OSDN Git Service

2007-12-18 Sebastian Pop <sebastian.pop@amd.com>
[pf3gnuchains/gcc-fork.git] / gcc / lambda-code.c
index 40f3ac3..e38b970 100644 (file)
@@ -1,12 +1,12 @@
 /*  Loop transformation code generation
-    Copyright (C) 2003, 2004 Free Software Foundation, Inc.
+    Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
     Contributed by Daniel Berlin <dberlin@dberlin.org>
 
     This file is part of GCC.
     
     GCC is free software; you can redistribute it and/or modify it under
     the terms of the GNU General Public License as published by the Free
-    Software Foundation; either version 2, or (at your option) any later
+    Software Foundation; either version 3, or (at your option) any later
     version.
     
     GCC is distributed in the hope that it will be useful, but WITHOUT ANY
     for more details.
     
     You should have received a copy of the GNU General Public License
-    along with GCC; see the file COPYING.  If not, write to the Free
-    Software Foundation, 59 Temple Place - Suite 330, Boston, MA
-    02111-1307, USA.  */
+    along with GCC; see the file COPYING3.  If not see
+    <http://www.gnu.org/licenses/>.  */
 
 #include "config.h"
 #include "system.h"
 #include "coretypes.h"
 #include "tm.h"
-#include "errors.h"
 #include "ggc.h"
 #include "tree.h"
 #include "target.h"
 #include "rtl.h"
 #include "basic-block.h"
 #include "diagnostic.h"
+#include "obstack.h"
 #include "tree-flow.h"
 #include "tree-dump.h"
 #include "timevar.h"
@@ -42,6 +41,7 @@
 #include "tree-scalar-evolution.h"
 #include "vec.h"
 #include "lambda.h"
+#include "vecprim.h"
 
 /* This loop nest code generation is based on non-singular matrix
    math.
  Fourier-Motzkin elimination is used to compute the bounds of the base space
  of the lattice.  */
 
-
-DEF_VEC_GC_P(int);
-
-static bool perfect_nestify (struct loops *, 
-                            struct loop *, VEC (tree) *, 
-                            VEC (tree) *, VEC (int) *, VEC (tree) *);
+static bool perfect_nestify (struct loop *, VEC(tree,heap) *, 
+                            VEC(tree,heap) *, VEC(int,heap) *,
+                            VEC(tree,heap) *);
 /* Lattice stuff that is internal to the code generation algorithm.  */
 
-typedef struct
+typedef struct lambda_lattice_s
 {
   /* Lattice base matrix.  */
   lambda_matrix base;
@@ -145,19 +142,21 @@ typedef struct
 
 static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
                       int, int);
-static lambda_lattice lambda_lattice_new (int, int);
-static lambda_lattice lambda_lattice_compute_base (lambda_loopnest);
+static lambda_lattice lambda_lattice_new (int, int, struct obstack *);
+static lambda_lattice lambda_lattice_compute_base (lambda_loopnest,
+                                                   struct obstack *);
 
 static tree find_induction_var_from_exit_cond (struct loop *);
+static bool can_convert_to_perfect_nest (struct loop *);
 
 /* Create a new lambda body vector.  */
 
 lambda_body_vector
-lambda_body_vector_new (int size)
+lambda_body_vector_new (int size, struct obstack * lambda_obstack)
 {
   lambda_body_vector ret;
 
-  ret = ggc_alloc (sizeof (*ret));
+  ret = (lambda_body_vector)obstack_alloc (lambda_obstack, sizeof (*ret));
   LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
   LBV_SIZE (ret) = size;
   LBV_DENOMINATOR (ret) = 1;
@@ -169,7 +168,8 @@ lambda_body_vector_new (int size)
 
 lambda_body_vector
 lambda_body_vector_compute_new (lambda_trans_matrix transform,
-                               lambda_body_vector vect)
+                                lambda_body_vector vect,
+                                struct obstack * lambda_obstack)
 {
   lambda_body_vector temp;
   int depth;
@@ -179,7 +179,7 @@ lambda_body_vector_compute_new (lambda_trans_matrix transform,
 
   depth = LTM_ROWSIZE (transform);
 
