OSDN Git Service

Merged with libbbid branch at revision 126349.
[pf3gnuchains/gcc-fork.git] / libgcc / config / libbid / bid128_add.c
diff --git a/libgcc/config/libbid/bid128_add.c b/libgcc/config/libbid/bid128_add.c
new file mode 100644 (file)
index 0000000..79bf9e5
--- /dev/null
@@ -0,0 +1,2440 @@
+/* Copyright (C) 2007  Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+In addition to the permissions in the GNU General Public License, the
+Free Software Foundation gives you unlimited permission to link the
+compiled version of this file into combinations with other programs,
+and to distribute those combinations without any restriction coming
+from the use of this file.  (The General Public License restrictions
+do apply in other respects; for example, they cover modification of
+the file, and distribution when not linked into a combine
+executable.)
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING.  If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA.  */
+
+/*****************************************************************************
+ *  BID128 add
+ ****************************************************************************/
+
+#include "bid_internal.h"
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid128_add (UINT128 * pres, UINT128 * px,
+            UINT128 *
+            py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+            _EXC_INFO_PARAM) {
+  UINT128 x = *px, y = *py;
+#if !DECIMAL_GLOBAL_ROUNDING
+  unsigned int rnd_mode = *prnd_mode;
+#endif
+#else
+UINT128
+__bid128_add (UINT128 x,
+            UINT128 y _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+            _EXC_INFO_PARAM) {
+#endif
+
+  UINT128 res;
+  UINT64 x_sign, y_sign, tmp_sign;
+  UINT64 x_exp, y_exp, tmp_exp; // e1 = x_exp, e2 = y_exp
+  UINT64 C1_hi, C2_hi, tmp_signif_hi;
+  UINT64 C1_lo, C2_lo, tmp_signif_lo;
+  // Note: C1.w[1], C1.w[0] represent C1_hi, C1_lo (all are UINT64)
+  // Note: C2.w[1], C2.w[0] represent C2_hi, C2_lo (all are UINT64)
+  UINT64 tmp64, tmp64A, tmp64B;
+  BID_UI64DOUBLE tmp1, tmp2;
+  int x_nr_bits, y_nr_bits;
+  int q1, q2, delta, scale, x1, ind, shift, tmp_inexact = 0;
+  UINT64 halfulp64;
+  UINT128 halfulp128;
+  UINT128 C1, C2;
+  UINT128 __bid_ten2m1;
+  UINT128 highf2star; // top 128 bits in f2*; low 128 bits in R256[1], R256[0]
+  UINT256 P256, Q256, R256;
+  int is_inexact = 0, is_midpoint_lt_even = 0, is_midpoint_gt_even = 0;
+  int is_inexact_lt_midpoint = 0, is_inexact_gt_midpoint = 0;
+  int second_pass = 0;
+
+  // check for NaN or Infinity
+  if (((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL)
+      || ((y.w[1] & MASK_SPECIAL) == MASK_SPECIAL)) {
+    // x is special or y is special
+
+    if ((x.w[1] & MASK_NAN) == MASK_NAN) { // x is NAN
+      if ((x.w[1] & MASK_SNAN) == MASK_SNAN) { // x is SNAN
+        // set invalid flag
+        *pfpsf |= INVALID_EXCEPTION;
+        // return quiet (x)
+        res.w[1] = x.w[1] & 0xfdffffffffffffffull;
+        res.w[0] = x.w[0];
+      } else { // x is QNaN
+        if ((y.w[1] & MASK_SNAN) == MASK_SNAN) { // y is SNAN
+          // set invalid flag
+          *pfpsf |= INVALID_EXCEPTION;
+        }
+        // return x
+        res.w[1] = x.w[1];
+        res.w[0] = x.w[0];
+      }
+      BID_RETURN (res);
+    } else if ((y.w[1] & MASK_NAN) == MASK_NAN) { // y is NAN
+      if ((y.w[1] & MASK_SNAN) == MASK_SNAN) { // y is SNAN
+        // set invalid flag
+        *pfpsf |= INVALID_EXCEPTION;
+        // return quiet (y)
+        res.w[1] = y.w[1] & 0xfdffffffffffffffull;
+        res.w[0] = y.w[0];
+      } else { // y is QNaN
+        // return y
+        res.w[1] = y.w[1];
+        res.w[0] = y.w[0];
+      }
+      BID_RETURN (res);
+    } else { // neither x not y is NaN; at least one is infinity
+      if ((x.w[1] & MASK_ANY_INF) == MASK_INF) { // x is infinity
+        if ((y.w[1] & MASK_ANY_INF) == MASK_INF) { // y is infinity
+          // if same sign, return either of them
+          if ((x.w[1] & MASK_SIGN) == (y.w[1] & MASK_SIGN)) {
+            res.w[1] = x.w[1];
+            res.w[0] = x.w[0];
+          } else { // x and y are infinities of opposite signs
+            // set invalid flag
+            *pfpsf |= INVALID_EXCEPTION;
+            // return QNaN Indefinite
+            res.w[1] = 0x7c00000000000000ull;
+            res.w[0] = 0x0000000000000000ull;
+          }
+        } else { // y is 0 or finite
+          // return x
+          res.w[1] = x.w[1];
+          res.w[0] = x.w[0];
+        }
+      } else { // x is not NaN or infinity, so y must be infinity
+        res.w[1] = y.w[1];
+        res.w[0] = y.w[0];
+      }
+      BID_RETURN (res);
+    }
+  }
+  // unpack the arguments
+  // unpack x 
+  x_sign = x.w[1] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
+  x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
+  C1_hi = x.w[1] & MASK_COEFF;
+  C1_lo = x.w[0];
+  // unpack y 
+  y_sign = y.w[1] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
+  y_exp = y.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
+  C2_hi = y.w[1] & MASK_COEFF;
+  C2_lo = y.w[0];
+
+  // test for non-canonical values:
+  // - values whose encoding begins with x00, x01, or x10 and whose 
+  //   coefficient is larger than 10^34 -1, or
+  // - values whose encoding begins with x1100, x1101, x1110 (if NaNs 
+  //   and infinitis were eliminated already this test is reduced to 
+  //   checking for x10x) 
+
+  // test for non-canonical values of the argument x
+  if ((((C1_hi > 0x0001ed09bead87c0ull)
+       || ((C1_hi == 0x0001ed09bead87c0ull)
+           && (C1_lo > 0x378d8e63ffffffffull)))
+      && ((x.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull))
+      || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
+    // check for the case where the exponent is shifted right by 2 bits!
+    if ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) {
+      x_exp = (x.w[1] << 2) & MASK_EXP; // same position as for G[0]G[1] != 11
+    }
+    x.w[1] = x.w[1] & 0x8000000000000000ull; // preserve the sign bit
+    x.w[0] = 0;
+    C1_hi = 0;
+    C1_lo = 0;
+  }
+  // test for non-canonical values of the argument y
+  if ((((C2_hi > 0x0001ed09bead87c0ull)
+       || ((C2_hi == 0x0001ed09bead87c0ull)
+           && (C2_lo > 0x378d8e63ffffffffull)))
+      && ((y.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull))
+      || ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
+    // check for the case where the exponent is shifted right by 2 bits!
+    if ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) {
+      y_exp = (y.w[1] << 2) & MASK_EXP; // same position as for G[0]G[1] != 11
+    }
+    y.w[1] = y.w[1] & 0x8000000000000000ull; // preserve the sign bit
+    y.w[0] = 0;
+    C2_hi = 0;
+    C2_lo = 0;
+  }
+
+  if ((C1_hi == 0x0ull) && (C1_lo == 0x0ull)) {
+    // x is 0 and y is not special
+    // if y is 0 return 0 with the smaller exponent
+    if ((C2_hi == 0x0ull) && (C2_lo == 0x0ull)) {
+      if (x_exp < y_exp)
+        res.w[1] = x_exp;
+      else
+        res.w[1] = y_exp;
+      if (x_sign && y_sign)
+        res.w[1] = res.w[1] | x_sign; // both negative
+      else if (rnd_mode == ROUNDING_DOWN && x_sign != y_sign)
+        res.w[1] = res.w[1] | 0x8000000000000000ull; // -0
+      // else; // res = +0
+      res.w[0] = 0;
+    } else {
+      // for 0 + y return y, with the preferred exponent
+      if (y_exp <= x_exp) {
+        res.w[1] = y.w[1];
+        res.w[0] = y.w[0];
+      } else { // if y_exp > x_exp
+        // return (C2 * 10^scale) * 10^(y_exp - scale)
+        // where scale = min (P34-q2, y_exp-x_exp)
+        // determine q2 = nr. of decimal digits in y
+        //  determine first the nr. of bits in y (y_nr_bits)
+
+        if (C2_hi == 0) { // y_bits is the nr. of bits in C2_lo
+          if (C2_lo >= 0x0020000000000000ull) { // y >= 2^53
+            // split the 64-bit value in two 32-bit halves to avoid 
+            // rounding errors
+            if (C2_lo >= 0x0000000100000000ull) { // y >= 2^32
+              tmp2.d = (double) (C2_lo >> 32); // exact conversion
+              ///tmp2_i64 = *(UINT64 *) & tmp2_d;
+              y_nr_bits =
+                32 +
+                ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff);
+            } else { // y < 2^32
+              tmp2.d = (double) (C2_lo); // exact conversion
+              ///tmp2_i64 = *(UINT64 *) & tmp2_d;
+              y_nr_bits =
+                ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff);
+            }
+          } else { // if y < 2^53
+            tmp2.d = (double) C2_lo; // exact conversion
+            ///tmp2_i64 = *(UINT64 *) & tmp2_d;
+            y_nr_bits =
+              ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff);
+          }
+        } else { // C2_hi != 0 => nr. bits = 64 + nr_bits (C2_hi)
+          tmp2.d = (double) C2_hi; // exact conversion
+          ///tmp2_i64 = *(UINT64 *) & tmp2_d;
+          y_nr_bits =
+            64 + ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff);
+        }
+        q2 = __bid_nr_digits[y_nr_bits].digits;
+        if (q2 == 0) {
+          q2 = __bid_nr_digits[y_nr_bits].digits1;
+          if (C2_hi > __bid_nr_digits[y_nr_bits].threshold_hi
+              || (C2_hi == __bid_nr_digits[y_nr_bits].threshold_hi
+              && C2_lo >= __bid_nr_digits[y_nr_bits].threshold_lo))
+            q2++;
+        }
+        // return (C2 * 10^scale) * 10^(y_exp - scale)
+        // where scale = min (P34-q2, y_exp-x_exp)
+        scale = P34 - q2;
+        ind = (y_exp - x_exp) >> 49;
+        if (ind < scale)
+          scale = ind;
+        if (scale == 0) {
+          res.w[1] = y.w[1];
+          res.w[0] = y.w[0];
+        } else if (q2 <= 19) { // y fits in 64 bits 
+          if (scale <= 19) { // 10^scale fits in 64 bits
+            // 64 x 64 C2_lo * __bid_ten2k64[scale]
+            __mul_64x64_to_128MACH (res, C2_lo, __bid_ten2k64[scale]);
+          } else { // 10^scale fits in 128 bits
+            // 64 x 128 C2_lo * __bid_ten2k128[scale - 20]
+            __mul_128x64_to_128 (res, C2_lo, __bid_ten2k128[scale - 20]);
+          }
+        } else { // y fits in 128 bits, but 10^scale must fit in 64 bits 
+          // 64 x 128 __bid_ten2k64[scale] * C2
+          C2.w[1] = C2_hi;
+          C2.w[0] = C2_lo;
+          __mul_128x64_to_128 (res, __bid_ten2k64[scale], C2);
+        }
+        // subtract scale from the exponent
+        y_exp = y_exp - ((UINT64) scale << 49);
+        res.w[1] = res.w[1] | y_sign | y_exp;
+      }
+    }
+    BID_RETURN (res);
+  } else if ((C2_hi == 0x0ull) && (C2_lo == 0x0ull)) {
+    // y is 0 and x is not special, and not zero
+    // for x + 0 return x, with the preferred exponent
+    if (x_exp <= y_exp) {
+      res.w[1] = x.w[1];
+      res.w[0] = x.w[0];
+    } else { // if x_exp > y_exp
+      // return (C1 * 10^scale) * 10^(x_exp - scale)
+      // where scale = min (P34-q1, x_exp-y_exp)
+      // determine q1 = nr. of decimal digits in x
+      //  determine first the nr. of bits in x
+      if (C1_hi == 0) { // x_bits is the nr. of bits in C1_lo
+        if (C1_lo >= 0x0020000000000000ull) { // x >= 2^53
+          // split the 64-bit value in two 32-bit halves to avoid 
+          // rounding errors
+          if (C1_lo >= 0x0000000100000000ull) { // x >= 2^32
+            tmp1.d = (double) (C1_lo >> 32); // exact conversion
+            x_nr_bits =
+              32 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) -
+                    0x3ff);
+          } else { // x < 2^32
+            tmp1.d = (double) (C1_lo); // exact conversion
+            x_nr_bits =
+              ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+          }
+        } else { // if x < 2^53
+          tmp1.d = (double) C1_lo; // exact conversion
+          x_nr_bits =
+            ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+        }
+      } else { // C1_hi != 0 => nr. bits = 64 + nr_bits (C1_hi)
+        tmp1.d = (double) C1_hi; // exact conversion
+        x_nr_bits =
+          64 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+      }
+      q1 = __bid_nr_digits[x_nr_bits].digits;
+      if (q1 == 0) {
+        q1 = __bid_nr_digits[x_nr_bits].digits1;
+        if (C1_hi > __bid_nr_digits[x_nr_bits].threshold_hi
+            || (C1_hi == __bid_nr_digits[x_nr_bits].threshold_hi
+            && C1_lo >= __bid_nr_digits[x_nr_bits].threshold_lo))
+          q1++;
+      }
+      // return (C1 * 10^scale) * 10^(x_exp - scale)
+      // where scale = min (P34-q1, x_exp-y_exp)  
+      scale = P34 - q1;
+      ind = (x_exp - y_exp) >> 49;
+      if (ind < scale)
+        scale = ind;
+      if (scale == 0) {
+        res.w[1] = x.w[1];
+        res.w[0] = x.w[0];
+      } else if (q1 <= 19) { // x fits in 64 bits  
+        if (scale <= 19) { // 10^scale fits in 64 bits
+          // 64 x 64 C1_lo * __bid_ten2k64[scale] 
+          __mul_64x64_to_128MACH (res, C1_lo, __bid_ten2k64[scale]);
+        } else { // 10^scale fits in 128 bits
+          // 64 x 128 C1_lo * __bid_ten2k128[scale - 20]
+          __mul_128x64_to_128 (res, C1_lo, __bid_ten2k128[scale - 20]);
+        }
+      } else { // x fits in 128 bits, but 10^scale must fit in 64 bits
+        // 64 x 128 __bid_ten2k64[scale] * C1
+        C1.w[1] = C1_hi;
+        C1.w[0] = C1_lo;
+        __mul_128x64_to_128 (res, __bid_ten2k64[scale], C1);
+      }
+      // subtract scale from the exponent
+      x_exp = x_exp - ((UINT64) scale << 49);
+      res.w[1] = res.w[1] | x_sign | x_exp;
+    }
+    BID_RETURN (res);
+  } else { // x and y are not canonical, not special, and are not zero
+    // note that the result may still be zero, and then it has to have the
+    // preferred exponent
+    if (x_exp < y_exp) { // if exp_x < exp_y then swap x and y 
+      tmp_sign = x_sign;
+      tmp_exp = x_exp;
+      tmp_signif_hi = C1_hi;
+      tmp_signif_lo = C1_lo;
+      x_sign = y_sign;
+      x_exp = y_exp;
+      C1_hi = C2_hi;
+      C1_lo = C2_lo;
+      y_sign = tmp_sign;
+      y_exp = tmp_exp;
+      C2_hi = tmp_signif_hi;
+      C2_lo = tmp_signif_lo;
+    }
+    // q1 = nr. of decimal digits in x
+    //  determine first the nr. of bits in x
+    if (C1_hi == 0) { // x_bits is the nr. of bits in C1_lo
+      if (C1_lo >= 0x0020000000000000ull) { // x >= 2^53
+        //split the 64-bit value in two 32-bit halves to avoid rounding errors
+        if (C1_lo >= 0x0000000100000000ull) { // x >= 2^32
+          tmp1.d = (double) (C1_lo >> 32); // exact conversion
+          x_nr_bits =
+            32 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+        } else { // x < 2^32
+          tmp1.d = (double) (C1_lo); // exact conversion
+          x_nr_bits =
+            ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+        }
+      } else { // if x < 2^53
+        tmp1.d = (double) C1_lo; // exact conversion
+        x_nr_bits =
+          ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+      }
+    } else { // C1_hi != 0 => nr. bits = 64 + nr_bits (C1_hi)
+      tmp1.d = (double) C1_hi; // exact conversion
+      x_nr_bits =
+        64 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    }
+
+    q1 = __bid_nr_digits[x_nr_bits].digits;
+    if (q1 == 0) {
+      q1 = __bid_nr_digits[x_nr_bits].digits1;
+      if (C1_hi > __bid_nr_digits[x_nr_bits].threshold_hi
+          || (C1_hi == __bid_nr_digits[x_nr_bits].threshold_hi
+          && C1_lo >= __bid_nr_digits[x_nr_bits].threshold_lo))
+        q1++;
+    }
+    // q2 = nr. of decimal digits in y
+    //  determine first the nr. of bits in y (y_nr_bits)
+    if (C2_hi == 0) { // y_bits is the nr. of bits in C2_lo
+      if (C2_lo >= 0x0020000000000000ull) { // y >= 2^53
+        //split the 64-bit value in two 32-bit halves to avoid rounding errors
+        if (C2_lo >= 0x0000000100000000ull) { // y >= 2^32
+          tmp2.d = (double) (C2_lo >> 32); // exact conversion
+          ///tmp2_i64 = *(UINT64 *) & tmp2_d;
+          y_nr_bits =
+            32 + ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff);
