OSDN Git Service

Merged with libbbid branch at revision 126349.
[pf3gnuchains/gcc-fork.git] / libgcc / config / libbid / bid64_compare.c
diff --git a/libgcc/config/libbid/bid64_compare.c b/libgcc/config/libbid/bid64_compare.c
new file mode 100644 (file)
index 0000000..888d561
--- /dev/null
@@ -0,0 +1,3471 @@
+/* Copyright (C) 2007  Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+In addition to the permissions in the GNU General Public License, the
+Free Software Foundation gives you unlimited permission to link the
+compiled version of this file into combinations with other programs,
+and to distribute those combinations without any restriction coming
+from the use of this file.  (The General Public License restrictions
+do apply in other respects; for example, they cover modification of
+the file, and distribution when not linked into a combine
+executable.)
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING.  If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA.  */
+
+#include "bid_internal.h"
+
+static const UINT64 mult_factor[16] = {
+  1ull, 10ull, 100ull, 1000ull,
+  10000ull, 100000ull, 1000000ull, 10000000ull,
+  100000000ull, 1000000000ull, 10000000000ull, 100000000000ull,
+  1000000000000ull, 10000000000000ull,
+  100000000000000ull, 1000000000000000ull
+};
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_quiet_equal (int *pres, UINT64 * px,
+                  UINT64 *
+                  py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                  _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_quiet_equal (UINT64 x,
+                  UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                  _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y, exp_t;
+  UINT64 sig_x, sig_y, sig_t;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y, lcv;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered, 
+  // rather than equal : return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+      *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+    }
+    res = 0;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equivalent.
+  if (x == y) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if (((x & MASK_INF) == MASK_INF) && ((y & MASK_INF) == MASK_INF)) {
+    res = (((x ^ y) & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign
+  //    (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //    therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+  if (x_is_zero && y_is_zero) {
+    res = 1;
+    BID_RETURN (res);
+  } else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ => not equal : return 0
+  if ((x ^ y) & MASK_SIGN) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  if (exp_x > exp_y) { // to simplify the loop below,
+    SWAP (exp_x, exp_y, exp_t); // put the larger exp in y,
+    SWAP (sig_x, sig_y, sig_t); // and the smaller exp in x
+  }
+  if (exp_y - exp_x > 15) {
+    res = 0; // difference cannot be greater than 10^15
+    BID_RETURN (res);
+  }
+  for (lcv = 0; lcv < (exp_y - exp_x); lcv++) {
+    // recalculate y's significand upwards
+    sig_y = sig_y * 10;
+    if (sig_y > 9999999999999999ull) {
+      res = 0;
+      BID_RETURN (res);
+    }
+  }
+  res = (sig_y == sig_x);
+  BID_RETURN (res);
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_quiet_greater (int *pres, UINT64 * px,
+                    UINT64 *
+                    py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                    _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_quiet_greater (UINT64 x,
+                    UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                    _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y;
+  UINT64 sig_x, sig_y;
+  UINT128 sig_n_prime;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered, rather than equal : 
+  // return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+      *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+    }
+    res = 0;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equal (not Greater).
+  if (x == y) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if ((x & MASK_INF) == MASK_INF) {
+    // if x is neg infinity, there is no way it is greater than y, return 0
+    if (((x & MASK_SIGN) == MASK_SIGN)) {
+      res = 0;
+      BID_RETURN (res);
+    } else {
+      // x is pos infinity, it is greater, unless y is positive 
+      // infinity => return y!=pos_infinity
+      res = (((y & MASK_INF) != MASK_INF)
+            || ((y & MASK_SIGN) == MASK_SIGN));
+      BID_RETURN (res);
+    }
+  } else if ((y & MASK_INF) == MASK_INF) {
+    // x is finite, so if y is positive infinity, then x is less, return 0
+    //                 if y is negative infinity, then x is greater, return 1
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+  // ZERO (CASE4)
+  // some properties:
+  //(+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+  //(ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore ignore the 
+  // exponent field
+  // (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+  // if both numbers are zero, neither is greater => return NOTGREATERTHAN
+  if (x_is_zero && y_is_zero) {
+    res = 0;
+    BID_RETURN (res);
+  } else if (x_is_zero) {
+    // is x is zero, it is greater if Y is negative
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  } else if (y_is_zero) {
+    // is y is zero, X is greater if it is positive
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ, x is greater if y is negative
+  if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  // if both components are either bigger or smaller, 
+  // it is clear what needs to be done
+  if (sig_x > sig_y && exp_x > exp_y) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  if (sig_x < sig_y && exp_x < exp_y) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 greater than exp_y, no need for compensation
+  if (exp_x - exp_y > 15) { // difference cannot be greater than 10^15
+    if (x & MASK_SIGN) // if both are negative
+      res = 0;
+    else       // if both are positive
+      res = 1;
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 less than exp_y, no need for compensation
+  if (exp_y - exp_x > 15) {
+    if (x & MASK_SIGN) // if both are negative
+      res = 1;
+    else       // if both are positive
+      res = 0;
+    BID_RETURN (res);
+  }
+  // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+  if (exp_x > exp_y) { // to simplify the loop below,
+    // otherwise adjust the x significand upwards
+    __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+                           mult_factor[exp_x - exp_y]);
+    // if postitive, return whichever significand is larger (converse if neg.)
+    if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+      res = 0;
+      BID_RETURN (res);
+    }
+    res = (((sig_n_prime.w[1] > 0)
+           || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
+                                           MASK_SIGN));
+    BID_RETURN (res);
+  }
+  // adjust the y significand upwards
+  __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+                         mult_factor[exp_y - exp_x]);
+  // if postitive, return whichever significand is larger 
+  //     (converse if negative)
+  if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  res = (((sig_n_prime.w[1] == 0)
+         && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+                                           MASK_SIGN));
+  BID_RETURN (res);
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_quiet_greater_equal (int *pres, UINT64 * px,
+                          UINT64 *
+                          py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                          _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_quiet_greater_equal (UINT64 x,
+                          UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                          _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y;
+  UINT64 sig_x, sig_y;
+  UINT128 sig_n_prime;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered : return 1
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+      *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+    }
+    res = 0;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equal.
