OSDN Git Service

2012-04-12 Richard Guenther <rguenther@suse.de>
[pf3gnuchains/gcc-fork.git] / gcc / tree-data-ref.c
index 7026603..4d2572a 100644 (file)
@@ -1,5 +1,6 @@
 /* Data references and dependences detectors.
-   Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
+   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
+   Free Software Foundation, Inc.
    Contributed by Sebastian Pop <pop@cri.ensmp.fr>
 
 This file is part of GCC.
@@ -20,78 +21,71 @@ along with GCC; see the file COPYING3.  If not see
 
 /* This pass walks a given loop structure searching for array
    references.  The information about the array accesses is recorded
-   in DATA_REFERENCE structures. 
-   
-   The basic test for determining the dependences is: 
-   given two access functions chrec1 and chrec2 to a same array, and 
-   x and y two vectors from the iteration domain, the same element of 
+   in DATA_REFERENCE structures.
+
+   The basic test for determining the dependences is:
+   given two access functions chrec1 and chrec2 to a same array, and
+   x and y two vectors from the iteration domain, the same element of
    the array is accessed twice at iterations x and y if and only if:
    |             chrec1 (x) == chrec2 (y).
-   
+
    The goals of this analysis are:
-   
+
    - to determine the independence: the relation between two
      independent accesses is qualified with the chrec_known (this
      information allows a loop parallelization),
-     
+
    - when two data references access the same data, to qualify the
      dependence relation with classic dependence representations:
-     
+
        - distance vectors
        - direction vectors
        - loop carried level dependence
        - polyhedron dependence
      or with the chains of recurrences based representation,
-     
-   - to define a knowledge base for storing the data dependence 
+
+   - to define a knowledge base for storing the data dependence
      information,
-     
+
    - to define an interface to access this data.
-   
-   
+
+
    Definitions:
-   
+
    - subscript: given two array accesses a subscript is the tuple
    composed of the access functions for a given dimension.  Example:
    Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
    (f1, g1), (f2, g2), (f3, g3).
 
    - Diophantine equation: an equation whose coefficients and
-   solutions are integer constants, for example the equation 
+   solutions are integer constants, for example the equation
    |   3*x + 2*y = 1
    has an integer solution x = 1 and y = -1.
-     
+
    References:
-   
+
    - "Advanced Compilation for High Performance Computing" by Randy
    Allen and Ken Kennedy.
-   http://citeseer.ist.psu.edu/goff91practical.html 
-   
-   - "Loop Transformations for Restructuring Compilers - The Foundations" 
+   http://citeseer.ist.psu.edu/goff91practical.html
+
+   - "Loop Transformations for Restructuring Compilers - The Foundations"
    by Utpal Banerjee.
 
-   
+
 */
 
 #include "config.h"
 #include "system.h"
 #include "coretypes.h"
-#include "tm.h"
-#include "ggc.h"
-#include "tree.h"
-
-/* These RTL headers are needed for basic-block.h.  */
-#include "rtl.h"
-#include "basic-block.h"
-#include "diagnostic.h"
+#include "gimple-pretty-print.h"
 #include "tree-flow.h"
-#include "tree-dump.h"
-#include "timevar.h"
 #include "cfgloop.h"
 #include "tree-data-ref.h"
 #include "tree-scalar-evolution.h"
 #include "tree-pass.h"
 #include "langhooks.h"
+#include "tree-affine.h"
+#include "params.h"
 
 static struct datadep_stats
 {
@@ -126,17 +120,17 @@ static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
                                           struct loop *);
 /* Returns true iff A divides B.  */
 
-static inline bool 
+static inline bool
 tree_fold_divides_p (const_tree a, const_tree b)
 {
   gcc_assert (TREE_CODE (a) == INTEGER_CST);
   gcc_assert (TREE_CODE (b) == INTEGER_CST);
-  return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a, 0));
+  return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a));
 }
 
 /* Returns true iff A divides B.  */
 
-static inline bool 
+static inline bool
 int_divides_p (int a, int b)
 {
   return ((b % a) == 0);
@@ -144,60 +138,78 @@ int_divides_p (int a, int b)
 
 \f
 
-/* Dump into FILE all the data references from DATAREFS.  */ 
+/* Dump into FILE all the data references from DATAREFS.  */
 
-void 
+void
 dump_data_references (FILE *file, VEC (data_reference_p, heap) *datarefs)
 {
   unsigned int i;
   struct data_reference *dr;
 
-  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+  FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
     dump_data_reference (file, dr);
 }
 
-/* Dump to STDERR all the dependence relations from DDRS.  */ 
+/* Dump into STDERR all the data references from DATAREFS.  */
+
+DEBUG_FUNCTION void
+debug_data_references (VEC (data_reference_p, heap) *datarefs)
+{
+  dump_data_references (stderr, datarefs);
+}
+
+/* Dump to STDERR all the dependence relations from DDRS.  */
 
-void 
+DEBUG_FUNCTION void
 debug_data_dependence_relations (VEC (ddr_p, heap) *ddrs)
 {
   dump_data_dependence_relations (stderr, ddrs);
 }
 
-/* Dump into FILE all the dependence relations from DDRS.  */ 
+/* Dump into FILE all the dependence relations from DDRS.  */
 
-void 
-dump_data_dependence_relations (FILE *file, 
+void
+dump_data_dependence_relations (FILE *file,
                                VEC (ddr_p, heap) *ddrs)
 {
   unsigned int i;
   struct data_dependence_relation *ddr;
 
-  for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
+  FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
     dump_data_dependence_relation (file, ddr);
 }
 
+/* Print to STDERR the data_reference DR.  */
+
+DEBUG_FUNCTION void
+debug_data_reference (struct data_reference *dr)
+{
+  dump_data_reference (stderr, dr);
+}
+
 /* Dump function for a DATA_REFERENCE structure.  */
 
-void 
-dump_data_reference (FILE *outf, 
+void
+dump_data_reference (FILE *outf,
                     struct data_reference *dr)
 {
   unsigned int i;
-  
-  fprintf (outf, "(Data Ref: \n  stmt: ");
-  print_generic_stmt (outf, DR_STMT (dr), 0);
-  fprintf (outf, "  ref: ");
+
+  fprintf (outf, "#(Data Ref: \n");
+  fprintf (outf, "#  bb: %d \n", gimple_bb (DR_STMT (dr))->index);
+  fprintf (outf, "#  stmt: ");
+  print_gimple_stmt (outf, DR_STMT (dr), 0, 0);
+  fprintf (outf, "#  ref: ");
   print_generic_stmt (outf, DR_REF (dr), 0);
-  fprintf (outf, "  base_object: ");
+  fprintf (outf, "#  base_object: ");
   print_generic_stmt (outf, DR_BASE_OBJECT (dr), 0);
-  
+
   for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
     {
-      fprintf (outf, "  Access function %d: ", i);
+      fprintf (outf, "#  Access function %d: ", i);
       print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
     }
-  fprintf (outf, ")\n");
+  fprintf (outf, "#)\n");
 }
 
 /* Dumps the affine function described by FN to the file OUTF.  */
@@ -241,7 +253,7 @@ dump_conflict_function (FILE *outf, conflict_function *cf)
 
 /* Dump function for a SUBSCRIPT structure.  */
 
-void 
+void
 dump_subscript (FILE *outf, struct subscript *subscript)
 {
   conflict_function *cf = SUB_CONFLICTS_IN_A (subscript);
@@ -255,7 +267,7 @@ dump_subscript (FILE *outf, struct subscript *subscript)
       fprintf (outf, "  last_conflict: ");
       print_generic_stmt (outf, last_iteration, 0);
     }
-         
+
   cf = SUB_CONFLICTS_IN_B (subscript);
   fprintf (outf, "  iterations_that_access_an_element_twice_in_B: ");
   dump_conflict_function (outf, cf);
@@ -283,7 +295,8 @@ print_direction_vector (FILE *outf,
 
   for (eq = 0; eq < length; eq++)
     {
-      enum data_dependence_direction dir = dirv[eq];
+      enum data_dependence_direction dir = ((enum data_dependence_direction)
+                                           dirv[eq]);
 
       switch (dir)
        {
@@ -325,10 +338,22 @@ print_dir_vectors (FILE *outf, VEC (lambda_vector, heap) *dir_vects,
   unsigned j;
   lambda_vector v;
 
-  for (j = 0; VEC_iterate (lambda_vector, dir_vects, j, v); j++)
+  FOR_EACH_VEC_ELT (lambda_vector, dir_vects, j, v)
     print_direction_vector (outf, v, length);
 }
 
+/* Print out a vector VEC of length N to OUTFILE.  */
+
+static inline void
+print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
+{
+  int i;
+
+  for (i = 0; i < n; i++)
+    fprintf (outfile, "%3d ", vector[i]);
+  fprintf (outfile, "\n");
+}
+
 /* Print a vector of distance vectors.  */
 
 void
@@ -338,13 +363,13 @@ print_dist_vectors  (FILE *outf, VEC (lambda_vector, heap) *dist_vects,
   unsigned j;
   lambda_vector v;
 
-  for (j = 0; VEC_iterate (lambda_vector, dist_vects, j, v); j++)
+  FOR_EACH_VEC_ELT (lambda_vector, dist_vects, j, v)
     print_lambda_vector (outf, v, length);
 }
 
 /* Debug version.  */
 
-void 
+DEBUG_FUNCTION void
 debug_data_dependence_relation (struct data_dependence_relation *ddr)
 {
   dump_data_dependence_relation (stderr, ddr);
@@ -352,25 +377,41 @@ debug_data_dependence_relation (struct data_dependence_relation *ddr)
 
 /* Dump function for a DATA_DEPENDENCE_RELATION structure.  */
 
-void 
-dump_data_dependence_relation (FILE *outf, 
+void
+dump_data_dependence_relation (FILE *outf,
                               struct data_dependence_relation *ddr)
 {
   struct data_reference *dra, *drb;
 
-  dra = DDR_A (ddr);
-  drb = DDR_B (ddr);
   fprintf (outf, "(Data Dep: \n");
 
+  if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+    {
+      if (ddr)
+       {
+         dra = DDR_A (ddr);
+         drb = DDR_B (ddr);
+         if (dra)
+           dump_data_reference (outf, dra);
+         else
+           fprintf (outf, "    (nil)\n");
+         if (drb)
+           dump_data_reference (outf, drb);
+         else
+           fprintf (outf, "    (nil)\n");
+       }
+      fprintf (outf, "    (don't know)\n)\n");
+      return;
+    }
+
+  dra = DDR_A (ddr);
+  drb = DDR_B (ddr);
   dump_data_reference (outf, dra);
   dump_data_reference (outf, drb);
 
-  if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
-    fprintf (outf, "    (don't know)\n");
-  
-  else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
+  if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
     fprintf (outf, "    (no dependence)\n");
-  
+
   else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
     {
       unsigned int i;
@@ -387,7 +428,7 @@ dump_data_dependence_relation (FILE *outf,
 
       fprintf (outf, "  inner loop index: %d\n", DDR_INNER_LOOP (ddr));
       fprintf (outf, "  loop nest: (");
-      for (i = 0; VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), i, loopi); i++)
+      FOR_EACH_VEC_ELT (loop_p, DDR_LOOP_NEST (ddr), i, loopi)
        fprintf (outf, "%d ", loopi->num);
       fprintf (outf, ")\n");
 
@@ -412,40 +453,40 @@ dump_data_dependence_relation (FILE *outf,
 /* Dump function for a DATA_DEPENDENCE_DIRECTION structure.  */
 
 void
-dump_data_dependence_direction (FILE *file, 
+dump_data_dependence_direction (FILE *file,
                                enum data_dependence_direction dir)
 {
   switch (dir)
     {
-    case dir_positive: 
+    case dir_positive:
       fprintf (file, "+");
       break;
-      
+
     case dir_negative:
       fprintf (file, "-");
       break;
-      
+
     case dir_equal:
       fprintf (file, "=");
       break;
-      
+
     case dir_positive_or_negative:
       fprintf (file, "+-");
       break;
-      
-    case dir_positive_or_equal: 
+
+    case dir_positive_or_equal:
       fprintf (file, "+=");
       break;
-      
-    case dir_negative_or_equal: 
+
+    case dir_negative_or_equal:
       fprintf (file, "-=");
       break;
-      
-    case dir_star: 
-      fprintf (file, "*"); 
+
+    case dir_star:
+      fprintf (file, "*");
       break;
-      
-    default: 
+
+    default:
       break;
     }
 }
@@ -455,24 +496,24 @@ dump_data_dependence_direction (FILE *file,
    dependence vectors, or in other words the number of loops in the
    considered nest.  */
 
-void 
+void
 dump_dist_dir_vectors (FILE *file, VEC (ddr_p, heap) *ddrs)
 {
   unsigned int i, j;
   struct data_dependence_relation *ddr;
   lambda_vector v;
 
-  for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
+  FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
     if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
       {
-       for (j = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), j, v); j++)
+       FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), j, v)
          {
            fprintf (file, "DISTANCE_V (");
            print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
            fprintf (file, ")\n");
          }
 
-       for (j = 0; VEC_iterate (lambda_vector, DDR_DIR_VECTS (ddr), j, v); j++)
+       FOR_EACH_VEC_ELT (lambda_vector, DDR_DIR_VECTS (ddr), j, v)
          {
            fprintf (file, "DIRECTION_V (");
            print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
@@ -485,80 +526,75 @@ dump_dist_dir_vectors (FILE *file, VEC (ddr_p, heap) *ddrs)
 
 /* Dumps the data dependence relations DDRS in FILE.  */
 
-void 
+void
 dump_ddrs (FILE *file, VEC (ddr_p, heap) *ddrs)
 {
   unsigned int i;
   struct data_dependence_relation *ddr;
 
-  for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
+  FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
     dump_data_dependence_relation (file, ddr);
 
   fprintf (file, "\n\n");
 }
 
-/* Expresses EXP as VAR + OFF, where off is a constant.  The type of OFF
-   will be ssizetype.  */
+/* Helper function for split_constant_offset.  Expresses OP0 CODE OP1
+   (the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero
+   constant of type ssizetype, and returns true.  If we cannot do this
+   with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false
+   is returned.  */
 
-void
-split_constant_offset (tree exp, tree *var, tree *off)
+static bool
+split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1,
+                        tree *var, tree *off)
 {
-  tree type = TREE_TYPE (exp), otype;
   tree var0, var1;
   tree off0, off1;
-  enum tree_code code;
+  enum tree_code ocode = code;
 
-  *var = exp;
-  STRIP_NOPS (exp);
-  otype = TREE_TYPE (exp);
-  code = TREE_CODE (exp);
+  *var = NULL_TREE;
+  *off = NULL_TREE;
 
   switch (code)
     {
     case INTEGER_CST:
       *var = build_int_cst (type, 0);
-      *off = fold_convert (ssizetype, exp);
-      return;
+      *off = fold_convert (ssizetype, op0);
+      return true;
 
     case POINTER_PLUS_EXPR:
-      code = PLUS_EXPR;
+      ocode = PLUS_EXPR;
       /* FALLTHROUGH */
     case PLUS_EXPR:
     case MINUS_EXPR:
-      split_constant_offset (TREE_OPERAND (exp, 0), &var0, &off0);
-      split_constant_offset (TREE_OPERAND (exp, 1), &var1, &off1);
-      *var = fold_convert (type, fold_build2 (TREE_CODE (exp), otype, 
-                                             var0, var1));
-      *off = size_binop (code, off0, off1);
-      return;
+      split_constant_offset (op0, &var0, &off0);
+      split_constant_offset (op1, &var1, &off1);
+      *var = fold_build2 (code, type, var0, var1);
+      *off = size_binop (ocode, off0, off1);
+      return true;
 
     case MULT_EXPR:
-      off1 = TREE_OPERAND (exp, 1);
-      if (TREE_CODE (off1) != INTEGER_CST)
-       break;
+      if (TREE_CODE (op1) != INTEGER_CST)
+       return false;
 
-      split_constant_offset (TREE_OPERAND (exp, 0), &var0, &off0);
-      *var = fold_convert (type, fold_build2 (MULT_EXPR, otype,
-                                             var0, off1));
-      *off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, off1));
-      return;
+      split_constant_offset (op0, &var0, &off0);
+      *var = fold_build2 (MULT_EXPR, type, var0, op1);
+      *off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1));
+      return true;
 
     case ADDR_EXPR:
       {
-       tree op, base, poffset;
+       tree base, poffset;
        HOST_WIDE_INT pbitsize, pbitpos;
        enum machine_mode pmode;
        int punsignedp, pvolatilep;
 
-       op = TREE_OPERAND (exp, 0);
-       if (!handled_component_p (op))
-         break;
-
-       base = get_inner_reference (op, &pbitsize, &pbitpos, &poffset,
+       op0 = TREE_OPERAND (op0, 0);
+       base = get_inner_reference (op0, &pbitsize, &pbitpos, &poffset,
                                    &pmode, &punsignedp, &pvolatilep, false);
 
        if (pbitpos % BITS_PER_UNIT != 0)
-         break;
+         return false;
        base = build_fold_addr_expr (base);
        off0 = ssize_int (pbitpos / BITS_PER_UNIT);
 
@@ -567,8 +603,7 @@ split_constant_offset (tree exp, tree *var, tree *off)
            split_constant_offset (poffset, &poffset, &off1);
            off0 = size_binop (PLUS_EXPR, off0, off1);
            if (POINTER_TYPE_P (TREE_TYPE (base)))
-             base = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (base),
-                                 base, fold_convert (sizetype, poffset));
+             base = fold_build_pointer_plus (base, poffset);
            else
              base = fold_build2 (PLUS_EXPR, TREE_TYPE (base), base,
                                  fold_convert (TREE_TYPE (base), poffset));
@@ -581,8 +616,7 @@ split_constant_offset (tree exp, tree *var, tree *off)
           To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
           possibly no longer appears in current GIMPLE, might resurface.
           This perhaps could run
-          if (TREE_CODE (var0) == NOP_EXPR
-              || TREE_CODE (var0) == CONVERT_EXPR)
+          if (CONVERT_EXPR_P (var0))
             {
               gimplify_conversion (&var0);
               // Attempt to fill in any within var0 found ARRAY_REF's
@@ -592,40 +626,76 @@ split_constant_offset (tree exp, tree *var, tree *off)
        while (POINTER_TYPE_P (type))
          type = TREE_TYPE (type);
        if (int_size_in_bytes (type) < 0)
-         break;
+         return false;
 
        *var = var0;
        *off = off0;
-       return;
+       return true;
       }
 
     case SSA_NAME:
       {
-       tree def_stmt = SSA_NAME_DEF_STMT (exp);
-       if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT)
-         {
-           tree def_stmt_rhs = GIMPLE_STMT_OPERAND (def_stmt, 1);
+       gimple def_stmt = SSA_NAME_DEF_STMT (op0);
+       enum tree_code subcode;
 