+        } else { // y < 2^32
+          tmp2.d = (double) (C2_lo); // exact conversion
+          ///tmp2_i64 = *(UINT64 *) & tmp2_d;
+          y_nr_bits =
+            ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff);
+        }
+      } else { // if y < 2^53
+        tmp2.d = (double) C2_lo; // exact conversion
+        ///tmp2_i64 = *(UINT64 *) & tmp2_d;
+        y_nr_bits =
+          ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff);
+      }
+    } else { // C2_hi != 0 => nr. bits = 64 + nr_bits (C2_hi)
+      tmp2.d = (double) C2_hi; // exact conversion
+      ///tmp2_i64 = *(UINT64 *) & tmp2_d;
+      y_nr_bits =
+        64 + ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    }
+
+    q2 = __bid_nr_digits[y_nr_bits].digits;
+    if (q2 == 0) {
+      q2 = __bid_nr_digits[y_nr_bits].digits1;
+      if (C2_hi > __bid_nr_digits[y_nr_bits].threshold_hi
+          || (C2_hi == __bid_nr_digits[y_nr_bits].threshold_hi
+          && C2_lo >= __bid_nr_digits[y_nr_bits].threshold_lo))
+        q2++;
+    }
+
+    delta = q1 + (int) (x_exp >> 49) - q2 - (int) (y_exp >> 49);
+
+    if (delta >= P34) {
+      // round the result directly because 0 < C2 < ulp (C1 * 10^(x_exp-e2))
+      // n = C1 * 10^e1 or n = C1 +/- 10^(q1-P34)) * 10^e1
+      // the result is inexact; the preferred exponent is the least possible
+
+      if (delta >= P34 + 1) {
+        // for RN the result is the operand with the larger magnitude,
+        // possibly scaled up by 10^(P34-q1)
+        // an overflow cannot occur in this case (rounding to nearest)
+        if (q1 < P34) { // scale C1 up by 10^(P34-q1)
+          // Note: because delta >= P34+1 it is certain that 
+          //     x_exp - ((UINT64)scale << 49) will stay above e_min
+          scale = P34 - q1;
+          if (q1 <= 19) { // C1 fits in 64 bits
+            // 1 <= q1 <= 19 => 15 <= scale <= 33
+            if (scale <= 19) { // 10^scale fits in 64 bits
+              __mul_64x64_to_128MACH (C1, __bid_ten2k64[scale], C1_lo);
+            } else { // if 20 <= scale <= 33
+              // C1 * 10^scale = (C1 * 10^(scale-19)) * 10^19 where
+              // (C1 * 10^(scale-19)) fits in 64 bits
+              C1_lo = C1_lo * __bid_ten2k64[scale - 19];
+              __mul_64x64_to_128MACH (C1, __bid_ten2k64[19], C1_lo);
+            }
+          } else { //if 20 <= q1 <= 33=P34-1 then C1 fits only in 128 bits
+            // => 1 <= P34 - q1 <= 14 so 10^(P34-q1) fits in 64 bits
+            C1.w[1] = C1_hi;
+            C1.w[0] = C1_lo;
+            // C1 = __bid_ten2k64[P34 - q1] * C1
+            __mul_128x64_to_128 (C1, __bid_ten2k64[P34 - q1], C1);
+          }
+          x_exp = x_exp - ((UINT64) scale << 49);
+          C1_hi = C1.w[1];
+          C1_lo = C1.w[0];
+        }
+        // some special cases arise: if delta = P34 + 1 and C1 = 10^(P34-1) 
+        // (after scaling) and x_sign != y_sign and C2 > 5*10^(q2-1) => 
+        // subtract 1 ulp
+        // Note: do this only for rounding to nearest; for other rounding 
+        // modes the correction will be applied next
+        if ((rnd_mode == ROUNDING_TO_NEAREST
+             || rnd_mode == ROUNDING_TIES_AWAY) && delta == (P34 + 1)
+            && C1_hi == 0x0000314dc6448d93ull
+            && C1_lo == 0x38c15b0a00000000ull && x_sign != y_sign
+            && ((q2 <= 19 && C2_lo > __bid_midpoint64[q2 - 1]) || (q2 >= 20
+                && (C2_hi > __bid_midpoint128[q2 - 20].w[1]
+                    || (C2_hi == __bid_midpoint128[q2 - 20].w[1]
+                    && C2_lo > __bid_midpoint128[q2 - 20].w[0]))))) {
+          // C1 = 10^34 - 1 and decrement x_exp by 1 (no underflow possible)
+          C1_hi = 0x0001ed09bead87c0ull;
+          C1_lo = 0x378d8e63ffffffffull;
+          x_exp = x_exp - EXP_P1;
+        }
+        if (rnd_mode != ROUNDING_TO_NEAREST) {
+          if ((rnd_mode == ROUNDING_DOWN && x_sign && y_sign)
+              || (rnd_mode == ROUNDING_UP && !x_sign && !y_sign)) {
+            // add 1 ulp and then check for overflow
+            C1_lo = C1_lo + 1;
+            if (C1_lo == 0) { // rounding overflow in the low 64 bits
+              C1_hi = C1_hi + 1;
+            }
+            if (C1_hi == 0x0001ed09bead87c0ull
+                && C1_lo == 0x378d8e6400000000ull) {
+              // C1 = 10^34 => rounding overflow
+              C1_hi = 0x0000314dc6448d93ull;
+              C1_lo = 0x38c15b0a00000000ull; // 10^33
+              x_exp = x_exp + EXP_P1;
+              if (x_exp == EXP_MAX_P1) { // overflow
+                C1_hi = 0x7800000000000000ull; // +inf
+                C1_lo = 0x0ull;
+                x_exp = 0; // x_sign is preserved
+                // set overflow flag (the inexact flag was set too)
+                *pfpsf |= OVERFLOW_EXCEPTION;
+              }
+            }
+          } else if ((rnd_mode == ROUNDING_DOWN && !x_sign && y_sign)
+                     || (rnd_mode == ROUNDING_UP && x_sign && !y_sign)
+                     || (rnd_mode == ROUNDING_TO_ZERO && x_sign != y_sign)) {
+            // subtract 1 ulp from C1
+            // Note: because delta >= P34 + 1 the result cannot be zero
+            C1_lo = C1_lo - 1;
+            if (C1_lo == 0xffffffffffffffffull)
+              C1_hi = C1_hi - 1;
+            // if the coefficient is 10^33 - 1 then make it 10^34 - 1 and 
+            // decrease the exponent by 1 (because delta >= P34 + 1 the
+            // exponent will not become less than e_min)
+            // 10^33 - 1 = 0x0000314dc6448d9338c15b09ffffffff
+            // 10^34 - 1 = 0x0001ed09bead87c0378d8e63ffffffff
+            if (C1_hi == 0x0000314dc6448d93ull
+                && C1_lo == 0x38c15b09ffffffffull) {
+              // make C1 = 10^34  - 1
+              C1_hi = 0x0001ed09bead87c0ull;
+              C1_lo = 0x378d8e63ffffffffull;
+              x_exp = x_exp - EXP_P1;
+            }
+          } else {
+            ; // the result is already correct
+          }
+        }
+        // set the inexact flag
+        *pfpsf |= INEXACT_EXCEPTION;
+        // assemble the result
+        res.w[1] = x_sign | x_exp | C1_hi;
+        res.w[0] = C1_lo;
+      } else { // delta = P34 
+        // in most cases, the smaller operand may be < or = or > 1/2 ulp of the
+        // larger operand
+        // however, the case C1 = 10^(q1-1) and x_sign != y_sign is special due
+        // to accuracy loss after subtraction, and will be treated separately
+        if (x_sign == y_sign || (q1 <= 20
+            && (C1_hi != 0 || C1_lo != __bid_ten2k64[q1 - 1])) || (q1 >= 21
+            && (C1_hi != __bid_ten2k128[q1 - 21].w[1]
+                || C1_lo != __bid_ten2k128[q1 - 21].w[0]))) {
+          // if x_sign == y_sign or C1 != 10^(q1-1)
+          // compare C2 with 1/2 ulp = 5 * 10^(q2-1), the latter read from table
+          // Note: cases q1<=19 and q1>=20 can be coalesced at some latency cost
+          if (q2 <= 19) { // C2 and 5*10^(q2-1) both fit in 64 bits
+            halfulp64 = __bid_midpoint64[q2 - 1]; // 5 * 10^(q2-1)
+            if (C2_lo < halfulp64) { // n2 < 1/2 ulp (n1)
+              // for RN the result is the operand with the larger magnitude, 
+              // possibly scaled up by 10^(P34-q1)
+              // an overflow cannot occur in this case (rounding to nearest)
+              if (q1 < P34) { // scale C1 up by 10^(P34-q1)
+                // Note: because delta = P34 it is certain that
+                //     x_exp - ((UINT64)scale << 49) will stay above e_min
+                scale = P34 - q1;
+                if (q1 <= 19) { // C1 fits in 64 bits
+                  // 1 <= q1 <= 19 => 15 <= scale <= 33
+                  if (scale <= 19) { // 10^scale fits in 64 bits
+                    __mul_64x64_to_128MACH (C1, __bid_ten2k64[scale], C1_lo);
+                  } else { // if 20 <= scale <= 33
+                    // C1 * 10^scale = (C1 * 10^(scale-19)) * 10^19 where
+                    // (C1 * 10^(scale-19)) fits in 64 bits
+                    C1_lo = C1_lo * __bid_ten2k64[scale - 19];
+                    __mul_64x64_to_128MACH (C1, __bid_ten2k64[19], C1_lo);
+                  }
+                } else { //if 20 <= q1 <= 33=P34-1 then C1 fits only in 128 bits
+                  // => 1 <= P34 - q1 <= 14 so 10^(P34-q1) fits in 64 bits
+                  C1.w[1] = C1_hi;
+                  C1.w[0] = C1_lo;
+                  // C1 = __bid_ten2k64[P34 - q1] * C1
+                  __mul_128x64_to_128 (C1, __bid_ten2k64[P34 - q1], C1);
+                }
+                x_exp = x_exp - ((UINT64) scale << 49);
+                C1_hi = C1.w[1];
+                C1_lo = C1.w[0];
+              }
+              if (rnd_mode != ROUNDING_TO_NEAREST) {
+                if ((rnd_mode == ROUNDING_DOWN && x_sign
+                    && y_sign) || (rnd_mode == ROUNDING_UP
+                    && !x_sign && !y_sign)) {
+                  // add 1 ulp and then check for overflow
+                  C1_lo = C1_lo + 1;
+                  if (C1_lo == 0) { // rounding overflow in the low 64 bits
+                    C1_hi = C1_hi + 1;
+                  }
+                  if (C1_hi == 0x0001ed09bead87c0ull
+                      && C1_lo == 0x378d8e6400000000ull) {
+                    // C1 = 10^34 => rounding overflow
+                    C1_hi = 0x0000314dc6448d93ull;
+                    C1_lo = 0x38c15b0a00000000ull; // 10^33
+                    x_exp = x_exp + EXP_P1;
+                    if (x_exp == EXP_MAX_P1) { // overflow
+                      C1_hi = 0x7800000000000000ull; // +inf
+                      C1_lo = 0x0ull;
+                      x_exp = 0; // x_sign is preserved
+                      // set overflow flag (the inexact flag was set too)
+                      *pfpsf |= OVERFLOW_EXCEPTION;
+                    }
+                  }
+                } else if ((rnd_mode == ROUNDING_DOWN && !x_sign && y_sign) || 
+                    (rnd_mode == ROUNDING_UP && x_sign && !y_sign) || 
+                    (rnd_mode == ROUNDING_TO_ZERO && x_sign != y_sign)) {
+                  // subtract 1 ulp from C1
+                  // Note: because delta >= P34 + 1 the result cannot be zero
+                  C1_lo = C1_lo - 1;
+                  if (C1_lo == 0xffffffffffffffffull)
+                    C1_hi = C1_hi - 1;
+                  // if the coefficient is 10^33-1 then make it 10^34-1 and 
+                  // decrease the exponent by 1 (because delta >= P34 + 1 the
+                  // exponent will not become less than e_min)
+                  // 10^33 - 1 = 0x0000314dc6448d9338c15b09ffffffff
+                  // 10^34 - 1 = 0x0001ed09bead87c0378d8e63ffffffff
+                  if (C1_hi == 0x0000314dc6448d93ull
+                      && C1_lo == 0x38c15b09ffffffffull) {
+                    // make C1 = 10^34  - 1
+                    C1_hi = 0x0001ed09bead87c0ull;
+                    C1_lo = 0x378d8e63ffffffffull;
+                    x_exp = x_exp - EXP_P1;
+                  }
+                } else {
+                  ; // the result is already correct
+                }
+              }
+              // set the inexact flag
+              *pfpsf |= INEXACT_EXCEPTION;
+              // assemble the result
+              res.w[1] = x_sign | x_exp | C1_hi;
+              res.w[0] = C1_lo;
+            } else if ((C2_lo == halfulp64)
+                       && (q1 < P34 || ((C1_lo & 0x1) == 0))) {
+              // n2 = 1/2 ulp (n1) and C1 is even
+              // the result is the operand with the larger magnitude,
+              // possibly scaled up by 10^(P34-q1)
+              // an overflow cannot occur in this case (rounding to nearest)
+              if (q1 < P34) { // scale C1 up by 10^(P34-q1)
+                // Note: because delta = P34 it is certain that
+                //     x_exp - ((UINT64)scale << 49) will stay above e_min
+                scale = P34 - q1;
+                if (q1 <= 19) { // C1 fits in 64 bits
+                  // 1 <= q1 <= 19 => 15 <= scale <= 33
+                  if (scale <= 19) { // 10^scale fits in 64 bits
+                    __mul_64x64_to_128MACH (C1, __bid_ten2k64[scale], C1_lo);
+                  } else { // if 20 <= scale <= 33 
+                    // C1 * 10^scale = (C1 * 10^(scale-19)) * 10^19 where
+                    // (C1 * 10^(scale-19)) fits in 64 bits  
+                    C1_lo = C1_lo * __bid_ten2k64[scale - 19];
+                    __mul_64x64_to_128MACH (C1, __bid_ten2k64[19], C1_lo);
+                  }
+                } else { //if 20 <= q1 <= 33=P34-1 then C1 fits only in 128 bits
+                  // => 1 <= P34 - q1 <= 14 so 10^(P34-q1) fits in 64 bits 
+                  C1.w[1] = C1_hi;
+                  C1.w[0] = C1_lo;
+                  // C1 = __bid_ten2k64[P34 - q1] * C1 
+                  __mul_128x64_to_128 (C1, __bid_ten2k64[P34 - q1], C1);
+                }
+                x_exp = x_exp - ((UINT64) scale << 49);
+                C1_hi = C1.w[1];
+                C1_lo = C1.w[0];
+              }
+              if ((rnd_mode == ROUNDING_TO_NEAREST
+                  && x_sign == y_sign && (C1_lo & 0x01))
+                  || (rnd_mode == ROUNDING_TIES_AWAY
+                  && x_sign == y_sign) || (rnd_mode == ROUNDING_UP
+                  && !x_sign && !y_sign)
+                  || (rnd_mode == ROUNDING_DOWN && x_sign && y_sign)) {
+                // add 1 ulp and then check for overflow
+                C1_lo = C1_lo + 1;
+                if (C1_lo == 0) { // rounding overflow in the low 64 bits
+                  C1_hi = C1_hi + 1;
+                }
+                if (C1_hi == 0x0001ed09bead87c0ull
+                    && C1_lo == 0x378d8e6400000000ull) {
+                  // C1 = 10^34 => rounding overflow
+                  C1_hi = 0x0000314dc6448d93ull;
+                  C1_lo = 0x38c15b0a00000000ull; // 10^33
+                  x_exp = x_exp + EXP_P1;
+                  if (x_exp == EXP_MAX_P1) { // overflow
+                    C1_hi = 0x7800000000000000ull; // +inf
+                    C1_lo = 0x0ull;
+                    x_exp = 0; // x_sign is preserved
+                    // set overflow flag (the inexact flag was set too)
+                    *pfpsf |= OVERFLOW_EXCEPTION;
+                  }
+                }
+              } else if ((rnd_mode == ROUNDING_TO_NEAREST
+                         && x_sign != y_sign && (C1_lo & 0x01))
+                         || (rnd_mode == ROUNDING_DOWN && !x_sign
+                         && y_sign) || (rnd_mode == ROUNDING_UP
+                         && x_sign && !y_sign)
+                         || (rnd_mode == ROUNDING_TO_ZERO
+                         && x_sign != y_sign)) {
+                // subtract 1 ulp from C1
+                // Note: because delta >= P34 + 1 the result cannot be zero
+                C1_lo = C1_lo - 1;
+                if (C1_lo == 0xffffffffffffffffull)
+                  C1_hi = C1_hi - 1;
+                // if the coefficient is 10^33 - 1 then make it 10^34 - 1
+                // and decrease the exponent by 1 (because delta >= P34 + 1
+                // the exponent will not become less than e_min)
+                // 10^33 - 1 = 0x0000314dc6448d9338c15b09ffffffff
+                // 10^34 - 1 = 0x0001ed09bead87c0378d8e63ffffffff
+                if (C1_hi == 0x0000314dc6448d93ull
+                    && C1_lo == 0x38c15b09ffffffffull) {
+                  // make C1 = 10^34  - 1
+                  C1_hi = 0x0001ed09bead87c0ull;
+                  C1_lo = 0x378d8e63ffffffffull;
+                  x_exp = x_exp - EXP_P1;
+                }
+              } else {
+                ; // the result is already correct
+              }
+              // set the inexact flag
+              *pfpsf |= INEXACT_EXCEPTION;
+              // assemble the result 
+              res.w[1] = x_sign | x_exp | C1_hi;
+              res.w[0] = C1_lo;
+            } else { // if C2_lo > halfulp64 || 
+              // (C2_lo == halfulp64 && q1 == P34 && ((C1_lo & 0x1) == 1)), i.e.
