOORL || fcode == BUILT_IN_CEILL - || fcode == BUILT_IN_ROUND - || fcode == BUILT_IN_TRUNC - || fcode == BUILT_IN_NEARBYINT) + || fcode == BUILT_IN_ROUNDL + || fcode == BUILT_IN_RINTL + || fcode == BUILT_IN_TRUNCL + || fcode == BUILT_IN_NEARBYINTL) && (TYPE_MODE (type) == TYPE_MODE (double_type_node) || TYPE_MODE (type) == TYPE_MODE (float_type_node))) || ((fcode == BUILT_IN_FLOOR || fcode == BUILT_IN_CEIL || fcode == BUILT_IN_ROUND + || fcode == BUILT_IN_RINT || fcode == BUILT_IN_TRUNC || fcode == BUILT_IN_NEARBYINT) && (TYPE_MODE (type) == TYPE_MODE (float_type_node))))) @@ -190,12 +250,14 @@ convert_to_real (tree type, tree expr) if (fn) { - tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, - 1))); - tree arglist = build_tree_list (NULL_TREE, - fold (convert_to_real (type, arg0))); - - return build_function_call_expr (fn, arglist); + tree arg = strip_float_extensions (CALL_EXPR_ARG (expr, 0)); + + /* Make sure (type)arg0 is an extension, otherwise we could end up + changing (float)floor(double d) into floorf((float)d), which is + incorrect because (float)d uses round-to-nearest and can round + up to the next integer. */ + if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg))) + return build_call_expr (fn, 1, fold (convert_to_real (type, arg))); } } @@ -203,15 +265,17 @@ convert_to_real (tree type, tree expr) if (itype != type && FLOAT_TYPE_P (type)) switch (TREE_CODE (expr)) { - /* convert (float)-x into -(float)x. This is always safe. */ + /* Convert (float)-x into -(float)x. This is safe for + round-to-nearest rounding mode. */ case ABS_EXPR: case NEGATE_EXPR: - if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr))) + if (!flag_rounding_math + && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr))) return build1 (TREE_CODE (expr), type, fold (convert_to_real (type, TREE_OPERAND (expr, 0)))); break; - /* convert (outertype)((innertype0)a+(innertype1)b) + /* Convert (outertype)((innertype0)a+(innertype1)b) into ((newtype)a+(newtype)b) where newtype is the widest mode from all of these. */ case PLUS_EXPR: @@ -223,18 +287,70 @@ convert_to_real (tree type, tree expr) tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1)); if (FLOAT_TYPE_P (TREE_TYPE (arg0)) - && FLOAT_TYPE_P (TREE_TYPE (arg1))) + && FLOAT_TYPE_P (TREE_TYPE (arg1)) + && DECIMAL_FLOAT_TYPE_P (itype) == DECIMAL_FLOAT_TYPE_P (type)) { tree newtype = type; + + if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode + || TYPE_MODE (TREE_TYPE (arg1)) == SDmode + || TYPE_MODE (type) == SDmode) + newtype = dfloat32_type_node; + if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode + || TYPE_MODE (TREE_TYPE (arg1)) == DDmode + || TYPE_MODE (type) == DDmode) + newtype = dfloat64_type_node; + if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode + || TYPE_MODE (TREE_TYPE (arg1)) == TDmode + || TYPE_MODE (type) == TDmode) + newtype = dfloat128_type_node; + if (newtype == dfloat32_type_node + || newtype == dfloat64_type_node + || newtype == dfloat128_type_node) + { + expr = build2 (TREE_CODE (expr), newtype, + fold (convert_to_real (newtype, arg0)), + fold (convert_to_real (newtype, arg1))); + if (newtype == type) + return expr; + break; + } + if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype)) newtype = TREE_TYPE (arg0); if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype)) newtype = TREE_TYPE (arg1); - if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)) + /* Sometimes this transformation is safe (cannot + change results through affecting double rounding + cases) and sometimes it is not. If NEWTYPE is + wider than TYPE, e.g. (float)((long double)double + + (long double)double) converted to + (float)(double + double), the transformation is + unsafe regardless of the details of the types + involved; double rounding can arise if the result + of NEWTYPE arithmetic is a NEWTYPE value half way + between two representable TYPE values but the + exact value is sufficiently different (in the + right direction) for