+  if (x == y) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if ((x & MASK_INF) == MASK_INF) {
+    // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
+    if ((x & MASK_SIGN) == MASK_SIGN) {
+      // x is -inf, so it is less than y unless y is -inf
+      res = (((y & MASK_INF) == MASK_INF)
+            && (y & MASK_SIGN) == MASK_SIGN);
+      BID_RETURN (res);
+    } else { // x is pos_inf, no way for it to be less than y
+      res = 1;
+      BID_RETURN (res);
+    }
+  } else if ((y & MASK_INF) == MASK_INF) {
+    // x is finite, so:
+    //    if y is +inf, x<y
+    //    if y is -inf, x>y
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+  // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //   therefore ignore the exponent field
+  //  (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+  if (x_is_zero && y_is_zero) {
+    // if both numbers are zero, they are equal
+    res = 1;
+    BID_RETURN (res);
+  } else if (x_is_zero) {
+    // if x is zero, it is lessthan if Y is positive
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  } else if (y_is_zero) {
+    // if y is zero, X is less if it is negative
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ, x is less than if y is positive
+  if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  // if both components are either bigger or smaller
+  if (sig_x > sig_y && exp_x >= exp_y) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  if (sig_x < sig_y && exp_x <= exp_y) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 greater than exp_y, no need for compensation
+  if (exp_x - exp_y > 15) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    // difference cannot be greater than 10^15
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 less than exp_y, no need for compensation
+  if (exp_y - exp_x > 15) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+  if (exp_x > exp_y) { // to simplify the loop below,
+    // otherwise adjust the x significand upwards
+    __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+                           mult_factor[exp_x - exp_y]);
+    // return 1 if values are equal
+    if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+      res = 1;
+      BID_RETURN (res);
+    }
+    // if postitive, return whichever significand abs is smaller 
+    // (converse if negative)
+    res = (((sig_n_prime.w[1] == 0)
+           && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) !=
+                                           MASK_SIGN));
+    BID_RETURN (res);
+  }
+  // adjust the y significand upwards
+  __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+                         mult_factor[exp_y - exp_x]);
+  // return 0 if values are equal
+  if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // if positive, return whichever significand abs is smaller 
+  // (converse if negative)
+  res = (((sig_n_prime.w[1] > 0)
+         || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) !=
+                                           MASK_SIGN));
+  BID_RETURN (res);
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_quiet_greater_unordered (int *pres, UINT64 * px,
+                              UINT64 *
+                              py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                              _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_quiet_greater_unordered (UINT64 x,
+                              UINT64 y _EXC_FLAGS_PARAM
+                              _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y;
+  UINT64 sig_x, sig_y;
+  UINT128 sig_n_prime;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered, rather than equal : 
+  // return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+      *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+    }
+    res = 1;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equal (not Greater).
+  if (x == y) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if ((x & MASK_INF) == MASK_INF) {
+    // if x is neg infinity, there is no way it is greater than y, return 0
+    if (((x & MASK_SIGN) == MASK_SIGN)) {
+      res = 0;
+      BID_RETURN (res);
+    } else {
+      // x is pos infinity, it is greater, unless y is positive infinity => 
+      // return y!=pos_infinity
+      res = (((y & MASK_INF) != MASK_INF)
+            || ((y & MASK_SIGN) == MASK_SIGN));
+      BID_RETURN (res);
+    }
+  } else if ((y & MASK_INF) == MASK_INF) {
+    // x is finite, so if y is positive infinity, then x is less, return 0
+    //                 if y is negative infinity, then x is greater, return 1
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+  // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  // therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+  // if both numbers are zero, neither is greater => return NOTGREATERTHAN
+  if (x_is_zero && y_is_zero) {
+    res = 0;
+    BID_RETURN (res);
+  } else if (x_is_zero) {
+    // is x is zero, it is greater if Y is negative
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  } else if (y_is_zero) {
+    // is y is zero, X is greater if it is positive
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ, x is greater if y is negative
+  if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  // if both components are either bigger or smaller
+  if (sig_x > sig_y && exp_x >= exp_y) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  if (sig_x < sig_y && exp_x <= exp_y) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 greater than exp_y, no need for compensation
+  if (exp_x - exp_y > 15) {
+    // difference cannot be greater than 10^15
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 less than exp_y, no need for compensation
+  if (exp_y - exp_x > 15) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+  if (exp_x > exp_y) { // to simplify the loop below,
+    // otherwise adjust the x significand upwards
+    __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+                           mult_factor[exp_x - exp_y]);
+    // if postitive, return whichever significand is larger 
+    // (converse if negative)
+    if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+      res = 0;
+      BID_RETURN (res);
+    }
+    res = (((sig_n_prime.w[1] > 0)
+           || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
+                                           MASK_SIGN));
+    BID_RETURN (res);
+  }
+  // adjust the y significand upwards
+  __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+                         mult_factor[exp_y - exp_x]);
+  // if postitive, return whichever significand is larger (converse if negative)
+  if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  res = (((sig_n_prime.w[1] == 0)
+         && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+                                           MASK_SIGN));
+  BID_RETURN (res);
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_quiet_less (int *pres, UINT64 * px,
+                 UINT64 *
+                 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) 
+{
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_quiet_less (UINT64 x,
+                 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                 _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y;
+  UINT64 sig_x, sig_y;
+  UINT128 sig_n_prime;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered : return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+      *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+    }
+    res = 0;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equal.
+  if (x == y) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if ((x & MASK_INF) == MASK_INF) {
+    // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) }
+    if ((x & MASK_SIGN) == MASK_SIGN) {
+      // x is -inf, so it is less than y unless y is -inf
+      res = (((y & MASK_INF) != MASK_INF)
+            || (y & MASK_SIGN) != MASK_SIGN);
+      BID_RETURN (res);
+    } else {
+      // x is pos_inf, no way for it to be less than y
+      res = 0;
+      BID_RETURN (res);
+    }
+  } else if ((y & MASK_INF) == MASK_INF) {
+    // x is finite, so:
+    //    if y is +inf, x<y
+    //    if y is -inf, x>y
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+  // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //  therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+  if (x_is_zero && y_is_zero) {
+    // if both numbers are zero, they are equal
+    res = 0;
+    BID_RETURN (res);
+  } else if (x_is_zero) {
+    // if x is zero, it is lessthan if Y is positive
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  } else if (y_is_zero) {
+    // if y is zero, X is less if it is negative
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ, x is less than if y is positive
+  if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  // if both components are either bigger or smaller, 
+  // it is clear what needs to be done
+  if (sig_x > sig_y && exp_x >= exp_y) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  if (sig_x < sig_y && exp_x <= exp_y) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 greater than exp_y, no need for compensation
+  if (exp_x - exp_y > 15) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    // difference cannot be greater than 10^15
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 less than exp_y, no need for compensation
+  if (exp_y - exp_x > 15) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+  if (exp_x > exp_y) { // to simplify the loop below,
+    // otherwise adjust the x significand upwards
+    __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+                           mult_factor[exp_x - exp_y]);
+    // return 0 if values are equal
+    if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+      res = 0;
+      BID_RETURN (res);
+    }
+    // if postitive, return whichever significand abs is smaller 
+    // (converse if negative)
+    res = (((sig_n_prime.w[1] == 0)
+           && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
+                                           MASK_SIGN));
+    BID_RETURN (res);
+  }
+  // adjust the y significand upwards
+  __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+                         mult_factor[exp_y - exp_x]);
+  // return 0 if values are equal
+  if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // if positive, return whichever significand abs is smaller 
+  // (converse if negative)
+  res = (((sig_n_prime.w[1] > 0)
+         || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+                                           MASK_SIGN));
+  BID_RETURN (res);
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_quiet_less_equal (int *pres, UINT64 * px,
+                       UINT64 *
+                       py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                       _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_quiet_less_equal (UINT64 x,
+                       UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                       _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y;
+  UINT64 sig_x, sig_y;
+  UINT128 sig_n_prime;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered, rather than equal : 
+  //     return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+      *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+    }
+    res = 0;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equal (LESSEQUAL).