+              // 1/2 ulp(n1) < n2 < 1 ulp(n1) or n2 = 1/2 ulp(n1) and C1 odd
+              // res = x+1 ulp if n1*n2 > 0 and res = x-1 ulp if n1*n2 < 0
+              if (q1 < P34) { // then 1 ulp = 10^(e1+q1-P34) < 10^e1
+                // Note: if (q1 == P34) then 1 ulp = 10^(e1+q1-P34) = 10^e1
+                // because q1 < P34 we must first replace C1 by 
+                // C1 * 10^(P34-q1), and must decrease the exponent by 
+                // (P34-q1) (it will still be at least e_min)
+                scale = P34 - q1;
+                if (q1 <= 19) { // C1 fits in 64 bits
+                  // 1 <= q1 <= 19 => 15 <= scale <= 33
+                  if (scale <= 19) { // 10^scale fits in 64 bits
+                    __mul_64x64_to_128MACH (C1, __bid_ten2k64[scale], C1_lo);
+                  } else { // if 20 <= scale <= 33
+                    // C1 * 10^scale = (C1 * 10^(scale-19)) * 10^19 where
+                    // (C1 * 10^(scale-19)) fits in 64 bits
+                    C1_lo = C1_lo * __bid_ten2k64[scale - 19];
+                    __mul_64x64_to_128MACH (C1, __bid_ten2k64[19], C1_lo);
+                  }
+                } else { //if 20 <= q1 <= 33=P34-1 then C1 fits only in 128 bits
+                  // => 1 <= P34 - q1 <= 14 so 10^(P34-q1) fits in 64 bits
+                  C1.w[1] = C1_hi;
+                  C1.w[0] = C1_lo;
+                  // C1 = __bid_ten2k64[P34 - q1] * C1
+                  __mul_128x64_to_128 (C1, __bid_ten2k64[P34 - q1], C1);
+                }
+                x_exp = x_exp - ((UINT64) scale << 49);
+                C1_hi = C1.w[1];
+                C1_lo = C1.w[0];
+                // check for rounding overflow
+                if (C1_hi == 0x0001ed09bead87c0ull
+                    && C1_lo == 0x378d8e6400000000ull) {
+                  // C1 = 10^34 => rounding overflow 
+                  C1_hi = 0x0000314dc6448d93ull;
+                  C1_lo = 0x38c15b0a00000000ull; // 10^33
+                  x_exp = x_exp + EXP_P1;
+                }
+              }
+              if ((rnd_mode == ROUNDING_TO_NEAREST
+                  && x_sign != y_sign)
+                  || (rnd_mode == ROUNDING_TIES_AWAY
+                  && x_sign != y_sign && C2_lo != halfulp64)
+                  || (rnd_mode == ROUNDING_DOWN && !x_sign
+                  && y_sign) || (rnd_mode == ROUNDING_UP && x_sign
+                  && !y_sign) || (rnd_mode == ROUNDING_TO_ZERO
+                  && x_sign != y_sign)) {
+                // the result is x - 1
+                // for RN n1 * n2 < 0; underflow not possible
+                C1_lo = C1_lo - 1;
+                if (C1_lo == 0xffffffffffffffffull)
+                  C1_hi--;
+                // check if we crossed into the lower decade
+                if (C1_hi == 0x0000314dc6448d93ull && 
+                    C1_lo == 0x38c15b09ffffffffull) { // 10^33 - 1
+                  C1_hi = 0x0001ed09bead87c0ull; // 10^34 - 1
+                  C1_lo = 0x378d8e63ffffffffull;
+                  x_exp = x_exp - EXP_P1; // no underflow, because n1 >> n2
+                }
+              } else if ((rnd_mode == ROUNDING_TO_NEAREST
+                         && x_sign == y_sign)
+                         || (rnd_mode == ROUNDING_TIES_AWAY
+                         && x_sign == y_sign)
+                         || (rnd_mode == ROUNDING_DOWN && x_sign
+                         && y_sign) || (rnd_mode == ROUNDING_UP
+                         && !x_sign && !y_sign)) {
+                // the result is x + 1
+                // for RN x_sign = y_sign, i.e. n1*n2 > 0
+                C1_lo = C1_lo + 1;
+                if (C1_lo == 0) { // rounding overflow in the low 64 bits
+                  C1_hi = C1_hi + 1;
+                }
+                if (C1_hi == 0x0001ed09bead87c0ull
+                    && C1_lo == 0x378d8e6400000000ull) {
+                  // C1 = 10^34 => rounding overflow
+                  C1_hi = 0x0000314dc6448d93ull;
+                  C1_lo = 0x38c15b0a00000000ull; // 10^33
+                  x_exp = x_exp + EXP_P1;
+                  if (x_exp == EXP_MAX_P1) { // overflow
+                    C1_hi = 0x7800000000000000ull; // +inf
+                    C1_lo = 0x0ull;
+                    x_exp = 0; // x_sign is preserved
+                    // set the overflow flag
+                    *pfpsf |= OVERFLOW_EXCEPTION;
+                  }
+                }
+              } else {
+                ; // the result is x
+              }
+              // set the inexact flag
+              *pfpsf |= INEXACT_EXCEPTION;
+              // assemble the result
+              res.w[1] = x_sign | x_exp | C1_hi;
+              res.w[0] = C1_lo;
+            }
+          } else { // if q2 >= 20 then 5*10^(q2-1) and C2 (the latter in 
+            // most cases) fit only in more than 64 bits
+            halfulp128 = __bid_midpoint128[q2 - 20]; // 5 * 10^(q2-1)
+            if ((C2_hi < halfulp128.w[1])
+                || (C2_hi == halfulp128.w[1]
+                    && C2_lo < halfulp128.w[0])) {
+              // n2 < 1/2 ulp (n1)
+              // the result is the operand with the larger magnitude,
+              // possibly scaled up by 10^(P34-q1)
+              // an overflow cannot occur in this case (rounding to nearest)
+              if (q1 < P34) { // scale C1 up by 10^(P34-q1)
+                // Note: because delta = P34 it is certain that
+                //     x_exp - ((UINT64)scale << 49) will stay above e_min
+                scale = P34 - q1;
+                if (q1 <= 19) { // C1 fits in 64 bits
+                  // 1 <= q1 <= 19 => 15 <= scale <= 33
+                  if (scale <= 19) { // 10^scale fits in 64 bits
+                    __mul_64x64_to_128MACH (C1, __bid_ten2k64[scale], C1_lo);
+                  } else { // if 20 <= scale <= 33 
+                    // C1 * 10^scale = (C1 * 10^(scale-19)) * 10^19 where
+                    // (C1 * 10^(scale-19)) fits in 64 bits  
+                    C1_lo = C1_lo * __bid_ten2k64[scale - 19];
+                    __mul_64x64_to_128MACH (C1, __bid_ten2k64[19], C1_lo);
+                  }
+                } else { //if 20 <= q1 <= 33=P34-1 then C1 fits only in 128 bits
+                  // => 1 <= P34 - q1 <= 14 so 10^(P34-q1) fits in 64 bits 
+                  C1.w[1] = C1_hi;
+                  C1.w[0] = C1_lo;
+                  // C1 = __bid_ten2k64[P34 - q1] * C1 
+                  __mul_128x64_to_128 (C1, __bid_ten2k64[P34 - q1], C1);
+                }
+                C1_hi = C1.w[1];
+                C1_lo = C1.w[0];
+                x_exp = x_exp - ((UINT64) scale << 49);
+              }
+              if (rnd_mode != ROUNDING_TO_NEAREST) {
+                if ((rnd_mode == ROUNDING_DOWN && x_sign
+                    && y_sign) || (rnd_mode == ROUNDING_UP
+                    && !x_sign && !y_sign)) {
+                  // add 1 ulp and then check for overflow
+                  C1_lo = C1_lo + 1;
+                  if (C1_lo == 0) { // rounding overflow in the low 64 bits
+                    C1_hi = C1_hi + 1;
+                  }
+                  if (C1_hi == 0x0001ed09bead87c0ull
+                      && C1_lo == 0x378d8e6400000000ull) {
+                    // C1 = 10^34 => rounding overflow
+                    C1_hi = 0x0000314dc6448d93ull;
+                    C1_lo = 0x38c15b0a00000000ull; // 10^33
+                    x_exp = x_exp + EXP_P1;
+                    if (x_exp == EXP_MAX_P1) { // overflow
+                      C1_hi = 0x7800000000000000ull; // +inf
+                      C1_lo = 0x0ull;
+                      x_exp = 0; // x_sign is preserved
+                      // set overflow flag (the inexact flag was set too)
+                      *pfpsf |= OVERFLOW_EXCEPTION;
+                    }
+                  }
+                } else if ((rnd_mode == ROUNDING_DOWN && !x_sign
+                           && y_sign) || (rnd_mode == ROUNDING_UP
+                           && x_sign && !y_sign)
+                           || (rnd_mode == ROUNDING_TO_ZERO
+                           && x_sign != y_sign)) {
+                  // subtract 1 ulp from C1
+                  // Note: because delta >= P34 + 1 the result cannot be zero
+                  C1_lo = C1_lo - 1;
+                  if (C1_lo == 0xffffffffffffffffull)
+                    C1_hi = C1_hi - 1;
+                  // if the coefficient is 10^33-1 then make it 10^34-1 and
+                  // decrease the exponent by 1 (because delta >= P34 + 1 the
+                  // exponent will not become less than e_min)
+                  // 10^33 - 1 = 0x0000314dc6448d9338c15b09ffffffff
+                  // 10^34 - 1 = 0x0001ed09bead87c0378d8e63ffffffff
+                  if (C1_hi == 0x0000314dc6448d93ull
+                      && C1_lo == 0x38c15b09ffffffffull) {
+                    // make C1 = 10^34  - 1
+                    C1_hi = 0x0001ed09bead87c0ull;
+                    C1_lo = 0x378d8e63ffffffffull;
+                    x_exp = x_exp - EXP_P1;
+                  }
+                } else {
+                  ; // the result is already correct
+                }
+              }
+              // set the inexact flag 
+              *pfpsf |= INEXACT_EXCEPTION;
+              // assemble the result 
+              res.w[1] = x_sign | x_exp | C1_hi;
+              res.w[0] = C1_lo;
+            } else if ((C2_hi == halfulp128.w[1]
+                        && C2_lo == halfulp128.w[0])
+                       && (q1 < P34 || ((C1_lo & 0x1) == 0))) {
+              // midpoint & lsb in C1 is 0
+              // n2 = 1/2 ulp (n1) and C1 is even
+              // the result is the operand with the larger magnitude,
+              // possibly scaled up by 10^(P34-q1)
+              // an overflow cannot occur in this case (rounding to nearest)
+              if (q1 < P34) { // scale C1 up by 10^(P34-q1)
+                // Note: because delta = P34 it is certain that
+                //     x_exp - ((UINT64)scale << 49) will stay above e_min
+                scale = P34 - q1;
+                if (q1 <= 19) { // C1 fits in 64 bits
+                  // 1 <= q1 <= 19 => 15 <= scale <= 33
+                  if (scale <= 19) { // 10^scale fits in 64 bits
+                    __mul_64x64_to_128MACH (C1, __bid_ten2k64[scale], C1_lo);
+                  } else { // if 20 <= scale <= 33
+                    // C1 * 10^scale = (C1 * 10^(scale-19)) * 10^19 where
+                    // (C1 * 10^(scale-19)) fits in 64 bits
+                    C1_lo = C1_lo * __bid_ten2k64[scale - 19];
+                    __mul_64x64_to_128MACH (C1, __bid_ten2k64[19], C1_lo);
+                  }
+                } else { //if 20 <= q1 <= 33=P34-1 then C1 fits only in 128 bits
+                  // => 1 <= P34 - q1 <= 14 so 10^(P34-q1) fits in 64 bits
+                  C1.w[1] = C1_hi;
+                  C1.w[0] = C1_lo;
+                  // C1 = __bid_ten2k64[P34 - q1] * C1
+                  __mul_128x64_to_128 (C1, __bid_ten2k64[P34 - q1], C1);
+                }
+                x_exp = x_exp - ((UINT64) scale << 49);
+                C1_hi = C1.w[1];
+                C1_lo = C1.w[0];
+              }
+              if (rnd_mode != ROUNDING_TO_NEAREST) {
+                if ((rnd_mode == ROUNDING_TIES_AWAY
+                    && x_sign == y_sign)
+                    || (rnd_mode == ROUNDING_UP && !y_sign)) {
+                  // add 1 ulp and then check for overflow
+                  C1_lo = C1_lo + 1;
+                  if (C1_lo == 0) { // rounding overflow in the low 64 bits
+                    C1_hi = C1_hi + 1;
+                  }
+                  if (C1_hi == 0x0001ed09bead87c0ull
+                      && C1_lo == 0x378d8e6400000000ull) {
+                    // C1 = 10^34 => rounding overflow
+                    C1_hi = 0x0000314dc6448d93ull;
+                    C1_lo = 0x38c15b0a00000000ull; // 10^33
+                    x_exp = x_exp + EXP_P1;
+                    if (x_exp == EXP_MAX_P1) { // overflow
+                      C1_hi = 0x7800000000000000ull; // +inf
+                      C1_lo = 0x0ull;
+                      x_exp = 0; // x_sign is preserved
+                      // set overflow flag (the inexact flag was set too)
+                      *pfpsf |= OVERFLOW_EXCEPTION;
+                    }
+                  }
+                } else if ((rnd_mode == ROUNDING_DOWN && y_sign)
+                           || (rnd_mode == ROUNDING_TO_ZERO
+                           && x_sign != y_sign)) {
+                  // subtract 1 ulp from C1
+                  // Note: because delta >= P34 + 1 the result cannot be zero
+                  C1_lo = C1_lo - 1;
+                  if (C1_lo == 0xffffffffffffffffull)
+                    C1_hi = C1_hi - 1;
+                  // if the coefficient is 10^33 - 1 then make it 10^34 - 1
+                  // and decrease the exponent by 1 (because delta >= P34 + 1
+                  // the exponent will not become less than e_min)
+                  // 10^33 - 1 = 0x0000314dc6448d9338c15b09ffffffff
+                  // 10^34 - 1 = 0x0001ed09bead87c0378d8e63ffffffff
+                  if (C1_hi == 0x0000314dc6448d93ull
+                      && C1_lo == 0x38c15b09ffffffffull) {
+                    // make C1 = 10^34  - 1
+                    C1_hi = 0x0001ed09bead87c0ull;
+                    C1_lo = 0x378d8e63ffffffffull;
+                    x_exp = x_exp - EXP_P1;
+                  }
+                } else {
+                  ; // the result is already correct
+                }
+              }
+              // set the inexact flag
+              *pfpsf |= INEXACT_EXCEPTION;
+              // assemble the result
+              res.w[1] = x_sign | x_exp | C1_hi;
+              res.w[0] = C1_lo;
+            } else { // if C2 > halfulp128 ||
+              // (C2 == halfulp128 && q1 == P34 && ((C1 & 0x1) == 1)), i.e.