this difference to be + visible in ITYPE arithmetic. If NEWTYPE is the + same as TYPE, however, the transformation may be + safe depending on the types involved: it is safe + if the ITYPE has strictly more than twice as many + mantissa bits as TYPE, can represent infinities + and NaNs if the TYPE can, and has sufficient + exponent range for the product or ratio of two + values representable in the TYPE to be within the + range of normal values of ITYPE. */ + if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype) + && (flag_unsafe_math_optimizations + || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type) + && real_can_shorten_arithmetic (TYPE_MODE (itype), + TYPE_MODE (type)) + && !excess_precision_type (newtype)))) { - expr = build (TREE_CODE (expr), newtype, - fold (convert_to_real (newtype, arg0)), - fold (convert_to_real (newtype, arg1))); + expr = build2 (TREE_CODE (expr), newtype, + fold (convert_to_real (newtype, arg0)), + fold (convert_to_real (newtype, arg1))); if (newtype == type) return expr; } @@ -248,19 +364,25 @@ convert_to_real (tree type, tree expr) switch (TREE_CODE (TREE_TYPE (expr))) { case REAL_TYPE: - return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR, - type, expr); + /* Ignore the conversion if we don't need to store intermediate + results and neither type is a decimal float. */ + return build1 ((flag_float_store + || DECIMAL_FLOAT_TYPE_P (type) + || DECIMAL_FLOAT_TYPE_P (itype)) + ? CONVERT_EXPR : NOP_EXPR, type, expr); case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: - case CHAR_TYPE: return build1 (FLOAT_EXPR, type, expr); + case FIXED_POINT_TYPE: + return build1 (FIXED_CONVERT_EXPR, type, expr); + case COMPLEX_TYPE: return convert (type, - fold (build1 (REALPART_EXPR, - TREE_TYPE (TREE_TYPE (expr)), expr))); + fold_build1 (REALPART_EXPR, + TREE_TYPE (TREE_TYPE (expr)), expr)); case POINTER_TYPE: case REFERENCE_TYPE: @@ -275,8 +397,8 @@ convert_to_real (tree type, tree expr) /* Convert EXPR to some integer (or enum) type TYPE. - EXPR must be pointer, integer, discrete (enum, char, or bool), float, or - vector; in other cases error is called. + EXPR must be pointer, integer, discrete (enum, char, or bool), float, + fixed-point or vector; in other cases error is called. The result of this is always supposed to be a newly created tree node not in use in any existing structure. */ @@ -297,46 +419,146 @@ convert_to_integer (tree type, tree expr) return error_mark_node; } + /* Convert e.g. (long)round(d) -> lround(d). */ + /* If we're converting to char, we may encounter differing behavior + between converting from double->char vs double->long->char. + We're in "undefined" territory but we prefer to be conservative, + so only proceed in "unsafe" math mode. */ + if (optimize + && (flag_unsafe_math_optimizations + || (long_integer_type_node + && outprec >= TYPE_PRECISION (long_integer_type_node)))) + { + tree s_expr = strip_float_extensions (expr); + tree s_intype = TREE_TYPE (s_expr); + const enum built_in_function fcode = builtin_mathfn_code (s_expr); + tree fn = 0; + + switch (fcode) + { + CASE_FLT_FN (BUILT_IN_CEIL): + /* Only convert in ISO C99 mode. */ + if (!TARGET_C99_FUNCTIONS) + break; + if (outprec < TYPE_PRECISION (long_integer_type_node) + || (outprec == TYPE_PRECISION (long_integer_type_node) + && !TYPE_UNSIGNED (type))) + fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL); + else if (outprec == TYPE_PRECISION (long_long_integer_type_node) + && !TYPE_UNSIGNED (type)) + fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL); + break; + + CASE_FLT_FN (BUILT_IN_FLOOR): + /* Only convert in ISO C99 mode. */ + if (!TARGET_C99_FUNCTIONS) + break; + if (outprec < TYPE_PRECISION (long_integer_type_node) + || (outprec == TYPE_PRECISION (long_integer_type_node) + && !TYPE_UNSIGNED (type))) + fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR); + else if (outprec == TYPE_PRECISION (long_long_integer_type_node) + && !TYPE_UNSIGNED (type)) + fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR); + break; + + CASE_FLT_FN (BUILT_IN_ROUND): + if (outprec < TYPE_PRECISION (long_integer_type_node) + || (outprec == TYPE_PRECISION (long_integer_type_node) + && !TYPE_UNSIGNED (type))) + fn = mathfn_built_in (s_intype, BUILT_IN_LROUND); + else if (outprec == TYPE_PRECISION (long_long_integer_type_node) + && !TYPE_UNSIGNED (type)) + fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND); + break; + + CASE_FLT_FN (BUILT_IN_NEARBYINT): + /* Only convert nearbyint* if we can ignore math exceptions. */ + if (flag_trapping_math) + break; + /* ... Fall through ... */ + CASE_FLT_FN (BUILT_IN_RINT): + if (outprec < TYPE_PRECISION (long_integer_type_node) + || (outprec == TYPE_PRECISION (long_integer_type_node) + && !TYPE_UNSIGNED (type))) + fn = mathfn_built_in (s_intype, BUILT_IN_LRINT); + else if (outprec == TYPE_PRECISION (long_long_integer_type_node) + && !TYPE_UNSIGNED (type)) + fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT); + break; + + CASE_FLT_FN (BUILT_IN_TRUNC): + return convert_to_integer (type, CALL_EXPR_ARG (s_expr, 0)); + + default: + break; + } + + if (fn) + { + tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0)); + return convert_to_integer (type, newexpr); + } + } + + /* Convert (int)logb(d) -> ilogb(d). */ + if (optimize + && flag_unsafe_math_optimizations + && !flag_trapping_math && !flag_errno_math && flag_finite_math_only + && integer_type_node + && (outprec > TYPE_PRECISION (integer_type_node) + || (outprec == TYPE_PRECISION (integer_type_node) + && !TYPE_UNSIGNED (type)))) + { + tree s_expr = strip_float_extensions (expr); + tree s_intype = TREE_TYPE (s_expr); + const enum built_in_function fcode = builtin_mathfn_code (s_expr); + tree fn = 0; + + switch (fcode) + { + CASE_FLT_FN (BUILT_IN_LOGB): + fn = mathfn_built_in (s_intype, BUILT_IN_ILOGB); + break; + + default: + break; + } + + if (fn) + { + tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0)); + return convert_to_integer (type, newexpr); + } + } + switch (TREE_CODE (intype)) { case POINTER_TYPE: case REFERENCE_TYPE: if (integer_zerop (expr)) - expr = integer_zero_node; - else - expr = fold (build1 (CONVERT_EXPR, (*lang_hooks.types.type_for_size) - (POINTER_SIZE, 0), expr)); - - return convert_to_integer (type, expr); + return build_int_cst (type, 0); + + /* Convert to an unsigned integer of the correct width first, and from + there widen/truncate to the required type. Some targets support the + coexistence of multiple valid pointer sizes, so fetch the one we need + from the type. */ + expr = fold_build1 (CONVERT_EXPR, + lang_hooks.types.type_for_size + (TYPE_PRECISION (intype), 0), + expr); + return fold_convert (type, expr); case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: - case CHAR_TYPE: + case OFFSET_TYPE: /* If this is a logical operation, which just returns 0 or 1, we can - change the type of the expression. For some logical operations, - we must also change the types of the operands to maintain type - correctness. */ - - if (TREE_CODE_CLASS (ex_form) == '<') - { - TREE_TYPE (expr) = type; - return expr; - } - - else if (ex_form == TRUTH_AND_EXPR || ex_form == TRUTH_ANDIF_EXPR - || ex_form == TRUTH_OR_EXPR || ex_form == TRUTH_ORIF_EXPR - || ex_form == TRUTH_XOR_EXPR) - { - TREE_OPERAND (expr, 0) = convert (type, TREE_OPERAND (expr, 0)); - TREE_OPERAND (expr, 1) = convert (type, TREE_OPERAND (expr, 1)); - TREE_TYPE (expr) = type; - return expr; - } + change the type of the expression. */ - else if (ex_form == TRUTH_NOT_EXPR) + if (TREE_CODE_CLASS (ex_form) == tcc_comparison) { - TREE_OPERAND (expr, 0) = convert (type, TREE_OPERAND (expr, 0)); + expr = copy_node (expr); TREE_TYPE (expr) = type; return expr; } @@ -346,7 +568,34 @@ convert_to_integer (tree type, tree expr) we are truncating EXPR. */ else if (outprec >= inprec) - return build1 (NOP_EXPR, type, expr); + { + enum tree_code code; + tree tem; + + /* If the precision of the EXPR's type is K bits and the + destination mode has more bits, and the sign is changing, + it is not safe to use a NOP_EXPR. For example, suppose + that EXPR's type is a 3-bit unsigned integer type, the + TYPE is a 3-bit signed integer type, and the machine mode + for the types is 8-bit QImode. In that case, the + conversion necessitates an explicit sign-extension. In + the signed-to-unsigned case the high-order bits have to + be cleared. */ + if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr)) + && (TYPE_PRECISION (TREE_TYPE (expr)) + != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr))))) + code = CONVERT_EXPR; + else + code = NOP_EXPR; + + tem = fold_unary (code, type, expr); + if (tem) + return tem; + + tem = build1 (code, type, expr); + TREE_NO_WARNING (tem) = 1; + return tem; + } /* If TYPE is an enumeral type or a type with a precision less than the number of bits in its mode, do the conversion to the @@ -355,8 +604,8 @@ convert_to_integer (tree type, tree expr) else if (TREE_CODE (type) == ENUMERAL_TYPE || outprec != GET_MODE_BITSIZE (TYPE_MODE (type))) return build1 (NOP_EXPR, type, - convert ((*lang_hooks.types.type_for_mode) - (TYPE_MODE (type), TREE_UNSIGNED (type)), + convert (lang_hooks.types.type_for_mode + (TYPE_MODE (type), TYPE_UNSIGNED (type)), expr)); /* Here detect when we can distribute the truncation down past some @@ -385,9 +634,7 @@ convert_to_integer (tree type, tree expr) /* We can pass truncation down through right shifting when the shift count is a nonpositive constant. */ if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST - && tree_int_cst_lt (TREE_OPERAND (expr, 1), - convert (TREE_TYPE (TREE_OPERAND (expr, 1)), - integer_one_node))) + && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0) goto trunc1; break; @@ -397,7 +644,7 @@ convert_to_integer (tree type, tree expr) the target type is unsigned. */ if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0 - && TREE_UNSIGNED (type) + && TYPE_UNSIGNED (type) && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST) { /* If shift count is less than the width of the truncated type, @@ -413,18 +660,43 @@ convert_to_integer (tree type, tree expr) but (int) a << 32 is undefined and would get a warning. */ - tree t = convert_to_integer (type, integer_zero_node); + tree t = build_int_cst (type, 0); /* If the original expression had side-effects, we must preserve it. */ if (TREE_SIDE_EFFECTS (expr)) - return build (COMPOUND_EXPR, type, expr, t); + return build2 (COMPOUND_EXPR, type, expr, t); else return t; } } break; + case TRUNC_DIV_EXPR: + { + tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type); + tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type); + + /* Don't distribute unless the output precision is at least as big + as the actual inputs and it has the same signedness. */ + if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0)) + && outprec >= TYPE_PRECISION (TREE_TYPE (arg1)) + /* If signedness of arg0 and arg1 don't match, + we can't necessarily find a type to compare them in. */ + && (TYPE_UNSIGNED (TREE_TYPE (arg0)) + == TYPE_UNSIGNED (TREE_TYPE (arg1))) + /* Do not change the sign of the division. */ + && (TYPE_UNSIGNED (TREE_TYPE (expr)) + == TYPE_UNSIGNED (TREE_TYPE (arg0))) + /* Either require unsigned division or a division by + a constant that is not -1. */ + && (TYPE_UNSIGNED (TREE_TYPE (arg0)) + || (TREE_CODE (arg1) == INTEGER_CST + && !integer_all_onesp (arg1)))) + goto trunc1; + break; + } + case MAX_EXPR: case MIN_EXPR: case MULT_EXPR: @@ -439,8 +711,8 @@ convert_to_integer (tree type, tree expr) && outprec >= TYPE_PRECISION (TREE_TYPE (arg1)) /* If signedness of arg0 and arg1 don't match, we can't necessarily find a type to compare them in. */ - && (TREE_UNSIGNED (TREE_TYPE (arg0)) - == TREE_UNSIGNED (TREE_TYPE (arg1)))) + && (TYPE_UNSIGNED (TREE_TYPE (arg0)) + == TYPE_UNSIGNED (TREE_TYPE (arg1)))) goto trunc1; break; } @@ -450,7 +722,6 @@ convert_to_integer (tree type, tree expr) case