+  if (x == y) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if ((x & MASK_INF) == MASK_INF) {
+    if (((x & MASK_SIGN) == MASK_SIGN)) {
+      // if x is neg infinity, it must be lessthan or equal to y return 1
+      res = 1;
+      BID_RETURN (res);
+    } else {
+      // x is pos infinity, it is greater, unless y is positive infinity => 
+      // return y==pos_infinity
+      res = !(((y & MASK_INF) != MASK_INF)
+             || ((y & MASK_SIGN) == MASK_SIGN));
+      BID_RETURN (res);
+    }
+  } else if ((y & MASK_INF) == MASK_INF) {
+    // x is finite, so if y is positive infinity, then x is less, return 1
+    //                 if y is negative infinity, then x is greater, return 0
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+  // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //     therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+  if (x_is_zero && y_is_zero) {
+    // if both numbers are zero, they are equal -> return 1
+    res = 1;
+    BID_RETURN (res);
+  } else if (x_is_zero) {
+    // if x is zero, it is lessthan if Y is positive
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  } else if (y_is_zero) {
+    // if y is zero, X is less if it is negative
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ, x is less than if y is positive
+  if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  // if both components are either bigger or smaller
+  if (sig_x > sig_y && exp_x >= exp_y) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  if (sig_x < sig_y && exp_x <= exp_y) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 greater than exp_y, no need for compensation
+  if (exp_x - exp_y > 15) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    // difference cannot be greater than 10^15
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 less than exp_y, no need for compensation
+  if (exp_y - exp_x > 15) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+  if (exp_x > exp_y) { // to simplify the loop below,
+    // otherwise adjust the x significand upwards
+    __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+                           mult_factor[exp_x - exp_y]);
+    // return 1 if values are equal
+    if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+      res = 1;
+      BID_RETURN (res);
+    }
+    // if postitive, return whichever significand abs is smaller 
+    //     (converse if negative)
+    res = (((sig_n_prime.w[1] == 0)
+           && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
+                                           MASK_SIGN));
+    BID_RETURN (res);
+  }
+  // adjust the y significand upwards
+  __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+                         mult_factor[exp_y - exp_x]);
+  // return 1 if values are equal
+  if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // if positive, return whichever significand abs is smaller 
+  //     (converse if negative)
+  res = (((sig_n_prime.w[1] > 0)
+         || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+                                           MASK_SIGN));
+  BID_RETURN (res);
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_quiet_less_unordered (int *pres, UINT64 * px,
+                           UINT64 *
+                           py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                           _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_quiet_less_unordered (UINT64 x,
+                           UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                           _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y;
+  UINT64 sig_x, sig_y;
+  UINT128 sig_n_prime;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered : return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+      *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+    }
+    res = 1;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equal.
+  if (x == y) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if ((x & MASK_INF) == MASK_INF) {
+    // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) }
+    if ((x & MASK_SIGN) == MASK_SIGN) {
+      // x is -inf, so it is less than y unless y is -inf
+      res = (((y & MASK_INF) != MASK_INF)
+            || (y & MASK_SIGN) != MASK_SIGN);
+      BID_RETURN (res);
+    } else {
+      // x is pos_inf, no way for it to be less than y
+      res = 0;
+      BID_RETURN (res);
+    }
+  } else if ((y & MASK_INF) == MASK_INF) {
+    // x is finite, so:
+    //    if y is +inf, x<y
+    //    if y is -inf, x>y
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+  // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //     therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+  if (x_is_zero && y_is_zero) {
+    // if both numbers are zero, they are equal
+    res = 0;
+    BID_RETURN (res);
+  } else if (x_is_zero) {
+    // if x is zero, it is lessthan if Y is positive
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  } else if (y_is_zero) {
+    // if y is zero, X is less if it is negative
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ, x is less than if y is positive
+  if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  // if both components are either bigger or smaller
+  if (sig_x > sig_y && exp_x >= exp_y) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  if (sig_x < sig_y && exp_x <= exp_y) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 greater than exp_y, no need for compensation
+  if (exp_x - exp_y > 15) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    // difference cannot be greater than 10^15
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 less than exp_y, no need for compensation
+  if (exp_y - exp_x > 15) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+  if (exp_x > exp_y) { // to simplify the loop below,
+    // otherwise adjust the x significand upwards
+    __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+                           mult_factor[exp_x - exp_y]);
+    // return 0 if values are equal
+    if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+      res = 0;
+      BID_RETURN (res);
+    }
+    // if postitive, return whichever significand abs is smaller 
+    //     (converse if negative)
+    res = (((sig_n_prime.w[1] == 0)
+           && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
+                                           MASK_SIGN));
+    BID_RETURN (res);
+  }
+  // adjust the y significand upwards
+  __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+                         mult_factor[exp_y - exp_x]);
+  // return 0 if values are equal
+  if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // if positive, return whichever significand abs is smaller 
+  //     (converse if negative)
+  res = (((sig_n_prime.w[1] > 0)
+         || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+                                           MASK_SIGN));
+  BID_RETURN (res);
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_quiet_not_equal (int *pres, UINT64 * px,
+                      UINT64 *
+                      py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                      _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_quiet_not_equal (UINT64 x,
+                      UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                      _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y, exp_t;
+  UINT64 sig_x, sig_y, sig_t;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y, lcv;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered, 
+  // rather than equal : return 1
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+      *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+    }
+    res = 1;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equivalent.
+  if (x == y) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if (((x & MASK_INF) == MASK_INF) && ((y & MASK_INF) == MASK_INF)) {
+    res = (((x ^ y) & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign
+  //    (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //        therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+
+  if (x_is_zero && y_is_zero) {
+    res = 0;
+    BID_RETURN (res);
+  } else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ => not equal : return 1
+  if ((x ^ y) & MASK_SIGN) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  if (exp_x > exp_y) { // to simplify the loop below,
+    SWAP (exp_x, exp_y, exp_t); // put the larger exp in y,
+    SWAP (sig_x, sig_y, sig_t); // and the smaller exp in x
+  }
+
+  if (exp_y - exp_x > 15) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // difference cannot be greater than 10^16
+
+  for (lcv = 0; lcv < (exp_y - exp_x); lcv++) {
+
+    // recalculate y's significand upwards
+    sig_y = sig_y * 10;
+    if (sig_y > 9999999999999999ull) {
+      res = 1;
+      BID_RETURN (res);
+    }
+  }
+
+  {
+    res = sig_y != sig_x;
+    BID_RETURN (res);
+  }
+
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_quiet_not_greater (int *pres, UINT64 * px,
+                        UINT64 *
+                        py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                        _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_quiet_not_greater (UINT64 x,
+                        UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                        _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y;
+  UINT64 sig_x, sig_y;
+  UINT128 sig_n_prime;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered, 
+  //   rather than equal : return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+      *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+    }
+    res = 1;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equal (LESSEQUAL).