-           if (!TREE_SIDE_EFFECTS (def_stmt_rhs) 
-               && EXPR_P (def_stmt_rhs)
-               && !REFERENCE_CLASS_P (def_stmt_rhs)
-               && !get_call_expr_in (def_stmt_rhs))
-             {
-               split_constant_offset (def_stmt_rhs, &var0, &off0);
-               var0 = fold_convert (type, var0);
-               *var = var0;
-               *off = off0;
-               return;
-             }
+       if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
+         return false;
+
+       var0 = gimple_assign_rhs1 (def_stmt);
+       subcode = gimple_assign_rhs_code (def_stmt);
+       var1 = gimple_assign_rhs2 (def_stmt);
+
+       return split_constant_offset_1 (type, var0, subcode, var1, var, off);
+      }
+    CASE_CONVERT:
+      {
+       /* We must not introduce undefined overflow, and we must not change the value.
+          Hence we're okay if the inner type doesn't overflow to start with
+          (pointer or signed), the outer type also is an integer or pointer
+          and the outer precision is at least as large as the inner.  */
+       tree itype = TREE_TYPE (op0);
+       if ((POINTER_TYPE_P (itype)
+            || (INTEGRAL_TYPE_P (itype) && TYPE_OVERFLOW_UNDEFINED (itype)))
+           && TYPE_PRECISION (type) >= TYPE_PRECISION (itype)
+           && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)))
+         {
+           split_constant_offset (op0, &var0, off);
+           *var = fold_convert (type, var0);
+           return true;
          }
-       break;
+       return false;
       }
 
     default:
-      break;
+      return false;
     }
+}
+
+/* Expresses EXP as VAR + OFF, where off is a constant.  The type of OFF
+   will be ssizetype.  */
+
+void
+split_constant_offset (tree exp, tree *var, tree *off)
+{
+  tree type = TREE_TYPE (exp), otype, op0, op1, e, o;
+  enum tree_code code;
 
+  *var = exp;
   *off = ssize_int (0);
+  STRIP_NOPS (exp);
+
+  if (tree_is_chrec (exp)
+      || get_gimple_rhs_class (TREE_CODE (exp)) == GIMPLE_TERNARY_RHS)
+    return;
+
+  otype = TREE_TYPE (exp);
+  code = TREE_CODE (exp);
+  extract_ops_from_tree (exp, &code, &op0, &op1);
+  if (split_constant_offset_1 (otype, op0, code, op1, &e, &o))
+    {
+      *var = fold_convert (type, e);
+      *off = o;
+    }
 }
 
 /* Returns the address ADDR of an object in a canonical shape (without nop
@@ -649,13 +719,14 @@ canonicalize_base_object_address (tree addr)
   return build_fold_addr_expr (TREE_OPERAND (addr, 0));
 }
 
-/* Analyzes the behavior of the memory reference DR in the innermost loop that
-   contains it.  */
+/* Analyzes the behavior of the memory reference DR in the innermost loop or
+   basic block that contains it.  Returns true if analysis succeed or false
+   otherwise.  */
 
-void
-dr_analyze_innermost (struct data_reference *dr)
+bool
+dr_analyze_innermost (struct data_reference *dr, struct loop *nest)
 {
-  tree stmt = DR_STMT (dr);
+  gimple stmt = DR_STMT (dr);
   struct loop *loop = loop_containing_stmt (stmt);
   tree ref = DR_REF (dr);
   HOST_WIDE_INT pbitsize, pbitpos;
@@ -664,6 +735,7 @@ dr_analyze_innermost (struct data_reference *dr)
   int punsignedp, pvolatilep;
   affine_iv base_iv, offset_iv;
   tree init, dinit, step;
+  bool in_loop = (loop && loop->num);
 
   if (dump_file && (dump_flags & TDF_DETAILS))
     fprintf (dump_file, "analyze_innermost: ");
@@ -676,26 +748,81 @@ dr_analyze_innermost (struct data_reference *dr)
     {
       if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "failed: bit offset alignment.\n");
-      return;
+      return false;
     }
 
-  base = build_fold_addr_expr (base);
-  if (!simple_iv (loop, stmt, base, &base_iv, false))
+  if (TREE_CODE (base) == MEM_REF)
     {
-      if (dump_file && (dump_flags & TDF_DETAILS))
-       fprintf (dump_file, "failed: evolution of base is not affine.\n");
-      return;
+      if (!integer_zerop (TREE_OPERAND (base, 1)))
+       {
+         if (!poffset)
+           {
+             double_int moff = mem_ref_offset (base);
+             poffset = double_int_to_tree (sizetype, moff);
+           }
+         else
+           poffset = size_binop (PLUS_EXPR, poffset, TREE_OPERAND (base, 1));
+       }
+      base = TREE_OPERAND (base, 0);
+    }
+  else
+    base = build_fold_addr_expr (base);
+
+  if (in_loop)
+    {
+      if (!simple_iv (loop, loop_containing_stmt (stmt), base, &base_iv,
+                      false))
+        {
+          if (nest)
+            {
+              if (dump_file && (dump_flags & TDF_DETAILS))
+                fprintf (dump_file, "failed: evolution of base is not"
+                                    " affine.\n");
+              return false;
+            }
+          else
+            {
+              base_iv.base = base;
+              base_iv.step = ssize_int (0);
+              base_iv.no_overflow = true;
+            }
+        }
     }
+  else
+    {
+      base_iv.base = base;
+      base_iv.step = ssize_int (0);
+      base_iv.no_overflow = true;
+    }
+
   if (!poffset)
     {
       offset_iv.base = ssize_int (0);
       offset_iv.step = ssize_int (0);
     }
-  else if (!simple_iv (loop, stmt, poffset, &offset_iv, false))
+  else
     {
-      if (dump_file && (dump_flags & TDF_DETAILS))
-       fprintf (dump_file, "failed: evolution of offset is not affine.\n");
-      return;
+      if (!in_loop)
+        {
+          offset_iv.base = poffset;
+          offset_iv.step = ssize_int (0);
+        }
+      else if (!simple_iv (loop, loop_containing_stmt (stmt),
+                           poffset, &offset_iv, false))
+        {
+          if (nest)
+            {
+              if (dump_file && (dump_flags & TDF_DETAILS))
+                fprintf (dump_file, "failed: evolution of offset is not"
+                                    " affine.\n");
+              return false;
+            }
+          else
+            {
+              offset_iv.base = poffset;
+              offset_iv.step = ssize_int (0);
+            }
+        }
     }
 
   init = ssize_int (pbitpos / BITS_PER_UNIT);
@@ -718,47 +845,125 @@ dr_analyze_innermost (struct data_reference *dr)
 
   if (dump_file && (dump_flags & TDF_DETAILS))
     fprintf (dump_file, "success.\n");
+
+  return true;
 }
 
 /* Determines the base object and the list of indices of memory reference
-   DR, analyzed in loop nest NEST.  */
+   DR, analyzed in LOOP and instantiated in loop nest NEST.  */
 
 static void
-dr_analyze_indices (struct data_reference *dr, struct loop *nest)
+dr_analyze_indices (struct data_reference *dr, loop_p nest, loop_p loop)
 {
-  tree stmt = DR_STMT (dr);
-  struct loop *loop = loop_containing_stmt (stmt);
   VEC (tree, heap) *access_fns = NULL;
-  tree ref = unshare_expr (DR_REF (dr)), aref = ref, op;
+  tree ref, op;
   tree base, off, access_fn;
+  basic_block before_loop;
 
-  while (handled_component_p (aref))
+  /* If analyzing a basic-block there are no indices to analyze
+     and thus no access functions.  */
+  if (!nest)
     {
-      if (TREE_CODE (aref) == ARRAY_REF)
+      DR_BASE_OBJECT (dr) = DR_REF (dr);
+      DR_ACCESS_FNS (dr) = NULL;
+      return;
+    }
+
+  ref = DR_REF (dr);
+  before_loop = block_before_loop (nest);
+
+  /* REALPART_EXPR and IMAGPART_EXPR can be handled like accesses
+     into a two element array with a constant index.  The base is
+     then just the immediate underlying object.  */
+  if (TREE_CODE (ref) == REALPART_EXPR)
+    {
+      ref = TREE_OPERAND (ref, 0);
+      VEC_safe_push (tree, heap, access_fns, integer_zero_node);
+    }
+  else if (TREE_CODE (ref) == IMAGPART_EXPR)
+    {
+      ref = TREE_OPERAND (ref, 0);
+      VEC_safe_push (tree, heap, access_fns, integer_one_node);
+    }
+
+  /* Analyze access functions of dimensions we know to be independent.  */
+  while (handled_component_p (ref))
+    {
+      if (TREE_CODE (ref) == ARRAY_REF)
        {
-         op = TREE_OPERAND (aref, 1);
+         op = TREE_OPERAND (ref, 1);
          access_fn = analyze_scalar_evolution (loop, op);
-         access_fn = resolve_mixers (nest, access_fn);
+         access_fn = instantiate_scev (before_loop, loop, access_fn);
          VEC_safe_push (tree, heap, access_fns, access_fn);
-
-         TREE_OPERAND (aref, 1) = build_int_cst (TREE_TYPE (op), 0);
        }
-      
-      aref = TREE_OPERAND (aref, 0);
+      else if (TREE_CODE (ref) == COMPONENT_REF
+              && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
+       {
+         /* For COMPONENT_REFs of records (but not unions!) use the
+            FIELD_DECL offset as constant access function so we can
+            disambiguate a[i].f1 and a[i].f2.  */
+         tree off = component_ref_field_offset (ref);
+         off = size_binop (PLUS_EXPR,
+                           size_binop (MULT_EXPR,
+                                       fold_convert (bitsizetype, off),
+                                       bitsize_int (BITS_PER_UNIT)),
+                           DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1)));
+         VEC_safe_push (tree, heap, access_fns, off);
+       }
+      else
+       /* If we have an unhandled component we could not translate
+          to an access function stop analyzing.  We have determined
+          our base object in this case.  */
+       break;
+
+      ref = TREE_OPERAND (ref, 0);
     }
 
-  if (INDIRECT_REF_P (aref))
+  /* If the address operand of a MEM_REF base has an evolution in the
+     analyzed nest, add it as an additional independent access-function.  */
+  if (TREE_CODE (ref) == MEM_REF)
     {
-      op = TREE_OPERAND (aref, 0);
+      op = TREE_OPERAND (ref, 0);
       access_fn = analyze_scalar_evolution (loop, op);
-      access_fn = resolve_mixers (nest, access_fn);
-      base = initial_condition (access_fn);
-      split_constant_offset (base, &base, &off);
-      access_fn = chrec_replace_initial_condition (access_fn,
-                       fold_convert (TREE_TYPE (base), off));
-
-      TREE_OPERAND (aref, 0) = base;
-      VEC_safe_push (tree, heap, access_fns, access_fn);
+      access_fn = instantiate_scev (before_loop, loop, access_fn);
+      if (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
+       {
+         tree orig_type;
+         tree memoff = TREE_OPERAND (ref, 1);
+         base = initial_condition (access_fn);
+         orig_type = TREE_TYPE (base);
+         STRIP_USELESS_TYPE_CONVERSION (base);
+         split_constant_offset (base, &base, &off);
+         /* Fold the MEM_REF offset into the evolutions initial
+            value to make more bases comparable.  */
+         if (!integer_zerop (memoff))
+           {
+             off = size_binop (PLUS_EXPR, off,
+                               fold_convert (ssizetype, memoff));
+             memoff = build_int_cst (TREE_TYPE (memoff), 0);
+           }
+         access_fn = chrec_replace_initial_condition
+             (access_fn, fold_convert (orig_type, off));
+         /* ???  This is still not a suitable base object for
+            dr_may_alias_p - the base object needs to be an
+            access that covers the object as whole.  With
+            an evolution in the pointer this cannot be
+            guaranteed.
+            As a band-aid, mark the access so we can special-case
+            it in dr_may_alias_p.  */
+         ref = fold_build2_loc (EXPR_LOCATION (ref),
+                                MEM_REF, TREE_TYPE (ref),
+                                base, memoff);
+         DR_UNCONSTRAINED_BASE (dr) = true;
+         VEC_safe_push (tree, heap, access_fns, access_fn);
+       }
+    }
+  else if (DECL_P (ref))
+    {
+      /* Canonicalize DR_BASE_OBJECT to MEM_REF form.  */
+      ref = build2 (MEM_REF, TREE_TYPE (ref),
+                   build_fold_addr_expr (ref),
+                   build_int_cst (reference_alias_ptr_type (ref), 0));
     }
 
   DR_BASE_OBJECT (dr) = ref;
@@ -770,51 +975,16 @@ dr_analyze_indices (struct data_reference *dr, struct loop *nest)
 static void
 dr_analyze_alias (struct data_reference *dr)
 {
-  tree stmt = DR_STMT (dr);
   tree ref = DR_REF (dr);
-  tree base = get_base_address (ref), addr, smt = NULL_TREE;
-  ssa_op_iter it;
-  tree op;
-  bitmap vops;
+  tree base = get_base_address (ref), addr;
 
-  if (DECL_P (base))
-    smt = base;
-  else if (INDIRECT_REF_P (base))
+  if (INDIRECT_REF_P (base)
+      || TREE_CODE (base) == MEM_REF)
     {
       addr = TREE_OPERAND (base, 0);
       if (TREE_CODE (addr) == SSA_NAME)
-       {
-         smt = symbol_mem_tag (SSA_NAME_VAR (addr));
-         DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr);
-       }
+       DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr);
     }
-
-  DR_SYMBOL_TAG (dr) = smt;
-  if (smt && var_can_have_subvars (smt))
-    DR_SUBVARS (dr) = get_subvars_for_var (smt);
-
-  vops = BITMAP_ALLOC (NULL);
-  FOR_EACH_SSA_TREE_OPERAND (op, stmt, it, SSA_OP_VIRTUAL_USES)
-    {
-      bitmap_set_bit (vops, DECL_UID (SSA_NAME_VAR (op)));
-    }
-
-  DR_VOPS (dr) = vops;
-}
-
-/* Returns true if the address of DR is invariant.  */
-
-static bool
-dr_address_invariant_p (struct data_reference *dr)
-{
-  unsigned i;
-  tree idx;
-
-  for (i = 0; VEC_iterate (tree, DR_ACCESS_FNS (dr), i, idx); i++)
-    if (tree_contains_chrecs (idx, NULL))
-      return false;
-
-  return true;
 }
 
 /* Frees data reference DR.  */
@@ -822,18 +992,19 @@ dr_address_invariant_p (struct data_reference *dr)
 void
 free_data_ref (data_reference_p dr)
 {
-  BITMAP_FREE (DR_VOPS (dr));
   VEC_free (tree, heap, DR_ACCESS_FNS (dr));
   free (dr);
 }
 
 /* Analyzes memory reference MEMREF accessed in STMT.  The reference
    is read if IS_READ is true, write otherwise.  Returns the
-   data_reference description of MEMREF.  NEST is the outermost loop of the
-   loop nest in that the reference should be analyzed.  */
+   data_reference description of MEMREF.  NEST is the outermost loop
+   in which the reference should be instantiated, LOOP is the loop in
+   which the data reference should be analyzed.  */
 
 struct data_reference *
-create_data_ref (struct loop *nest, tree memref, tree stmt, bool is_read)
+create_data_ref (loop_p nest, loop_p loop, tree memref, gimple stmt,
+                bool is_read)
 {
   struct data_reference *dr;
 
@@ -849,12 +1020,13 @@ create_data_ref (struct loop *nest, tree memref, tree stmt, bool is_read)
   DR_REF (dr) = memref;
   DR_IS_READ (dr) = is_read;
 
-  dr_analyze_innermost (dr);
-  dr_analyze_indices (dr, nest);
+  dr_analyze_innermost (dr, nest);
+  dr_analyze_indices (dr, nest, loop);
   dr_analyze_alias (dr);
 
   if (dump_file && (dump_flags & TDF_DETAILS))
     {
+      unsigned i;
       fprintf (dump_file, "\tbase_address: ");
       print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
       fprintf (dump_file, "\n\toffset from base address: ");
@@ -867,12 +1039,57 @@ create_data_ref (struct loop *nest, tree memref, tree stmt, bool is_read)
       print_generic_expr (dump_file, DR_ALIGNED_TO (dr), TDF_SLIM);
       fprintf (dump_file, "\n\tbase_object: ");
       print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
-      fprintf (dump_file, "\n\tsymbol tag: ");
-      print_generic_expr (dump_file, DR_SYMBOL_TAG (dr), TDF_SLIM);
       fprintf (dump_file, "\n");
+      for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
+       {
+         fprintf (dump_file, "\tAccess function %d: ", i);
+         print_generic_stmt (dump_file, DR_ACCESS_FN (dr, i), TDF_SLIM);
+       }
     }
 
-  return dr;  
+  return dr;
+}
+
+/* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical
+   expressions.  */
+static bool
+dr_equal_offsets_p1 (tree offset1, tree offset2)
+{
+  bool res;
+
+  STRIP_NOPS (offset1);
+  STRIP_NOPS (offset2);
+
+  if (offset1 == offset2)
+    return true;
+
+  if (TREE_CODE (offset1) != TREE_CODE (offset2)
+      || (!BINARY_CLASS_P (offset1) && !UNARY_CLASS_P (offset1)))
+    return false;
+
+  res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 0),
+                             TREE_OPERAND (offset2, 0));
+
+  if (!res || !BINARY_CLASS_P (offset1))
+    return res;
+
+  res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 1),
+                             TREE_OPERAND (offset2, 1));
+
+  return res;
+}
+
+/* Check if DRA and DRB have equal offsets.  */
+bool
+dr_equal_offsets_p (struct data_reference *dra,
+                    struct data_reference *drb)
+{
+  tree offset1, offset2;
+
+  offset1 = DR_OFFSET (dra);
+  offset2 = DR_OFFSET (drb);
+
+  return dr_equal_offsets_p1 (offset1, offset2);
 }
 
 /* Returns true if FNA == FNB.  */
@@ -987,7 +1204,7 @@ affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb)
 
       VEC_quick_push (tree, ret,
                      fold_build2 (op, type,
-                                  VEC_index (tree, fna, i), 
+                                  VEC_index (tree, fna, i),
                                   VEC_index (tree, fnb, i)));
     }
 
@@ -1039,11 +1256,11 @@ compute_subscript_distance (struct data_dependence_relation *ddr)
   if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
     {
       unsigned int i;
-      
+
       for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
        {
          struct subscript *subscript;
-         
+
          subscript = DDR_SUBSCRIPT (ddr, i);
          cf_a = SUB_CONFLICTS_IN_A (subscript);
          cf_b = SUB_CONFLICTS_IN_B (subscript);
@@ -1056,7 +1273,7 @@ compute_subscript_distance (struct data_dependence_relation *ddr)
              return;
            }
          diff = affine_fn_minus (fn_a, fn_b);
-         
+
          if (affine_function_constant_p (diff))
            SUB_DISTANCE (subscript) = affine_function_base (diff);
          else
@@ -1115,167 +1332,82 @@ object_address_invariant_in_loop_p (const struct loop *loop, const_tree obj)
       obj = TREE_OPERAND (obj, 0);
     }
 