+              // 1/2 ulp(n1) < n2 < 1 ulp(n1) or n2 = 1/2 ulp(n1) and C1 odd
+              // res = x+1 ulp if n1*n2 > 0 and res = x-1 ulp if n1*n2 < 0
+              if (q1 < P34) { // then 1 ulp = 10^(e1+q1-P34) < 10^e1
+                // Note: if (q1 == P34) then 1 ulp = 10^(e1+q1-P34) = 10^e1
+                // because q1 < P34 we must first replace C1 by C1*10^(P34-q1),
+                // and must decrease the exponent by (P34-q1) (it will still be
+                // at least e_min)
+                scale = P34 - q1;
+                if (q1 <= 19) { // C1 fits in 64 bits
+                  // 1 <= q1 <= 19 => 15 <= scale <= 33
+                  if (scale <= 19) { // 10^scale fits in 64 bits
+                    __mul_64x64_to_128MACH (C1, __bid_ten2k64[scale], C1_lo);
+                  } else { // if 20 <= scale <= 33
+                    // C1 * 10^scale = (C1 * 10^(scale-19)) * 10^19 where
+                    // (C1 * 10^(scale-19)) fits in 64 bits
+                    C1_lo = C1_lo * __bid_ten2k64[scale - 19];
+                    __mul_64x64_to_128MACH (C1, __bid_ten2k64[19], C1_lo);
+                  }
+                } else { //if 20 <= q1 <= 33=P34-1 then C1 fits only in 128 bits
+                  // => 1 <= P34 - q1 <= 14 so 10^(P34-q1) fits in 64 bits
+                  C1.w[1] = C1_hi;
+                  C1.w[0] = C1_lo;
+                  // C1 = __bid_ten2k64[P34 - q1] * C1
+                  __mul_128x64_to_128 (C1, __bid_ten2k64[P34 - q1], C1);
+                }
+                C1_hi = C1.w[1];
+                C1_lo = C1.w[0];
+                x_exp = x_exp - ((UINT64) scale << 49);
+              }
+              if ((rnd_mode == ROUNDING_TO_NEAREST
+                  && x_sign != y_sign) || (rnd_mode == ROUNDING_TIES_AWAY
+                  && x_sign != y_sign && 
+                  (C2_hi != halfulp128.w[1] || C2_lo != halfulp128.w[0])) ||
+                  (rnd_mode == ROUNDING_DOWN && !x_sign
+                  && y_sign) || (rnd_mode == ROUNDING_UP && x_sign
+                  && !y_sign) || (rnd_mode == ROUNDING_TO_ZERO
+                  && x_sign != y_sign)) {
+                // the result is x - 1
+                // for RN n1 * n2 < 0; underflow not possible
+                C1_lo = C1_lo - 1;
+                if (C1_lo == 0xffffffffffffffffull)
+                  C1_hi--;
+                // check if we crossed into the lower decade
+                if (C1_hi == 0x0000314dc6448d93ull && 
+                    C1_lo == 0x38c15b09ffffffffull) { // 10^33 - 1
+                  C1_hi = 0x0001ed09bead87c0ull; // 10^34 - 1
+                  C1_lo = 0x378d8e63ffffffffull;
+                  x_exp = x_exp - EXP_P1; // no underflow, because n1 >> n2
+                }
+              } else if ((rnd_mode == ROUNDING_TO_NEAREST && x_sign == y_sign) 
+                  || (rnd_mode == ROUNDING_TIES_AWAY && x_sign == y_sign) || 
+                  (rnd_mode == ROUNDING_DOWN && x_sign && y_sign) || 
+                  (rnd_mode == ROUNDING_UP && !x_sign && !y_sign)) {
+                // the result is x + 1
+                // for RN x_sign = y_sign, i.e. n1*n2 > 0
+                C1_lo = C1_lo + 1;
+                if (C1_lo == 0) { // rounding overflow in the low 64 bits
+                  C1_hi = C1_hi + 1;
+                }
+                if (C1_hi == 0x0001ed09bead87c0ull
+                    && C1_lo == 0x378d8e6400000000ull) {
+                  // C1 = 10^34 => rounding overflow
+                  C1_hi = 0x0000314dc6448d93ull;
+                  C1_lo = 0x38c15b0a00000000ull; // 10^33
+                  x_exp = x_exp + EXP_P1;
+                  if (x_exp == EXP_MAX_P1) { // overflow
+                    C1_hi = 0x7800000000000000ull; // +inf
+                    C1_lo = 0x0ull;
+                    x_exp = 0; // x_sign is preserved
+                    // set the overflow flag
+                    *pfpsf |= OVERFLOW_EXCEPTION;
+                  }
+                }
+              } else {
+                ; // the result is x
+              }
+              // set the inexact flag
+              *pfpsf |= INEXACT_EXCEPTION;
+              // assemble the result
+              res.w[1] = x_sign | x_exp | C1_hi;
+              res.w[0] = C1_lo;
+            }
+          }        // end q1 >= 20
+          // end case where C1 != 10^(q1-1)
+        } else { // C1 = 10^(q1-1) and x_sign != y_sign
+          // instead of C' = (C1 * 10^(e1-e2) + C2)rnd,P34
+          // calculate C' = C1 * 10^(e1-e2-x1) + (C2 * 10^(-x1))rnd,P34 
+          // where x1 = q2 - 1, 0 <= x1 <= P34 - 1
+          // Because C1 = 10^(q1-1) and x_sign != y_sign, C' will have P34 
+          // digits and n = C' * 10^(e2+x1)
+          // If the result has P34+1 digits, redo the steps above with x1+1
+          // If the result has P34-1 digits or less, redo the steps above with 
+          // x1-1 but only if initially x1 >= 1
+          // NOTE: these two steps can be improved, e.g we could guess if
+          // P34+1 or P34-1 digits will be obtained by adding/subtracting 
+          // just the top 64 bits of the two operands
+          // The result cannot be zero, and it cannot overflow
+          x1 = q2 - 1; // 0 <= x1 <= P34-1
+          // Calculate C1 * 10^(e1-e2-x1) where 1 <= e1-e2-x1 <= P34
+          // scale = (int)(e1 >> 49) - (int)(e2 >> 49) - x1; 0 <= scale <= P34-1
+          scale = P34 - q1 + 1; // scale=e1-e2-x1 = P34+1-q1; 1<=scale<=P34
+          // either C1 or 10^(e1-e2-x1) may not fit is 64 bits,
+          // but their product fits with certainty in 128 bits
+          if (scale >= 20) { //10^(e1-e2-x1) doesn't fit in 64 bits, but C1 does
+            __mul_128x64_to_128 (C1, C1_lo, __bid_ten2k128[scale - 20]);
+          } else { // if (scale >= 1
+            // if 1 <= scale <= 19 then 10^(e1-e2-x1) fits in 64 bits
+            if (q1 <= 19) { // C1 fits in 64 bits
+              __mul_64x64_to_128MACH (C1, C1_lo, __bid_ten2k64[scale]);
+            } else { // q1 >= 20
+              C1.w[1] = C1_hi;
+              C1.w[0] = C1_lo;
+              __mul_128x64_to_128 (C1, __bid_ten2k64[scale], C1);
+            }
+          }
+          tmp64 = C1.w[0]; // C1.w[1], C1.w[0] contains C1 * 10^(e1-e2-x1)
+
+          // now round C2 to q2-x1 = 1 decimal digit
+          // C2' = C2 + 1/2 * 10^x1 = C2 + 5 * 10^(x1-1)
+          ind = x1 - 1; // -1 <= ind <= P34 - 2
+          if (ind >= 0) { // if (x1 >= 1)
+            C2.w[0] = C2_lo;
+            C2.w[1] = C2_hi;
+            if (ind <= 18) {
+              C2.w[0] = C2.w[0] + __bid_midpoint64[ind];
+              if (C2.w[0] < C2_lo)
+                C2.w[1]++;
+            } else { // 19 <= ind <= 32
+              C2.w[0] = C2.w[0] + __bid_midpoint128[ind - 19].w[0];
+              C2.w[1] = C2.w[1] + __bid_midpoint128[ind - 19].w[1];
+              if (C2.w[0] < C2_lo)
+                C2.w[1]++;
+            }
+            // the approximation of 10^(-x1) was rounded up to 118 bits
+            __mul_128x128_to_256 (R256, C2, __bid_ten2mk128[ind]); // R256 = C2*, f2*
+            // calculate C2* and f2*
+            // C2* is actually floor(C2*) in this case
+            // C2* and f2* need shifting and masking, as shown by
+            // __bid_shiftright128[] and __bid_maskhigh128[]
+            // the top Ex bits of 10^(-x1) are T* = __bid_ten2mk128trunc[ind], e.g.
+            // if x1=1, T*=__bid_ten2mk128trunc[0]=0x19999999999999999999999999999999
+            // if (0 < f2* < 10^(-x1)) then
+            //   if floor(C1+C2*) is even then C2* = floor(C2*) - logical right
+            //       shift; C2* has p decimal digits, correct by Prop. 1)
+            //   else if floor(C1+C2*) is odd C2* = floor(C2*)-1 (logical right
+            //       shift; C2* has p decimal digits, correct by Pr. 1)
+            // else
+            //   C2* = floor(C2*) (logical right shift; C has p decimal digits,
+            //       correct by Property 1)
+            // n = C2* * 10^(e2+x1)
+
+            if (ind <= 2) {
+              highf2star.w[1] = 0x0;
+              highf2star.w[0] = 0x0; // low f2* ok
+            } else if (ind <= 21) {
+              highf2star.w[1] = 0x0;
+              highf2star.w[0] = R256.w[2] & __bid_maskhigh128[ind]; // low f2* ok
+            } else {
+              highf2star.w[1] = R256.w[3] & __bid_maskhigh128[ind];
+              highf2star.w[0] = R256.w[2]; // low f2* is ok
+            }
+            // shift right C2* by Ex-128 = __bid_shiftright128[ind]
+            if (ind >= 3) {
+              shift = __bid_shiftright128[ind];
+              if (shift < 64) { // 3 <= shift <= 63
+                R256.w[2] =
+                  (R256.w[2] >> shift) | (R256.w[3] << (64 - shift));
+                R256.w[3] = (R256.w[3] >> shift);
+              } else { // 66 <= shift <= 102
+                R256.w[2] = (R256.w[3] >> (shift - 64));
+                R256.w[3] = 0x0ULL;
+              }
+            }
+            // redundant
+            is_inexact_lt_midpoint = 0;
+            is_inexact_gt_midpoint = 0;
+            is_midpoint_lt_even = 0;
+            is_midpoint_gt_even = 0;
+            // determine inexactness of the rounding of C2*
+            // (cannot be followed by a second rounding)
+            // if (0 < f2* - 1/2 < 10^(-x1)) then
+            //   the result is exact
+            // else (if f2* - 1/2 > T* then)
+            //   the result of is inexact
+            if (ind <= 2) {
+              if (R256.w[1] > 0x8000000000000000ull || 
+                  (R256.w[1] == 0x8000000000000000ull && R256.w[0] > 0x0ull)) {
+                // f2* > 1/2 and the result may be exact
+                tmp64A = R256.w[1] - 0x8000000000000000ull; // f* - 1/2
+                if ((tmp64A > __bid_ten2mk128trunc[ind].w[1]
+                     || (tmp64A == __bid_ten2mk128trunc[ind].w[1]
+                     && R256.w[0] >= __bid_ten2mk128trunc[ind].w[0]))) {
+                  // set the inexact flag
+                  *pfpsf |= INEXACT_EXCEPTION;
+                  // this rounding is applied to C2 only!
+                  // x_sign != y_sign
+                  is_inexact_gt_midpoint = 1;
+                }        // else the result is exact
+                // rounding down, unless a midpoint in [ODD, EVEN]
+              } else { // the result is inexact; f2* <= 1/2
+                // set the inexact flag
+                *pfpsf |= INEXACT_EXCEPTION;
+                // this rounding is applied to C2 only!