+  if (x == y) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if ((x & MASK_INF) == MASK_INF) {
+    // if x is neg infinity, it must be lessthan or equal to y return 1
+    if (((x & MASK_SIGN) == MASK_SIGN)) {
+      res = 1;
+      BID_RETURN (res);
+    }
+    // x is pos infinity, it is greater, unless y is positive 
+    // infinity => return y==pos_infinity
+    else {
+      res = !(((y & MASK_INF) != MASK_INF)
+             || ((y & MASK_SIGN) == MASK_SIGN));
+      BID_RETURN (res);
+    }
+  } else if ((y & MASK_INF) == MASK_INF) {
+    // x is finite, so if y is positive infinity, then x is less, return 1
+    //                 if y is negative infinity, then x is greater, return 0
+    {
+      res = ((y & MASK_SIGN) != MASK_SIGN);
+      BID_RETURN (res);
+    }
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign, and neither 
+  //         number is greater
+  //    (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //         therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+  // if both numbers are zero, they are equal -> return 1
+  if (x_is_zero && y_is_zero) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // if x is zero, it is lessthan if Y is positive
+  else if (x_is_zero) {
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if y is zero, X is less if it is negative
+  else if (y_is_zero) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ, x is less than if y is positive
+  if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  // if both components are either bigger or smaller
+  if (sig_x > sig_y && exp_x >= exp_y) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  if (sig_x < sig_y && exp_x <= exp_y) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 greater than exp_y, no need for compensation
+  if (exp_x - exp_y > 15) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // difference cannot be greater than 10^15
+
+  // if exp_x is 15 less than exp_y, no need for compensation
+  if (exp_y - exp_x > 15) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+  if (exp_x > exp_y) { // to simplify the loop below,
+
+    // otherwise adjust the x significand upwards
+    __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+                           mult_factor[exp_x - exp_y]);
+
+    // return 1 if values are equal
+    if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+      res = 1;
+      BID_RETURN (res);
+    }
+    // if postitive, return whichever significand abs is smaller 
+    //     (converse if negative)
+    {
+      res = (((sig_n_prime.w[1] == 0)
+             && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
+                                             MASK_SIGN));
+      BID_RETURN (res);
+    }
+  }
+  // adjust the y significand upwards
+  __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+                         mult_factor[exp_y - exp_x]);
+
+  // return 1 if values are equal
+  if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // if positive, return whichever significand abs is smaller 
+  //     (converse if negative)
+  {
+    res = (((sig_n_prime.w[1] > 0)
+           || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+                                             MASK_SIGN));
+    BID_RETURN (res);
+  }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_quiet_not_less (int *pres, UINT64 * px,
+                     UINT64 *
+                     py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                     _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_quiet_not_less (UINT64 x,
+                     UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                     _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y;
+  UINT64 sig_x, sig_y;
+  UINT128 sig_n_prime;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered : return 1
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+      *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+    }
+    res = 1;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equal.
+  if (x == y) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if ((x & MASK_INF) == MASK_INF) {
+    // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
+    if ((x & MASK_SIGN) == MASK_SIGN)
+      // x is -inf, so it is less than y unless y is -inf
+    {
+      res = (((y & MASK_INF) == MASK_INF)
+            && (y & MASK_SIGN) == MASK_SIGN);
+      BID_RETURN (res);
+    } else
+      // x is pos_inf, no way for it to be less than y
+    {
+      res = 1;
+      BID_RETURN (res);
+    }
+  } else if ((y & MASK_INF) == MASK_INF) {
+    // x is finite, so:
+    //    if y is +inf, x<y
+    //    if y is -inf, x>y
+    {
+      res = ((y & MASK_SIGN) == MASK_SIGN);
+      BID_RETURN (res);
+    }
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign, and neither 
+  //        number is greater
+  //    (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //        therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+  // if both numbers are zero, they are equal
+  if (x_is_zero && y_is_zero) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // if x is zero, it is lessthan if Y is positive
+  else if (x_is_zero) {
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if y is zero, X is less if it is negative
+  else if (y_is_zero) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ, x is less than if y is positive
+  if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  // if both components are either bigger or smaller
+  if (sig_x > sig_y && exp_x >= exp_y) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  if (sig_x < sig_y && exp_x <= exp_y) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 greater than exp_y, no need for compensation
+  if (exp_x - exp_y > 15) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // difference cannot be greater than 10^15
+
+  // if exp_x is 15 less than exp_y, no need for compensation
+  if (exp_y - exp_x > 15) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+  if (exp_x > exp_y) { // to simplify the loop below,
+
+    // otherwise adjust the x significand upwards
+    __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+                           mult_factor[exp_x - exp_y]);
+
+    // return 0 if values are equal
+    if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+      res = 1;
+      BID_RETURN (res);
+    }
+    // if postitive, return whichever significand abs is smaller 
+    //     (converse if negative)
+    {
+      res = (((sig_n_prime.w[1] == 0)
+             && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) !=
+                                             MASK_SIGN));
+      BID_RETURN (res);
+    }
+  }
+  // adjust the y significand upwards
+  __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+                         mult_factor[exp_y - exp_x]);
+
+  // return 0 if values are equal
+  if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // if positive, return whichever significand abs is smaller 
+  //     (converse if negative)
+  {
+    res = (((sig_n_prime.w[1] > 0)
+           || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) !=
+                                             MASK_SIGN));
+    BID_RETURN (res);
+  }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_quiet_ordered (int *pres, UINT64 * px,
+                    UINT64 *
+                    py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                    _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_quiet_ordered (UINT64 x,
+                    UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                    _EXC_INFO_PARAM) {
+#endif
+  int res;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is ordered, rather than equal : return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+      *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+    }
+    res = 0;
+    BID_RETURN (res);
+  } else {
+    res = 1;
+    BID_RETURN (res);
+  }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_quiet_unordered (int *pres, UINT64 * px,
+                      UINT64 *
+                      py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                      _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_quiet_unordered (UINT64 x,
+                      UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                      _EXC_INFO_PARAM) {
+#endif
+  int res;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered, 
+  //     rather than equal : return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+      *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+    }
+    res = 1;
+    BID_RETURN (res);
+  } else {
+    res = 0;
+    BID_RETURN (res);
+  }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_signaling_equal (int *pres, UINT64 * px,
+                      UINT64 *
+                      py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                      _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_signaling_equal (UINT64 x,
+                      UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                      _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y, exp_t;
+  UINT64 sig_x, sig_y, sig_t;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y, lcv;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered, 
+  //     rather than equal : return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+    res = 0;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equivalent.