-  temp = lambda_body_vector_new (depth);
+  temp = lambda_body_vector_new (depth, lambda_obstack);
   LBV_DENOMINATOR (temp) =
     LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
   lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
@@ -225,12 +225,13 @@ lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
    of invariants INVARIANTS.  */
 
 lambda_linear_expression
-lambda_linear_expression_new (int dim, int invariants)
+lambda_linear_expression_new (int dim, int invariants,
+                              struct obstack * lambda_obstack)
 {
   lambda_linear_expression ret;
 
-  ret = ggc_alloc_cleared (sizeof (*ret));
-
+  ret = (lambda_linear_expression)obstack_alloc (lambda_obstack,
+                                                 sizeof (*ret));
   LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
   LLE_CONSTANT (ret) = 0;
   LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
@@ -327,12 +328,14 @@ print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
    number of invariants.  */
 
 lambda_loopnest
-lambda_loopnest_new (int depth, int invariants)
+lambda_loopnest_new (int depth, int invariants,
+                     struct obstack * lambda_obstack)
 {
   lambda_loopnest ret;
-  ret = ggc_alloc (sizeof (*ret));
+  ret = (lambda_loopnest)obstack_alloc (lambda_obstack, sizeof (*ret));
 
-  LN_LOOPS (ret) = ggc_alloc_cleared (depth * sizeof (lambda_loop));
+  LN_LOOPS (ret) = (lambda_loop *)
+      obstack_alloc (lambda_obstack, depth * sizeof(LN_LOOPS(ret)));
   LN_DEPTH (ret) = depth;
   LN_INVARIANTS (ret) = invariants;
 
@@ -359,10 +362,10 @@ print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
    of invariants.  */
 
 static lambda_lattice
-lambda_lattice_new (int depth, int invariants)
+lambda_lattice_new (int depth, int invariants, struct obstack * lambda_obstack)
 {
-  lambda_lattice ret;
-  ret = ggc_alloc (sizeof (*ret));
+  lambda_lattice ret
+      = (lambda_lattice)obstack_alloc (lambda_obstack, sizeof (*ret));
   LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
   LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
   LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
@@ -379,7 +382,8 @@ lambda_lattice_new (int depth, int invariants)
    identity matrix) if NEST is a sparse space.  */
 
 static lambda_lattice
-lambda_lattice_compute_base (lambda_loopnest nest)
+lambda_lattice_compute_base (lambda_loopnest nest,
+                             struct obstack * lambda_obstack)
 {
   lambda_lattice ret;
   int depth, invariants;
@@ -392,7 +396,7 @@ lambda_lattice_compute_base (lambda_loopnest nest)
   depth = LN_DEPTH (nest);
   invariants = LN_INVARIANTS (nest);
 
-  ret = lambda_lattice_new (depth, invariants);
+  ret = lambda_lattice_new (depth, invariants, lambda_obstack);
   base = LATTICE_BASE (ret);
   for (i = 0; i < depth; i++)
     {
@@ -441,55 +445,16 @@ lambda_lattice_compute_base (lambda_loopnest nest)
   return ret;
 }
 
-/* Compute the greatest common denominator of two numbers (A and B) using
-   Euclid's algorithm.  */
-
-static int
-gcd (int a, int b)
-{
-
-  int x, y, z;
-
-  x = abs (a);
-  y = abs (b);
-
-  while (x > 0)
-    {
-      z = y % x;
-      y = x;
-      x = z;
-    }
-
-  return (y);
-}
-
-/* Compute the greatest common denominator of a VECTOR of SIZE numbers.  */
-
-static int
-gcd_vector (lambda_vector vector, int size)
-{
-  int i;
-  int gcd1 = 0;
-
-  if (size > 0)
-    {
-      gcd1 = vector[0];
-      for (i = 1; i < size; i++)
-       gcd1 = gcd (gcd1, vector[i]);
-    }
-  return gcd1;
-}
-
 /* Compute the least common multiple of two numbers A and B .  */
 
-static int
-lcm (int a, int b)
+int
+least_common_multiple (int a, int b)
 {
   return (abs (a) * abs (b) / gcd (a, b));
 }
 
 /* Perform Fourier-Motzkin elimination to calculate the bounds of the
-   auxillary nest.
+   auxiliary nest.
    Fourier-Motzkin is a way of reducing systems of linear inequalities so that
    it is easy to calculate the answer and bounds.
    A sketch of how it works:
@@ -521,7 +486,8 @@ compute_nest_using_fourier_motzkin (int size,
                                    int invariants,
                                    lambda_matrix A,
                                    lambda_matrix B,
-                                   lambda_vector a)
+                                    lambda_vector a,
+                                    struct obstack * lambda_obstack)
 {
 
   int multiple, f1, f2;
@@ -537,7 +503,7 @@ compute_nest_using_fourier_motzkin (int size,
   B1 = lambda_matrix_new (128, invariants);
   a1 = lambda_vector_new (128);
 