+                // x_sign != y_sign
+                is_inexact_lt_midpoint = 1;
+              }
+            } else if (ind <= 21) { // if 3 <= ind <= 21
+              if (highf2star.w[1] > 0x0 || (highf2star.w[1] == 0x0
+                  && highf2star.w[0] > __bid_one_half128[ind])
+                  || (highf2star.w[1] == 0x0
+                  && highf2star.w[0] == __bid_one_half128[ind]
+                  && (R256.w[1] || R256.w[0]))) {
+                // f2* > 1/2 and the result may be exact
+                // Calculate f2* - 1/2
+                tmp64A = highf2star.w[0] - __bid_one_half128[ind];
+                tmp64B = highf2star.w[1];
+                if (tmp64A > highf2star.w[0])
+                  tmp64B--;
+                if (tmp64B || tmp64A
+                    || R256.w[1] > __bid_ten2mk128trunc[ind].w[1]
+                    || (R256.w[1] == __bid_ten2mk128trunc[ind].w[1]
+                    && R256.w[0] > __bid_ten2mk128trunc[ind].w[0])) {
+                  // set the inexact flag
+                  *pfpsf |= INEXACT_EXCEPTION;
+                  // this rounding is applied to C2 only!
+                  // x_sign != y_sign
+                  is_inexact_gt_midpoint = 1;
+                }        // else the result is exact
+              } else { // the result is inexact; f2* <= 1/2
+                // set the inexact flag
+                *pfpsf |= INEXACT_EXCEPTION;
+                // this rounding is applied to C2 only!
+                // x_sign != y_sign
+                is_inexact_lt_midpoint = 1;
+              }
+            } else { // if 22 <= ind <= 33
+              if (highf2star.w[1] > __bid_one_half128[ind]
+                  || (highf2star.w[1] == __bid_one_half128[ind]
+                  && (highf2star.w[0] || R256.w[1]
+                      || R256.w[0]))) {
+                // f2* > 1/2 and the result may be exact
+                // Calculate f2* - 1/2
+                // tmp64A = highf2star.w[0];
+                tmp64B = highf2star.w[1] - __bid_one_half128[ind];
+                if (tmp64B || highf2star.w[0]
+                    || R256.w[1] > __bid_ten2mk128trunc[ind].w[1]
+                    || (R256.w[1] == __bid_ten2mk128trunc[ind].w[1]
+                    && R256.w[0] > __bid_ten2mk128trunc[ind].w[0])) {
+                  // set the inexact flag
+                  *pfpsf |= INEXACT_EXCEPTION;
+                  // this rounding is applied to C2 only!
+                  // x_sign != y_sign
+                  is_inexact_gt_midpoint = 1;
+                }        // else the result is exact
+              } else { // the result is inexact; f2* <= 1/2
+                // set the inexact flag
+                *pfpsf |= INEXACT_EXCEPTION;
+                // this rounding is applied to C2 only!
+                // x_sign != y_sign
+                is_inexact_lt_midpoint = 1;
+              }
+            }
+            // check for midpoints after determining inexactness
+            if ((R256.w[1] || R256.w[0]) && (highf2star.w[1] == 0)
+                && (highf2star.w[0] == 0)
+                && (R256.w[1] < __bid_ten2mk128trunc[ind].w[1]
+                    || (R256.w[1] == __bid_ten2mk128trunc[ind].w[1]
+                    && R256.w[0] <= __bid_ten2mk128trunc[ind].w[0]))) {
+              // the result is a midpoint
+              if ((tmp64 + R256.w[2]) & 0x01) { // MP in [EVEN, ODD]
+                // if floor(C2*) is odd C = floor(C2*) - 1; the result may be 0
+                R256.w[2]--;
+                if (R256.w[2] == 0xffffffffffffffffull)
+                  R256.w[3]--;
+                // this rounding is applied to C2 only!
+                // x_sign != y_sign
+                is_midpoint_lt_even = 1;
+                is_inexact_lt_midpoint = 0;
+                is_inexact_gt_midpoint = 0;
+              } else {
+                // else MP in [ODD, EVEN]
+                // this rounding is applied to C2 only!
+                // x_sign != y_sign
+                is_midpoint_gt_even = 1;
+                is_inexact_lt_midpoint = 0;
+                is_inexact_gt_midpoint = 0;
+              }
+            }
+          } else { // if (ind == -1) only when x1 = 0
+            R256.w[2] = C2_lo;
+            R256.w[3] = C2_hi;
+            is_midpoint_lt_even = 0;
+            is_midpoint_gt_even = 0;
+            is_inexact_lt_midpoint = 0;
+            is_inexact_gt_midpoint = 0;
+          }
+          // and now subtract C1 * 10^(e1-e2-x1) - (C2 * 10^(-x1))rnd,P34
+          // because x_sign != y_sign this last operation is exact
+          C1.w[0] = C1.w[0] - R256.w[2];
+          C1.w[1] = C1.w[1] - R256.w[3];
+          if (C1.w[0] > tmp64)
+            C1.w[1]--; // borrow
+          if (C1.w[1] >= 0x8000000000000000ull) { // negative coefficient!
+            C1.w[0] = ~C1.w[0];
+            C1.w[0]++;
+            C1.w[1] = ~C1.w[1];
+            if (C1.w[0] == 0x0)
+              C1.w[1]++;
+            tmp_sign = y_sign; // the result will have the sign of y
+          } else {
+            tmp_sign = x_sign;
+          }
+          // the difference has exactly P34 digits
+          x_sign = tmp_sign;
+          if (x1 >= 1)
+            y_exp = y_exp + ((UINT64) x1 << 49);
+          C1_hi = C1.w[1];
+          C1_lo = C1.w[0];
+          // general correction from RN to RA, RM, RP, RZ; result uses y_exp
+          if (rnd_mode != ROUNDING_TO_NEAREST) {
+            if ((!x_sign && 
+                ((rnd_mode == ROUNDING_UP && is_inexact_lt_midpoint) || 
+                ((rnd_mode == ROUNDING_TIES_AWAY || rnd_mode == ROUNDING_UP) &&
+                is_midpoint_gt_even))) || 
+                (x_sign && 
+                ((rnd_mode == ROUNDING_DOWN && is_inexact_lt_midpoint) || 
+                ((rnd_mode == ROUNDING_TIES_AWAY || rnd_mode == ROUNDING_DOWN) 
+                && is_midpoint_gt_even)))) {
+              // C1 = C1 + 1
+              C1_lo = C1_lo + 1;
+              if (C1_lo == 0) { // rounding overflow in the low 64 bits
+                C1_hi = C1_hi + 1;
+              }
+              if (C1_hi == 0x0001ed09bead87c0ull
+                  && C1_lo == 0x378d8e6400000000ull) {
+                // C1 = 10^34 => rounding overflow
+                C1_hi = 0x0000314dc6448d93ull;
+                C1_lo = 0x38c15b0a00000000ull; // 10^33
+                y_exp = y_exp + EXP_P1;
+              }
+            } else if ((is_midpoint_lt_even || is_inexact_gt_midpoint) && 
+                ((x_sign && 
+                (rnd_mode == ROUNDING_UP || rnd_mode == ROUNDING_TO_ZERO)) || 
+                (!x_sign && 
+                (rnd_mode == ROUNDING_DOWN || rnd_mode == ROUNDING_TO_ZERO)))) {
+              // C1 = C1 - 1
+              C1_lo = C1_lo - 1;
+              if (C1_lo == 0xffffffffffffffffull)
+                C1_hi--;
+              // check if we crossed into the lower decade
+              if (C1_hi == 0x0000314dc6448d93ull && 
+                  C1_lo == 0x38c15b09ffffffffull) { // 10^33 - 1
+                C1_hi = 0x0001ed09bead87c0ull; // 10^34 - 1
+                C1_lo = 0x378d8e63ffffffffull;
+                y_exp = y_exp - EXP_P1;
+                // no underflow, because delta + q2 >= P34 + 1
+              }
+            } else {
+              ; // exact, the result is already correct
+            }
+          }
+          // assemble the result
+          res.w[1] = x_sign | y_exp | C1_hi;
+          res.w[0] = C1_lo;
+        }
+      }        // end delta = P34
+    } else { // if (|delta| <= P34 - 1)
+      if (delta >= 0) { // if (0 <= delta <= P34 - 1)
+        if (delta <= P34 - 1 - q2) {
+          // calculate C' directly; the result is exact
+          // in this case 1<=q1<=P34-1, 1<=q2<=P34-1 and 0 <= e1-e2 <= P34-2
+          // The coefficient of the result is C1 * 10^(e1-e2) + C2 and the
+          // exponent is e2; either C1 or 10^(e1-e2) may not fit is 64 bits,
+          // but their product fits with certainty in 128 bits (actually in 113)
+          scale = delta - q1 + q2; // scale = (int)(e1 >> 49) - (int)(e2 >> 49) 
+
+          if (scale >= 20) { // 10^(e1-e2) does not fit in 64 bits, but C1 does
+            __mul_128x64_to_128 (C1, C1_lo, __bid_ten2k128[scale - 20]);
+            C1_hi = C1.w[1];
+            C1_lo = C1.w[0];
+          } else if (scale >= 1) {
+            // if 1 <= scale <= 19 then 10^(e1-e2) fits in 64 bits 
+            if (q1 <= 19) { // C1 fits in 64 bits
+              __mul_64x64_to_128MACH (C1, C1_lo, __bid_ten2k64[scale]);
+            } else { // q1 >= 20
+              C1.w[1] = C1_hi;
+              C1.w[0] = C1_lo;
+              __mul_128x64_to_128 (C1, __bid_ten2k64[scale], C1);
+            }
+            C1_hi = C1.w[1];
+            C1_lo = C1.w[0];
+          } else { // if (scale == 0) C1 is unchanged
+            C1.w[0] = C1_lo; // C1.w[1] = C1_hi; 
+          }
+          // now add C2
+          if (x_sign == y_sign) {
+            // the result cannot overflow
+            C1_lo = C1_lo + C2_lo;
+            C1_hi = C1_hi + C2_hi;
+            if (C1_lo < C1.w[0])
+              C1_hi++;
+          } else { // if x_sign != y_sign
+            C1_lo = C1_lo - C2_lo;
+            C1_hi = C1_hi - C2_hi;
+            if (C1_lo > C1.w[0])
+              C1_hi--;
+            // the result can be zero, but it cannot overflow
+            if (C1_lo == 0 && C1_hi == 0) {
+              // assemble the result
+              if (x_exp < y_exp)
+                res.w[1] = x_exp;
+              else
+                res.w[1] = y_exp;
+              res.w[0] = 0;
+              if (rnd_mode == ROUNDING_DOWN) {
+                res.w[1] |= 0x8000000000000000ull;
+              }
+              BID_RETURN (res);
+            }
+            if (C1_hi >= 0x8000000000000000ull) { // negative coefficient!
+              C1_lo = ~C1_lo;
+              C1_lo++;
+              C1_hi = ~C1_hi;
+              if (C1_lo == 0x0)
+                C1_hi++;
+              x_sign = y_sign; // the result will have the sign of y
+            }
+          }
+          // assemble the result
+          res.w[1] = x_sign | y_exp | C1_hi;
+          res.w[0] = C1_lo;
+        } else if (delta == P34 - q2) {
+          // calculate C' directly; the result may be inexact if it requires 
+          // P34+1 decimal digits; in this case the 'cutoff' point for addition
+          // is at the position of the lsb of C2, so 0 <= e1-e2 <= P34-1
+          // The coefficient of the result is C1 * 10^(e1-e2) + C2 and the
+          // exponent is e2; either C1 or 10^(e1-e2) may not fit is 64 bits,
+          // but their product fits with certainty in 128 bits (actually in 113)
+          scale = delta - q1 + q2; // scale = (int)(e1 >> 49) - (int)(e2 >> 49)
+          if (scale >= 20) { // 10^(e1-e2) does not fit in 64 bits, but C1 does
+            __mul_128x64_to_128 (C1, C1_lo, __bid_ten2k128[scale - 20]);
+          } else if (scale >= 1) {
+            // if 1 <= scale <= 19 then 10^(e1-e2) fits in 64 bits
+            if (q1 <= 19) { // C1 fits in 64 bits
+              __mul_64x64_to_128MACH (C1, C1_lo, __bid_ten2k64[scale]);
+            } else { // q1 >= 20
+              C1.w[1] = C1_hi;
+              C1.w[0] = C1_lo;
+              __mul_128x64_to_128 (C1, __bid_ten2k64[scale], C1);
+            }
+          } else { // if (scale == 0) C1 is unchanged
+            C1.w[1] = C1_hi;
+            C1.w[0] = C1_lo; // only the low part is necessary
+          }
+          C1_hi = C1.w[1];
+          C1_lo = C1.w[0];
+          // now add C2
+          if (x_sign == y_sign) {
+            // the result can overflow!