+  if (x == y) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if (((x & MASK_INF) == MASK_INF) && ((y & MASK_INF) == MASK_INF)) {
+    res = (((x ^ y) & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign
+  //    (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //     therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+
+  if (x_is_zero && y_is_zero) {
+    res = 1;
+    BID_RETURN (res);
+  } else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ => not equal : return 0
+  if ((x ^ y) & MASK_SIGN) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  if (exp_x > exp_y) { // to simplify the loop below,
+    SWAP (exp_x, exp_y, exp_t); // put the larger exp in y,
+    SWAP (sig_x, sig_y, sig_t); // and the smaller exp in x
+  }
+
+  if (exp_y - exp_x > 15) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // difference cannot be greater than 10^15
+
+  for (lcv = 0; lcv < (exp_y - exp_x); lcv++) {
+
+    // recalculate y's significand upwards
+    sig_y = sig_y * 10;
+    if (sig_y > 9999999999999999ull) {
+      res = 0;
+      BID_RETURN (res);
+    }
+  }
+
+  {
+    res = sig_y == sig_x;
+    BID_RETURN (res);
+  }
+
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_signaling_greater (int *pres, UINT64 * px,
+                        UINT64 *
+                        py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                        _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_signaling_greater (UINT64 x,
+                        UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                        _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y;
+  UINT64 sig_x, sig_y;
+  UINT128 sig_n_prime;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered, 
+  //     rather than equal : return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+    res = 0;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equal (not Greater).
+  if (x == y) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if ((x & MASK_INF) == MASK_INF) {
+    // if x is neg infinity, there is no way it is greater than y, return 0
+    if (((x & MASK_SIGN) == MASK_SIGN)) {
+      res = 0;
+      BID_RETURN (res);
+    }
+    // x is pos infinity, it is greater, 
+    // unless y is positive infinity => return y!=pos_infinity
+    else {
+      res = (((y & MASK_INF) != MASK_INF)
+            || ((y & MASK_SIGN) == MASK_SIGN));
+      BID_RETURN (res);
+    }
+  } else if ((y & MASK_INF) == MASK_INF) {
+    // x is finite, so if y is positive infinity, then x is less, return 0
+    //                 if y is negative infinity, then x is greater, return 1
+    {
+      res = ((y & MASK_SIGN) == MASK_SIGN);
+      BID_RETURN (res);
+    }
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+  //    (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //      therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+  // if both numbers are zero, neither is greater => return NOTGREATERTHAN
+  if (x_is_zero && y_is_zero) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // is x is zero, it is greater if Y is negative
+  else if (x_is_zero) {
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // is y is zero, X is greater if it is positive
+  else if (y_is_zero) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ, x is greater if y is negative
+  if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+
+  // if both components are either bigger or smaller
+  if (sig_x > sig_y && exp_x >= exp_y) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  if (sig_x < sig_y && exp_x <= exp_y) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 greater than exp_y, no need for compensation
+  if (exp_x - exp_y > 15) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // difference cannot be greater than 10^15
+
+  // if exp_x is 15 less than exp_y, no need for compensation
+  if (exp_y - exp_x > 15) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+  if (exp_x > exp_y) { // to simplify the loop below,
+
+    // otherwise adjust the x significand upwards
+    __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+                           mult_factor[exp_x - exp_y]);
+
+
+    // if postitive, return whichever significand is larger 
+    //     (converse if negative)
+    if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+      res = 0;
+      BID_RETURN (res);
+    }
+
+    {
+      res = (((sig_n_prime.w[1] > 0)
+             || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
+                                             MASK_SIGN));
+      BID_RETURN (res);
+    }
+  }
+  // adjust the y significand upwards
+  __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+                         mult_factor[exp_y - exp_x]);
+
+  // if postitive, return whichever significand is larger 
+  //     (converse if negative)
+  if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  {
+    res = (((sig_n_prime.w[1] == 0)
+           && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+                                             MASK_SIGN));
+    BID_RETURN (res);
+  }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_signaling_greater_equal (int *pres, UINT64 * px,
+                              UINT64 *
+                              py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                              _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_signaling_greater_equal (UINT64 x,
+                              UINT64 y _EXC_FLAGS_PARAM
+                              _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y;
+  UINT64 sig_x, sig_y;
+  UINT128 sig_n_prime;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered : return 1
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+    res = 0;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equal.
+  if (x == y) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if ((x & MASK_INF) == MASK_INF) {
+    // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
+    if ((x & MASK_SIGN) == MASK_SIGN)
+      // x is -inf, so it is less than y unless y is -inf
+    {
+      res = (((y & MASK_INF) == MASK_INF)
+            && (y & MASK_SIGN) == MASK_SIGN);
+      BID_RETURN (res);
+    } else
+      // x is pos_inf, no way for it to be less than y
+    {
+      res = 1;
+      BID_RETURN (res);
+    }
+  } else if ((y & MASK_INF) == MASK_INF) {
+    // x is finite, so:
+    //    if y is +inf, x<y
+    //    if y is -inf, x>y
+    {
+      res = ((y & MASK_SIGN) == MASK_SIGN);
+      BID_RETURN (res);
+    }
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+  //    (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //      therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+  // if both numbers are zero, they are equal
+  if (x_is_zero && y_is_zero) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // if x is zero, it is lessthan if Y is positive
+  else if (x_is_zero) {
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if y is zero, X is less if it is negative
+  else if (y_is_zero) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ, x is less than if y is positive
+  if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  // if both components are either bigger or smaller
+  if (sig_x > sig_y && exp_x >= exp_y) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  if (sig_x < sig_y && exp_x <= exp_y) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 greater than exp_y, no need for compensation
+  if (exp_x - exp_y > 15) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // difference cannot be greater than 10^15
+
+  // if exp_x is 15 less than exp_y, no need for compensation
+  if (exp_y - exp_x > 15) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+  if (exp_x > exp_y) { // to simplify the loop below,
+
+    // otherwise adjust the x significand upwards
+    __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+                           mult_factor[exp_x - exp_y]);
+
+    // return 1 if values are equal
+    if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+      res = 1;
+      BID_RETURN (res);
+    }
+    // if postitive, return whichever significand abs is smaller 
+    //     (converse if negative)
+    {
+      res = (((sig_n_prime.w[1] == 0)
+             && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) !=
+                                             MASK_SIGN));
+      BID_RETURN (res);
+    }
+  }
+  // adjust the y significand upwards
+  __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+                         mult_factor[exp_y - exp_x]);
+
+  // return 0 if values are equal
+  if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // if positive, return whichever significand abs is smaller 
+  //     (converse if negative)
+  {
+    res = (((sig_n_prime.w[1] > 0)
+           || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) !=
+                                             MASK_SIGN));
+    BID_RETURN (res);
+  }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_signaling_greater_unordered (int *pres, UINT64 * px,
+                                  UINT64 *
+                                  py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                                  _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_signaling_greater_unordered (UINT64 x,
+                                  UINT64 y _EXC_FLAGS_PARAM
+                                  _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y;
+  UINT64 sig_x, sig_y;
+  UINT128 sig_n_prime;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered, 
+  // rather than equal : return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+    res = 1;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equal (not Greater).