-  if (!INDIRECT_REF_P (obj))
+  if (!INDIRECT_REF_P (obj)
+      && TREE_CODE (obj) != MEM_REF)
     return true;
 
   return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0),
                                                  loop->num);
 }
 
-/* Returns true if A and B are accesses to different objects, or to different
-   fields of the same object.  */
-
-static bool
-disjoint_objects_p (tree a, tree b)
-{
-  tree base_a, base_b;
-  VEC (tree, heap) *comp_a = NULL, *comp_b = NULL;
-  bool ret;
-
-  base_a = get_base_address (a);
-  base_b = get_base_address (b);
-
-  if (DECL_P (base_a)
-      && DECL_P (base_b)
-      && base_a != base_b)
-    return true;
-
-  if (!operand_equal_p (base_a, base_b, 0))
-    return false;
+/* Returns false if we can prove that data references A and B do not alias,
+   true otherwise.  If LOOP_NEST is false no cross-iteration aliases are
+   considered.  */
 
-  /* Compare the component references of A and B.  We must start from the inner
-     ones, so record them to the vector first.  */
-  while (handled_component_p (a))
-    {
-      VEC_safe_push (tree, heap, comp_a, a);
-      a = TREE_OPERAND (a, 0);
-    }
-  while (handled_component_p (b))
+bool
+dr_may_alias_p (const struct data_reference *a, const struct data_reference *b,
+               bool loop_nest)
+{
+  tree addr_a = DR_BASE_OBJECT (a);
+  tree addr_b = DR_BASE_OBJECT (b);
+
+  /* If we are not processing a loop nest but scalar code we
+     do not need to care about possible cross-iteration dependences
+     and thus can process the full original reference.  Do so,
+     similar to how loop invariant motion applies extra offset-based
+     disambiguation.  */
+  if (!loop_nest)
     {
-      VEC_safe_push (tree, heap, comp_b, b);
-      b = TREE_OPERAND (b, 0);
+      aff_tree off1, off2;
+      double_int size1, size2;
+      get_inner_reference_aff (DR_REF (a), &off1, &size1);
+      get_inner_reference_aff (DR_REF (b), &off2, &size2);
+      aff_combination_scale (&off1, double_int_minus_one);
+      aff_combination_add (&off2, &off1);
+      if (aff_comb_cannot_overlap_p (&off2, size1, size2))
+       return false;
     }
 
-  ret = false;
-  while (1)
+  /* If we had an evolution in a MEM_REF BASE_OBJECT we do not know
+     the size of the base-object.  So we cannot do any offset/overlap
+     based analysis but have to rely on points-to information only.  */
+  if (TREE_CODE (addr_a) == MEM_REF
+      && DR_UNCONSTRAINED_BASE (a))
     {
-      if (VEC_length (tree, comp_a) == 0
-         || VEC_length (tree, comp_b) == 0)
-       break;
-
-      a = VEC_pop (tree, comp_a);
-      b = VEC_pop (tree, comp_b);
-
-      /* Real and imaginary part of a variable do not alias.  */
-      if ((TREE_CODE (a) == REALPART_EXPR
-          && TREE_CODE (b) == IMAGPART_EXPR)
-         || (TREE_CODE (a) == IMAGPART_EXPR
-             && TREE_CODE (b) == REALPART_EXPR))
-       {
-         ret = true;
-         break;
-       }
-
-      if (TREE_CODE (a) != TREE_CODE (b))
-       break;
-
-      /* Nothing to do for ARRAY_REFs, as the indices of array_refs in
-        DR_BASE_OBJECT are always zero.  */
-      if (TREE_CODE (a) == ARRAY_REF)
-       continue;
-      else if (TREE_CODE (a) == COMPONENT_REF)
-       {
-         if (operand_equal_p (TREE_OPERAND (a, 1), TREE_OPERAND (b, 1), 0))
-           continue;
-
-         /* Different fields of unions may overlap.  */
-         base_a = TREE_OPERAND (a, 0);
-         if (TREE_CODE (TREE_TYPE (base_a)) == UNION_TYPE)
-           break;
-
-         /* Different fields of structures cannot.  */
-         ret = true;
-         break;
-       }
+      if (TREE_CODE (addr_b) == MEM_REF
+         && DR_UNCONSTRAINED_BASE (b))
+       return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
+                                      TREE_OPERAND (addr_b, 0));
       else
-       break;
+       return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
+                                      build_fold_addr_expr (addr_b));
     }
-
-  VEC_free (tree, heap, comp_a);
-  VEC_free (tree, heap, comp_b);
-
-  return ret;
-}
-
-/* Returns false if we can prove that data references A and B do not alias,
-   true otherwise.  */
-
-static bool
-dr_may_alias_p (const struct data_reference *a, const struct data_reference *b)
-{
-  const_tree addr_a = DR_BASE_ADDRESS (a);
-  const_tree addr_b = DR_BASE_ADDRESS (b);
-  const_tree type_a, type_b;
-  const_tree decl_a = NULL_TREE, decl_b = NULL_TREE;
-
-  /* If the sets of virtual operands are disjoint, the memory references do not
-     alias.  */
-  if (!bitmap_intersect_p (DR_VOPS (a), DR_VOPS (b)))
-    return false;
-
-  /* If the accessed objects are disjoint, the memory references do not
-     alias.  */
-  if (disjoint_objects_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b)))
-    return false;
-
-  if (!addr_a || !addr_b)
-    return true;
-
-  /* If the references are based on different static objects, they cannot alias
-     (PTA should be able to disambiguate such accesses, but often it fails to,
-     since currently we cannot distinguish between pointer and offset in pointer
-     arithmetics).  */
-  if (TREE_CODE (addr_a) == ADDR_EXPR
-      && TREE_CODE (addr_b) == ADDR_EXPR)
-    return TREE_OPERAND (addr_a, 0) == TREE_OPERAND (addr_b, 0);
-
-  /* An instruction writing through a restricted pointer is "independent" of any 
-     instruction reading or writing through a different restricted pointer, 
-     in the same block/scope.  */
-
-  type_a = TREE_TYPE (addr_a);
-  type_b = TREE_TYPE (addr_b);
-  gcc_assert (POINTER_TYPE_P (type_a) && POINTER_TYPE_P (type_b));
-
-  if (TREE_CODE (addr_a) == SSA_NAME)
-    decl_a = SSA_NAME_VAR (addr_a);
-  if (TREE_CODE (addr_b) == SSA_NAME)
-    decl_b = SSA_NAME_VAR (addr_b);
-
-  if (TYPE_RESTRICT (type_a) && TYPE_RESTRICT (type_b) 
-      && (!DR_IS_READ (a) || !DR_IS_READ (b))
-      && decl_a && DECL_P (decl_a)
-      && decl_b && DECL_P (decl_b)
-      && decl_a != decl_b
-      && TREE_CODE (DECL_CONTEXT (decl_a)) == FUNCTION_DECL
-      && DECL_CONTEXT (decl_a) == DECL_CONTEXT (decl_b))
-    return false;
-
-  return true;
+  else if (TREE_CODE (addr_b) == MEM_REF
+          && DR_UNCONSTRAINED_BASE (b))
+    return ptr_derefs_may_alias_p (build_fold_addr_expr (addr_a),
+                                  TREE_OPERAND (addr_b, 0));
+
+  /* Otherwise DR_BASE_OBJECT is an access that covers the whole object
+     that is being subsetted in the loop nest.  */
+  if (DR_IS_WRITE (a) && DR_IS_WRITE (b))
+    return refs_output_dependent_p (addr_a, addr_b);
+  else if (DR_IS_READ (a) && DR_IS_WRITE (b))
+    return refs_anti_dependent_p (addr_a, addr_b);
+  return refs_may_alias_p (addr_a, addr_b);
 }
 
 /* Initialize a data dependence relation between data accesses A and
    B.  NB_LOOPS is the number of loops surrounding the references: the
    size of the classic distance/direction vectors.  */
 
-static struct data_dependence_relation *
-initialize_data_dependence_relation (struct data_reference *a, 
+struct data_dependence_relation *
+initialize_data_dependence_relation (struct data_reference *a,
                                     struct data_reference *b,
                                     VEC (loop_p, heap) *loop_nest)
 {
   struct data_dependence_relation *res;
   unsigned int i;
-  
+
   res = XNEW (struct data_dependence_relation);
   DDR_A (res) = a;
   DDR_B (res) = b;
@@ -1287,14 +1419,44 @@ initialize_data_dependence_relation (struct data_reference *a,
 
   if (a == NULL || b == NULL)
     {
-      DDR_ARE_DEPENDENT (res) = chrec_dont_know;    
+      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
       return res;
-    }   
+    }
 
   /* If the data references do not alias, then they are independent.  */
-  if (!dr_may_alias_p (a, b))
+  if (!dr_may_alias_p (a, b, loop_nest != NULL))
     {
-      DDR_ARE_DEPENDENT (res) = chrec_known;    
+      DDR_ARE_DEPENDENT (res) = chrec_known;
+      return res;
+    }
+
+  /* The case where the references are exactly the same.  */
+  if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
+    {
+     if (loop_nest
+        && !object_address_invariant_in_loop_p (VEC_index (loop_p, loop_nest, 0),
+                                                       DR_BASE_OBJECT (a)))
+      {
+        DDR_ARE_DEPENDENT (res) = chrec_dont_know;
+        return res;
+      }
+      DDR_AFFINE_P (res) = true;
+      DDR_ARE_DEPENDENT (res) = NULL_TREE;
+      DDR_SUBSCRIPTS (res) = VEC_alloc (subscript_p, heap, DR_NUM_DIMENSIONS (a));
+      DDR_LOOP_NEST (res) = loop_nest;
+      DDR_INNER_LOOP (res) = 0;
+      DDR_SELF_REFERENCE (res) = true;
+      for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
+       {
+         struct subscript *subscript;
+
+         subscript = XNEW (struct subscript);
+         SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
+         SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
+         SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
+         SUB_DISTANCE (subscript) = chrec_dont_know;
+         VEC_safe_push (subscript_p, heap, DDR_SUBSCRIPTS (res), subscript);
+       }
       return res;
     }
 
@@ -1302,32 +1464,41 @@ initialize_data_dependence_relation (struct data_reference *a,
      whether they alias or not.  */
   if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0))
     {
-      DDR_ARE_DEPENDENT (res) = chrec_dont_know;    
+      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
       return res;
     }
 
   /* If the base of the object is not invariant in the loop nest, we cannot
      analyze it.  TODO -- in fact, it would suffice to record that there may
      be arbitrary dependences in the loops where the base object varies.  */
-  if (!object_address_invariant_in_loop_p (VEC_index (loop_p, loop_nest, 0),
-                                          DR_BASE_OBJECT (a)))
+  if (loop_nest
+      && !object_address_invariant_in_loop_p (VEC_index (loop_p, loop_nest, 0),
+                                             DR_BASE_OBJECT (a)))
     {
-      DDR_ARE_DEPENDENT (res) = chrec_dont_know;    
+      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
       return res;
     }
 
-  gcc_assert (DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b));
+  /* If the number of dimensions of the access to not agree we can have
+     a pointer access to a component of the array element type and an
+     array access while the base-objects are still the same.  Punt.  */
+  if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
+    {
+      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
+      return res;
+    }
 
   DDR_AFFINE_P (res) = true;
   DDR_ARE_DEPENDENT (res) = NULL_TREE;
   DDR_SUBSCRIPTS (res) = VEC_alloc (subscript_p, heap, DR_NUM_DIMENSIONS (a));
   DDR_LOOP_NEST (res) = loop_nest;
   DDR_INNER_LOOP (res) = 0;
+  DDR_SELF_REFERENCE (res) = false;
 
   for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
     {
       struct subscript *subscript;
-         
+
       subscript = XNEW (struct subscript);
       SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
       SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
@@ -1362,10 +1533,11 @@ free_subscripts (VEC (subscript_p, heap) *subscripts)
   unsigned i;
   subscript_p s;
 
-  for (i = 0; VEC_iterate (subscript_p, subscripts, i, s); i++)
+  FOR_EACH_VEC_ELT (subscript_p, subscripts, i, s)
     {
       free_conflict_function (s->conflicting_iterations_in_a);
       free_conflict_function (s->conflicting_iterations_in_b);
+      free (s);
     }
   VEC_free (subscript_p, heap, subscripts);
 }
@@ -1374,7 +1546,7 @@ free_subscripts (VEC (subscript_p, heap) *subscripts)
    description.  */
 
 static inline void
-finalize_ddr_dependent (struct data_dependence_relation *ddr, 
+finalize_ddr_dependent (struct data_dependence_relation *ddr,
                        tree chrec)
 {
   if (dump_file && (dump_flags & TDF_DETAILS))
@@ -1384,7 +1556,7 @@ finalize_ddr_dependent (struct data_dependence_relation *ddr,
       fprintf (dump_file, ")\n");
     }
 
-  DDR_ARE_DEPENDENT (ddr) = chrec;  
+  DDR_ARE_DEPENDENT (ddr) = chrec;
   free_subscripts (DDR_SUBSCRIPTS (ddr));
   DDR_SUBSCRIPTS (ddr) = NULL;
 }
@@ -1426,7 +1598,7 @@ siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
       || (evolution_function_is_constant_p (chrec_b)
          && evolution_function_is_univariate_p (chrec_a)))
     return true;
-  
+
   if (evolution_function_is_univariate_p (chrec_a)
       && evolution_function_is_univariate_p (chrec_b))
     {
@@ -1438,16 +1610,16 @@ siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
            case POLYNOMIAL_CHREC:
              if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
                return false;
-             
+
            default:
              return true;
            }
-         
+
        default:
          return true;
        }
     }
-  
+
   return false;
 }
 
@@ -1463,7 +1635,7 @@ conflict_fn (unsigned n, ...)
 
   gcc_assert (0 < n && n <= MAX_DIM);
   va_start(ap, n);
-                      
+
   ret->n = n;
   for (i = 0; i < n; i++)
     ret->fns[i] = va_arg (ap, affine_fn);
@@ -1505,24 +1677,24 @@ affine_fn_univar (tree cst, unsigned dim, tree coef)
 
    CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)).  */
 
-static void 
-analyze_ziv_subscript (tree chrec_a, 
-                      tree chrec_b, 
+static void
+analyze_ziv_subscript (tree chrec_a,
+                      tree chrec_b,
                       conflict_function **overlaps_a,
-                      conflict_function **overlaps_b, 
+                      conflict_function **overlaps_b,
                       tree *last_conflicts)
 {
   tree type, difference;
   dependence_stats.num_ziv++;
-  
+
   if (dump_file && (dump_flags & TDF_DETAILS))
     fprintf (dump_file, "(analyze_ziv_subscript \n");
 
   type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
-  chrec_a = chrec_convert (type, chrec_a, NULL_TREE);
-  chrec_b = chrec_convert (type, chrec_b, NULL_TREE);
+  chrec_a = chrec_convert (type, chrec_a, NULL);
+  chrec_b = chrec_convert (type, chrec_b, NULL);
   difference = chrec_fold_minus (type, chrec_a, chrec_b);
-  
+
   switch (TREE_CODE (difference))
     {
     case INTEGER_CST:
@@ -1544,9 +1716,9 @@ analyze_ziv_subscript (tree chrec_a,
          dependence_stats.num_ziv_independent++;
        }
       break;
-      
+
     default:
-      /* We're not sure whether the indexes overlap.  For the moment, 
+      /* We're not sure whether the indexes overlap.  For the moment,
         conservatively answer "don't know".  */
       if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
@@ -1557,80 +1729,100 @@ analyze_ziv_subscript (tree chrec_a,
       dependence_stats.num_ziv_unimplemented++;
       break;
     }
-  
+
   if (dump_file && (dump_flags & TDF_DETAILS))
     fprintf (dump_file, ")\n");
 }
 
-/* Sets NIT to the estimated number of executions of the statements in
-   LOOP.  If CONSERVATIVE is true, we must be sure that NIT is at least as
-   large as the number of iterations.  If we have no reliable estimate,
-   the function returns false, otherwise returns true.  */
+/* Similar to max_stmt_executions_int, but returns the bound as a tree,
+   and only if it fits to the int type.  If this is not the case, or the
+   bound  on the number of iterations of LOOP could not be derived, returns
+   chrec_dont_know.  */
 
-bool
-estimated_loop_iterations (struct loop *loop, bool conservative,
-                          double_int *nit)
+static tree
+max_stmt_executions_tree (struct loop *loop)
 {
-  estimate_numbers_of_iterations_loop (loop);
-  if (conservative)
-    {
-      if (!loop->any_upper_bound)
-       return false;
+  double_int nit;
 
-      *nit = loop->nb_iterations_upper_bound;
-    }
-  else
-    {
-      if (!loop->any_estimate)
-       return false;
+  if (!max_stmt_executions (loop, true, &nit))
+    return chrec_dont_know;
 
-      *nit = loop->nb_iterations_estimate;
-    }
+  if (!double_int_fits_to_tree_p (unsigned_type_node, nit))
+    return chrec_dont_know;
 
-  return true;
+  return double_int_to_tree (unsigned_type_node, nit);
 }
 
-/* Similar to estimated_loop_iterations, but returns the estimate only
-   if it fits to HOST_WIDE_INT.  If this is not the case, or the estimate
-   on the number of iterations of LOOP could not be derived, returns -1.  */
+/* Determine whether the CHREC is always positive/negative.  If the expression
+   cannot be statically analyzed, return false, otherwise set the answer into
+   VALUE.  */
 
-HOST_WIDE_INT
-estimated_loop_iterations_int (struct loop *loop, bool conservative)
+static bool
+chrec_is_positive (tree chrec, bool *value)
 {
-  double_int nit;
-  HOST_WIDE_INT hwi_nit;
+  bool value0, value1, value2;
+  tree end_value, nb_iter;
 
-  if (!estimated_loop_iterations (loop, conservative, &nit))
-    return -1;
+  switch (TREE_CODE (chrec))
+    {
+    case POLYNOMIAL_CHREC:
+      if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
+         || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
+       return false;
 
-  if (!double_int_fits_in_shwi_p (nit))
-    return -1;
-  hwi_nit = double_int_to_shwi (nit);
+      /* FIXME -- overflows.  */
+      if (value0 == value1)
+       {
+         *value = value0;
+         return true;
+       }
 
-  return hwi_nit < 0 ? -1 : hwi_nit;
-}
-    
-/* Similar to estimated_loop_iterations, but returns the estimate as a tree,
-   and only if it fits to the int type.  If this is not the case, or the
-   estimate on the number of iterations of LOOP could not be derived, returns
-   chrec_dont_know.  */
+      /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
+        and the proof consists in showing that the sign never
+        changes during the execution of the loop, from 0 to
+        loop->nb_iterations.  */
+      if (!evolution_function_is_affine_p (chrec))
+       return false;
 