+            C1_lo = C1_lo + C2_lo;
+            C1_hi = C1_hi + C2_hi;
+            if (C1_lo < C1.w[0])
+              C1_hi++;
+            // test for overflow, possible only when C1 >= 10^34
+            if (C1_hi > 0x0001ed09bead87c0ull || 
+                (C1_hi == 0x0001ed09bead87c0ull && 
+                C1_lo >= 0x378d8e6400000000ull)) { // C1 >= 10^34
+              // in this case q = P34 + 1 and x = q - P34 = 1, so multiply 
+              // C'' = C'+ 5 = C1 + 5 by k1 ~ 10^(-1) calculated for P34 + 1 
+              // decimal digits
+              // Calculate C'' = C' + 1/2 * 10^x
+              if (C1_lo >= 0xfffffffffffffffbull) { // low half add has carry
+                C1_lo = C1_lo + 5;
+                C1_hi = C1_hi + 1;
+              } else {
+                C1_lo = C1_lo + 5;
+              }
+              // the approximation of 10^(-1) was rounded up to 118 bits
+              // 10^(-1) =~ 33333333333333333333333333333400 * 2^-129
+              // 10^(-1) =~ 19999999999999999999999999999a00 * 2^-128
+              C1.w[1] = C1_hi;
+              C1.w[0] = C1_lo; // C''
+              __bid_ten2m1.w[1] = 0x1999999999999999ull;
+              __bid_ten2m1.w[0] = 0x9999999999999a00ull;
+              __mul_128x128_to_256 (P256, C1, __bid_ten2m1); // P256 = C*, f*
+              // C* is actually floor(C*) in this case
+              // the top Ex = 128 bits of 10^(-1) are 
+              // T* = 0x00199999999999999999999999999999
+              // if (0 < f* < 10^(-x)) then
+              //   if floor(C*) is even then C = floor(C*) - logical right 
+              //       shift; C has p decimal digits, correct by Prop. 1)
+              //   else if floor(C*) is odd C = floor(C*) - 1 (logical right
+              //       shift; C has p decimal digits, correct by Pr. 1)
+              // else
+              //   C = floor(C*) (logical right shift; C has p decimal digits,
+              //       correct by Property 1)
+              // n = C * 10^(e2+x)
+              if ((P256.w[1] || P256.w[0])
+                  && (P256.w[1] < 0x1999999999999999ull
+                      || (P256.w[1] == 0x1999999999999999ull
+                      && P256.w[0] <= 0x9999999999999999ull))) {
+                // the result is a midpoint
+                if (P256.w[2] & 0x01) {
+                  is_midpoint_gt_even = 1;
+                  // if floor(C*) is odd C = floor(C*) - 1; the result is not 0
+                  P256.w[2]--;
+                  if (P256.w[2] == 0xffffffffffffffffull)
+                    P256.w[3]--;
+                } else {
+                  is_midpoint_lt_even = 1;
+                }
+              }
+              // n = Cstar * 10^(e2+1)
+              y_exp = y_exp + EXP_P1;
+              // C* != 10^P because C* has P34 digits
+              // check for overflow
+              if (y_exp == EXP_MAX_P1
+                  && (rnd_mode == ROUNDING_TO_NEAREST
+                      || rnd_mode == ROUNDING_TIES_AWAY)) {
+                // overflow for RN
+                res.w[1] = x_sign | 0x7800000000000000ull; // +/-inf
+                res.w[0] = 0x0ull;
+                // set the inexact flag
+                *pfpsf |= INEXACT_EXCEPTION;
+                // set the overflow flag
+                *pfpsf |= OVERFLOW_EXCEPTION;
+                BID_RETURN (res);
+              }
+              // if (0 < f* - 1/2 < 10^(-x)) then 
+              //   the result of the addition is exact 
+              // else 
+              //   the result of the addition is inexact
+              if (P256.w[1] > 0x8000000000000000ull || 
+                  (P256.w[1] == 0x8000000000000000ull && 
+                  P256.w[0] > 0x0ull)) { // the result may be exact
+                tmp64 = P256.w[1] - 0x8000000000000000ull; // f* - 1/2
+                if ((tmp64 > 0x1999999999999999ull
+                     || (tmp64 == 0x1999999999999999ull
+                     && P256.w[0] >= 0x9999999999999999ull))) {
+                  // set the inexact flag
+                  *pfpsf |= INEXACT_EXCEPTION;
+                  is_inexact = 1;
+                }        // else the result is exact
+              } else { // the result is inexact
+                // set the inexact flag
+                *pfpsf |= INEXACT_EXCEPTION;
+                is_inexact = 1;
+              }
+              C1_hi = P256.w[3];
+              C1_lo = P256.w[2];
+              if (!is_midpoint_gt_even && !is_midpoint_lt_even) {
+                is_inexact_lt_midpoint = is_inexact
+                  && (P256.w[1] & 0x8000000000000000ull);
+                is_inexact_gt_midpoint = is_inexact
+                  && !(P256.w[1] & 0x8000000000000000ull);
+              }
+              // general correction from RN to RA, RM, RP, RZ; 
+              // result uses y_exp
+              if (rnd_mode != ROUNDING_TO_NEAREST) {
+                if ((!x_sign && 
+                    ((rnd_mode == ROUNDING_UP && is_inexact_lt_midpoint) || 
+                    ((rnd_mode == ROUNDING_TIES_AWAY || rnd_mode == ROUNDING_UP)
+                    && is_midpoint_gt_even))) || 
+                    (x_sign && 
+                    ((rnd_mode == ROUNDING_DOWN && is_inexact_lt_midpoint) || 
+                    ((rnd_mode == ROUNDING_TIES_AWAY || 
+                    rnd_mode == ROUNDING_DOWN) && is_midpoint_gt_even)))) {
+                  // C1 = C1 + 1
+                  C1_lo = C1_lo + 1;
+                  if (C1_lo == 0) { // rounding overflow in the low 64 bits
+                    C1_hi = C1_hi + 1;
+                  }
+                  if (C1_hi == 0x0001ed09bead87c0ull
+                      && C1_lo == 0x378d8e6400000000ull) {
+                    // C1 = 10^34 => rounding overflow
+                    C1_hi = 0x0000314dc6448d93ull;
+                    C1_lo = 0x38c15b0a00000000ull; // 10^33
+                    y_exp = y_exp + EXP_P1;
+                  }
+                } else if ((is_midpoint_lt_even || is_inexact_gt_midpoint) && 
+                    ((x_sign && (rnd_mode == ROUNDING_UP || 
+                    rnd_mode == ROUNDING_TO_ZERO)) || (!x_sign && 
+                    (rnd_mode == ROUNDING_DOWN || 
+                    rnd_mode == ROUNDING_TO_ZERO)))) {
+                  // C1 = C1 - 1
+                  C1_lo = C1_lo - 1;
+                  if (C1_lo == 0xffffffffffffffffull)
+                    C1_hi--;
+                  // check if we crossed into the lower decade
+                  if (C1_hi == 0x0000314dc6448d93ull && 
+                      C1_lo == 0x38c15b09ffffffffull) { // 10^33 - 1
+                    C1_hi = 0x0001ed09bead87c0ull; // 10^34 - 1
+                    C1_lo = 0x378d8e63ffffffffull;
+                    y_exp = y_exp - EXP_P1;
+                    // no underflow, because delta + q2 >= P34 + 1
+                  }
+                } else {
+                  ; // exact, the result is already correct
+                }
+                // in all cases check for overflow (RN and RA solved already)
+                if (y_exp == EXP_MAX_P1) { // overflow
+                  if ((rnd_mode == ROUNDING_DOWN && x_sign) || // RM and res < 0
+                      (rnd_mode == ROUNDING_UP && !x_sign)) { // RP and res > 0
+                    C1_hi = 0x7800000000000000ull; // +inf
+                    C1_lo = 0x0ull;
+                  } else { // RM and res > 0, RP and res < 0, or RZ
+                    C1_hi = 0x5fffed09bead87c0ull;
+                    C1_lo = 0x378d8e63ffffffffull;
+                  }
+                  y_exp = 0; // x_sign is preserved
+                  // set the inexact flag (in case the exact addition was exact)
+                  *pfpsf |= INEXACT_EXCEPTION;
+                  // set the overflow flag
+                  *pfpsf |= OVERFLOW_EXCEPTION;
+                }
+              }
+            } // else if (C1 < 10^34) then C1 is the coeff.; the result is exact
+          } else { // if x_sign != y_sign the result is exact
+            C1_lo = C1_lo - C2_lo;
+            C1_hi = C1_hi - C2_hi;
+            if (C1_lo > C1.w[0])
+              C1_hi--;
+            // the result can be zero, but it cannot overflow
+            if (C1_lo == 0 && C1_hi == 0) {
+              // assemble the result
+              if (x_exp < y_exp)
+                res.w[1] = x_exp;
+              else
+                res.w[1] = y_exp;
+              res.w[0] = 0;
+              if (rnd_mode == ROUNDING_DOWN) {
+                res.w[1] |= 0x8000000000000000ull;
+              }
+              BID_RETURN (res);
+            }
+            if (C1_hi >= 0x8000000000000000ull) { // negative coefficient!
+              C1_lo = ~C1_lo;
+              C1_lo++;
+              C1_hi = ~C1_hi;
+              if (C1_lo == 0x0)
+                C1_hi++;
+              x_sign = y_sign; // the result will have the sign of y
+            }
+          }
+          // assemble the result
+          res.w[1] = x_sign | y_exp | C1_hi;
+          res.w[0] = C1_lo;
+        } else { // if (delta >= P34 + 1 - q2)
+          // instead of C' = (C1 * 10^(e1-e2) + C2)rnd,P34
+          // calculate C' = C1 * 10^(e1-e2-x1) + (C2 * 10^(-x1))rnd,P34 
+          // where x1 = q1 + e1 - e2 - P34, 1 <= x1 <= P34 - 1
+          // In most cases C' will have P34 digits, and n = C' * 10^(e2+x1)
+          // If the result has P34+1 digits, redo the steps above with x1+1
+          // If the result has P34-1 digits or less, redo the steps above with 
+          // x1-1 but only if initially x1 >= 1
+          // NOTE: these two steps can be improved, e.g we could guess if
+          // P34+1 or P34-1 digits will be obtained by adding/subtracting just
+          // the top 64 bits of the two operands
+          // The result cannot be zero, but it can overflow
+          x1 = delta + q2 - P34; // 1 <= x1 <= P34-1
+        roundC2:
+          // Calculate C1 * 10^(e1-e2-x1) where 0 <= e1-e2-x1 <= P34 - 1
+          // scale = (int)(e1 >> 49) - (int)(e2 >> 49) - x1; 0 <= scale <= P34-1
+          scale = delta - q1 + q2 - x1; // scale = e1 - e2 - x1 = P34 - q1
+          // either C1 or 10^(e1-e2-x1) may not fit is 64 bits,
+          // but their product fits with certainty in 128 bits (actually in 113)
+          if (scale >= 20) { //10^(e1-e2-x1) doesn't fit in 64 bits, but C1 does
+            __mul_128x64_to_128 (C1, C1_lo, __bid_ten2k128[scale - 20]);
+          } else if (scale >= 1) {
+            // if 1 <= scale <= 19 then 10^(e1-e2-x1) fits in 64 bits
+            if (q1 <= 19) { // C1 fits in 64 bits
+              __mul_64x64_to_128MACH (C1, C1_lo, __bid_ten2k64[scale]);
+            } else { // q1 >= 20
+              C1.w[1] = C1_hi;
+              C1.w[0] = C1_lo;
+              __mul_128x64_to_128 (C1, __bid_ten2k64[scale], C1);
+            }
+          } else { // if (scale == 0) C1 is unchanged
+            C1.w[1] = C1_hi;
+            C1.w[0] = C1_lo;
+          }
+          tmp64 = C1.w[0]; // C1.w[1], C1.w[0] contains C1 * 10^(e1-e2-x1)
+
+          // now round C2 to q2-x1 decimal digits, where 1<=x1<=q2-1<=P34-1
+          // (but if we got here a second time after x1 = x1 - 1, then 
+          // x1 >= 0; note that for x1 = 0 C2 is unchanged)
+          // C2' = C2 + 1/2 * 10^x1 = C2 + 5 * 10^(x1-1)
+          ind = x1 - 1; // 0 <= ind <= q2-2<=P34-2=32; but note that if x1 = 0
+          // during a second pass, then ind = -1
+          if (ind >= 0) { // if (x1 >= 1)
+            C2.w[0] = C2_lo;
+            C2.w[1] = C2_hi;
+            if (ind <= 18) {
+              C2.w[0] = C2.w[0] + __bid_midpoint64[ind];
+              if (C2.w[0] < C2_lo)
+                C2.w[1]++;
+            } else { // 19 <= ind <= 32
+              C2.w[0] = C2.w[0] + __bid_midpoint128[ind - 19].w[0];
+              C2.w[1] = C2.w[1] + __bid_midpoint128[ind - 19].w[1];
+              if (C2.w[0] < C2_lo)
+                C2.w[1]++;
+            }
+            // the approximation of 10^(-x1) was rounded up to 118 bits
+            __mul_128x128_to_256 (R256, C2, __bid_ten2mk128[ind]); // R256 = C2*, f2*
+            // calculate C2* and f2*
+            // C2* is actually floor(C2*) in this case
+            // C2* and f2* need shifting and masking, as shown by
+            // __bid_shiftright128[] and __bid_maskhigh128[]
+            // the top Ex bits of 10^(-x1) are T* = __bid_ten2mk128trunc[ind], e.g.
+            // if x1=1, T*=__bid_ten2mk128trunc[0]=0x19999999999999999999999999999999
+            // if (0 < f2* < 10^(-x1)) then
+            //   if floor(C1+C2*) is even then C2* = floor(C2*) - logical right
+            //       shift; C2* has p decimal digits, correct by Prop. 1)
+            //   else if floor(C1+C2*) is odd C2* = floor(C2*)-1 (logical right
+            //       shift; C2* has p decimal digits, correct by Pr. 1)
+            // else
+            //   C2* = floor(C2*) (logical right shift; C has p decimal digits,
+            //       correct by Property 1)
+            // n = C2* * 10^(e2+x1)
+
+            if (ind <= 2) {
+              highf2star.w[1] = 0x0;
+              highf2star.w[0] = 0x0; // low f2* ok
+            } else if (ind <= 21) {
+              highf2star.w[1] = 0x0;
+              highf2star.w[0] = R256.w[2] & __bid_maskhigh128[ind]; // low f2* ok
+            } else {
+              highf2star.w[1] = R256.w[3] & __bid_maskhigh128[ind];
+              highf2star.w[0] = R256.w[2]; // low f2* is ok
+            }
+            // shift right C2* by Ex-128 = __bid_shiftright128[ind]
+            if (ind >= 3) {
+              shift = __bid_shiftright128[ind];
+              if (shift < 64) { // 3 <= shift <= 63
+                R256.w[2] =
+                  (R256.w[2] >> shift) | (R256.w[3] << (64 - shift));
+                R256.w[3] = (R256.w[3] >> shift);
+              } else { // 66 <= shift <= 102
+                R256.w[2] = (R256.w[3] >> (shift - 64));
+                R256.w[3] = 0x0ULL;
+              }
+            }
+            if (second_pass) {
+              is_inexact_lt_midpoint = 0;
+              is_inexact_gt_midpoint = 0;
+              is_midpoint_lt_even = 0;
+              is_midpoint_gt_even = 0;
+            }
+            // determine inexactness of the rounding of C2* (this may be 
+            // followed by a second rounding only if we get P34+1 
+            // decimal digits)
+            // if (0 < f2* - 1/2 < 10^(-x1)) then
+            //   the result is exact
+            // else (if f2* - 1/2 > T* then)
+            //   the result of is inexact
+            if (ind <= 2) {
+              if (R256.w[1] > 0x8000000000000000ull || 
+                  (R256.w[1] == 0x8000000000000000ull && R256.w[0] > 0x0ull)) {
+                  // f2* > 1/2 and the result may be exact
+                tmp64A = R256.w[1] - 0x8000000000000000ull; // f* - 1/2
+                if ((tmp64A > __bid_ten2mk128trunc[ind].w[1]
+                     || (tmp64A == __bid_ten2mk128trunc[ind].w[1]
+                     && R256.w[0] >= __bid_ten2mk128trunc[ind].w[0]))) {
+                  // set the inexact flag
+                  // *pfpsf |= INEXACT_EXCEPTION;
+                  tmp_inexact = 1; // may be set again during a second pass
+                  // this rounding is applied to C2 only!
+                  if (x_sign == y_sign)
+                    is_inexact_lt_midpoint = 1;
+                  else        // if (x_sign != y_sign)
+                    is_inexact_gt_midpoint = 1;
+                }        // else the result is exact
+                // rounding down, unless a midpoint in [ODD, EVEN]
+              } else { // the result is inexact; f2* <= 1/2
+                // set the inexact flag
+                // *pfpsf |= INEXACT_EXCEPTION;
+                tmp_inexact = 1; // just in case we will round a second time
+                // rounding up, unless a midpoint in [EVEN, ODD]
+                // this rounding is applied to C2 only!
+                if (x_sign == y_sign)
+                  is_inexact_gt_midpoint = 1;
+                else        // if (x_sign != y_sign)
+                  is_inexact_lt_midpoint = 1;
+              }
+            } else if (ind <= 21) { // if 3 <= ind <= 21
+              if (highf2star.w[1] > 0x0 || (highf2star.w[1] == 0x0
+                  && highf2star.w[0] > __bid_one_half128[ind])
+                  || ((highf2star.w[1] == 0x0
+                  && highf2star.w[0] == __bid_one_half128[ind])
+                  && (R256.w[1] || R256.w[0]))) {
+                // f2* > 1/2 and the result may be exact
+                // Calculate f2* - 1/2
+                tmp64A = highf2star.w[0] - __bid_one_half128[ind];
+                tmp64B = highf2star.w[1];
+                if (tmp64A > highf2star.w[0])
+                  tmp64B--;
+                if (tmp64B || tmp64A
+                    || R256.w[1] > __bid_ten2mk128trunc[ind].w[1]
+                    || (R256.w[1] == __bid_ten2mk128trunc[ind].w[1]
+                    && R256.w[0] > __bid_ten2mk128trunc[ind].w[0])) {
+                  // set the inexact flag
+                  // *pfpsf |= INEXACT_EXCEPTION;
+                  tmp_inexact = 1; // may be set again during a second pass
+                  // this rounding is applied to C2 only!