+  if (x == y) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if ((x & MASK_INF) == MASK_INF) {
+    // if x is neg infinity, there is no way it is greater than y, return 0
+    if (((x & MASK_SIGN) == MASK_SIGN)) {
+      res = 0;
+      BID_RETURN (res);
+    }
+    // x is pos infinity, it is greater, 
+    // unless y is positive infinity => return y!=pos_infinity
+    else {
+      res = (((y & MASK_INF) != MASK_INF)
+            || ((y & MASK_SIGN) == MASK_SIGN));
+      BID_RETURN (res);
+    }
+  } else if ((y & MASK_INF) == MASK_INF) {
+    // x is finite, so if y is positive infinity, then x is less, return 0
+    //                 if y is negative infinity, then x is greater, return 1
+    {
+      res = ((y & MASK_SIGN) == MASK_SIGN);
+      BID_RETURN (res);
+    }
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+  //    (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //      therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+  // if both numbers are zero, neither is greater => return NOTGREATERTHAN
+  if (x_is_zero && y_is_zero) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // is x is zero, it is greater if Y is negative
+  else if (x_is_zero) {
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // is y is zero, X is greater if it is positive
+  else if (y_is_zero) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ, x is greater if y is negative
+  if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+
+  // if both components are either bigger or smaller
+  if (sig_x > sig_y && exp_x >= exp_y) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  if (sig_x < sig_y && exp_x <= exp_y) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 greater than exp_y, no need for compensation
+  if (exp_x - exp_y > 15) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // difference cannot be greater than 10^15
+
+  // if exp_x is 15 less than exp_y, no need for compensation
+  if (exp_y - exp_x > 15) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+  if (exp_x > exp_y) { // to simplify the loop below,
+
+    // otherwise adjust the x significand upwards
+    __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+                           mult_factor[exp_x - exp_y]);
+
+    // if postitive, return whichever significand is larger 
+    //     (converse if negative)
+    if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+      res = 0;
+      BID_RETURN (res);
+    }
+
+    {
+      res = (((sig_n_prime.w[1] > 0)
+             || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
+                                             MASK_SIGN));
+      BID_RETURN (res);
+    }
+  }
+  // adjust the y significand upwards
+  __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+                         mult_factor[exp_y - exp_x]);
+
+  // if postitive, return whichever significand is larger 
+  //     (converse if negative)
+  if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  {
+    res = (((sig_n_prime.w[1] == 0)
+           && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+                                             MASK_SIGN));
+    BID_RETURN (res);
+  }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_signaling_less (int *pres, UINT64 * px,
+                     UINT64 *
+                     py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                     _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_signaling_less (UINT64 x,
+                     UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                     _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y;
+  UINT64 sig_x, sig_y;
+  UINT128 sig_n_prime;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered : return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+    res = 0;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equal.
+  if (x == y) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if ((x & MASK_INF) == MASK_INF) {
+    // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) }
+    if ((x & MASK_SIGN) == MASK_SIGN)
+      // x is -inf, so it is less than y unless y is -inf
+    {
+      res = (((y & MASK_INF) != MASK_INF)
+            || (y & MASK_SIGN) != MASK_SIGN);
+      BID_RETURN (res);
+    } else
+      // x is pos_inf, no way for it to be less than y
+    {
+      res = 0;
+      BID_RETURN (res);
+    }
+  } else if ((y & MASK_INF) == MASK_INF) {
+    // x is finite, so:
+    //    if y is +inf, x<y
+    //    if y is -inf, x>y
+    {
+      res = ((y & MASK_SIGN) != MASK_SIGN);
+      BID_RETURN (res);
+    }
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+  //    (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //      therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+  // if both numbers are zero, they are equal
+  if (x_is_zero && y_is_zero) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // if x is zero, it is lessthan if Y is positive
+  else if (x_is_zero) {
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if y is zero, X is less if it is negative
+  else if (y_is_zero) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ, x is less than if y is positive
+  if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  // if both components are either bigger or smaller
+  if (sig_x > sig_y && exp_x >= exp_y) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  if (sig_x < sig_y && exp_x <= exp_y) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 greater than exp_y, no need for compensation
+  if (exp_x - exp_y > 15) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // difference cannot be greater than 10^15
+
+  // if exp_x is 15 less than exp_y, no need for compensation
+  if (exp_y - exp_x > 15) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+  if (exp_x > exp_y) { // to simplify the loop below,
+
+    // otherwise adjust the x significand upwards
+    __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+                           mult_factor[exp_x - exp_y]);
+
+    // return 0 if values are equal
+    if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+      res = 0;
+      BID_RETURN (res);
+    }
+    // if postitive, return whichever significand abs is smaller 
+    //     (converse if negative)
+    {
+      res = (((sig_n_prime.w[1] == 0)
+             && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
+                                             MASK_SIGN));
+      BID_RETURN (res);
+    }
+  }
+  // adjust the y significand upwards
+  __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+                         mult_factor[exp_y - exp_x]);
+
+  // return 0 if values are equal
+  if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // if positive, return whichever significand abs is smaller 
+  //     (converse if negative)
+  {
+    res = (((sig_n_prime.w[1] > 0)
+           || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+                                             MASK_SIGN));
+    BID_RETURN (res);
+  }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_signaling_less_equal (int *pres, UINT64 * px,
+                           UINT64 *
+                           py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                           _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_signaling_less_equal (UINT64 x,
+                           UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                           _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y;
+  UINT64 sig_x, sig_y;
+  UINT128 sig_n_prime;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered, 
+  // rather than equal : return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+    res = 0;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equal (LESSEQUAL).