-  auxillary_nest = lambda_loopnest_new (depth, invariants);
+  auxillary_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
 
   for (i = depth - 1; i >= 0; i--)
     {
@@ -551,7 +517,8 @@ compute_nest_using_fourier_motzkin (int size,
            {
              /* Any linear expression in the matrix with a coefficient less
                 than 0 becomes part of the new lower bound.  */ 
-             expression = lambda_linear_expression_new (depth, invariants);
+              expression = lambda_linear_expression_new (depth, invariants,
+                                                         lambda_obstack);
 
              for (k = 0; k < i; k++)
                LLE_COEFFICIENTS (expression)[k] = A[j][k];
@@ -575,7 +542,8 @@ compute_nest_using_fourier_motzkin (int size,
            {
              /* Any linear expression with a coefficient greater than 0
                 becomes part of the new upper bound.  */ 
-             expression = lambda_linear_expression_new (depth, invariants);
+              expression = lambda_linear_expression_new (depth, invariants,
+                                                         lambda_obstack);
              for (k = 0; k < i; k++)
                LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
 
@@ -617,7 +585,7 @@ compute_nest_using_fourier_motzkin (int size,
                {
                  if (A[k][i] < 0)
                    {
-                     multiple = lcm (A[j][i], A[k][i]);
+                     multiple = least_common_multiple (A[j][i], A[k][i]);
                      f1 = multiple / A[j][i];
                      f2 = -1 * multiple / A[k][i];
 
@@ -663,16 +631,17 @@ compute_nest_using_fourier_motzkin (int size,
    4. Multiply the composed transformation matrix times the matrix form of the
    loop.
    5. Transform the newly created matrix (from step 4) back into a loop nest
-   using fourier motzkin elimination to figure out the bounds.  */
+   using Fourier-Motzkin elimination to figure out the bounds.  */
 
 static lambda_loopnest
 lambda_compute_auxillary_space (lambda_loopnest nest,
-                               lambda_trans_matrix trans)
+                                lambda_trans_matrix trans,
+                                struct obstack * lambda_obstack)
 {
   lambda_matrix A, B, A1, B1;
   lambda_vector a, a1;
   lambda_matrix invertedtrans;
-  int determinant, depth, invariants, size;
+  int depth, invariants, size;
   int i, j;
   lambda_loop loop;
   lambda_linear_expression expression;
@@ -683,7 +652,7 @@ lambda_compute_auxillary_space (lambda_loopnest nest,
 
   /* Unfortunately, we can't know the number of constraints we'll have
      ahead of time, but this should be enough even in ridiculous loop nest
-     cases. We abort if we go over this limit.  */
+     cases. We must not go over this limit.  */
   A = lambda_matrix_new (128, depth);
   B = lambda_matrix_new (128, invariants);
   a = lambda_vector_new (128);
@@ -765,7 +734,7 @@ lambda_compute_auxillary_space (lambda_loopnest nest,
 
   /* Compute the lattice base x = base * y + origin, where y is the
      base space.  */
-  lattice = lambda_lattice_compute_base (nest);
+  lattice = lambda_lattice_compute_base (nest, lambda_obstack);
 
   /* Ax <= a + B then becomes ALy <= a+B - A*origin.  L is the lattice base  */
 
@@ -782,32 +751,33 @@ lambda_compute_auxillary_space (lambda_loopnest nest,
   lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
 
   /* Now compute the auxiliary space bounds by first inverting U, multiplying
-     it by A1, then performing fourier motzkin.  */
+     it by A1, then performing Fourier-Motzkin.  */
 
   invertedtrans = lambda_matrix_new (depth, depth);
 
   /* Compute the inverse of U.  */
-  determinant = lambda_matrix_inverse (LTM_MATRIX (trans),
-                                      invertedtrans, depth);
+  lambda_matrix_inverse (LTM_MATRIX (trans),
+                        invertedtrans, depth);
 
   /* A = A1 inv(U).  */
   lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
 
   return compute_nest_using_fourier_motzkin (size, depth, invariants,
-                                            A, B1, a1);
+                                             A, B1, a1, lambda_obstack);
 }
 