BIT_AND_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: - case BIT_ANDTC_EXPR: trunc1: { tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type); @@ -468,8 +739,8 @@ convert_to_integer (tree type, tree expr) /* Can't do arithmetic in enumeral types so use an integer type that will hold the values. */ if (TREE_CODE (typex) == ENUMERAL_TYPE) - typex = (*lang_hooks.types.type_for_size) - (TYPE_PRECISION (typex), TREE_UNSIGNED (typex)); + typex = lang_hooks.types.type_for_size + (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex)); /* But now perhaps TYPEX is as wide as INPREC. In that case, do nothing special here. @@ -487,22 +758,36 @@ convert_to_integer (tree type, tree expr) signed-overflow undefinedness. And we may need to do it as unsigned if we truncate to the original size. */ - if (TREE_UNSIGNED (TREE_TYPE (expr)) - || (TREE_UNSIGNED (TREE_TYPE (arg0)) - && (TREE_UNSIGNED (TREE_TYPE (arg1)) + if (TYPE_UNSIGNED (TREE_TYPE (expr)) + || (TYPE_UNSIGNED (TREE_TYPE (arg0)) + && (TYPE_UNSIGNED (TREE_TYPE (arg1)) || ex_form == LSHIFT_EXPR || ex_form == RSHIFT_EXPR || ex_form == LROTATE_EXPR || ex_form == RROTATE_EXPR)) - || ex_form == LSHIFT_EXPR) - typex = (*lang_hooks.types.unsigned_type) (typex); + || ex_form == LSHIFT_EXPR + /* If we have !flag_wrapv, and either ARG0 or + ARG1 is of a signed type, we have to do + PLUS_EXPR, MINUS_EXPR or MULT_EXPR in an unsigned + type in case the operation in outprec precision + could overflow. Otherwise, we would introduce + signed-overflow undefinedness. */ + || ((!TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)) + || !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))) + && ((TYPE_PRECISION (TREE_TYPE (arg0)) * 2u + > outprec) + || (TYPE_PRECISION (TREE_TYPE (arg1)) * 2u + > outprec)) + && (ex_form == PLUS_EXPR + || ex_form == MINUS_EXPR + || ex_form == MULT_EXPR))) + typex = unsigned_type_for (typex); else - typex = (*lang_hooks.types.signed_type) (typex); + typex = signed_type_for (typex); return convert (type, - fold (build (ex_form, typex, + fold_build2 (ex_form, typex, convert (typex, arg0), - convert (typex, arg1), - 0))); + convert (typex, arg1))); } } } @@ -513,30 +798,11 @@ convert_to_integer (tree type, tree expr) /* This is not correct for ABS_EXPR, since we must test the sign before truncation. */ { - tree typex = type; - - /* Can't do arithmetic in enumeral types - so use an integer type that will hold the values. */ - if (TREE_CODE (typex) == ENUMERAL_TYPE) - typex = (*lang_hooks.types.type_for_size) - (TYPE_PRECISION (typex), TREE_UNSIGNED (typex)); - - /* But now perhaps TYPEX is as wide as INPREC. - In that case, do nothing special here. - (Otherwise would recurse infinitely in convert. */ - if (TYPE_PRECISION (typex) != inprec) - { - /* Don't do unsigned arithmetic where signed was wanted, - or vice versa. */ - if (TREE_UNSIGNED (TREE_TYPE (expr))) - typex = (*lang_hooks.types.unsigned_type) (typex); - else - typex = (*lang_hooks.types.signed_type) (typex); - return convert (type, - fold (build1 (ex_form, typex, - convert (typex, - TREE_OPERAND (expr, 0))))); - } + tree typex = unsigned_type_for (type); + return convert (type, + fold_build1 (ex_form, typex, + convert (typex, + TREE_OPERAND (expr, 0)))); } case NOP_EXPR: @@ -552,33 +818,41 @@ convert_to_integer (tree type, tree expr) case COND_EXPR: /* It is sometimes worthwhile to push the narrowing down through - the conditional and never loses. */ - return fold (build (COND_EXPR, type, TREE_OPERAND (expr, 0), - convert (type, TREE_OPERAND (expr, 1)), - convert (type, TREE_OPERAND (expr, 2)))); + the conditional and never loses. A COND_EXPR may have a throw + as one operand, which then has void type. Just leave void + operands as they are. */ + return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0), + VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))) + ? TREE_OPERAND (expr, 1) + : convert (type, TREE_OPERAND (expr, 1)), + VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 2))) + ? TREE_OPERAND (expr, 2) + : convert (type, TREE_OPERAND (expr, 2))); default: break; } - return build1 (NOP_EXPR, type, expr); + return build1 (CONVERT_EXPR, type, expr); case REAL_TYPE: return build1 (FIX_TRUNC_EXPR, type, expr); + case FIXED_POINT_TYPE: + return build1 (FIXED_CONVERT_EXPR, type, expr); + case COMPLEX_TYPE: return convert (type, - fold (build1 (REALPART_EXPR, - TREE_TYPE (TREE_TYPE (expr)), expr))); + fold_build1 (REALPART_EXPR, + TREE_TYPE (TREE_TYPE (expr)), expr)); case VECTOR_TYPE: - if (GET_MODE_SIZE (TYPE_MODE (type)) - != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr)))) + if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr)))) { - error ("can't convert between vector values of different size"); + error ("can%'t convert between vector values of different size"); return error_mark_node; } - return build1 (NOP_EXPR, type, expr); + return build1 (VIEW_CONVERT_EXPR, type, expr); default: error ("aggregate value used where an integer was expected"); @@ -596,12 +870,12 @@ convert_to_complex (tree type, tree expr) switch (TREE_CODE (TREE_TYPE (expr))) { case REAL_TYPE: + case FIXED_POINT_TYPE: case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: - case CHAR_TYPE: - return build (COMPLEX_EXPR, type, convert (subtype, expr), - convert (subtype, integer_zero_node)); + return build2 (COMPLEX_EXPR, type, convert (subtype, expr), + convert (subtype, integer_zero_node)); case COMPLEX_TYPE: { @@ -610,23 +884,22 @@ convert_to_complex (tree type, tree expr) if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype)) return expr; else if (TREE_CODE (expr) == COMPLEX_EXPR) - return fold (build (COMPLEX_EXPR, - type, + return fold_build2 (COMPLEX_EXPR, type, convert (subtype, TREE_OPERAND (expr, 0)), - convert (subtype, TREE_OPERAND (expr, 1)))); + convert (subtype, TREE_OPERAND (expr, 1))); else { expr = save_expr (expr); return - fold (build (COMPLEX_EXPR, - type, convert (subtype, - fold (build1 (REALPART_EXPR, - TREE_TYPE (TREE_TYPE (expr)), - expr))), + fold_build2 (COMPLEX_EXPR, type, convert (subtype, - fold (build1 (IMAGPART_EXPR, - TREE_TYPE (TREE_TYPE (expr)), - expr))))); + fold_build1 (REALPART_EXPR, + TREE_TYPE (TREE_TYPE (expr)), + expr)), + convert (subtype, + fold_build1 (IMAGPART_EXPR, + TREE_TYPE (TREE_TYPE (expr)), + expr))); } } @@ -650,16 +923,54 @@ convert_to_vector (tree type, tree expr) { case INTEGER_TYPE: case VECTOR_TYPE: - if (GET_MODE_SIZE (TYPE_MODE (type)) - != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr)))) + if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr)))) { - error ("can't convert between vector values of different size"); + error ("can%'t convert between vector values of different size"); return error_mark_node; } - return build1 (NOP_EXPR, type, expr); + return build1 (VIEW_CONVERT_EXPR, type, expr); + + default: + error ("can%'t convert value to a vector"); + return error_mark_node; + } +} + +/* Convert EXPR to some fixed-point type TYPE. + + EXPR must be fixed-point, float, integer, or enumeral; + in other cases error is called. */ + +tree +convert_to_fixed (tree type, tree expr) +{ + if (integer_zerop (expr)) + { + tree fixed_zero_node = build_fixed (type, FCONST0 (TYPE_MODE (type))); + return fixed_zero_node; + } + else if (integer_onep (expr) && ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type))) + { + tree fixed_one_node = build_fixed (type, FCONST1 (TYPE_MODE (type))); + return fixed_one_node; + } + + switch (TREE_CODE (TREE_TYPE (expr))) + { + case FIXED_POINT_TYPE: + case INTEGER_TYPE: + case ENUMERAL_TYPE: + case BOOLEAN_TYPE: + case REAL_TYPE: + return build1 (FIXED_CONVERT_EXPR, type, expr); + + case COMPLEX_TYPE: + return convert (type, + fold_build1 (REALPART_EXPR, + TREE_TYPE (TREE_TYPE (expr)), expr)); default: - error ("can't convert value to a vector"); - return convert_to_vector (type, integer_zero_node); + error ("aggregate value used where a fixed-point was expected"); + return error_mark_node; } }