-static tree
-estimated_loop_iterations_tree (struct loop *loop, bool conservative)
-{
-  double_int nit;
-  tree type;
+      nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
+      if (chrec_contains_undetermined (nb_iter))
+       return false;
 
-  if (!estimated_loop_iterations (loop, conservative, &nit))
-    return chrec_dont_know;
+#if 0
+      /* TODO -- If the test is after the exit, we may decrease the number of
+        iterations by one.  */
+      if (after_exit)
+       nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
+#endif
 
-  type = lang_hooks.types.type_for_size (INT_TYPE_SIZE, true);
-  if (!double_int_fits_to_tree_p (type, nit))
-    return chrec_dont_know;
+      end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
+
+      if (!chrec_is_positive (end_value, &value2))
+       return false;
+
+      *value = value0;
+      return value0 == value1;
+
+    case INTEGER_CST:
+      switch (tree_int_cst_sgn (chrec))
+       {
+       case -1:
+         *value = false;
+         break;
+       case 1:
+         *value = true;
+         break;
+       default:
+         return false;
+       }
+      return true;
 
-  return double_int_to_tree (type, nit);
+    default:
+      return false;
+    }
 }
 
+
 /* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
    constant, and CHREC_B is an affine function.  *OVERLAPS_A and
    *OVERLAPS_B are initialized to the functions that describe the
@@ -1640,24 +1832,33 @@ estimated_loop_iterations_tree (struct loop *loop, bool conservative)
    CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)).  */
 
 static void
-analyze_siv_subscript_cst_affine (tree chrec_a, 
+analyze_siv_subscript_cst_affine (tree chrec_a,
                                  tree chrec_b,
-                                 conflict_function **overlaps_a, 
-                                 conflict_function **overlaps_b, 
+                                 conflict_function **overlaps_a,
+                                 conflict_function **overlaps_b,
                                  tree *last_conflicts)
 {
   bool value0, value1, value2;
   tree type, difference, tmp;
 
   type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
-  chrec_a = chrec_convert (type, chrec_a, NULL_TREE);
-  chrec_b = chrec_convert (type, chrec_b, NULL_TREE);
+  chrec_a = chrec_convert (type, chrec_a, NULL);
+  chrec_b = chrec_convert (type, chrec_b, NULL);
   difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a);
-  
+
+  /* Special case overlap in the first iteration.  */
+  if (integer_zerop (difference))
+    {
+      *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
+      *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
+      *last_conflicts = integer_one_node;
+      return;
+    }
+
   if (!chrec_is_positive (initial_condition (difference), &value0))
     {
       if (dump_file && (dump_flags & TDF_DETAILS))
-       fprintf (dump_file, "siv test failed: chrec is not positive.\n"); 
+       fprintf (dump_file, "siv test failed: chrec is not positive.\n");
 
       dependence_stats.num_siv_unimplemented++;
       *overlaps_a = conflict_fn_not_known ();
@@ -1675,7 +1876,7 @@ analyze_siv_subscript_cst_affine (tree chrec_a,
                fprintf (dump_file, "siv test failed: chrec not positive.\n");
 
              *overlaps_a = conflict_fn_not_known ();
-             *overlaps_b = conflict_fn_not_known ();      
+             *overlaps_b = conflict_fn_not_known ();
              *last_conflicts = chrec_dont_know;
              dependence_stats.num_siv_unimplemented++;
              return;
@@ -1684,11 +1885,11 @@ analyze_siv_subscript_cst_affine (tree chrec_a,
            {
              if (value1 == true)
                {
-                 /* Example:  
+                 /* Example:
                     chrec_a = 12
                     chrec_b = {10, +, 1}
                  */
-                 
+
                  if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
                    {
                      HOST_WIDE_INT numiter;
@@ -1700,11 +1901,11 @@ analyze_siv_subscript_cst_affine (tree chrec_a,
                                         CHREC_RIGHT (chrec_b));
                      *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
                      *last_conflicts = integer_one_node;
-                     
+
 
                      /* Perform weak-zero siv test to see if overlap is
                         outside the loop bounds.  */
-                     numiter = estimated_loop_iterations_int (loop, false);
+                     numiter = max_stmt_executions_int (loop, true);
 
                      if (numiter >= 0
                          && compare_tree_int (tmp, numiter) > 0)
@@ -1716,29 +1917,29 @@ analyze_siv_subscript_cst_affine (tree chrec_a,
                          *last_conflicts = integer_zero_node;
                          dependence_stats.num_siv_independent++;
                          return;
-                       }               
+                       }
                      dependence_stats.num_siv_dependent++;
                      return;
                    }
-                 
+
                  /* When the step does not divide the difference, there are
                     no overlaps.  */
                  else
                    {
                      *overlaps_a = conflict_fn_no_dependence ();
-                     *overlaps_b = conflict_fn_no_dependence ();      
+                     *overlaps_b = conflict_fn_no_dependence ();
                      *last_conflicts = integer_zero_node;
                      dependence_stats.num_siv_independent++;
                      return;
                    }
                }
-             
+
              else
                {
-                 /* Example:  
+                 /* Example:
                     chrec_a = 12
                     chrec_b = {10, +, -1}
-                    
+
                     In this case, chrec_a will not overlap with chrec_b.  */
                  *overlaps_a = conflict_fn_no_dependence ();
                  *overlaps_b = conflict_fn_no_dependence ();
@@ -1748,7 +1949,7 @@ analyze_siv_subscript_cst_affine (tree chrec_a,
                }
            }
        }
-      else 
+      else
        {
          if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
            {
@@ -1756,7 +1957,7 @@ analyze_siv_subscript_cst_affine (tree chrec_a,
                fprintf (dump_file, "siv test failed: chrec not positive.\n");
 
              *overlaps_a = conflict_fn_not_known ();
-             *overlaps_b = conflict_fn_not_known ();      
+             *overlaps_b = conflict_fn_not_known ();
              *last_conflicts = chrec_dont_know;
              dependence_stats.num_siv_unimplemented++;
              return;
@@ -1765,7 +1966,7 @@ analyze_siv_subscript_cst_affine (tree chrec_a,
            {
              if (value2 == false)
                {
-                 /* Example:  
+                 /* Example:
                     chrec_a = 3
                     chrec_b = {10, +, -1}
                  */
@@ -1782,7 +1983,7 @@ analyze_siv_subscript_cst_affine (tree chrec_a,
 
                      /* Perform weak-zero siv test to see if overlap is
                         outside the loop bounds.  */
-                     numiter = estimated_loop_iterations_int (loop, false);
+                     numiter = max_stmt_executions_int (loop, true);
 
                      if (numiter >= 0
                          && compare_tree_int (tmp, numiter) > 0)
@@ -1794,17 +1995,17 @@ analyze_siv_subscript_cst_affine (tree chrec_a,
                          *last_conflicts = integer_zero_node;
                          dependence_stats.num_siv_independent++;
                          return;
-                       }       
+                       }
                      dependence_stats.num_siv_dependent++;
                      return;
                    }
-                 
+
                  /* When the step does not divide the difference, there
                     are no overlaps.  */
                  else
                    {
                      *overlaps_a = conflict_fn_no_dependence ();
-                     *overlaps_b = conflict_fn_no_dependence ();      
+                     *overlaps_b = conflict_fn_no_dependence ();
                      *last_conflicts = integer_zero_node;
                      dependence_stats.num_siv_independent++;
                      return;
@@ -1812,10 +2013,10 @@ analyze_siv_subscript_cst_affine (tree chrec_a,
                }
              else
                {
-                 /* Example:  
-                    chrec_a = 3  
+                 /* Example:
+                    chrec_a = 3
                     chrec_b = {4, +, 1}
-                
+
                     In this case, chrec_a will not overlap with chrec_b.  */
                  *overlaps_a = conflict_fn_no_dependence ();
                  *overlaps_b = conflict_fn_no_dependence ();
@@ -1831,21 +2032,55 @@ analyze_siv_subscript_cst_affine (tree chrec_a,
 /* Helper recursive function for initializing the matrix A.  Returns
    the initial value of CHREC.  */
 
-static HOST_WIDE_INT
+static tree
 initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
 {
   gcc_assert (chrec);
 
-  if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
-    return int_cst_value (chrec);
+  switch (TREE_CODE (chrec))
+    {
+    case POLYNOMIAL_CHREC:
+      gcc_assert (TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST);
 
-  A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
-  return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
+      A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
+      return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
+
+    case PLUS_EXPR:
+    case MULT_EXPR:
+    case MINUS_EXPR:
+      {
+       tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
+       tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult);
+
+       return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1);
+      }
+
+    case NOP_EXPR:
+      {
+       tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
+       return chrec_convert (chrec_type (chrec), op, NULL);
+      }
+
+    case BIT_NOT_EXPR:
+      {
+       /* Handle ~X as -1 - X.  */
+       tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
+       return chrec_fold_op (MINUS_EXPR, chrec_type (chrec),
+                             build_int_cst (TREE_TYPE (chrec), -1), op);
+      }
+
+    case INTEGER_CST:
+      return chrec;
+
+    default:
+      gcc_unreachable ();
+      return NULL_TREE;
+    }
 }
 
 #define FLOOR_DIV(x,y) ((x) / (y))
 
-/* Solves the special case of the Diophantine equation: 
+/* Solves the special case of the Diophantine equation:
    | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
 
    Computes the descriptions OVERLAPS_A and OVERLAPS_B.  NITER is the
@@ -1853,9 +2088,9 @@ initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
    constructed as evolutions in dimension DIM.  */
 
 static void
-compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b, 
+compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
                                         affine_fn *overlaps_a,
-                                        affine_fn *overlaps_b, 
+                                        affine_fn *overlaps_b,
                                         tree *last_conflicts, int dim)
 {
   if (((step_a > 0 && step_b > 0)
@@ -1878,11 +2113,11 @@ compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
       else
        *last_conflicts = chrec_dont_know;
 
-      *overlaps_a = affine_fn_univar (integer_zero_node, dim, 
+      *overlaps_a = affine_fn_univar (integer_zero_node, dim,
                                      build_int_cst (NULL_TREE,
                                                     step_overlaps_a));
-      *overlaps_b = affine_fn_univar (integer_zero_node, dim, 
-                                     build_int_cst (NULL_TREE, 
+      *overlaps_b = affine_fn_univar (integer_zero_node, dim,
+                                     build_int_cst (NULL_TREE,
                                                     step_overlaps_b));
     }
 
@@ -1896,11 +2131,11 @@ compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
 
 /* Solves the special case of a Diophantine equation where CHREC_A is
    an affine bivariate function, and CHREC_B is an affine univariate
-   function.  For example, 
+   function.  For example,
 
    | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
-   
-   has the following overlapping functions: 
+
+   has the following overlapping functions:
 
    | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
    | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
@@ -1910,9 +2145,9 @@ compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
    a common benchmark.  Implement the general algorithm.  */
 
 static void
-compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b, 
+compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
                                      conflict_function **overlaps_a,
-                                     conflict_function **overlaps_b, 
+                                     conflict_function **overlaps_b,
                                      tree *last_conflicts)
 {
   bool xz_p, yz_p, xyz_p;
@@ -1928,17 +2163,16 @@ compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
   step_y = int_cst_value (CHREC_RIGHT (chrec_a));
   step_z = int_cst_value (CHREC_RIGHT (chrec_b));
 
-  niter_x = 
-    estimated_loop_iterations_int (get_chrec_loop (CHREC_LEFT (chrec_a)),
-                                  false);
-  niter_y = estimated_loop_iterations_int (get_chrec_loop (chrec_a), false);
-  niter_z = estimated_loop_iterations_int (get_chrec_loop (chrec_b), false);
-  
+  niter_x =
+    max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a)), true);
+  niter_y = max_stmt_executions_int (get_chrec_loop (chrec_a), true);
+  niter_z = max_stmt_executions_int (get_chrec_loop (chrec_b), true);
+
   if (niter_x < 0 || niter_y < 0 || niter_z < 0)
     {
       if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
-          
+
       *overlaps_a = conflict_fn_not_known ();
       *overlaps_b = conflict_fn_not_known ();
       *last_conflicts = chrec_dont_know;
@@ -2025,21 +2259,184 @@ compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
   affine_fn_free (overlaps_b_xyz);
 }
 
+/* Copy the elements of vector VEC1 with length SIZE to VEC2.  */
+
+static void
+lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
+                   int size)
+{
+  memcpy (vec2, vec1, size * sizeof (*vec1));
+}
+
+/* Copy the elements of M x N matrix MAT1 to MAT2.  */
+
+static void
+lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
+                   int m, int n)
+{
+  int i;
+
+  for (i = 0; i < m; i++)
+    lambda_vector_copy (mat1[i], mat2[i], n);
+}
+
+/* Store the N x N identity matrix in MAT.  */
+
+static void
+lambda_matrix_id (lambda_matrix mat, int size)
+{
+  int i, j;
+
+  for (i = 0; i < size; i++)
+    for (j = 0; j < size; j++)
+      mat[i][j] = (i == j) ? 1 : 0;
+}
+
+/* Return the first nonzero element of vector VEC1 between START and N.
+   We must have START <= N.   Returns N if VEC1 is the zero vector.  */
+
+static int
+lambda_vector_first_nz (lambda_vector vec1, int n, int start)
+{
+  int j = start;
+  while (j < n && vec1[j] == 0)
+    j++;
+  return j;
+}
+
+/* Add a multiple of row R1 of matrix MAT with N columns to row R2:
+   R2 = R2 + CONST1 * R1.  */
+
+static void
+lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
+{
+  int i;
+
+  if (const1 == 0)
+    return;
+
+  for (i = 0; i < n; i++)
+    mat[r2][i] += const1 * mat[r1][i];
+}
+
+/* Swap rows R1 and R2 in matrix MAT.  */
+
+static void
+lambda_matrix_row_exchange (lambda_matrix mat, int r1, int r2)
+{
+  lambda_vector row;
+
+  row = mat[r1];
+  mat[r1] = mat[r2];
+  mat[r2] = row;
+}
+
+/* Multiply vector VEC1 of length SIZE by a constant CONST1,
+   and store the result in VEC2.  */
+
+static void
+lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
+                         int size, int const1)
+{
+  int i;
+
+  if (const1 == 0)
+    lambda_vector_clear (vec2, size);
+  else
+    for (i = 0; i < size; i++)
+      vec2[i] = const1 * vec1[i];
+}
+
+/* Negate vector VEC1 with length SIZE and store it in VEC2.  */
+
+static void
+lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
+                     int size)
+{
+  lambda_vector_mult_const (vec1, vec2, size, -1);
+}
+
+/* Negate row R1 of matrix MAT which has N columns.  */
+
+static void
+lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
+{
+  lambda_vector_negate (mat[r1], mat[r1], n);
+}
+
+/* Return true if two vectors are equal.  */
+
+static bool
+lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
+{
+  int i;
+  for (i = 0; i < size; i++)
+    if (vec1[i] != vec2[i])
+      return false;
+  return true;
+}
+
+/* Given an M x N integer matrix A, this function determines an M x
+   M unimodular matrix U, and an M x N echelon matrix S such that
+   "U.A = S".  This decomposition is also known as "right Hermite".
+
+   Ref: Algorithm 2.1 page 33 in "Loop Transformations for
+   Restructuring Compilers" Utpal Banerjee.  */
+
+static void
+lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
+                            lambda_matrix S, lambda_matrix U)
+{
+  int i, j, i0 = 0;
+
+  lambda_matrix_copy (A, S, m, n);
+  lambda_matrix_id (U, m);
+
+  for (j = 0; j < n; j++)
+    {
+      if (lambda_vector_first_nz (S[j], m, i0) < m)
+       {
+         ++i0;
+         for (i = m - 1; i >= i0; i--)
+           {
+             while (S[i][j] != 0)
+               {
+                 int sigma, factor, a, b;
+
+                 a = S[i-1][j];
+                 b = S[i][j];
+                 sigma = (a * b < 0) ? -1: 1;
+                 a = abs (a);
+                 b = abs (b);
+                 factor = sigma * (a / b);
+
+                 lambda_matrix_row_add (S, n, i, i-1, -factor);
+                 lambda_matrix_row_exchange (S, i, i-1);
+
+                 lambda_matrix_row_add (U, m, i, i-1, -factor);
+                 lambda_matrix_row_exchange (U, i, i-1);
+               }
+           }
+       }
+    }
+}
+
 /* Determines the overlapping elements due to accesses CHREC_A and
    CHREC_B, that are affine functions.  This function cannot handle
    symbolic evolution functions, ie. when initial conditions are
    parameters, because it uses lambda matrices of integers.  */
 
 static void
-analyze_subscript_affine_affine (tree chrec_a, 
+analyze_subscript_affine_affine (tree chrec_a,
                                 tree chrec_b,
-                                conflict_function **overlaps_a, 
-                                conflict_function **overlaps_b, 
+                                conflict_function **overlaps_a,
+                                conflict_function **overlaps_b,
                                 tree *last_conflicts)
 {
   unsigned nb_vars_a, nb_vars_b, dim;
   HOST_WIDE_INT init_a, init_b, gamma, gcd_alpha_beta;
   lambda_matrix A, U, S;
+  struct obstack scratch_obstack;
 
   if (eq_evolutions_p (chrec_a, chrec_b))
     {
@@ -2052,10 +2449,10 @@ analyze_subscript_affine_affine (tree chrec_a,
     }
   if (dump_file && (dump_flags & TDF_DETAILS))
     fprintf (dump_file, "(analyze_subscript_affine_affine \n");
-  
+
   /* For determining the initial intersection, we have to solve a
      Diophantine equation.  This is the most time consuming part.
-     
+
      For answering to the question: "Is there a dependence?" we have
      to prove that there exists a solution to the Diophantine
      equation, and that the solution is in the iteration domain,
@@ -2067,21 +2464,23 @@ analyze_subscript_affine_affine (tree chrec_a,
   nb_vars_a = nb_vars_in_chrec (chrec_a);
   nb_vars_b = nb_vars_in_chrec (chrec_b);
 
+  gcc_obstack_init (&scratch_obstack);
+
   dim = nb_vars_a + nb_vars_b;
-  U = lambda_matrix_new (dim, dim);
-  A = lambda_matrix_new (dim, 1);
-  S = lambda_matrix_new (dim, 1);
+  U = lambda_matrix_new (dim, dim, &scratch_obstack);
+  A = lambda_matrix_new (dim, 1, &scratch_obstack);
+  S = lambda_matrix_new (dim, 1, &scratch_obstack);
 
-  init_a = initialize_matrix_A (A, chrec_a, 0, 1);
-  init_b = initialize_matrix_A (A, chrec_b, nb_vars_a, -1);
+  init_a = int_cst_value (initialize_matrix_A (A, chrec_a, 0, 1));
+  init_b = int_cst_value (initialize_matrix_A (A, chrec_b, nb_vars_a, -1));
   gamma = init_b - init_a;
 