 /* Compute the loop bounds for the target space, using the bounds of
    the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.  
    The target space loop bounds are computed by multiplying the triangular
-   matrix H by the auxillary nest, to get the new loop bounds.  The sign of
+   matrix H by the auxiliary nest, to get the new loop bounds.  The sign of
    the loop steps (positive or negative) is then used to swap the bounds if
    the loop counts downwards.
    Return the target loopnest.  */
 
 static lambda_loopnest
 lambda_compute_target_space (lambda_loopnest auxillary_nest,
-                            lambda_trans_matrix H, lambda_vector stepsigns)
+                             lambda_trans_matrix H, lambda_vector stepsigns,
+                             struct obstack * lambda_obstack)
 {
   lambda_matrix inverse, H1;
   int determinant, i, j;
@@ -838,7 +808,7 @@ lambda_compute_target_space (lambda_loopnest auxillary_nest,
   target = lambda_matrix_new (depth, depth);
   lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
 
-  target_nest = lambda_loopnest_new (depth, invariants);
+  target_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
 
   for (i = 0; i < depth; i++)
     {
@@ -848,7 +818,7 @@ lambda_compute_target_space (lambda_loopnest auxillary_nest,
       LN_LOOPS (target_nest)[i] = target_loop;
 
       /* Computes the gcd of the coefficients of the linear part.  */
-      gcd1 = gcd_vector (target[i], i);
+      gcd1 = lambda_vector_gcd (target[i], i);
 
       /* Include the denominator in the GCD.  */
       gcd1 = gcd (gcd1, determinant);
@@ -857,7 +827,8 @@ lambda_compute_target_space (lambda_loopnest auxillary_nest,
       for (j = 0; j < i; j++)
        target[i][j] = target[i][j] / gcd1;
 
-      expression = lambda_linear_expression_new (depth, invariants);
+      expression = lambda_linear_expression_new (depth, invariants,
+                                                 lambda_obstack);
       lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
       LLE_DENOMINATOR (expression) = determinant / gcd1;
       LLE_CONSTANT (expression) = 0;
@@ -880,7 +851,8 @@ lambda_compute_target_space (lambda_loopnest auxillary_nest,
       for (; auxillary_expr != NULL;
           auxillary_expr = LLE_NEXT (auxillary_expr))
        {
-         target_expr = lambda_linear_expression_new (depth, invariants);
+          target_expr = lambda_linear_expression_new (depth, invariants,
+                                                      lambda_obstack);
          lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
                                     depth, inverse, depth,
                                     LLE_COEFFICIENTS (target_expr));
@@ -911,9 +883,9 @@ lambda_compute_target_space (lambda_loopnest auxillary_nest,
            }
          /* Find the gcd and divide by it here, rather than doing it
             at the tree level.  */
-         gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
-         gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
-                            invariants);
+         gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
+         gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
+                                   invariants);
          gcd1 = gcd (gcd1, gcd2);
          gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
          gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
@@ -937,7 +909,8 @@ lambda_compute_target_space (lambda_loopnest auxillary_nest,
       for (; auxillary_expr != NULL;
           auxillary_expr = LLE_NEXT (auxillary_expr))
        {
-         target_expr = lambda_linear_expression_new (depth, invariants);
+          target_expr = lambda_linear_expression_new (depth, invariants,
+                                                      lambda_obstack);
          lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
                                     depth, inverse, depth,
                                     LLE_COEFFICIENTS (target_expr));
@@ -967,9 +940,9 @@ lambda_compute_target_space (lambda_loopnest auxillary_nest,
            }
          /* Find the gcd and divide by it here, instead of at the
             tree level.  */
-         gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
-         gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
-                            invariants);
+         gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
+         gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
+                                   invariants);
          gcd1 = gcd (gcd1, gcd2);
          gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
          gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
@@ -1057,12 +1030,13 @@ lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
    2. Composing the dense base with the specified transformation (TRANS)
    3. Decomposing the combined transformation into a lower triangular portion,
    and a unimodular portion. 
-   4. Computing the auxillary nest using the unimodular portion.
-   5. Computing the target nest using the auxillary nest and the lower
+   4. Computing the auxiliary nest using the unimodular portion.
+   5. Computing the target nest using the auxiliary nest and the lower
    triangular portion.  */ 
 
 lambda_loopnest
-lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
+lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans,
+                           struct obstack * lambda_obstack)
 {
   lambda_loopnest auxillary_nest, target_nest;
 