+                  if (x_sign == y_sign)
+                    is_inexact_lt_midpoint = 1;
+                  else        // if (x_sign != y_sign)
+                    is_inexact_gt_midpoint = 1;
+                }        // else the result is exact
+              } else { // the result is inexact; f2* <= 1/2
+                // set the inexact flag
+                // *pfpsf |= INEXACT_EXCEPTION;
+                tmp_inexact = 1; // may be set again during a second pass
+                // rounding up, unless a midpoint in [EVEN, ODD]
+                // this rounding is applied to C2 only!
+                if (x_sign == y_sign)
+                  is_inexact_gt_midpoint = 1;
+                else        // if (x_sign != y_sign)
+                  is_inexact_lt_midpoint = 1;
+              }
+            } else { // if 22 <= ind <= 33
+              if (highf2star.w[1] > __bid_one_half128[ind]
+                  || (highf2star.w[1] == __bid_one_half128[ind]
+                  && (highf2star.w[0] || R256.w[1]
+                      || R256.w[0]))) {
+                // f2* > 1/2 and the result may be exact
+                // Calculate f2* - 1/2
+                // tmp64A = highf2star.w[0];
+                tmp64B = highf2star.w[1] - __bid_one_half128[ind];
+                if (tmp64B || highf2star.w[0]
+                    || R256.w[1] > __bid_ten2mk128trunc[ind].w[1]
+                    || (R256.w[1] == __bid_ten2mk128trunc[ind].w[1]
+                    && R256.w[0] > __bid_ten2mk128trunc[ind].w[0])) {
+                  // set the inexact flag
+                  // *pfpsf |= INEXACT_EXCEPTION;
+                  tmp_inexact = 1; // may be set again during a second pass
+                  // this rounding is applied to C2 only!
+                  if (x_sign == y_sign)
+                    is_inexact_lt_midpoint = 1;
+                  else        // if (x_sign != y_sign)
+                    is_inexact_gt_midpoint = 1;
+                }        // else the result is exact
+              } else { // the result is inexact; f2* <= 1/2
+                // set the inexact flag
+                // *pfpsf |= INEXACT_EXCEPTION;
+                tmp_inexact = 1; // may be set again during a second pass
+                // rounding up, unless a midpoint in [EVEN, ODD]
+                // this rounding is applied to C2 only!
+                if (x_sign == y_sign)
+                  is_inexact_gt_midpoint = 1;
+                else        // if (x_sign != y_sign)
+                  is_inexact_lt_midpoint = 1;
+              }
+            }
+            // check for midpoints
+            if ((R256.w[1] || R256.w[0]) && (highf2star.w[1] == 0)
+                && (highf2star.w[0] == 0)
+                && (R256.w[1] < __bid_ten2mk128trunc[ind].w[1]
+                    || (R256.w[1] == __bid_ten2mk128trunc[ind].w[1]
+                    && R256.w[0] <= __bid_ten2mk128trunc[ind].w[0]))) {
+              // the result is a midpoint
+              if ((tmp64 + R256.w[2]) & 0x01) { // MP in [EVEN, ODD]
+                // if floor(C2*) is odd C = floor(C2*) - 1; the result may be 0
+                R256.w[2]--;
+                if (R256.w[2] == 0xffffffffffffffffull)
+                  R256.w[3]--;
+                // this rounding is applied to C2 only!
+                if (x_sign == y_sign)
+                  is_midpoint_gt_even = 1;
+                else        // if (x_sign != y_sign)
+                  is_midpoint_lt_even = 1;
+                is_inexact_lt_midpoint = 0;
+                is_inexact_gt_midpoint = 0;
+              } else {
+                // else MP in [ODD, EVEN]
+                // this rounding is applied to C2 only!
+                if (x_sign == y_sign)
+                  is_midpoint_lt_even = 1;
+                else        // if (x_sign != y_sign)
+                  is_midpoint_gt_even = 1;
+                is_inexact_lt_midpoint = 0;
+                is_inexact_gt_midpoint = 0;
+              }
+            }
+            // end if (ind >= 0)
+          } else { // if (ind == -1); only during a 2nd pass, and when x1 = 0
+            R256.w[2] = C2_lo;
+            R256.w[3] = C2_hi;
+            tmp_inexact = 0;
+            // to correct a possible setting to 1 from 1st pass
+            if (second_pass) {
+              is_midpoint_lt_even = 0;
+              is_midpoint_gt_even = 0;
+              is_inexact_lt_midpoint = 0;
+              is_inexact_gt_midpoint = 0;
+            }
+          }
+          // and now add/subtract C1 * 10^(e1-e2-x1) +/- (C2 * 10^(-x1))rnd,P34
+          if (x_sign == y_sign) { // addition; could overflow
+            // no second pass is possible this way (only for x_sign != y_sign)
+            C1.w[0] = C1.w[0] + R256.w[2];
+            C1.w[1] = C1.w[1] + R256.w[3];
+            if (C1.w[0] < tmp64)
+              C1.w[1]++; // carry
+            // if the sum has P34+1 digits, i.e. C1>=10^34 redo the calculation
+            // with x1=x1+1 
+            if (C1.w[1] > 0x0001ed09bead87c0ull || 
+                (C1.w[1] == 0x0001ed09bead87c0ull && 
+                C1.w[0] >= 0x378d8e6400000000ull)) { // C1 >= 10^34
+              // chop off one more digit from the sum, but make sure there is
+              // no double-rounding error (see table - double rounding logic)
+              // now round C1 from P34+1 to P34 decimal digits
+              // C1' = C1 + 1/2 * 10 = C1 + 5
+              if (C1.w[0] >= 0xfffffffffffffffbull) { // low half add has carry
+                C1.w[0] = C1.w[0] + 5;
+                C1.w[1] = C1.w[1] + 1;
+              } else {
+                C1.w[0] = C1.w[0] + 5;
+              }
+              // the approximation of 10^(-1) was rounded up to 118 bits
+              __mul_128x128_to_256 (Q256, C1, __bid_ten2mk128[0]); // Q256 = C1*, f1*
+              // C1* is actually floor(C1*) in this case
+              // the top 128 bits of 10^(-1) are
+              // T* = __bid_ten2mk128trunc[0]=0x19999999999999999999999999999999
+              // if (0 < f1* < 10^(-1)) then
+              //   if floor(C1*) is even then C1* = floor(C1*) - logical right
+              //       shift; C1* has p decimal digits, correct by Prop. 1)
+              //   else if floor(C1*) is odd C1* = floor(C1*) - 1 (logical right
+              //       shift; C1* has p decimal digits, correct by Pr. 1)
+              // else
+              //   C1* = floor(C1*) (logical right shift; C has p decimal digits
+              //       correct by Property 1)
+              // n = C1* * 10^(e2+x1+1)
+              if ((Q256.w[1] || Q256.w[0])
+                  && (Q256.w[1] < __bid_ten2mk128trunc[0].w[1]
+                      || (Q256.w[1] == __bid_ten2mk128trunc[0].w[1]
+                      && Q256.w[0] <= __bid_ten2mk128trunc[0].w[0]))) {
+                // the result is a midpoint
+                if (is_inexact_lt_midpoint) { // for the 1st rounding
+                  is_inexact_gt_midpoint = 1;
+                  is_inexact_lt_midpoint = 0;
+                  is_midpoint_gt_even = 0;
+                  is_midpoint_lt_even = 0;
+                } else if (is_inexact_gt_midpoint) { // for the 1st rounding
+                  Q256.w[2]--;
+                  if (Q256.w[2] == 0xffffffffffffffffull)
+                    Q256.w[3]--;
+                  is_inexact_gt_midpoint = 0;
+                  is_inexact_lt_midpoint = 1;
+                  is_midpoint_gt_even = 0;
+                  is_midpoint_lt_even = 0;
+                } else if (is_midpoint_gt_even) { // for the 1st rounding
+                  // Note: cannot have is_midpoint_lt_even
+                  is_inexact_gt_midpoint = 0;
+                  is_inexact_lt_midpoint = 1;
+                  is_midpoint_gt_even = 0;
+                  is_midpoint_lt_even = 0;
+                } else { // the first rounding must have been exact
+                  if (Q256.w[2] & 0x01) { // MP in [EVEN, ODD]
+                    // the truncated result is correct
+                    Q256.w[2]--;
+                    if (Q256.w[2] == 0xffffffffffffffffull)
+                      Q256.w[3]--;
+                    is_inexact_gt_midpoint = 0;
+                    is_inexact_lt_midpoint = 0;
+                    is_midpoint_gt_even = 1;
+                    is_midpoint_lt_even = 0;
+                  } else { // MP in [ODD, EVEN]
+                    is_inexact_gt_midpoint = 0;
+                    is_inexact_lt_midpoint = 0;
+                    is_midpoint_gt_even = 0;
+                    is_midpoint_lt_even = 1;
+                  }
+                }
+                tmp_inexact = 1; // in all cases
+              } else { // the result is not a midpoint 
+                // determine inexactness of the rounding of C1 (the sum C1+C2*)
+                // if (0 < f1* - 1/2 < 10^(-1)) then
+                //   the result is exact
+                // else (if f1* - 1/2 > T* then)
+                //   the result of is inexact
+                // ind = 0
+                if (Q256.w[1] > 0x8000000000000000ull
+                    || (Q256.w[1] == 0x8000000000000000ull
+                    && Q256.w[0] > 0x0ull)) {
+                  // f1* > 1/2 and the result may be exact
+                  Q256.w[1] = Q256.w[1] - 0x8000000000000000ull; // f1* - 1/2
+                  if ((Q256.w[1] > __bid_ten2mk128trunc[0].w[1]
+                       || (Q256.w[1] == __bid_ten2mk128trunc[0].w[1]
+                       && Q256.w[0] > __bid_ten2mk128trunc[0].w[0]))) {
+                    is_inexact_gt_midpoint = 0;
+                    is_inexact_lt_midpoint = 1;
+                    is_midpoint_gt_even = 0;
+                    is_midpoint_lt_even = 0;
+                    // set the inexact flag
+                    tmp_inexact = 1;
+                    // *pfpsf |= INEXACT_EXCEPTION;
+                  } else { // else the result is exact for the 2nd rounding
+                    if (tmp_inexact) { // if the previous rounding was inexact
+                      if (is_midpoint_lt_even) {
+                        is_inexact_gt_midpoint = 1;
+                        is_midpoint_lt_even = 0;
+                      } else if (is_midpoint_gt_even) {
+                        is_inexact_lt_midpoint = 1;
+                        is_midpoint_gt_even = 0;
+                      } else {
+                        ; // no change
+                      }
+                    }
+                  }
+                  // rounding down, unless a midpoint in [ODD, EVEN]
+                } else { // the result is inexact; f1* <= 1/2
+                  is_inexact_gt_midpoint = 1;
+                  is_inexact_lt_midpoint = 0;
+                  is_midpoint_gt_even = 0;
+                  is_midpoint_lt_even = 0;
+                  // set the inexact flag
+                  tmp_inexact = 1;
+                  // *pfpsf |= INEXACT_EXCEPTION;
+                }
+              }        // end 'the result is not a midpoint'
+              // n = C1 * 10^(e2+x1)
+              C1.w[1] = Q256.w[3];
+              C1.w[0] = Q256.w[2];
+              y_exp = y_exp + ((UINT64) (x1 + 1) << 49);
+            } else { // C1 < 10^34
+              // C1.w[1] and C1.w[0] already set
+              // n = C1 * 10^(e2+x1)
+              y_exp = y_exp + ((UINT64) x1 << 49);
+            }
+            // check for overflow
+            if (y_exp == EXP_MAX_P1
+                && (rnd_mode == ROUNDING_TO_NEAREST
+                    || rnd_mode == ROUNDING_TIES_AWAY)) {
+              res.w[1] = 0x7800000000000000ull | x_sign; // +/-inf
+              res.w[0] = 0x0ull;
+              // set the inexact flag
+              *pfpsf |= INEXACT_EXCEPTION;
+              // set the overflow flag
+              *pfpsf |= OVERFLOW_EXCEPTION;
+              BID_RETURN (res);
+            }        // else no overflow
+          } else { // if x_sign != y_sign the result of this subtract. is exact
+            C1.w[0] = C1.w[0] - R256.w[2];
+            C1.w[1] = C1.w[1] - R256.w[3];
+            if (C1.w[0] > tmp64)
+              C1.w[1]--; // borrow
+            if (C1.w[1] >= 0x8000000000000000ull) { // negative coefficient!
+              C1.w[0] = ~C1.w[0];
+              C1.w[0]++;
+              C1.w[1] = ~C1.w[1];
+              if (C1.w[0] == 0x0)
+                C1.w[1]++;
+              tmp_sign = y_sign; 
+                  // the result will have the sign of y if last rnd
+            } else {
+              tmp_sign = x_sign;
+            }
+            // if the difference has P34-1 digits or less, i.e. C1 < 10^33 then
+            //   redo the calculation with x1=x1-1;
+            // redo the calculation also if C1 = 10^33 and 
+            //   (is_inexact_gt_midpoint or is_midpoint_lt_even);
+            //   (the last part should have really been 
+            //   (is_inexact_lt_midpoint or is_midpoint_gt_even) from
+            //    the rounding of C2, but the position flags have been reversed)
+            // 10^33 = 0x0000314dc6448d93 0x38c15b0a00000000
+            if ((C1.w[1] < 0x0000314dc6448d93ull || 
+                (C1.w[1] == 0x0000314dc6448d93ull && 
+                C1.w[0] < 0x38c15b0a00000000ull)) || 
+                (C1.w[1] == 0x0000314dc6448d93ull && 
+                C1.w[0] == 0x38c15b0a00000000ull && 
+                (is_inexact_gt_midpoint || is_midpoint_lt_even))) { // C1=10^33
+              x1 = x1 - 1; // x1 >= 0
+              if (x1 >= 0) {
+                // clear position flags and tmp_inexact
+                is_midpoint_lt_even = 0;
+                is_midpoint_gt_even = 0;
+                is_inexact_lt_midpoint = 0;
+                is_inexact_gt_midpoint = 0;
+                tmp_inexact = 0;
+                second_pass = 1;
+                goto roundC2; // else result has less than P34 digits
+              }
+            }
+            // if the coefficient of the result is 10^34 it means that this
+            // must be the second pass, and we are done 
+            if (C1.w[1] == 0x0001ed09bead87c0ull && 
+                C1.w[0] == 0x378d8e6400000000ull) { // if  C1 = 10^34
+              C1.w[1] = 0x0000314dc6448d93ull; // C1 = 10^33
+              C1.w[0] = 0x38c15b0a00000000ull;
+              y_exp = y_exp + ((UINT64) 1 << 49);
+            }
+            x_sign = tmp_sign;
+            if (x1 >= 1)
+              y_exp = y_exp + ((UINT64) x1 << 49);
+            // x1 = -1 is possible at the end of a second pass when the 
+            // first pass started with x1 = 1 
+          }
+          C1_hi = C1.w[1];
+          C1_lo = C1.w[0];
+          // general correction from RN to RA, RM, RP, RZ; result uses y_exp
+          if (rnd_mode != ROUNDING_TO_NEAREST) {
+            if ((!x_sign
+                && ((rnd_mode == ROUNDING_UP
+                    && is_inexact_lt_midpoint)
+                    || ((rnd_mode == ROUNDING_TIES_AWAY
+                        || rnd_mode == ROUNDING_UP)
+                    && is_midpoint_gt_even))) || 
+                (x_sign
+                && ((rnd_mode == ROUNDING_DOWN
+                    && is_inexact_lt_midpoint)
+                    || ((rnd_mode == ROUNDING_TIES_AWAY
+                        || rnd_mode == ROUNDING_DOWN)
+                    && is_midpoint_gt_even)))) {
+              // C1 = C1 + 1
+              C1_lo = C1_lo + 1;
+              if (C1_lo == 0) { // rounding overflow in the low 64 bits
+                C1_hi = C1_hi + 1;
+              }
+              if (C1_hi == 0x0001ed09bead87c0ull
+                  && C1_lo == 0x378d8e6400000000ull) {
+                // C1 = 10^34 => rounding overflow
+                C1_hi = 0x0000314dc6448d93ull;
+                C1_lo = 0x38c15b0a00000000ull; // 10^33
+                y_exp = y_exp + EXP_P1;
+              }
+            } else if ((is_midpoint_lt_even || is_inexact_gt_midpoint) &&
+                ((x_sign &&
+                (rnd_mode == ROUNDING_UP || rnd_mode == ROUNDING_TO_ZERO)) ||
+                (!x_sign &&
+                (rnd_mode == ROUNDING_DOWN || rnd_mode == ROUNDING_TO_ZERO)))) {
+              // C1 = C1 - 1
+              C1_lo = C1_lo - 1;
+              if (C1_lo == 0xffffffffffffffffull)
+                C1_hi--;
+              // check if we crossed into the lower decade
+              if (C1_hi == 0x0000314dc6448d93ull && 
+                C1_lo == 0x38c15b09ffffffffull) { // 10^33 - 1
+                C1_hi = 0x0001ed09bead87c0ull; // 10^34 - 1
+                C1_lo = 0x378d8e63ffffffffull;
+                y_exp = y_exp - EXP_P1;
+                // no underflow, because delta + q2 >= P34 + 1
+              }
+            } else {
+              ; // exact, the result is already correct
+            }
+            // in all cases check for overflow (RN and RA solved already)
+            if (y_exp == EXP_MAX_P1) { // overflow
+              if ((rnd_mode == ROUNDING_DOWN && x_sign) || // RM and res < 0
+                  (rnd_mode == ROUNDING_UP && !x_sign)) { // RP and res > 0
+                C1_hi = 0x7800000000000000ull; // +inf
+                C1_lo = 0x0ull;
+              } else { // RM and res > 0, RP and res < 0, or RZ
+                C1_hi = 0x5fffed09bead87c0ull;
+                C1_lo = 0x378d8e63ffffffffull;
+              }
+              y_exp = 0; // x_sign is preserved
+              // set the inexact flag (in case the exact addition was exact)
+              *pfpsf |= INEXACT_EXCEPTION;
+              // set the overflow flag
+              *pfpsf |= OVERFLOW_EXCEPTION;
+            }
+          }
+          // assemble the result
+          res.w[1] = x_sign | y_exp | C1_hi;
+          res.w[0] = C1_lo;
+          if (tmp_inexact)
+            *pfpsf |= INEXACT_EXCEPTION;
+        }
+      } else { // if (-P34 + 1 <= delta <= -1) <=> 1 <= -delta <= P34 - 1
+        // NOTE: the following, up to "} else { // if x_sign != y_sign 
+        // the result is exact" is identical to "else if (delta == P34 - q2) {"
+        // from above; also, the code is not symmetric: a+b and b+a may take
+        // different paths (need to unify eventually!) 