   /* Don't do all the hard work of solving the Diophantine equation
-     when we already know the solution: for example, 
+     when we already know the solution: for example,
      | {3, +, 1}_1
      | {3, +, 4}_2
      | gamma = 3 - 3 = 0.
-     Then the first overlap occurs during the first iterations: 
+     Then the first overlap occurs during the first iterations:
      | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
   */
   if (gamma == 0)
@@ -2092,16 +2491,14 @@ analyze_subscript_affine_affine (tree chrec_a,
          HOST_WIDE_INT niter, niter_a, niter_b;
          affine_fn ova, ovb;
 
-         niter_a = estimated_loop_iterations_int (get_chrec_loop (chrec_a),
-                                                  false);
-         niter_b = estimated_loop_iterations_int (get_chrec_loop (chrec_b),
-                                                  false);
+         niter_a = max_stmt_executions_int (get_chrec_loop (chrec_a), true);
+         niter_b = max_stmt_executions_int (get_chrec_loop (chrec_b), true);
          niter = MIN (niter_a, niter_b);
          step_a = int_cst_value (CHREC_RIGHT (chrec_a));
          step_b = int_cst_value (CHREC_RIGHT (chrec_b));
 
-         compute_overlap_steps_for_affine_univar (niter, step_a, step_b, 
-                                                  &ova, &ovb, 
+         compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
+                                                  &ova, &ovb,
                                                   last_conflicts, 1);
          *overlaps_a = conflict_fn (1, ova);
          *overlaps_b = conflict_fn (1, ovb);
@@ -2165,20 +2562,20 @@ analyze_subscript_affine_affine (tree chrec_a,
           || (A[0][0] < 0 && -A[1][0] < 0)))
        {
          /* The solutions are given by:
-            | 
+            |
             | [GAMMA/GCD_ALPHA_BETA  t].[u11 u12]  = [x0]
             |                           [u21 u22]    [y0]
-        
+
             For a given integer t.  Using the following variables,
-        
+
             | i0 = u11 * gamma / gcd_alpha_beta
             | j0 = u12 * gamma / gcd_alpha_beta
             | i1 = u21
             | j1 = u22
-        
+
             the solutions are:
-        
-            | x0 = i0 + i1 * t, 
+
+            | x0 = i0 + i1 * t,
             | y0 = j0 + j1 * t.  */
          HOST_WIDE_INT i0, j0, i1, j1;
 
@@ -2190,9 +2587,9 @@ analyze_subscript_affine_affine (tree chrec_a,
          if ((i1 == 0 && i0 < 0)
              || (j1 == 0 && j0 < 0))
            {
-             /* There is no solution.  
-                FIXME: The case "i0 > nb_iterations, j0 > nb_iterations" 
-                falls in here, but for the moment we don't look at the 
+             /* There is no solution.
+                FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
+                falls in here, but for the moment we don't look at the
                 upper bound of the iteration domain.  */
              *overlaps_a = conflict_fn_no_dependence ();
              *overlaps_b = conflict_fn_no_dependence ();
@@ -2202,10 +2599,10 @@ analyze_subscript_affine_affine (tree chrec_a,
 
          if (i1 > 0 && j1 > 0)
            {
-             HOST_WIDE_INT niter_a = estimated_loop_iterations_int
-               (get_chrec_loop (chrec_a), false);
-             HOST_WIDE_INT niter_b = estimated_loop_iterations_int
-               (get_chrec_loop (chrec_b), false);
+             HOST_WIDE_INT niter_a = max_stmt_executions_int
+               (get_chrec_loop (chrec_a), true);
+             HOST_WIDE_INT niter_b = max_stmt_executions_int
+               (get_chrec_loop (chrec_b), true);
              HOST_WIDE_INT niter = MIN (niter_a, niter_b);
 
              /* (X0, Y0) is a solution of the Diophantine equation:
@@ -2230,7 +2627,7 @@ analyze_subscript_affine_affine (tree chrec_a,
 
                  /* If the overlap occurs outside of the bounds of the
                     loop, there is no dependence.  */
-                 if (x1 > niter || y1 > niter)
+                 if (x1 >= niter || y1 >= niter)
                    {
                      *overlaps_a = conflict_fn_no_dependence ();
                      *overlaps_b = conflict_fn_no_dependence ();
@@ -2283,7 +2680,8 @@ analyze_subscript_affine_affine (tree chrec_a,
       *last_conflicts = chrec_dont_know;
     }
 
-end_analyze_subs_aa:  
+end_analyze_subs_aa:
+  obstack_free (&scratch_obstack, NULL);
   if (dump_file && (dump_flags & TDF_DETAILS))
     {
       fprintf (dump_file, "  (overlaps_a = ");
@@ -2299,12 +2697,12 @@ end_analyze_subs_aa:
    determining the dependence relation between chrec_a and chrec_b,
    that contain symbols.  This function modifies chrec_a and chrec_b
    such that the analysis result is the same, and such that they don't
-   contain symbols, and then can safely be passed to the analyzer.  
+   contain symbols, and then can safely be passed to the analyzer.
 
    Example: The analysis of the following tuples of evolutions produce
    the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
    vs. {0, +, 1}_1
-   
+
    {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
    {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
 */
@@ -2321,7 +2719,7 @@ can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
 
   type = chrec_type (*chrec_a);
   left_a = CHREC_LEFT (*chrec_a);
-  left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL_TREE);
+  left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL);
   diff = chrec_fold_minus (type, left_a, left_b);
 
   if (!evolution_function_is_constant_p (diff))
@@ -2330,9 +2728,9 @@ can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
   if (dump_file && (dump_flags & TDF_DETAILS))
     fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
 
-  *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a), 
+  *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
                                     diff, CHREC_RIGHT (*chrec_a));
-  right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL_TREE);
+  right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL);
   *chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
                                     build_int_cst (type, 0),
                                     right_b);
@@ -2347,35 +2745,36 @@ can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
    CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)).  */
 
 static void
-analyze_siv_subscript (tree chrec_a, 
+analyze_siv_subscript (tree chrec_a,
                       tree chrec_b,
-                      conflict_function **overlaps_a, 
-                      conflict_function **overlaps_b, 
-                      tree *last_conflicts)
+                      conflict_function **overlaps_a,
+                      conflict_function **overlaps_b,
+                      tree *last_conflicts,
+                      int loop_nest_num)
 {
   dependence_stats.num_siv++;
-  
+
   if (dump_file && (dump_flags & TDF_DETAILS))
     fprintf (dump_file, "(analyze_siv_subscript \n");
-  
+
   if (evolution_function_is_constant_p (chrec_a)
-      && evolution_function_is_affine_p (chrec_b))
-    analyze_siv_subscript_cst_affine (chrec_a, chrec_b, 
+      && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
+    analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
                                      overlaps_a, overlaps_b, last_conflicts);
-  
-  else if (evolution_function_is_affine_p (chrec_a)
+
+  else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
           && evolution_function_is_constant_p (chrec_b))
-    analyze_siv_subscript_cst_affine (chrec_b, chrec_a, 
+    analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
                                      overlaps_b, overlaps_a, last_conflicts);
-  
-  else if (evolution_function_is_affine_p (chrec_a)
-          && evolution_function_is_affine_p (chrec_b))
+
+  else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
+          && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
     {
       if (!chrec_contains_symbols (chrec_a)
          && !chrec_contains_symbols (chrec_b))
        {
-         analyze_subscript_affine_affine (chrec_a, chrec_b, 
-                                          overlaps_a, overlaps_b, 
+         analyze_subscript_affine_affine (chrec_a, chrec_b,
+                                          overlaps_a, overlaps_b,
                                           last_conflicts);
 
          if (CF_NOT_KNOWN_P (*overlaps_a)
@@ -2387,11 +2786,11 @@ analyze_siv_subscript (tree chrec_a,
          else
            dependence_stats.num_siv_dependent++;
        }
-      else if (can_use_analyze_subscript_affine_affine (&chrec_a, 
+      else if (can_use_analyze_subscript_affine_affine (&chrec_a,
                                                        &chrec_b))
        {
-         analyze_subscript_affine_affine (chrec_a, chrec_b, 
-                                          overlaps_a, overlaps_b, 
+         analyze_subscript_affine_affine (chrec_a, chrec_b,
+                                          overlaps_a, overlaps_b,
                                           last_conflicts);
 
          if (CF_NOT_KNOWN_P (*overlaps_a)
@@ -2417,7 +2816,7 @@ analyze_siv_subscript (tree chrec_a,
       *last_conflicts = chrec_dont_know;
       dependence_stats.num_siv_unimplemented++;
     }
-  
+
   if (dump_file && (dump_flags & TDF_DETAILS))
     fprintf (dump_file, ")\n");
 }
@@ -2456,21 +2855,13 @@ gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst)
    CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)).  */
 
 static void
-analyze_miv_subscript (tree chrec_a, 
-                      tree chrec_b, 
-                      conflict_function **overlaps_a, 
-                      conflict_function **overlaps_b, 
+analyze_miv_subscript (tree chrec_a,
+                      tree chrec_b,
+                      conflict_function **overlaps_a,
+                      conflict_function **overlaps_b,
                       tree *last_conflicts,
                       struct loop *loop_nest)
 {
-  /* FIXME:  This is a MIV subscript, not yet handled.
-     Example: (A[{1, +, 1}_1] vs. A[{1, +, 1}_2]) that comes from 
-     (A[i] vs. A[j]).  
-     
-     In the SIV test we had to solve a Diophantine equation with two
-     variables.  In the MIV case we have to solve a Diophantine
-     equation with 2*n variables (if the subscript uses n IVs).
-  */
   tree type, difference;
 
   dependence_stats.num_miv++;
@@ -2478,21 +2869,20 @@ analyze_miv_subscript (tree chrec_a,
     fprintf (dump_file, "(analyze_miv_subscript \n");
 
   type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
-  chrec_a = chrec_convert (type, chrec_a, NULL_TREE);
-  chrec_b = chrec_convert (type, chrec_b, NULL_TREE);
+  chrec_a = chrec_convert (type, chrec_a, NULL);
+  chrec_b = chrec_convert (type, chrec_b, NULL);
   difference = chrec_fold_minus (type, chrec_a, chrec_b);
-  
+
   if (eq_evolutions_p (chrec_a, chrec_b))
     {
       /* Access functions are the same: all the elements are accessed
         in the same order.  */
       *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
       *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
-      *last_conflicts = estimated_loop_iterations_tree
-                               (get_chrec_loop (chrec_a), true);
+      *last_conflicts = max_stmt_executions_tree (get_chrec_loop (chrec_a));
       dependence_stats.num_miv_dependent++;
     }
-  
+
   else if (evolution_function_is_constant_p (difference)
           /* For the moment, the following is verified:
              evolution_function_is_affine_multivariate_p (chrec_a,
@@ -2500,8 +2890,8 @@ analyze_miv_subscript (tree chrec_a,
           && !gcd_of_steps_may_divide_p (chrec_a, difference))
     {
       /* testsuite/.../ssa-chrec-33.c
-        {{21, +, 2}_1, +, -2}_2  vs.  {{20, +, 2}_1, +, -2}_2 
-        
+        {{21, +, 2}_1, +, -2}_2  vs.  {{20, +, 2}_1, +, -2}_2
+
         The difference is 1, and all the evolution steps are multiples
         of 2, consequently there are no overlapping elements.  */
       *overlaps_a = conflict_fn_no_dependence ();
@@ -2509,7 +2899,7 @@ analyze_miv_subscript (tree chrec_a,
       *last_conflicts = integer_zero_node;
       dependence_stats.num_miv_independent++;
     }
-  
+
   else if (evolution_function_is_affine_multivariate_p (chrec_a, loop_nest->num)
           && !chrec_contains_symbols (chrec_a)
           && evolution_function_is_affine_multivariate_p (chrec_b, loop_nest->num)
@@ -2518,18 +2908,18 @@ analyze_miv_subscript (tree chrec_a,
       /* testsuite/.../ssa-chrec-35.c
         {0, +, 1}_2  vs.  {0, +, 1}_3
         the overlapping elements are respectively located at iterations:
-        {0, +, 1}_x and {0, +, 1}_x, 
-        in other words, we have the equality: 
+        {0, +, 1}_x and {0, +, 1}_x,
+        in other words, we have the equality:
         {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
-        
-        Other examples: 
-        {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) = 
+
+        Other examples:
+        {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
         {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
 
-        {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) = 
+        {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
         {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
       */
-      analyze_subscript_affine_affine (chrec_a, chrec_b, 
+      analyze_subscript_affine_affine (chrec_a, chrec_b,
                                       overlaps_a, overlaps_b, last_conflicts);
 
       if (CF_NOT_KNOWN_P (*overlaps_a)
@@ -2541,7 +2931,7 @@ analyze_miv_subscript (tree chrec_a,
       else
        dependence_stats.num_miv_dependent++;
     }
-  
+
   else
     {
       /* When the analysis is too difficult, answer "don't know".  */
@@ -2553,7 +2943,7 @@ analyze_miv_subscript (tree chrec_a,
       *last_conflicts = chrec_dont_know;
       dependence_stats.num_miv_unimplemented++;
     }
-  
+
   if (dump_file && (dump_flags & TDF_DETAILS))
     fprintf (dump_file, ")\n");
 }
@@ -2562,23 +2952,23 @@ analyze_miv_subscript (tree chrec_a,
    with respect to LOOP_NEST.  OVERLAP_ITERATIONS_A and
    OVERLAP_ITERATIONS_B are initialized with two functions that
    describe the iterations that contain conflicting elements.
-   
+
    Remark: For an integer k >= 0, the following equality is true:
-   
+
    CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
 */
 
-static void 
-analyze_overlapping_iterations (tree chrec_a, 
-                               tree chrec_b, 
-                               conflict_function **overlap_iterations_a, 
-                               conflict_function **overlap_iterations_b, 
+static void
+analyze_overlapping_iterations (tree chrec_a,
+                               tree chrec_b,
+                               conflict_function **overlap_iterations_a,
+                               conflict_function **overlap_iterations_b,
                                tree *last_conflicts, struct loop *loop_nest)
 {
   unsigned int lnn = loop_nest->num;
 
   dependence_stats.num_subscript_tests++;
-  
+
   if (dump_file && (dump_flags & TDF_DETAILS))
     {
       fprintf (dump_file, "(analyze_overlapping_iterations \n");
@@ -2595,15 +2985,16 @@ analyze_overlapping_iterations (tree chrec_a,
       || chrec_contains_undetermined (chrec_b))
     {
       dependence_stats.num_subscript_undetermined++;
-      
+
       *overlap_iterations_a = conflict_fn_not_known ();
       *overlap_iterations_b = conflict_fn_not_known ();
     }
 
-  /* If they are the same chrec, and are affine, they overlap 
+  /* If they are the same chrec, and are affine, they overlap
      on every iteration.  */
   else if (eq_evolutions_p (chrec_a, chrec_b)
-          && evolution_function_is_affine_multivariate_p (chrec_a, lnn))
+          && (evolution_function_is_affine_multivariate_p (chrec_a, lnn)
+              || operand_equal_p (chrec_a, chrec_b, 0)))
     {
       dependence_stats.num_same_subscript_function++;
       *overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
@@ -2612,8 +3003,8 @@ analyze_overlapping_iterations (tree chrec_a,
     }
 
   /* If they aren't the same, and aren't affine, we can't do anything
-     yet. */
-  else if ((chrec_contains_symbols (chrec_a) 
+     yet.  */
+  else if ((chrec_contains_symbols (chrec_a)
            || chrec_contains_symbols (chrec_b))
           && (!evolution_function_is_affine_multivariate_p (chrec_a, lnn)
               || !evolution_function_is_affine_multivariate_p (chrec_b, lnn)))
@@ -2624,20 +3015,20 @@ analyze_overlapping_iterations (tree chrec_a,
     }
 
   else if (ziv_subscript_p (chrec_a, chrec_b))
-    analyze_ziv_subscript (chrec_a, chrec_b, 
+    analyze_ziv_subscript (chrec_a, chrec_b,
                           overlap_iterations_a, overlap_iterations_b,
                           last_conflicts);
-  
+
   else if (siv_subscript_p (chrec_a, chrec_b))
-    analyze_siv_subscript (chrec_a, chrec_b, 
-                          overlap_iterations_a, overlap_iterations_b, 
-                          last_conflicts);
-  
+    analyze_siv_subscript (chrec_a, chrec_b,
+                          overlap_iterations_a, overlap_iterations_b,
+                          last_conflicts, lnn);
+
   else
-    analyze_miv_subscript (chrec_a, chrec_b, 
+    analyze_miv_subscript (chrec_a, chrec_b,
                           overlap_iterations_a, overlap_iterations_b,
                           last_conflicts, loop_nest);
-  
+
   if (dump_file && (dump_flags & TDF_DETAILS))
     {
       fprintf (dump_file, "  (overlap_iterations_a = ");
@@ -2657,7 +3048,7 @@ save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
   unsigned i;
   lambda_vector v;
 
-  for (i = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), i, v); i++)
+  FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), i, v)
     if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
       return;
 
@@ -2672,7 +3063,7 @@ save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
   unsigned i;
   lambda_vector v;
 
-  for (i = 0; VEC_iterate (lambda_vector, DDR_DIR_VECTS (ddr), i, v); i++)
+  FOR_EACH_VEC_ELT (lambda_vector, DDR_DIR_VECTS (ddr), i, v)
     if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
       return;
 
@@ -2737,33 +3128,23 @@ build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
       access_fn_a = DR_ACCESS_FN (ddr_a, i);
       access_fn_b = DR_ACCESS_FN (ddr_b, i);
 
-      if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC 
+      if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
          && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
        {
          int dist, index;
-         int index_a = index_in_loop_nest (CHREC_VARIABLE (access_fn_a),
-                                           DDR_LOOP_NEST (ddr));
-         int index_b = index_in_loop_nest (CHREC_VARIABLE (access_fn_b),
-                                           DDR_LOOP_NEST (ddr));
-
-         /* The dependence is carried by the outermost loop.  Example:
-            | loop_1
-            |   A[{4, +, 1}_1]
-            |   loop_2
-            |     A[{5, +, 1}_2]
-            |   endloop_2
-            | endloop_1
-            In this case, the dependence is carried by loop_1.  */
-         index = index_a < index_b ? index_a : index_b;
-         *index_carry = MIN (index, *index_carry);
+         int var_a = CHREC_VARIABLE (access_fn_a);
+         int var_b = CHREC_VARIABLE (access_fn_b);
 
-         if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
+         if (var_a != var_b
+             || chrec_contains_undetermined (SUB_DISTANCE (subscript)))
            {
              non_affine_dependence_relation (ddr);
              return false;
            }
-         
+
          dist = int_cst_value (SUB_DISTANCE (subscript));
+         index = index_in_loop_nest (var_a, DDR_LOOP_NEST (ddr));
+         *index_carry = MIN (index, *index_carry);
 