@@ -1091,7 +1065,7 @@ lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
     }
 
   /* Compute the lattice base.  */
-  lattice = lambda_lattice_compute_base (nest);
+  lattice = lambda_lattice_compute_base (nest, lambda_obstack);
   trans1 = lambda_trans_matrix_new (depth, depth);
 
   /* Multiply the transformation matrix by the lattice base.  */
@@ -1107,7 +1081,7 @@ lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
 
   /* Compute the auxiliary loop nest's space from the unimodular
      portion.  */
-  auxillary_nest = lambda_compute_auxillary_space (nest, U);
+  auxillary_nest = lambda_compute_auxillary_space (nest, U, lambda_obstack);
 
   /* Compute the loop step signs from the old step signs and the
      transformation matrix.  */
@@ -1115,7 +1089,8 @@ lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
 
   /* Compute the target loop nest space from the auxiliary nest and
      the lower triangular matrix H.  */
-  target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns);
+  target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns,
+                                             lambda_obstack);
   origin = lambda_vector_new (depth);
   origin_invariants = lambda_matrix_new (depth, invariants);
   lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
@@ -1152,15 +1127,16 @@ lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
 
 static lambda_linear_expression
 gcc_tree_to_linear_expression (int depth, tree expr,
-                              VEC(tree) *outerinductionvars,
-                              VEC(tree) *invariants, int extra)
+                              VEC(tree,heap) *outerinductionvars,
+                               VEC(tree,heap) *invariants, int extra,
+                               struct obstack * lambda_obstack)
 {
   lambda_linear_expression lle = NULL;
   switch (TREE_CODE (expr))
     {
     case INTEGER_CST:
       {
-       lle = lambda_linear_expression_new (depth, 2 * depth);
+        lle = lambda_linear_expression_new (depth, 2 * depth, lambda_obstack);
        LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
        if (extra != 0)
          LLE_CONSTANT (lle) += extra;
@@ -1177,7 +1153,8 @@ gcc_tree_to_linear_expression (int depth, tree expr,
            {
              if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
                {
-                 lle = lambda_linear_expression_new (depth, 2 * depth);
+                  lle = lambda_linear_expression_new (depth, 2 * depth,
+                                                      lambda_obstack);
                  LLE_COEFFICIENTS (lle)[i] = 1;
                  if (extra != 0)
                    LLE_CONSTANT (lle) = extra;
@@ -1190,7 +1167,8 @@ gcc_tree_to_linear_expression (int depth, tree expr,
            {
              if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
                {
-                 lle = lambda_linear_expression_new (depth, 2 * depth);
+                  lle = lambda_linear_expression_new (depth, 2 * depth,
+                                                      lambda_obstack);
                  LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
                  if (extra != 0)
                    LLE_CONSTANT (lle) = extra;
@@ -1228,12 +1206,11 @@ invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
 {
   if (is_gimple_min_invariant (op))
     return true;
-  if (loop->depth == 0)
+  if (loop_depth (loop) == 0)
     return true;
   if (!expr_invariant_in_loop_p (loop, op))
     return false;
-  if (loop->outer 
-      && !invariant_in_loop_and_outer_loops (loop->outer, op))
+  if (!invariant_in_loop_and_outer_loops (loop_outer (loop), op))
     return false;
   return true;
 }
@@ -1248,12 +1225,13 @@ invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
 
 static lambda_loop
 gcc_loop_to_lambda_loop (struct loop *loop, int depth,
-                        VEC (tree) ** invariants,
+                        VEC(tree,heap) ** invariants,
                         tree * ourinductionvar,
-                        VEC (tree) * outerinductionvars,
-                        VEC (tree) ** lboundvars,
-                        VEC (tree) ** uboundvars,
-                        VEC (int) ** steps)
+                        VEC(tree,heap) * outerinductionvars,
+                        VEC(tree,heap) ** lboundvars,
+                        VEC(tree,heap) ** uboundvars,
+                         VEC(int,heap) ** steps,
+                         struct obstack * lambda_obstack)
 {
   tree phi;
   tree exit_cond;
@@ -1265,7 +1243,6 @@ gcc_loop_to_lambda_loop (struct loop *loop, int depth,
   int stepint;
   int extra = 0;
   tree lboundvar, uboundvar, uboundresult;
-  use_optype uses;
 