+  if (x == y) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if ((x & MASK_INF) == MASK_INF) {
+    // if x is neg infinity, it must be lessthan or equal to y return 1
+    if (((x & MASK_SIGN) == MASK_SIGN)) {
+      res = 1;
+      BID_RETURN (res);
+    }
+    // x is pos infinity, it is greater, 
+    // unless y is positive infinity => return y==pos_infinity
+    else {
+      res = !(((y & MASK_INF) != MASK_INF)
+             || ((y & MASK_SIGN) == MASK_SIGN));
+      BID_RETURN (res);
+    }
+  } else if ((y & MASK_INF) == MASK_INF) {
+    // x is finite, so if y is positive infinity, then x is less, return 1
+    //                 if y is negative infinity, then x is greater, return 0
+    {
+      res = ((y & MASK_SIGN) != MASK_SIGN);
+      BID_RETURN (res);
+    }
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+  //    (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //      therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+  // if both numbers are zero, they are equal -> return 1
+  if (x_is_zero && y_is_zero) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // if x is zero, it is lessthan if Y is positive
+  else if (x_is_zero) {
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if y is zero, X is less if it is negative
+  else if (y_is_zero) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ, x is less than if y is positive
+  if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  // if both components are either bigger or smaller
+  if (sig_x > sig_y && exp_x >= exp_y) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  if (sig_x < sig_y && exp_x <= exp_y) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 greater than exp_y, no need for compensation
+  if (exp_x - exp_y > 15) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // difference cannot be greater than 10^15
+
+  // if exp_x is 15 less than exp_y, no need for compensation
+  if (exp_y - exp_x > 15) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+  if (exp_x > exp_y) { // to simplify the loop below,
+
+    // otherwise adjust the x significand upwards
+    __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+                           mult_factor[exp_x - exp_y]);
+
+    // return 1 if values are equal
+    if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+      res = 1;
+      BID_RETURN (res);
+    }
+    // if postitive, return whichever significand abs is smaller 
+    //     (converse if negative)
+    {
+      res = (((sig_n_prime.w[1] == 0)
+             && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
+                                             MASK_SIGN));
+      BID_RETURN (res);
+    }
+  }
+  // adjust the y significand upwards
+  __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+                         mult_factor[exp_y - exp_x]);
+
+  // return 1 if values are equal
+  if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // if positive, return whichever significand abs is smaller 
+  //     (converse if negative)
+  {
+    res = (((sig_n_prime.w[1] > 0)
+           || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+                                             MASK_SIGN));
+    BID_RETURN (res);
+  }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_signaling_less_unordered (int *pres, UINT64 * px,
+                               UINT64 *
+                               py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                               _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_signaling_less_unordered (UINT64 x,
+                               UINT64 y _EXC_FLAGS_PARAM
+                               _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y;
+  UINT64 sig_x, sig_y;
+  UINT128 sig_n_prime;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered : return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+    res = 1;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equal.
+  if (x == y) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if ((x & MASK_INF) == MASK_INF) {
+    // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) }
+    if ((x & MASK_SIGN) == MASK_SIGN)
+      // x is -inf, so it is less than y unless y is -inf
+    {
+      res = (((y & MASK_INF) != MASK_INF)
+            || (y & MASK_SIGN) != MASK_SIGN);
+      BID_RETURN (res);
+    } else
+      // x is pos_inf, no way for it to be less than y
+    {
+      res = 0;
+      BID_RETURN (res);
+    }
+  } else if ((y & MASK_INF) == MASK_INF) {
+    // x is finite, so:
+    //    if y is +inf, x<y
+    //    if y is -inf, x>y
+    {
+      res = ((y & MASK_SIGN) != MASK_SIGN);
+      BID_RETURN (res);
+    }
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+  //    (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //      therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+  // if both numbers are zero, they are equal
+  if (x_is_zero && y_is_zero) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // if x is zero, it is lessthan if Y is positive
+  else if (x_is_zero) {
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if y is zero, X is less if it is negative
+  else if (y_is_zero) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ, x is less than if y is positive
+  if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  // if both components are either bigger or smaller
+  if (sig_x > sig_y && exp_x >= exp_y) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  if (sig_x < sig_y && exp_x <= exp_y) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 greater than exp_y, no need for compensation
+  if (exp_x - exp_y > 15) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // difference cannot be greater than 10^15
+
+  // if exp_x is 15 less than exp_y, no need for compensation
+  if (exp_y - exp_x > 15) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+  if (exp_x > exp_y) { // to simplify the loop below,
+
+    // otherwise adjust the x significand upwards
+    __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+                           mult_factor[exp_x - exp_y]);
+
+    // return 0 if values are equal
+    if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+      res = 0;
+      BID_RETURN (res);
+    }
+    // if postitive, return whichever significand abs is smaller 
+    //     (converse if negative)
+    {
+      res = (((sig_n_prime.w[1] == 0)
+             && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
+                                             MASK_SIGN));
+      BID_RETURN (res);
+    }
+  }
+  // adjust the y significand upwards
+  __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+                         mult_factor[exp_y - exp_x]);
+
+  // return 0 if values are equal
+  if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // if positive, return whichever significand abs is smaller 
+  //     (converse if negative)
+  {
+    res = (((sig_n_prime.w[1] > 0)
+           || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+                                             MASK_SIGN));
+    BID_RETURN (res);
+  }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_signaling_not_equal (int *pres, UINT64 * px,
+                          UINT64 *
+                          py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                          _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_signaling_not_equal (UINT64 x,
+                          UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                          _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y, exp_t;
+  UINT64 sig_x, sig_y, sig_t;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y, lcv;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered, 
+  // rather than equal : return 1
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+    res = 1;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equivalent.
+  if (x == y) {
+    res = 0;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if (((x & MASK_INF) == MASK_INF) && ((y & MASK_INF) == MASK_INF)) {
+    res = (((x ^ y) & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign
+  //    (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //      therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+
+  if (x_is_zero && y_is_zero) {
+    res = 0;
+    BID_RETURN (res);
+  } else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ => not equal : return 1
+  if ((x ^ y) & MASK_SIGN) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  if (exp_x > exp_y) { // to simplify the loop below,
+    SWAP (exp_x, exp_y, exp_t); // put the larger exp in y,
+    SWAP (sig_x, sig_y, sig_t); // and the smaller exp in x
+  }
+
+  if (exp_y - exp_x > 15) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // difference cannot be greater than 10^16
+
+  for (lcv = 0; lcv < (exp_y - exp_x); lcv++) {
+
+    // recalculate y's significand upwards
+    sig_y = sig_y * 10;
+    if (sig_y > 9999999999999999ull) {
+      res = 1;
+      BID_RETURN (res);
+    }
+  }
+
+  {
+    res = sig_y != sig_x;
+    BID_RETURN (res);
+  }
+
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_signaling_not_greater (int *pres, UINT64 * px,
+                            UINT64 *
+                            py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                            _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_signaling_not_greater (UINT64 x,
+                            UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                            _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y;
+  UINT64 sig_x, sig_y;
+  UINT128 sig_n_prime;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered, 
+  // rather than equal : return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+    res = 1;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equal (LESSEQUAL).