          /* This is the subscript coupling test.  If we have already
             recorded a distance for this loop (a distance coming from
@@ -3042,7 +3423,7 @@ build_classic_dist_vector (struct data_dependence_relation *ddr,
             |       T[j][i] = t + 2;  // B
             |     }
 
-            the vectors are: 
+            the vectors are:
             (0,  1, -1)
             (1,  1, -1)
             (1, -1,  1)
@@ -3135,7 +3516,7 @@ build_classic_dir_vector (struct data_dependence_relation *ddr)
   unsigned i, j;
   lambda_vector dist_v;
 
-  for (i = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v); i++)
+  FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v)
     {
       lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
 
@@ -3158,51 +3539,55 @@ subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
   unsigned int i;
   tree last_conflicts;
   struct subscript *subscript;
+  tree res = NULL_TREE;
 
   for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript);
        i++)
     {
       conflict_function *overlaps_a, *overlaps_b;
 
-      analyze_overlapping_iterations (DR_ACCESS_FN (dra, i), 
+      analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
                                      DR_ACCESS_FN (drb, i),
-                                     &overlaps_a, &overlaps_b, 
+                                     &overlaps_a, &overlaps_b,
                                      &last_conflicts, loop_nest);
 
+      if (SUB_CONFLICTS_IN_A (subscript))
+       free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
+      if (SUB_CONFLICTS_IN_B (subscript))
+       free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
+
+      SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
+      SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
+      SUB_LAST_CONFLICT (subscript) = last_conflicts;
+
+      /* If there is any undetermined conflict function we have to
+         give a conservative answer in case we cannot prove that
+        no dependence exists when analyzing another subscript.  */
       if (CF_NOT_KNOWN_P (overlaps_a)
          || CF_NOT_KNOWN_P (overlaps_b))
        {
-         finalize_ddr_dependent (ddr, chrec_dont_know);
-         dependence_stats.num_dependence_undetermined++;
-         free_conflict_function (overlaps_a);
-         free_conflict_function (overlaps_b);
-         return false;
+         res = chrec_dont_know;
+         continue;
        }
 
+      /* When there is a subscript with no dependence we can stop.  */
       else if (CF_NO_DEPENDENCE_P (overlaps_a)
               || CF_NO_DEPENDENCE_P (overlaps_b))
        {
-         finalize_ddr_dependent (ddr, chrec_known);
-         dependence_stats.num_dependence_independent++;
-         free_conflict_function (overlaps_a);
-         free_conflict_function (overlaps_b);
-         return false;
-       }
-
-      else
-       {
-         if (SUB_CONFLICTS_IN_A (subscript))
-           free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
-         if (SUB_CONFLICTS_IN_B (subscript))
-           free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
-
-         SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
-         SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
-         SUB_LAST_CONFLICT (subscript) = last_conflicts;
+         res = chrec_known;
+         break;
        }
     }
 
-  return true;
+  if (res == NULL_TREE)
+    return true;
+
+  if (res == chrec_known)
+    dependence_stats.num_dependence_independent++;
+  else
+    dependence_stats.num_dependence_undetermined++;
+  finalize_ddr_dependent (ddr, res);
+  return false;
 }
 
 /* Computes the conflicting iterations in LOOP_NEST, and initialize DDR.  */
@@ -3211,10 +3596,10 @@ static void
 subscript_dependence_tester (struct data_dependence_relation *ddr,
                             struct loop *loop_nest)
 {
-  
+
   if (dump_file && (dump_flags & TDF_DETAILS))
     fprintf (dump_file, "(subscript_dependence_tester \n");
-  
+
   if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), loop_nest))
     dependence_stats.num_dependence_dependent++;
 
@@ -3229,7 +3614,7 @@ subscript_dependence_tester (struct data_dependence_relation *ddr,
 /* Returns true when all the access functions of A are affine or
    constant with respect to LOOP_NEST.  */
 
-static bool 
+static bool
 access_functions_are_affine_or_constant_p (const struct data_reference *a,
                                           const struct loop *loop_nest)
 {
@@ -3237,11 +3622,11 @@ access_functions_are_affine_or_constant_p (const struct data_reference *a,
   VEC(tree,heap) *fns = DR_ACCESS_FNS (a);
   tree t;
 
-  for (i = 0; VEC_iterate (tree, fns, i, t); i++)
+  FOR_EACH_VEC_ELT (tree, fns, i, t)
     if (!evolution_function_is_invariant_p (t, loop_nest->num)
        && !evolution_function_is_affine_multivariate_p (t, loop_nest->num))
       return false;
-  
+
   return true;
 }
 
@@ -3258,8 +3643,8 @@ access_functions_are_affine_or_constant_p (const struct data_reference *a,
    ACCESS_FUN is expected to be an affine chrec.  */
 
 static bool
-init_omega_eq_with_af (omega_pb pb, unsigned eq, 
-                      unsigned int offset, tree access_fun, 
+init_omega_eq_with_af (omega_pb pb, unsigned eq,
+                      unsigned int offset, tree access_fun,
                       struct data_dependence_relation *ddr)
 {
   switch (TREE_CODE (access_fun))
@@ -3281,7 +3666,7 @@ init_omega_eq_with_af (omega_pb pb, unsigned eq,
        DDR_INNER_LOOP (ddr) = MAX (DDR_INNER_LOOP (ddr), var_idx);
 
        if (offset == 0)
-         pb->eqs[eq].coef[var_idx + DDR_NB_LOOPS (ddr) + 1] 
+         pb->eqs[eq].coef[var_idx + DDR_NB_LOOPS (ddr) + 1]
            += int_cst_value (right);
 
        switch (TREE_CODE (left))
@@ -3324,7 +3709,7 @@ omega_extract_distance_vectors (omega_pb pb,
   /* Set a new problem for each loop in the nest.  The basis is the
      problem that we have initialized until now.  On top of this we
      add new constraints.  */
-  for (i = 0; i <= DDR_INNER_LOOP (ddr) 
+  for (i = 0; i <= DDR_INNER_LOOP (ddr)
         && VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), i, loopi); i++)
     {
       int dist = 0;
@@ -3348,7 +3733,7 @@ omega_extract_distance_vectors (omega_pb pb,
       /* Reduce the constraint system, and test that the current
         problem is feasible.  */
       res = omega_simplify_problem (copy);
-      if (res == omega_false 
+      if (res == omega_false
          || res == omega_unknown
          || copy->num_geqs > (int) DDR_NB_LOOPS (ddr))
        goto next_problem;
@@ -3377,7 +3762,7 @@ omega_extract_distance_vectors (omega_pb pb,
          copy->eqs[eq].coef[0] = -1;
 
          res = omega_simplify_problem (copy);
-         if (res == omega_false 
+         if (res == omega_false
              || res == omega_unknown
              || copy->num_geqs > (int) DDR_NB_LOOPS (ddr))
            goto next_problem;
@@ -3429,9 +3814,10 @@ omega_setup_subscript (tree access_fun_a, tree access_fun_b,
   int eq;
   tree type = signed_type_for_types (TREE_TYPE (access_fun_a),
                                     TREE_TYPE (access_fun_b));
-  tree fun_a = chrec_convert (type, access_fun_a, NULL_TREE);
-  tree fun_b = chrec_convert (type, access_fun_b, NULL_TREE);
+  tree fun_a = chrec_convert (type, access_fun_a, NULL);
+  tree fun_b = chrec_convert (type, access_fun_b, NULL);
   tree difference = chrec_fold_minus (type, fun_a, fun_b);
+  tree minus_one;
 
   /* When the fun_a - fun_b is not constant, the dependence is not
      captured by the classic distance vector representation.  */
@@ -3446,7 +3832,8 @@ omega_setup_subscript (tree access_fun_a, tree access_fun_b,
       return true;
     }
 
-  fun_b = chrec_fold_multiply (type, fun_b, integer_minus_one_node);
+  minus_one = build_int_cst (type, -1);
+  fun_b = chrec_fold_multiply (type, fun_b, minus_one);
 
   eq = omega_add_zero_eq (pb, omega_black);
   if (!init_omega_eq_with_af (pb, eq, DDR_NB_LOOPS (ddr), fun_a, ddr)
@@ -3457,7 +3844,7 @@ omega_setup_subscript (tree access_fun_a, tree access_fun_b,
 
   /* GCD test.  */
   if (DDR_NB_LOOPS (ddr) != 0 && pb->eqs[eq].coef[0]
-      && !int_divides_p (lambda_vector_gcd 
+      && !int_divides_p (lambda_vector_gcd
                         ((lambda_vector) &(pb->eqs[eq].coef[1]),
                          2 * DDR_NB_LOOPS (ddr)),
                         pb->eqs[eq].coef[0]))
@@ -3506,10 +3893,10 @@ init_omega_for_ddr_1 (struct data_reference *dra, struct data_reference *drb,
      removed by the solver: the "dx"
      - coef[nb_loops + 1, 2*nb_loops] are the loop variables: "loop_x".
   */
-  for (i = 0; i <= DDR_INNER_LOOP (ddr) 
+  for (i = 0; i <= DDR_INNER_LOOP (ddr)
         && VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), i, loopi); i++)
     {
-      HOST_WIDE_INT nbi = estimated_loop_iterations_int (loopi, false);
+      HOST_WIDE_INT nbi = max_stmt_executions_int (loopi, true);
 
       /* 0 <= loop_x */
       ineq = omega_add_zero_geq (pb, omega_black);
@@ -3558,7 +3945,7 @@ init_omega_for_ddr_1 (struct data_reference *dra, struct data_reference *drb,
    set MAYBE_DEPENDENT to true.
 
    Example: for setting up the dependence system corresponding to the
-   conflicting accesses 
+   conflicting accesses
 
    | loop_i
    |   loop_j
@@ -3566,7 +3953,7 @@ init_omega_for_ddr_1 (struct data_reference *dra, struct data_reference *drb,
    |     ... A[2*j, 2*(i + j)]
    |   endloop_j
    | endloop_i
-   
+
    the following constraints come from the iteration domain:
 
    0 <= i <= Ni
@@ -3699,7 +4086,7 @@ ddr_consistent_p (FILE *file,
               DDR_NUM_DIST_VECTS (ddr));
 
       fprintf (file, "Banerjee dist vectors:\n");
-      for (i = 0; VEC_iterate (lambda_vector, dist_vects, i, b_dist_v); i++)
+      FOR_EACH_VEC_ELT (lambda_vector, dist_vects, i, b_dist_v)
        print_lambda_vector (file, b_dist_v, DDR_NB_LOOPS (ddr));
 
       fprintf (file, "Omega dist vectors:\n");
@@ -3728,7 +4115,7 @@ ddr_consistent_p (FILE *file,
 
       /* Distance vectors are not ordered in the same way in the DDR
         and in the DIST_VECTS: search for a matching vector.  */
-      for (j = 0; VEC_iterate (lambda_vector, dist_vects, j, a_dist_v); j++)
+      FOR_EACH_VEC_ELT (lambda_vector, dist_vects, j, a_dist_v)
        if (lambda_vector_equal (a_dist_v, b_dist_v, DDR_NB_LOOPS (ddr)))
          break;
 
@@ -3751,7 +4138,7 @@ ddr_consistent_p (FILE *file,
 
       /* Direction vectors are not ordered in the same way in the DDR
         and in the DIR_VECTS: search for a matching vector.  */
-      for (j = 0; VEC_iterate (lambda_vector, dir_vects, j, a_dir_v); j++)
+      FOR_EACH_VEC_ELT (lambda_vector, dir_vects, j, a_dir_v)
        if (lambda_vector_equal (a_dir_v, b_dir_v, DDR_NB_LOOPS (ddr)))
          break;
 
@@ -3767,14 +4154,14 @@ ddr_consistent_p (FILE *file,
        }
     }
 
-  return true;  
+  return true;
 }
 
 /* This computes the affine dependence relation between A and B with
    respect to LOOP_NEST.  CHREC_KNOWN is used for representing the
    independence between two accesses, while CHREC_DONT_KNOW is used
    for representing the unknown relation.
-   
+
    Note that it is possible to stop the computation of the dependence
    relation the first time we detect a CHREC_KNOWN element for a given
    subscript.  */
@@ -3785,15 +4172,14 @@ compute_affine_dependence (struct data_dependence_relation *ddr,
 {
   struct data_reference *dra = DDR_A (ddr);
   struct data_reference *drb = DDR_B (ddr);
-  
+
   if (dump_file && (dump_flags & TDF_DETAILS))
     {
       fprintf (dump_file, "(compute_affine_dependence\n");
-      fprintf (dump_file, "  (stmt_a = \n");
-      print_generic_expr (dump_file, DR_STMT (dra), 0);
-      fprintf (dump_file, ")\n  (stmt_b = \n");
-      print_generic_expr (dump_file, DR_STMT (drb), 0);
-      fprintf (dump_file, ")\n");
+      fprintf (dump_file, "  stmt_a: ");
+      print_gimple_stmt (dump_file, DR_STMT (dra), 0, TDF_SLIM);
+      fprintf (dump_file, "  stmt_b: ");
+      print_gimple_stmt (dump_file, DR_STMT (drb), 0, TDF_SLIM);
     }
 
   /* Analyze only when the dependence relation is not yet known.  */
@@ -3847,7 +4233,7 @@ compute_affine_dependence (struct data_dependence_relation *ddr,
          else
            subscript_dependence_tester (ddr, loop_nest);
        }
-     
+
       /* As a last case, if the dependence cannot be determined, or if
         the dependence is considered too difficult to determine, answer
         "don't know".  */
@@ -3867,50 +4253,25 @@ compute_affine_dependence (struct data_dependence_relation *ddr,
          finalize_ddr_dependent (ddr, chrec_dont_know);
        }
     }
-  
-  if (dump_file && (dump_flags & TDF_DETAILS))
-    fprintf (dump_file, ")\n");
-}
-
-/* This computes the dependence relation for the same data
-   reference into DDR.  */
-
-static void
-compute_self_dependence (struct data_dependence_relation *ddr)
-{
-  unsigned int i;
-  struct subscript *subscript;
-
-  if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
-    return;
 
-  for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript);
-       i++)
+  if (dump_file && (dump_flags & TDF_DETAILS))
     {
-      if (SUB_CONFLICTS_IN_A (subscript))
-       free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
-      if (SUB_CONFLICTS_IN_B (subscript))
-       free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
-
-      /* The accessed index overlaps for each iteration.  */
-      SUB_CONFLICTS_IN_A (subscript)
-       = conflict_fn (1, affine_fn_cst (integer_zero_node));
-      SUB_CONFLICTS_IN_B (subscript)
-       = conflict_fn (1, affine_fn_cst (integer_zero_node));
-      SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
+      if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
+       fprintf (dump_file, ") -> no dependence\n");
+      else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+       fprintf (dump_file, ") -> dependence analysis failed\n");
+      else
+       fprintf (dump_file, ")\n");
     }
-
-  /* The distance vector is the zero vector.  */
-  save_dist_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
-  save_dir_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
 }
 
 /* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
    the data references in DATAREFS, in the LOOP_NEST.  When
    COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
-   relations.  */
+   relations.  Return true when successful, i.e. data references number
+   is small enough to be handled.  */
 
-void 
+bool
 compute_all_dependences (VEC (data_reference_p, heap) *datarefs,
                         VEC (ddr_p, heap) **dependence_relations,
                         VEC (loop_p, heap) *loop_nest,
@@ -3920,98 +4281,120 @@ compute_all_dependences (VEC (data_reference_p, heap) *datarefs,
   struct data_reference *a, *b;
   unsigned int i, j;
 
-  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, a); i++)
+  if ((int) VEC_length (data_reference_p, datarefs)
+      > PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS))
+    {
+      struct data_dependence_relation *ddr;
+
+      /* Insert a single relation into dependence_relations:
+        chrec_dont_know.  */
+      ddr = initialize_data_dependence_relation (NULL, NULL, loop_nest);
+      VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
+      return false;
+    }
+
+  FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, a)
     for (j = i + 1; VEC_iterate (data_reference_p, datarefs, j, b); j++)
-      if (!DR_IS_READ (a) || !DR_IS_READ (b) || compute_self_and_rr)
+      if (DR_IS_WRITE (a) || DR_IS_WRITE (b) || compute_self_and_rr)
        {
          ddr = initialize_data_dependence_relation (a, b, loop_nest);
          VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
-         compute_affine_dependence (ddr, VEC_index (loop_p, loop_nest, 0));
+          if (loop_nest)
+           compute_affine_dependence (ddr, VEC_index (loop_p, loop_nest, 0));
        }
 
   if (compute_self_and_rr)
-    for (i = 0; VEC_iterate (data_reference_p, datarefs, i, a); i++)
+    FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, a)
       {
        ddr = initialize_data_dependence_relation (a, a, loop_nest);
        VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
-       compute_self_dependence (ddr);
+        if (loop_nest)
+         compute_affine_dependence (ddr, VEC_index (loop_p, loop_nest, 0));
       }
+
+  return true;
 }
 
 /* Stores the locations of memory references in STMT to REFERENCES.  Returns
    true if STMT clobbers memory, false otherwise.  */
 
 bool
-get_references_in_stmt (tree stmt, VEC (data_ref_loc, heap) **references)
+get_references_in_stmt (gimple stmt, VEC (data_ref_loc, heap) **references)
 {
   bool clobbers_memory = false;
   data_ref_loc *ref;
-  tree *op0, *op1, call;
+  tree *op0, *op1;
+  enum gimple_code stmt_code = gimple_code (stmt);
 
   *references = NULL;
 
   /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
      Calls have side-effects, except those to const or pure
      functions.  */
-  call = get_call_expr_in (stmt);
-  if ((call
-       && !(call_expr_flags (call) & (ECF_CONST | ECF_PURE)))
-      || (TREE_CODE (stmt) == ASM_EXPR
-         && ASM_VOLATILE_P (stmt)))
+  if ((stmt_code == GIMPLE_CALL
+       && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
+      || (stmt_code == GIMPLE_ASM
+         && (gimple_asm_volatile_p (stmt) || gimple_vuse (stmt))))
     clobbers_memory = true;
 
-  if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
+  if (!gimple_vuse (stmt))
     return clobbers_memory;
 
-  if (TREE_CODE (stmt) ==  GIMPLE_MODIFY_STMT)
+  if (stmt_code == GIMPLE_ASSIGN)
     {
-      op0 = &GIMPLE_STMT_OPERAND (stmt, 0);
-      op1 = &GIMPLE_STMT_OPERAND (stmt, 1);
-               
+      tree base;
+      op0 = gimple_assign_lhs_ptr (stmt);
+      op1 = gimple_assign_rhs1_ptr (stmt);
+
       if (DECL_P (*op1)
-         || (REFERENCE_CLASS_P (*op1) && get_base_address (*op1)))
+         || (REFERENCE_CLASS_P (*op1)
+             && (base = get_base_address (*op1))
+             && TREE_CODE (base) != SSA_NAME))
        {
          ref = VEC_safe_push (data_ref_loc, heap, *references, NULL);
          ref->pos = op1;
          ref->is_read = true;
        }
-
-      if (DECL_P (*op0)
-         || (REFERENCE_CLASS_P (*op0) && get_base_address (*op0)))
-       {
-         ref = VEC_safe_push (data_ref_loc, heap, *references, NULL);
-         ref->pos = op0;
-         ref->is_read = false;
-       }
     }
-
-  if (call)
+  else if (stmt_code == GIMPLE_CALL)
     {
-      unsigned i, n = call_expr_nargs (call);
+      unsigned i, n;
 