+        // calculate C' = C2 + C1 * 10^(e1-e2) directly; the result may be 
+        // inexact if it requires P34 + 1 decimal digits; in either case the 
+        // 'cutoff' point for addition is at the position of the lsb of C2
+        // The coefficient of the result is C1 * 10^(e1-e2) + C2 and the
+        // exponent is e2; either C1 or 10^(e1-e2) may not fit is 64 bits,
+        // but their product fits with certainty in 128 bits (actually in 113)
+        // Note that 0 <= e1 - e2 <= P34 - 2
+        //   -P34 + 1 <= delta <= -1 <=> -P34 + 1 <= delta <= -1 <=>
+        //   -P34 + 1 <= q1 + e1 - q2 - e2 <= -1 <=>
+        //   q2 - q1 - P34 + 1 <= e1 - e2 <= q2 - q1 - 1 <=>
+        //   1 - P34 - P34 + 1 <= e1-e2 <= P34 - 1 - 1 => 0 <= e1-e2 <= P34 - 2
+        scale = delta - q1 + q2; // scale = (int)(e1 >> 49) - (int)(e2 >> 49)
+        if (scale >= 20) { // 10^(e1-e2) does not fit in 64 bits, but C1 does
+          __mul_128x64_to_128 (C1, C1_lo, __bid_ten2k128[scale - 20]);
+        } else if (scale >= 1) {
+          // if 1 <= scale <= 19 then 10^(e1-e2) fits in 64 bits
+          if (q1 <= 19) { // C1 fits in 64 bits
+            __mul_64x64_to_128MACH (C1, C1_lo, __bid_ten2k64[scale]);
+          } else { // q1 >= 20
+            C1.w[1] = C1_hi;
+            C1.w[0] = C1_lo;
+            __mul_128x64_to_128 (C1, __bid_ten2k64[scale], C1);
+          }
+        } else { // if (scale == 0) C1 is unchanged
+          C1.w[1] = C1_hi;
+          C1.w[0] = C1_lo; // only the low part is necessary
+        }
+        C1_hi = C1.w[1];
+        C1_lo = C1.w[0];
+        // now add C2
+        if (x_sign == y_sign) {
+          // the result can overflow!
+          C1_lo = C1_lo + C2_lo;
+          C1_hi = C1_hi + C2_hi;
+          if (C1_lo < C1.w[0])
+            C1_hi++;
+          // test for overflow, possible only when C1 >= 10^34
+          if (C1_hi > 0x0001ed09bead87c0ull || 
+              (C1_hi == 0x0001ed09bead87c0ull && 
+              C1_lo >= 0x378d8e6400000000ull)) { // C1 >= 10^34
+            // in this case q = P34 + 1 and x = q - P34 = 1, so multiply 
+            // C'' = C'+ 5 = C1 + 5 by k1 ~ 10^(-1) calculated for P34 + 1 
+            // decimal digits
+            // Calculate C'' = C' + 1/2 * 10^x
+            if (C1_lo >= 0xfffffffffffffffbull) { // low half add has carry
+              C1_lo = C1_lo + 5;
+              C1_hi = C1_hi + 1;
+            } else {
+              C1_lo = C1_lo + 5;
+            }
+            // the approximation of 10^(-1) was rounded up to 118 bits
+            // 10^(-1) =~ 33333333333333333333333333333400 * 2^-129
+            // 10^(-1) =~ 19999999999999999999999999999a00 * 2^-128
+            C1.w[1] = C1_hi;
+            C1.w[0] = C1_lo; // C''
+            __bid_ten2m1.w[1] = 0x1999999999999999ull;
+            __bid_ten2m1.w[0] = 0x9999999999999a00ull;
+            __mul_128x128_to_256 (P256, C1, __bid_ten2m1); // P256 = C*, f*
+            // C* is actually floor(C*) in this case
+            // the top Ex = 128 bits of 10^(-1) are 
+            // T* = 0x00199999999999999999999999999999
+            // if (0 < f* < 10^(-x)) then
+            //   if floor(C*) is even then C = floor(C*) - logical right 
+            //       shift; C has p decimal digits, correct by Prop. 1)
+            //   else if floor(C*) is odd C = floor(C*) - 1 (logical right
+            //       shift; C has p decimal digits, correct by Pr. 1)
+            // else
+            //   C = floor(C*) (logical right shift; C has p decimal digits,
+            //       correct by Property 1)
+            // n = C * 10^(e2+x)
+            if ((P256.w[1] || P256.w[0])
+                && (P256.w[1] < 0x1999999999999999ull
+                    || (P256.w[1] == 0x1999999999999999ull
+                    && P256.w[0] <= 0x9999999999999999ull))) {
+              // the result is a midpoint
+              if (P256.w[2] & 0x01) {
+                is_midpoint_gt_even = 1;
+                // if floor(C*) is odd C = floor(C*) - 1; the result is not 0
+                P256.w[2]--;
+                if (P256.w[2] == 0xffffffffffffffffull)
+                  P256.w[3]--;
+              } else {
+                is_midpoint_lt_even = 1;
+              }
+            }
+            // n = Cstar * 10^(e2+1)
+            y_exp = y_exp + EXP_P1;
+            // C* != 10^P34 because C* has P34 digits
+            // check for overflow
+            if (y_exp == EXP_MAX_P1
+                && (rnd_mode == ROUNDING_TO_NEAREST
+                    || rnd_mode == ROUNDING_TIES_AWAY)) {
+              // overflow for RN
+              res.w[1] = x_sign | 0x7800000000000000ull; // +/-inf
+              res.w[0] = 0x0ull;
+              // set the inexact flag
+              *pfpsf |= INEXACT_EXCEPTION;
+              // set the overflow flag
+              *pfpsf |= OVERFLOW_EXCEPTION;
+              BID_RETURN (res);
+            }
+            // if (0 < f* - 1/2 < 10^(-x)) then 
+            //   the result of the addition is exact 
+            // else 
+            //   the result of the addition is inexact
+            if (P256.w[1] > 0x8000000000000000ull || 
+                (P256.w[1] == 0x8000000000000000ull && 
+                P256.w[0] > 0x0ull)) { // the result may be exact
+              tmp64 = P256.w[1] - 0x8000000000000000ull; // f* - 1/2
+              if ((tmp64 > 0x1999999999999999ull
+                   || (tmp64 == 0x1999999999999999ull
+                   && P256.w[0] >= 0x9999999999999999ull))) {
+                // set the inexact flag
+                *pfpsf |= INEXACT_EXCEPTION;
+                is_inexact = 1;
+              }        // else the result is exact
+            } else { // the result is inexact
+              // set the inexact flag
+              *pfpsf |= INEXACT_EXCEPTION;
+              is_inexact = 1;
+            }
+            C1_hi = P256.w[3];
+            C1_lo = P256.w[2];
+            if (!is_midpoint_gt_even && !is_midpoint_lt_even) {
+              is_inexact_lt_midpoint = is_inexact
+                && (P256.w[1] & 0x8000000000000000ull);
+              is_inexact_gt_midpoint = is_inexact
+                && !(P256.w[1] & 0x8000000000000000ull);
+            }
+            // general correction from RN to RA, RM, RP, RZ; result uses y_exp
+            if (rnd_mode != ROUNDING_TO_NEAREST) {
+              if ((!x_sign && 
+                  ((rnd_mode == ROUNDING_UP && is_inexact_lt_midpoint) || 
+                  ((rnd_mode == ROUNDING_TIES_AWAY || rnd_mode == ROUNDING_UP) 
+                  && is_midpoint_gt_even))) || 
+                  (x_sign && 
+                  ((rnd_mode == ROUNDING_DOWN && is_inexact_lt_midpoint) || 
+                  ((rnd_mode == ROUNDING_TIES_AWAY || rnd_mode == ROUNDING_DOWN)
+                  && is_midpoint_gt_even)))) {
+                // C1 = C1 + 1
+                C1_lo = C1_lo + 1;
+                if (C1_lo == 0) { // rounding overflow in the low 64 bits
+                  C1_hi = C1_hi + 1;
+                }
+                if (C1_hi == 0x0001ed09bead87c0ull
+                    && C1_lo == 0x378d8e6400000000ull) {
+                  // C1 = 10^34 => rounding overflow
+                  C1_hi = 0x0000314dc6448d93ull;
+                  C1_lo = 0x38c15b0a00000000ull; // 10^33
+                  y_exp = y_exp + EXP_P1;
+                }
+              } else
+                if ((is_midpoint_lt_even || is_inexact_gt_midpoint) && 
+                    ((x_sign && 
+                    (rnd_mode == ROUNDING_UP || 
+                    rnd_mode == ROUNDING_TO_ZERO)) || 
+                    (!x_sign && 
+                    (rnd_mode == ROUNDING_DOWN || 
+                    rnd_mode == ROUNDING_TO_ZERO)))) {
+                // C1 = C1 - 1
+                C1_lo = C1_lo - 1;
+                if (C1_lo == 0xffffffffffffffffull)
+                  C1_hi--;
+                // check if we crossed into the lower decade
+                if (C1_hi == 0x0000314dc6448d93ull && 
+                    C1_lo == 0x38c15b09ffffffffull) { // 10^33 - 1
+                  C1_hi = 0x0001ed09bead87c0ull; // 10^34 - 1
+                  C1_lo = 0x378d8e63ffffffffull;
+                  y_exp = y_exp - EXP_P1;
+                  // no underflow, because delta + q2 >= P34 + 1
+                }
+              } else {
+                ; // exact, the result is already correct
+              }
+              // in all cases check for overflow (RN and RA solved already)
+              if (y_exp == EXP_MAX_P1) { // overflow
+                if ((rnd_mode == ROUNDING_DOWN && x_sign) || // RM and res < 0
+                    (rnd_mode == ROUNDING_UP && !x_sign)) { // RP and res > 0
+                  C1_hi = 0x7800000000000000ull; // +inf
+                  C1_lo = 0x0ull;
+                } else { // RM and res > 0, RP and res < 0, or RZ
+                  C1_hi = 0x5fffed09bead87c0ull;
+                  C1_lo = 0x378d8e63ffffffffull;
+                }
+                y_exp = 0; // x_sign is preserved
+                // set the inexact flag (in case the exact addition was exact)
+                *pfpsf |= INEXACT_EXCEPTION;
+                // set the overflow flag
+                *pfpsf |= OVERFLOW_EXCEPTION;
+              }
+            }
+          } // else if (C1 < 10^34) then C1 is the coeff.; the result is exact
+          // assemble the result
+          res.w[1] = x_sign | y_exp | C1_hi;
+          res.w[0] = C1_lo;
+        } else { // if x_sign != y_sign the result is exact
+          C1_lo = C2_lo - C1_lo;
+          C1_hi = C2_hi - C1_hi;
+          if (C1_lo > C2_lo)
+            C1_hi--;
+          if (C1_hi >= 0x8000000000000000ull) { // negative coefficient!
+            C1_lo = ~C1_lo;
+            C1_lo++;
+            C1_hi = ~C1_hi;
+            if (C1_lo == 0x0)
+              C1_hi++;
+            x_sign = y_sign; // the result will have the sign of y
+          }
+          // the result can be zero, but it cannot overflow
+          if (C1_lo == 0 && C1_hi == 0) {
+            // assemble the result
+            if (x_exp < y_exp)
+              res.w[1] = x_exp;
+            else
+              res.w[1] = y_exp;
+            res.w[0] = 0;
+            if (rnd_mode == ROUNDING_DOWN) {
+              res.w[1] |= 0x8000000000000000ull;
+            }
+            BID_RETURN (res);
+          }
+          // assemble the result
+          res.w[1] = y_sign | y_exp | C1_hi;
+          res.w[0] = C1_lo;
+        }
+      }
+    }
+    BID_RETURN (res)
+  }
+}
+
+/*****************************************************************************
+ *  BID128 sub
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid128_sub (UINT128 * pres, UINT128 * px,
+            UINT128 *
+            py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+            _EXC_INFO_PARAM) {
+  UINT128 x = *px, y = *py;
+#if !DECIMAL_GLOBAL_ROUNDING
+  unsigned int rnd_mode = *prnd_mode;
+#endif
+#else
+UINT128
+__bid128_sub (UINT128 x,
+            UINT128 y _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+            _EXC_INFO_PARAM) {
+#endif
+
+  UINT128 res;
+  UINT64 y_sign;
+
+  if ((y.w[1] & MASK_NAN) != MASK_NAN) { // y is not NAN
+    // change its sign
+    y_sign = y.w[1] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
+    if (y_sign)
+      y.w[1] = y.w[1] & 0x7fffffffffffffffull;
+    else
+      y.w[1] = y.w[1] | 0x8000000000000000ull;
+  }
+#if DECIMAL_CALL_BY_REFERENCE
+  __bid128_add (&res, &x,
+              &y _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG
+              _EXC_INFO_ARG);
+#else
+  res =
+    __bid128_add (x,
+                y _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG
+                _EXC_INFO_ARG);
+#endif
+  BID_RETURN (res);
+}