+  if (x == y) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if ((x & MASK_INF) == MASK_INF) {
+    // if x is neg infinity, it must be lessthan or equal to y return 1
+    if (((x & MASK_SIGN) == MASK_SIGN)) {
+      res = 1;
+      BID_RETURN (res);
+    }
+    // x is pos infinity, it is greater, 
+    // unless y is positive infinity => return y==pos_infinity
+    else {
+      res = !(((y & MASK_INF) != MASK_INF)
+             || ((y & MASK_SIGN) == MASK_SIGN));
+      BID_RETURN (res);
+    }
+  } else if ((y & MASK_INF) == MASK_INF) {
+    // x is finite, so if y is positive infinity, then x is less, return 1
+    //                 if y is negative infinity, then x is greater, return 0
+    {
+      res = ((y & MASK_SIGN) != MASK_SIGN);
+      BID_RETURN (res);
+    }
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+  //    (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //      therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+  // if both numbers are zero, they are equal -> return 1
+  if (x_is_zero && y_is_zero) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // if x is zero, it is lessthan if Y is positive
+  else if (x_is_zero) {
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if y is zero, X is less if it is negative
+  else if (y_is_zero) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ, x is less than if y is positive
+  if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+    res = ((y & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  // if both components are either bigger or smaller
+  if (sig_x > sig_y && exp_x >= exp_y) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  if (sig_x < sig_y && exp_x <= exp_y) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 greater than exp_y, no need for compensation
+  if (exp_x - exp_y > 15) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // difference cannot be greater than 10^15
+
+  // if exp_x is 15 less than exp_y, no need for compensation
+  if (exp_y - exp_x > 15) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+  if (exp_x > exp_y) { // to simplify the loop below,
+
+    // otherwise adjust the x significand upwards
+    __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+                           mult_factor[exp_x - exp_y]);
+
+    // return 1 if values are equal
+    if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+      res = 1;
+      BID_RETURN (res);
+    }
+    // if postitive, return whichever significand abs is smaller 
+    //     (converse if negative)
+    {
+      res = (((sig_n_prime.w[1] == 0)
+             && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
+                                             MASK_SIGN));
+      BID_RETURN (res);
+    }
+  }
+  // adjust the y significand upwards
+  __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+                         mult_factor[exp_y - exp_x]);
+
+  // return 1 if values are equal
+  if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // if positive, return whichever significand abs is smaller 
+  //     (converse if negative)
+  {
+    res = (((sig_n_prime.w[1] > 0)
+           || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+                                             MASK_SIGN));
+    BID_RETURN (res);
+  }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_signaling_not_less (int *pres, UINT64 * px,
+                         UINT64 *
+                         py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                         _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_signaling_not_less (UINT64 x,
+                         UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                         _EXC_INFO_PARAM) {
+#endif
+  int res;
+  int exp_x, exp_y;
+  UINT64 sig_x, sig_y;
+  UINT128 sig_n_prime;
+  char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered : return 1
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+    res = 1;
+    BID_RETURN (res);
+  }
+  // SIMPLE (CASE2)
+  // if all the bits are the same, these numbers are equal.
+  if (x == y) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // INFINITY (CASE3)
+  if ((x & MASK_INF) == MASK_INF) {
+    // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
+    if ((x & MASK_SIGN) == MASK_SIGN)
+      // x is -inf, so it is less than y unless y is -inf
+    {
+      res = (((y & MASK_INF) == MASK_INF)
+            && (y & MASK_SIGN) == MASK_SIGN);
+      BID_RETURN (res);
+    } else
+      // x is pos_inf, no way for it to be less than y
+    {
+      res = 1;
+      BID_RETURN (res);
+    }
+  } else if ((y & MASK_INF) == MASK_INF) {
+    // x is finite, so:
+    //    if y is +inf, x<y
+    //    if y is -inf, x>y
+    {
+      res = ((y & MASK_SIGN) == MASK_SIGN);
+      BID_RETURN (res);
+    }
+  }
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+    sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_x > 9999999999999999ull) {
+      non_canon_x = 1;
+    } else {
+      non_canon_x = 0;
+    }
+  } else {
+    exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+    sig_x = (x & MASK_BINARY_SIG1);
+    non_canon_x = 0;
+  }
+
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+    sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (sig_y > 9999999999999999ull) {
+      non_canon_y = 1;
+    } else {
+      non_canon_y = 0;
+    }
+  } else {
+    exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+    sig_y = (y & MASK_BINARY_SIG1);
+    non_canon_y = 0;
+  }
+
+  // ZERO (CASE4)
+  // some properties:
+  // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+  //    (ZERO x 10^A == ZERO x 10^B) for any valid A, B => 
+  //      therefore ignore the exponent field
+  //    (Any non-canonical # is considered 0)
+  if (non_canon_x || sig_x == 0) {
+    x_is_zero = 1;
+  }
+  if (non_canon_y || sig_y == 0) {
+    y_is_zero = 1;
+  }
+  // if both numbers are zero, they are equal
+  if (x_is_zero && y_is_zero) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // if x is zero, it is lessthan if Y is positive
+  else if (x_is_zero) {
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if y is zero, X is less if it is negative
+  else if (y_is_zero) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // OPPOSITE SIGN (CASE5)
+  // now, if the sign bits differ, x is less than if y is positive
+  if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+    res = ((y & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // REDUNDANT REPRESENTATIONS (CASE6)
+  // if both components are either bigger or smaller
+  if (sig_x > sig_y && exp_x >= exp_y) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  if (sig_x < sig_y && exp_x <= exp_y) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if exp_x is 15 greater than exp_y, no need for compensation
+  if (exp_x - exp_y > 15) {
+    res = ((x & MASK_SIGN) != MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // difference cannot be greater than 10^15
+
+  // if exp_x is 15 less than exp_y, no need for compensation
+  if (exp_y - exp_x > 15) {
+    res = ((x & MASK_SIGN) == MASK_SIGN);
+    BID_RETURN (res);
+  }
+  // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+  if (exp_x > exp_y) { // to simplify the loop below,
+
+    // otherwise adjust the x significand upwards
+    __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+                           mult_factor[exp_x - exp_y]);
+
+    // return 0 if values are equal
+    if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+      res = 1;
+      BID_RETURN (res);
+    }
+    // if postitive, return whichever significand abs is smaller 
+    //     (converse if negative)
+    {
+      res = (((sig_n_prime.w[1] == 0)
+             && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) !=
+                                             MASK_SIGN));
+      BID_RETURN (res);
+    }
+  }
+  // adjust the y significand upwards
+  __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+                         mult_factor[exp_y - exp_x]);
+
+  // return 0 if values are equal
+  if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+    res = 1;
+    BID_RETURN (res);
+  }
+  // if positive, return whichever significand abs is smaller 
+  //     (converse if negative)
+  {
+    res = (((sig_n_prime.w[1] > 0)
+           || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) !=
+                                             MASK_SIGN));
+    BID_RETURN (res);
+  }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_signaling_ordered (int *pres, UINT64 * px,
+                        UINT64 *
+                        py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                        _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_signaling_ordered (UINT64 x,
+                        UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                        _EXC_INFO_PARAM) {
+#endif
+  int res;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is ordered, 
+  // rather than equal : return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+    res = 0;
+    BID_RETURN (res);
+  } else {
+    res = 1;
+    BID_RETURN (res);
+  }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_signaling_unordered (int *pres, UINT64 * px,
+                          UINT64 *
+                          py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                          _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+  UINT64 y = *py;
+#else
+int
+__bid64_signaling_unordered (UINT64 x,
+                          UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+                          _EXC_INFO_PARAM) {
+#endif
+  int res;
+
+  // NaN (CASE1)
+  // if either number is NAN, the comparison is unordered, 
+  // rather than equal : return 0
+  if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+    *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+    res = 1;
+    BID_RETURN (res);
+  } else {
+    res = 0;
+    BID_RETURN (res);
+  }
+}