+      op0 = gimple_call_lhs_ptr (stmt);
+      n = gimple_call_num_args (stmt);
       for (i = 0; i < n; i++)
        {
-         op0 = &CALL_EXPR_ARG (call, i);
+         op1 = gimple_call_arg_ptr (stmt, i);
 
-         if (DECL_P (*op0)
-             || (REFERENCE_CLASS_P (*op0) && get_base_address (*op0)))
+         if (DECL_P (*op1)
+             || (REFERENCE_CLASS_P (*op1) && get_base_address (*op1)))
            {
              ref = VEC_safe_push (data_ref_loc, heap, *references, NULL);
-             ref->pos = op0;
+             ref->pos = op1;
              ref->is_read = true;
            }
        }
     }
+  else
+    return clobbers_memory;
 
+  if (*op0
+      && (DECL_P (*op0)
+         || (REFERENCE_CLASS_P (*op0) && get_base_address (*op0))))
+    {
+      ref = VEC_safe_push (data_ref_loc, heap, *references, NULL);
+      ref->pos = op0;
+      ref->is_read = false;
+    }
   return clobbers_memory;
 }
 
 /* Stores the data references in STMT to DATAREFS.  If there is an unanalyzable
    reference, returns false, otherwise returns true.  NEST is the outermost
-   loop of the loop nest in that the references should be analyzed.  */
+   loop of the loop nest in which the references should be analyzed.  */
 
-static bool
-find_data_references_in_stmt (struct loop *nest, tree stmt,
+bool
+find_data_references_in_stmt (struct loop *nest, gimple stmt,
                              VEC (data_reference_p, heap) **datarefs)
 {
   unsigned i;
@@ -4026,42 +4409,90 @@ find_data_references_in_stmt (struct loop *nest, tree stmt,
       return false;
     }
 
-  for (i = 0; VEC_iterate (data_ref_loc, references, i, ref); i++)
+  FOR_EACH_VEC_ELT (data_ref_loc, references, i, ref)
     {
-      dr = create_data_ref (nest, *ref->pos, stmt, ref->is_read);
+      dr = create_data_ref (nest, loop_containing_stmt (stmt),
+                           *ref->pos, stmt, ref->is_read);
       gcc_assert (dr != NULL);
-  
-      /* FIXME -- data dependence analysis does not work correctly for objects with
-        invariant addresses.  Let us fail here until the problem is fixed.  */
-      if (dr_address_invariant_p (dr))
-       {
-         free_data_ref (dr);
-         if (dump_file && (dump_flags & TDF_DETAILS))
-           fprintf (dump_file, "\tFAILED as dr address is invariant\n");
-         ret = false;
-         break;
-       }
+      VEC_safe_push (data_reference_p, heap, *datarefs, dr);
+    }
+  VEC_free (data_ref_loc, heap, references);
+  return ret;
+}
+
+/* Stores the data references in STMT to DATAREFS.  If there is an
+   unanalyzable reference, returns false, otherwise returns true.
+   NEST is the outermost loop of the loop nest in which the references
+   should be instantiated, LOOP is the loop in which the references
+   should be analyzed.  */
+
+bool
+graphite_find_data_references_in_stmt (loop_p nest, loop_p loop, gimple stmt,
+                                      VEC (data_reference_p, heap) **datarefs)
+{
+  unsigned i;
+  VEC (data_ref_loc, heap) *references;
+  data_ref_loc *ref;
+  bool ret = true;
+  data_reference_p dr;
+
+  if (get_references_in_stmt (stmt, &references))
+    {
+      VEC_free (data_ref_loc, heap, references);
+      return false;
+    }
 
+  FOR_EACH_VEC_ELT (data_ref_loc, references, i, ref)
+    {
+      dr = create_data_ref (nest, loop, *ref->pos, stmt, ref->is_read);
+      gcc_assert (dr != NULL);
       VEC_safe_push (data_reference_p, heap, *datarefs, dr);
     }
+
   VEC_free (data_ref_loc, heap, references);
   return ret;
 }
 
 /* Search the data references in LOOP, and record the information into
    DATAREFS.  Returns chrec_dont_know when failing to analyze a
+   difficult case, returns NULL_TREE otherwise.  */
+
+tree
+find_data_references_in_bb (struct loop *loop, basic_block bb,
+                            VEC (data_reference_p, heap) **datarefs)
+{
+  gimple_stmt_iterator bsi;
+
+  for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+    {
+      gimple stmt = gsi_stmt (bsi);
+
+      if (!find_data_references_in_stmt (loop, stmt, datarefs))
+        {
+          struct data_reference *res;
+          res = XCNEW (struct data_reference);
+          VEC_safe_push (data_reference_p, heap, *datarefs, res);
+
+          return chrec_dont_know;
+        }
+    }
+
+  return NULL_TREE;
+}
+
+/* Search the data references in LOOP, and record the information into
+   DATAREFS.  Returns chrec_dont_know when failing to analyze a
    difficult case, returns NULL_TREE otherwise.
 
    TODO: This function should be made smarter so that it can handle address
    arithmetic as if they were array accesses, etc.  */
 
-static tree 
+static tree
 find_data_references_in_loop (struct loop *loop,
                              VEC (data_reference_p, heap) **datarefs)
 {
   basic_block bb, *bbs;
   unsigned int i;
-  block_stmt_iterator bsi;
 
   bbs = get_loop_body_in_dom_order (loop);
 
@@ -4069,20 +4500,11 @@ find_data_references_in_loop (struct loop *loop,
     {
       bb = bbs[i];
 
-      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
-       {
-         tree stmt = bsi_stmt (bsi);
-
-         if (!find_data_references_in_stmt (loop, stmt, datarefs))
-           {
-             struct data_reference *res;
-             res = XCNEW (struct data_reference);
-             VEC_safe_push (data_reference_p, heap, *datarefs, res);
-
-             free (bbs);
-             return chrec_dont_know;
-           }
-       }
+      if (find_data_references_in_bb (loop, bb, datarefs) == chrec_dont_know)
+        {
+          free (bbs);
+          return chrec_dont_know;
+        }
     }
   free (bbs);
 
@@ -4131,58 +4553,52 @@ find_loop_nest (struct loop *loop, VEC (loop_p, heap) **loop_nest)
   return true;
 }
 
-/* Given a loop nest LOOP, the following vectors are returned:
-   DATAREFS is initialized to all the array elements contained in this loop, 
-   DEPENDENCE_RELATIONS contains the relations between the data references.  
-   Compute read-read and self relations if 
+/* Returns true when the data dependences have been computed, false otherwise.
+   Given a loop nest LOOP, the following vectors are returned:
+   DATAREFS is initialized to all the array elements contained in this loop,
+   DEPENDENCE_RELATIONS contains the relations between the data references.
+   Compute read-read and self relations if
    COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE.  */
 
-void
-compute_data_dependences_for_loop (struct loop *loop, 
+bool
+compute_data_dependences_for_loop (struct loop *loop,
                                   bool compute_self_and_read_read_dependences,
+                                  VEC (loop_p, heap) **loop_nest,
                                   VEC (data_reference_p, heap) **datarefs,
                                   VEC (ddr_p, heap) **dependence_relations)
 {
-  VEC (loop_p, heap) *vloops = VEC_alloc (loop_p, heap, 3);
+  bool res = true;
 
   memset (&dependence_stats, 0, sizeof (dependence_stats));
 
-  /* If the loop nest is not well formed, or one of the data references 
+  /* If the loop nest is not well formed, or one of the data references
      is not computable, give up without spending time to compute other
      dependences.  */
   if (!loop
-      || !find_loop_nest (loop, &vloops)
-      || find_data_references_in_loop (loop, datarefs) == chrec_dont_know)
-    {
-      struct data_dependence_relation *ddr;
-
-      /* Insert a single relation into dependence_relations:
-        chrec_dont_know.  */
-      ddr = initialize_data_dependence_relation (NULL, NULL, vloops);
-      VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
-    }
-  else
-    compute_all_dependences (*datarefs, dependence_relations, vloops,
-                            compute_self_and_read_read_dependences);
+      || !find_loop_nest (loop, loop_nest)
+      || find_data_references_in_loop (loop, datarefs) == chrec_dont_know
+      || !compute_all_dependences (*datarefs, dependence_relations, *loop_nest,
+                                  compute_self_and_read_read_dependences))
+    res = false;
 
   if (dump_file && (dump_flags & TDF_STATS))
     {
       fprintf (dump_file, "Dependence tester statistics:\n");
 
-      fprintf (dump_file, "Number of dependence tests: %d\n", 
+      fprintf (dump_file, "Number of dependence tests: %d\n",
               dependence_stats.num_dependence_tests);
-      fprintf (dump_file, "Number of dependence tests classified dependent: %d\n", 
+      fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
               dependence_stats.num_dependence_dependent);
-      fprintf (dump_file, "Number of dependence tests classified independent: %d\n", 
+      fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
               dependence_stats.num_dependence_independent);
-      fprintf (dump_file, "Number of undetermined dependence tests: %d\n", 
+      fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
               dependence_stats.num_dependence_undetermined);
 
-      fprintf (dump_file, "Number of subscript tests: %d\n", 
+      fprintf (dump_file, "Number of subscript tests: %d\n",
               dependence_stats.num_subscript_tests);
-      fprintf (dump_file, "Number of undetermined subscript tests: %d\n", 
+      fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
               dependence_stats.num_subscript_undetermined);
-      fprintf (dump_file, "Number of same subscript function: %d\n", 
+      fprintf (dump_file, "Number of same subscript function: %d\n",
               dependence_stats.num_same_subscript_function);
 
       fprintf (dump_file, "Number of ziv tests: %d\n",
@@ -4192,9 +4608,9 @@ compute_data_dependences_for_loop (struct loop *loop,
       fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
               dependence_stats.num_ziv_independent);
       fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
-              dependence_stats.num_ziv_unimplemented);      
+              dependence_stats.num_ziv_unimplemented);
 
-      fprintf (dump_file, "Number of siv tests: %d\n", 
+      fprintf (dump_file, "Number of siv tests: %d\n",
               dependence_stats.num_siv);
       fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
               dependence_stats.num_siv_dependent);
@@ -4203,7 +4619,7 @@ compute_data_dependences_for_loop (struct loop *loop,
       fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
               dependence_stats.num_siv_unimplemented);
 
-      fprintf (dump_file, "Number of miv tests: %d\n", 
+      fprintf (dump_file, "Number of miv tests: %d\n",
               dependence_stats.num_miv);
       fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
               dependence_stats.num_miv_dependent);
@@ -4211,42 +4627,64 @@ compute_data_dependences_for_loop (struct loop *loop,
               dependence_stats.num_miv_independent);
       fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
               dependence_stats.num_miv_unimplemented);
-    }    
+    }
+
+  return res;
+}
+
+/* Returns true when the data dependences for the basic block BB have been
+   computed, false otherwise.
+   DATAREFS is initialized to all the array elements contained in this basic
+   block, DEPENDENCE_RELATIONS contains the relations between the data
+   references. Compute read-read and self relations if
+   COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE.  */
+bool
+compute_data_dependences_for_bb (basic_block bb,
+                                 bool compute_self_and_read_read_dependences,
+                                 VEC (data_reference_p, heap) **datarefs,
+                                 VEC (ddr_p, heap) **dependence_relations)
+{
+  if (find_data_references_in_bb (NULL, bb, datarefs) == chrec_dont_know)
+    return false;
+
+  return compute_all_dependences (*datarefs, dependence_relations, NULL,
+                                 compute_self_and_read_read_dependences);
 }
 
 /* Entry point (for testing only).  Analyze all the data references
    and the dependence relations in LOOP.
 
-   The data references are computed first.  
-   
+   The data references are computed first.
+
    A relation on these nodes is represented by a complete graph.  Some
    of the relations could be of no interest, thus the relations can be
    computed on demand.
-   
+
    In the following function we compute all the relations.  This is
    just a first implementation that is here for:
-   - for showing how to ask for the dependence relations, 
+   - for showing how to ask for the dependence relations,
    - for the debugging the whole dependence graph,
    - for the dejagnu testcases and maintenance.
-   
+
    It is possible to ask only for a part of the graph, avoiding to
    compute the whole dependence graph.  The computed dependences are
    stored in a knowledge base (KB) such that later queries don't
    recompute the same information.  The implementation of this KB is
    transparent to the optimizer, and thus the KB can be changed with a
    more efficient implementation, or the KB could be disabled.  */
-static void 
+static void
 analyze_all_data_dependences (struct loop *loop)
 {
   unsigned int i;
   int nb_data_refs = 10;
-  VEC (data_reference_p, heap) *datarefs = 
+  VEC (data_reference_p, heap) *datarefs =
     VEC_alloc (data_reference_p, heap, nb_data_refs);
-  VEC (ddr_p, heap) *dependence_relations = 
+  VEC (ddr_p, heap) *dependence_relations =
     VEC_alloc (ddr_p, heap, nb_data_refs * nb_data_refs);
+  VEC (loop_p, heap) *loop_nest = VEC_alloc (loop_p, heap, 3);
 
   /* Compute DDs on the whole function.  */
-  compute_data_dependences_for_loop (loop, false, &datarefs,
+  compute_data_dependences_for_loop (loop, false, &loop_nest, &datarefs,
                                     &dependence_relations);
 
   if (dump_file)
@@ -4261,34 +4699,26 @@ analyze_all_data_dependences (struct loop *loop)
        {
          unsigned nb_top_relations = 0;
          unsigned nb_bot_relations = 0;
-         unsigned nb_basename_differ = 0;
          unsigned nb_chrec_relations = 0;
          struct data_dependence_relation *ddr;
 
-         for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
+         FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
            {
              if (chrec_contains_undetermined (DDR_ARE_DEPENDENT (ddr)))
                nb_top_relations++;
-         
+
              else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
-               {
-                 struct data_reference *a = DDR_A (ddr);
-                 struct data_reference *b = DDR_B (ddr);
+               nb_bot_relations++;
 
-                 if (!bitmap_intersect_p (DR_VOPS (a), DR_VOPS (b)))
-                   nb_basename_differ++;
-                 else
-                   nb_bot_relations++;
-               }
-         
-             else 
+             else
                nb_chrec_relations++;
            }
-      
+
          gather_stats_on_scev_database ();
        }
     }
 
+  VEC_free (loop_p, heap, loop_nest);
   free_dependence_relations (dependence_relations);
   free_data_refs (datarefs);
 }
@@ -4327,27 +4757,16 @@ free_dependence_relation (struct data_dependence_relation *ddr)
 /* Free the memory used by the data dependence relations from
    DEPENDENCE_RELATIONS.  */
 
-void 
+void
 free_dependence_relations (VEC (ddr_p, heap) *dependence_relations)
 {
   unsigned int i;
   struct data_dependence_relation *ddr;
-  VEC (loop_p, heap) *loop_nest = NULL;
 
-  for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
-    {
-      if (ddr == NULL)
-       continue;
-      if (loop_nest == NULL)
-       loop_nest = DDR_LOOP_NEST (ddr);
-      else
-       gcc_assert (DDR_LOOP_NEST (ddr) == NULL
-                   || DDR_LOOP_NEST (ddr) == loop_nest);
+  FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
+    if (ddr)
       free_dependence_relation (ddr);
-    }
 
-  if (loop_nest)
-    VEC_free (loop_p, heap, loop_nest);
   VEC_free (ddr_p, heap, dependence_relations);
 }
 
@@ -4359,7 +4778,7 @@ free_data_refs (VEC (data_reference_p, heap) *datarefs)
   unsigned int i;
   struct data_reference *dr;
 
-  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+  FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
     free_data_ref (dr);
   VEC_free (data_reference_p, heap, datarefs);
 }
@@ -4374,7 +4793,7 @@ dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
   struct vertex *v = &(rdg->vertices[i]);
   struct graph_edge *e;
 
-  fprintf (file, "(vertex %d: (%s%s) (in:", i, 
+  fprintf (file, "(vertex %d: (%s%s) (in:", i,
           RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "",
           RDG_MEM_READS_STMT (rdg, i) ? "r" : "");
 
@@ -4388,14 +4807,14 @@ dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
     for (e = v->succ; e; e = e->succ_next)
       fprintf (file, " %d", e->dest);
 
-  fprintf (file, ") \n");
-  print_generic_stmt (file, RDGV_STMT (v), TDF_VOPS|TDF_MEMSYMS);
+  fprintf (file, ")\n");
+  print_gimple_stmt (file, RDGV_STMT (v), 0, TDF_VOPS|TDF_MEMSYMS);
   fprintf (file, ")\n");
 }
 
 /* Call dump_rdg_vertex on stderr.  */
 
-void
+DEBUG_FUNCTION void
 debug_rdg_vertex (struct graph *rdg, int i)
 {
   dump_rdg_vertex (stderr, rdg, i);
@@ -4424,7 +4843,7 @@ void dump_rdg_component (FILE *file, struct graph *rdg, int c, bitmap dumped)
 
 /* Call dump_rdg_vertex on stderr.  */
 
-void
+DEBUG_FUNCTION void
 debug_rdg_component (struct graph *rdg, int c)
 {
   dump_rdg_component (stderr, rdg, c, NULL);
@@ -4450,7 +4869,7 @@ dump_rdg (FILE *file, struct graph *rdg)
 
 /* Call dump_rdg on stderr.  */
 
-void
+DEBUG_FUNCTION void
 debug_rdg (struct graph *rdg)
 {
   dump_rdg (stderr, rdg);
@@ -4470,69 +4889,75 @@ dot_rdg_1 (FILE *file, struct graph *rdg)
 
       /* Highlight reads from memory.  */
       if (RDG_MEM_READS_STMT (rdg, i))
-       fprintf (file, "%d [style=filled, fillcolor=green]\n", i);
+       fprintf (file, "%d [style=filled, fillcolor=green]\n", i);
 
       /* Highlight stores to memory.  */
       if (RDG_MEM_WRITE_STMT (rdg, i))
-       fprintf (file, "%d [style=filled, fillcolor=red]\n", i);
+       fprintf (file, "%d [style=filled, fillcolor=red]\n", i);
 
       if (v->succ)
-       for (e = v->succ; e; e = e->succ_next)
-         switch (RDGE_TYPE (e))
-           {
-           case input_dd:
-             fprintf (file, "%d -> %d [label=input] \n", i, e->dest);
-             break;
-
-           case output_dd:
-             fprintf (file, "%d -> %d [label=output] \n", i, e->dest);
-             break;
-
-           case flow_dd:
-             /* These are the most common dependences: don't print these. */
-             fprintf (file, "%d -> %d \n", i, e->dest);
-             break;
-
-           case anti_dd:
-             fprintf (file, "%d -> %d [label=anti] \n", i, e->dest);
-             break;
-
-           default:
-             gcc_unreachable ();
-           }
+       for (e = v->succ; e; e = e->succ_next)
+         switch (RDGE_TYPE (e))
+           {
+           case input_dd:
+             fprintf (file, "%d -> %d [label=input] \n", i, e->dest);
+             break;
+
+           case output_dd:
+             fprintf (file, "%d -> %d [label=output] \n", i, e->dest);
+             break;
+
+           case flow_dd:
+             /* These are the most common dependences: don't print these. */
+             fprintf (file, "%d -> %d \n", i, e->dest);
+             break;
+
+           case anti_dd:
+             fprintf (file, "%d -> %d [label=anti] \n", i, e->dest);
+             break;
+
+           default:
+             gcc_unreachable ();
+           }
     }
 
   fprintf (file, "}\n\n");
 }
 
-/* Display SCOP using dotty.  */
+/* Display the Reduced Dependence Graph using dotty.  */
+extern void dot_rdg (struct graph *);
 
-void
+DEBUG_FUNCTION void
 dot_rdg (struct graph *rdg)
 {
+  /* When debugging, enable the following code.  This cannot be used
+     in production compilers because it calls "system".  */
+#if 0
   FILE *file = fopen ("/tmp/rdg.dot", "w");
   gcc_assert (file != NULL);
 
   dot_rdg_1 (file, rdg);
   fclose (file);
 
-  system ("dotty /tmp/rdg.dot");
+  system ("dotty /tmp/rdg.dot &");
+#else
+  dot_rdg_1 (stderr, rdg);
+#endif
 }
 
-
 /* This structure is used for recording the mapping statement index in
    the RDG.  */
 
-struct rdg_vertex_info GTY(())
+struct GTY(()) rdg_vertex_info
 {
-  tree stmt;
+  gimple stmt;
   int index;
 };
 
 /* Returns the index of STMT in RDG.  */
 
 int
-rdg_vertex_for_stmt (struct graph *rdg, tree stmt)
+rdg_vertex_for_stmt (struct graph *rdg, gimple stmt)
 {
   struct rdg_vertex_info rvi, *slot;
 
@@ -4578,15 +5003,16 @@ create_rdg_edge_for_ddr (struct graph *rdg, ddr_p ddr)
   e->data = XNEW (struct rdg_edge);
 
   RDGE_LEVEL (e) = level;
+  RDGE_RELATION (e) = ddr;
 
   /* Determines the type of the data dependence.  */
   if (DR_IS_READ (dra) && DR_IS_READ (drb))
     RDGE_TYPE (e) = input_dd;
-  else if (!DR_IS_READ (dra) && !DR_IS_READ (drb))
+  else if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
     RDGE_TYPE (e) = output_dd;
-  else if (!DR_IS_READ (dra) && DR_IS_READ (drb))
+  else if (DR_IS_WRITE (dra) && DR_IS_READ (drb))
     RDGE_TYPE (e) = flow_dd;
-  else if (DR_IS_READ (dra) && !DR_IS_READ (drb))
+  else if (DR_IS_READ (dra) && DR_IS_WRITE (drb))
     RDGE_TYPE (e) = anti_dd;
 }
 
@@ -4598,7 +5024,7 @@ create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
 {
   use_operand_p imm_use_p;
   imm_use_iterator iterator;
-           
+
   FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def)
     {
       struct graph_edge *e;
@@ -4610,6 +5036,7 @@ create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
       e = add_edge (rdg, idef, use);
       e->data = XNEW (struct rdg_edge);
       RDGE_TYPE (e) = flow_dd;
+      RDGE_RELATION (e) = NULL;
     }
 }
 
@@ -4623,7 +5050,7 @@ create_rdg_edges (struct graph *rdg, VEC (ddr_p, heap) *ddrs)
   def_operand_p def_p;
   ssa_op_iter iter;
 
-  for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
+  FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
     if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
       create_rdg_edge_for_ddr (rdg, ddr);
 
@@ -4635,13 +5062,13 @@ create_rdg_edges (struct graph *rdg, VEC (ddr_p, heap) *ddrs)
 
 /* Build the vertices of the reduced dependence graph RDG.  */
 
-static void
-create_rdg_vertices (struct graph *rdg, VEC (tree, heap) *stmts)
+void
+create_rdg_vertices (struct graph *rdg, VEC (gimple, heap) *stmts)
 {
   int i, j;
-  tree stmt;
+  gimple stmt;
 
-  for (i = 0; VEC_iterate (tree, stmts, i, stmt); i++)
+  FOR_EACH_VEC_ELT (gimple, stmts, i, stmt)
     {
       VEC (data_ref_loc, heap) *references;
       data_ref_loc *ref;
@@ -4663,11 +5090,11 @@ create_rdg_vertices (struct graph *rdg, VEC (tree, heap) *stmts)
 
       RDG_MEM_WRITE_STMT (rdg, i) = false;
       RDG_MEM_READS_STMT (rdg, i) = false;
-      if (TREE_CODE (stmt) == PHI_NODE)
+      if (gimple_code (stmt) == GIMPLE_PHI)
        continue;
 
       get_references_in_stmt (stmt, &references);
-      for (j = 0; VEC_iterate (data_ref_loc, references, j, ref); j++)
+      FOR_EACH_VEC_ELT (data_ref_loc, references, j, ref)
        if (!ref->is_read)
          RDG_MEM_WRITE_STMT (rdg, i) = true;
        else
@@ -4684,23 +5111,26 @@ create_rdg_vertices (struct graph *rdg, VEC (tree, heap) *stmts)
    identifying statements. */
 
 static void
-stmts_from_loop (struct loop *loop, VEC (tree, heap) **stmts)
+stmts_from_loop (struct loop *loop, VEC (gimple, heap) **stmts)
 {
   unsigned int i;
   basic_block *bbs = get_loop_body_in_dom_order (loop);
 
   for (i = 0; i < loop->num_nodes; i++)
     {
-      tree phi, stmt;
       basic_block bb = bbs[i];
-      block_stmt_iterator bsi;
+      gimple_stmt_iterator bsi;
+      gimple stmt;
 
-      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
-       VEC_safe_push (tree, heap, *stmts, phi);
+      for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+       VEC_safe_push (gimple, heap, *stmts, gsi_stmt (bsi));
 
-      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
-       if (TREE_CODE (stmt = bsi_stmt (bsi)) != LABEL_EXPR)
-         VEC_safe_push (tree, heap, *stmts, stmt);
+      for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+       {
+         stmt = gsi_stmt (bsi);
+         if (gimple_code (stmt) != GIMPLE_LABEL && !is_gimple_debug (stmt))
+           VEC_safe_push (gimple, heap, *stmts, stmt);
+       }
     }
 
   free (bbs);
@@ -4714,10 +5144,10 @@ known_dependences_p (VEC (ddr_p, heap) *dependence_relations)
   ddr_p ddr;
   unsigned int i;
 
-  for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
+  FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
     if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
       return false;
+
   return true;
 }
 
@@ -4726,8 +5156,9 @@ known_dependences_p (VEC (ddr_p, heap) *dependence_relations)
 static hashval_t
 hash_stmt_vertex_info (const void *elt)
 {
-  struct rdg_vertex_info *rvi = (struct rdg_vertex_info *) elt;
-  tree stmt = rvi->stmt;
+  const struct rdg_vertex_info *const rvi =
+    (const struct rdg_vertex_info *) elt;
+  gimple stmt = rvi->stmt;
 
   return htab_hash_pointer (stmt);
 }
@@ -4756,36 +5187,39 @@ hash_stmt_vertex_del (void *e)
    scalar dependence.  */
 
 struct graph *
-build_rdg (struct loop *loop)
+build_empty_rdg (int n_stmts)
 {
   int nb_data_refs = 10;
-  struct graph *rdg = NULL;
-  VEC (ddr_p, heap) *dependence_relations;
-  VEC (data_reference_p, heap) *datarefs;
-  VEC (tree, heap) *stmts = VEC_alloc (tree, heap, nb_data_refs);
-  
-  dependence_relations = VEC_alloc (ddr_p, heap, nb_data_refs * nb_data_refs) ;
-  datarefs = VEC_alloc (data_reference_p, heap, nb_data_refs);
-  compute_data_dependences_for_loop (loop, 
-                                     false,
-                                     &datarefs,
-                                     &dependence_relations);
-
-  if (!known_dependences_p (dependence_relations))
-    goto end_rdg;
-
-  stmts_from_loop (loop, &stmts);
-  rdg = new_graph (VEC_length (tree, stmts));
+  struct graph *rdg = new_graph (n_stmts);
 
   rdg->indices = htab_create (nb_data_refs, hash_stmt_vertex_info,
                              eq_stmt_vertex_info, hash_stmt_vertex_del);
-  create_rdg_vertices (rdg, stmts);
-  create_rdg_edges (rdg, dependence_relations);
+  return rdg;
+}
 
- end_rdg:
-  free_dependence_relations (dependence_relations);
-  free_data_refs (datarefs);
-  VEC_free (tree, heap, stmts);
+/* Build the Reduced Dependence Graph (RDG) with one vertex per
+   statement of the loop nest, and one edge per data dependence or
+   scalar dependence.  */
+
+struct graph *
+build_rdg (struct loop *loop,
+          VEC (loop_p, heap) **loop_nest,
+          VEC (ddr_p, heap) **dependence_relations,
+          VEC (data_reference_p, heap) **datarefs)
+{
+  struct graph *rdg = NULL;
+
+  if (compute_data_dependences_for_loop (loop, false, loop_nest, datarefs,
+                                        dependence_relations)
+      && known_dependences_p (*dependence_relations))
+    {
+      VEC (gimple, heap) *stmts = VEC_alloc (gimple, heap, 10);
+      stmts_from_loop (loop, &stmts);
+      rdg = build_empty_rdg (VEC_length (gimple, stmts));
+      create_rdg_vertices (rdg, stmts);
+      create_rdg_edges (rdg, *dependence_relations);
+      VEC_free (gimple, heap, stmts);
+    }
 
   return rdg;
 }
@@ -4798,7 +5232,15 @@ free_rdg (struct graph *rdg)
   int i;
 
   for (i = 0; i < rdg->n_vertices; i++)
-    free (rdg->vertices[i].data);
+    {
+      struct vertex *v = &(rdg->vertices[i]);
+      struct graph_edge *e;
+
+      for (e = v->succ; e; e = e->succ_next)
+       free (e->data);
+
+      free (v->data);
+    }
 
   htab_delete (rdg->indices);
   free_graph (rdg);
@@ -4808,7 +5250,7 @@ free_rdg (struct graph *rdg)
    store to memory.  */
 
 void
-stores_from_loop (struct loop *loop, VEC (tree, heap) **stmts)
+stores_from_loop (struct loop *loop, VEC (gimple, heap) **stmts)
 {
   unsigned int i;
   basic_block *bbs = get_loop_body_in_dom_order (loop);
@@ -4816,21 +5258,74 @@ stores_from_loop (struct loop *loop, VEC (tree, heap) **stmts)
   for (i = 0; i < loop->num_nodes; i++)
     {
       basic_block bb = bbs[i];
-      block_stmt_iterator bsi;
+      gimple_stmt_iterator bsi;
 
-      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
-       if (!ZERO_SSA_OPERANDS (bsi_stmt (bsi), SSA_OP_VDEF))
-         VEC_safe_push (tree, heap, *stmts, bsi_stmt (bsi));
+      for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+       if (gimple_vdef (gsi_stmt (bsi)))
+         VEC_safe_push (gimple, heap, *stmts, gsi_stmt (bsi));
     }
 
   free (bbs);
 }
 
+/* Returns true when the statement at STMT is of the form "A[i] = 0"
+   that contains a data reference on its LHS with a stride of the same
+   size as its unit type.  */
+
+bool
+stmt_with_adjacent_zero_store_dr_p (gimple stmt)
+{
+  tree op0, op1;
+  bool res;
+  struct data_reference *dr;
+
+  if (!stmt
+      || !gimple_vdef (stmt)
+      || !is_gimple_assign (stmt)
+      || !gimple_assign_single_p (stmt)
+      || !(op1 = gimple_assign_rhs1 (stmt))
+      || !(integer_zerop (op1) || real_zerop (op1)))
+    return false;
+
+  dr = XCNEW (struct data_reference);
+  op0 = gimple_assign_lhs (stmt);
+
+  DR_STMT (dr) = stmt;
+  DR_REF (dr) = op0;
+
+  res = dr_analyze_innermost (dr, loop_containing_stmt (stmt))
+    && stride_of_unit_type_p (DR_STEP (dr), TREE_TYPE (op0));
+
+  free_data_ref (dr);
+  return res;
+}
+
+/* Initialize STMTS with all the statements of LOOP that contain a
+   store to memory of the form "A[i] = 0".  */
+
+void
+stores_zero_from_loop (struct loop *loop, VEC (gimple, heap) **stmts)
+{
+  unsigned int i;
+  basic_block bb;
+  gimple_stmt_iterator si;
+  gimple stmt;
+  basic_block *bbs = get_loop_body_in_dom_order (loop);
+
+  for (i = 0; i < loop->num_nodes; i++)
+    for (bb = bbs[i], si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
+      if ((stmt = gsi_stmt (si))
+         && stmt_with_adjacent_zero_store_dr_p (stmt))
+       VEC_safe_push (gimple, heap, *stmts, gsi_stmt (si));
+
+  free (bbs);
+}
+
 /* For a data reference REF, return the declaration of its base
    address or NULL_TREE if the base is not determined.  */
 
 static inline tree
-ref_base_address (tree stmt, data_ref_loc *ref)
+ref_base_address (gimple stmt, data_ref_loc *ref)
 {
   tree base = NULL_TREE;
   tree base_address;
@@ -4838,7 +5333,7 @@ ref_base_address (tree stmt, data_ref_loc *ref)
 
   DR_STMT (dr) = stmt;
   DR_REF (dr) = *ref->pos;
-  dr_analyze_innermost (dr);
+  dr_analyze_innermost (dr, loop_containing_stmt (stmt));
   base_address = DR_BASE_ADDRESS (dr);
 
   if (!base_address)
@@ -4866,7 +5361,7 @@ ref_base_address (tree stmt, data_ref_loc *ref)
 bool
 rdg_defs_used_in_other_loops_p (struct graph *rdg, int v)
 {
-  tree stmt = RDG_STMT (rdg, v);
+  gimple stmt = RDG_STMT (rdg, v);
   struct loop *loop = loop_containing_stmt (stmt);
   use_operand_p imm_use_p;
   imm_use_iterator iterator;
@@ -4894,7 +5389,7 @@ rdg_defs_used_in_other_loops_p (struct graph *rdg, int v)
    ref_base_address is the same.  */
 
 bool
-have_similar_memory_accesses (tree s1, tree s2)
+have_similar_memory_accesses (gimple s1, gimple s2)
 {
   bool res = false;
   unsigned i, j;
@@ -4904,12 +5399,12 @@ have_similar_memory_accesses (tree s1, tree s2)
   get_references_in_stmt (s1, &refs1);
   get_references_in_stmt (s2, &refs2);
 
-  for (i = 0; VEC_iterate (data_ref_loc, refs1, i, ref1); i++)
+  FOR_EACH_VEC_ELT (data_ref_loc, refs1, i, ref1)
     {
       tree base1 = ref_base_address (s1, ref1);
 
       if (base1)
-       for (j = 0; VEC_iterate (data_ref_loc, refs2, j, ref2); j++)
+       FOR_EACH_VEC_ELT (data_ref_loc, refs2, j, ref2)
          if (base1 == ref_base_address (s2, ref2))
            {
              res = true;
@@ -4928,7 +5423,8 @@ have_similar_memory_accesses (tree s1, tree s2)
 static int
 have_similar_memory_accesses_1 (const void *s1, const void *s2)
 {
-  return have_similar_memory_accesses ((tree) s1, (tree) s2);
+  return have_similar_memory_accesses (CONST_CAST_GIMPLE ((const_gimple) s1),
+                                      CONST_CAST_GIMPLE ((const_gimple) s2));
 }
 
 /* Helper function for the hashtab.  */
@@ -4936,7 +5432,7 @@ have_similar_memory_accesses_1 (const void *s1, const void *s2)
 static hashval_t
 ref_base_address_1 (const void *s)
 {
-  tree stmt = (tree) s;
+  gimple stmt = CONST_CAST_GIMPLE ((const_gimple) s);
   unsigned i;
   VEC (data_ref_loc, heap) *refs;
   data_ref_loc *ref;
@@ -4944,7 +5440,7 @@ ref_base_address_1 (const void *s)
 
   get_references_in_stmt (stmt, &refs);
 
-  for (i = 0; VEC_iterate (data_ref_loc, refs, i, ref); i++)
+  FOR_EACH_VEC_ELT (data_ref_loc, refs, i, ref)
     if (!ref->is_read)
       {
        res = htab_hash_pointer (ref_base_address (stmt, ref));
@@ -4958,21 +5454,21 @@ ref_base_address_1 (const void *s)
 /* Try to remove duplicated write data references from STMTS.  */
 
 void
-remove_similar_memory_refs (VEC (tree, heap) **stmts)
+remove_similar_memory_refs (VEC (gimple, heap) **stmts)
 {
   unsigned i;
-  tree stmt;
-  htab_t seen = htab_create (VEC_length (tree, *stmts), ref_base_address_1,
+  gimple stmt;
+  htab_t seen = htab_create (VEC_length (gimple, *stmts), ref_base_address_1,
                             have_similar_memory_accesses_1, NULL);
 
-  for (i = 0; VEC_iterate (tree, *stmts, i, stmt); )
+  for (i = 0; VEC_iterate (gimple, *stmts, i, stmt); )
     {
       void **slot;
 
       slot = htab_find_slot (seen, stmt, INSERT);
 
       if (*slot)
-       VEC_ordered_remove (tree, *stmts, i);
+       VEC_ordered_remove (gimple, *stmts, i);
       else
        {
          *slot = (void *) stmt;
@@ -4983,3 +5479,20 @@ remove_similar_memory_refs (VEC (tree, heap) **stmts)
   htab_delete (seen);
 }
 
+/* Returns the index of PARAMETER in the parameters vector of the
+   ACCESS_MATRIX.  If PARAMETER does not exist return -1.  */
+
+int
+access_matrix_get_index_for_parameter (tree parameter,
+                                      struct access_matrix *access_matrix)
+{
+  int i;
+  VEC (tree,heap) *lambda_parameters = AM_PARAMETERS (access_matrix);
+  tree lambda_parameter;
+
+  FOR_EACH_VEC_ELT (tree, lambda_parameters, i, lambda_parameter)
+    if (lambda_parameter == parameter)
+      return i + AM_NB_INDUCTION_VARS (access_matrix);
+
+  return -1;
+}