   /* Find out induction var and exit condition.  */
   inductionvar = find_induction_var_from_exit_cond (loop);
@@ -1294,10 +1271,8 @@ gcc_loop_to_lambda_loop (struct loop *loop, int depth,
   phi = SSA_NAME_DEF_STMT (inductionvar);
   if (TREE_CODE (phi) != PHI_NODE)
     {
-      get_stmt_operands (phi);
-      uses = STMT_USE_OPS (phi);
-
-      if (!uses)
+      phi = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
+      if (!phi)
        {
 
          if (dump_file && (dump_flags & TDF_DETAILS))
@@ -1307,7 +1282,6 @@ gcc_loop_to_lambda_loop (struct loop *loop, int depth,
          return NULL;
        }
 
-      phi = USE_OP (uses, 0);
       phi = SSA_NAME_DEF_STMT (phi);
       if (TREE_CODE (phi) != PHI_NODE)
        {
@@ -1382,14 +1356,14 @@ gcc_loop_to_lambda_loop (struct loop *loop, int depth,
       lboundvar = PHI_ARG_DEF (phi, 1);
       lbound = gcc_tree_to_linear_expression (depth, lboundvar,
                                              outerinductionvars, *invariants,
-                                             0);
+                                              0, lambda_obstack);
     }
   else
     {
       lboundvar = PHI_ARG_DEF (phi, 0);
       lbound = gcc_tree_to_linear_expression (depth, lboundvar,
                                              outerinductionvars, *invariants,
-                                             0);
+                                              0, lambda_obstack);
     }
   
   if (!lbound)
@@ -1402,12 +1376,13 @@ gcc_loop_to_lambda_loop (struct loop *loop, int depth,
       return NULL;
     }
   /* One part of the test may be a loop invariant tree.  */
+  VEC_reserve (tree, heap, *invariants, 1);
   if (TREE_CODE (TREE_OPERAND (test, 1)) == SSA_NAME
       && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 1)))
-    VEC_safe_push (tree, *invariants, TREE_OPERAND (test, 1));
+    VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 1));
   else if (TREE_CODE (TREE_OPERAND (test, 0)) == SSA_NAME
           && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 0)))
-    VEC_safe_push (tree, *invariants, TREE_OPERAND (test, 0));
+    VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 0));
   
   /* The non-induction variable part of the test is the upper bound variable.
    */
@@ -1436,12 +1411,12 @@ gcc_loop_to_lambda_loop (struct loop *loop, int depth,
   
   ubound = gcc_tree_to_linear_expression (depth, uboundvar,
                                          outerinductionvars,
-                                         *invariants, extra);
-  uboundresult = build (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
-                       build_int_cst (TREE_TYPE (uboundvar), extra));
-  VEC_safe_push (tree, *uboundvars, uboundresult);
-  VEC_safe_push (tree, *lboundvars, lboundvar);
-  VEC_safe_push (int, *steps, stepint);
+                                          *invariants, extra, lambda_obstack);
+  uboundresult = build2 (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
+                        build_int_cst (TREE_TYPE (uboundvar), extra));
+  VEC_safe_push (tree, heap, *uboundvars, uboundresult);
+  VEC_safe_push (tree, heap, *lboundvars, lboundvar);
+  VEC_safe_push (int, heap, *steps, stepint);
   if (!ubound)
     {
       if (dump_file && (dump_flags & TDF_DETAILS))
@@ -1489,7 +1464,9 @@ find_induction_var_from_exit_cond (struct loop *loop)
   return ivarop;
 }
 
-DEF_VEC_GC_P(lambda_loop);
+DEF_VEC_P(lambda_loop);
+DEF_VEC_ALLOC_P(lambda_loop,heap);
+
 /* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
    Return the new loop nest.  
    INDUCTIONVARS is a pointer to an array of induction variables for the
@@ -1498,60 +1475,69 @@ DEF_VEC_GC_P(lambda_loop);
    during this process.  */
 
 lambda_loopnest
-gcc_loopnest_to_lambda_loopnest (struct loops *currloops,
-                                struct loop * loop_nest,
-                                VEC (tree) **inductionvars,
-                                VEC (tree) **invariants,
-                                bool need_perfect_nest)
+gcc_loopnest_to_lambda_loopnest (struct loop *loop_nest,
+                                VEC(tree,heap) **inductionvars,
+                                 VEC(tree,heap) **invariants,
+                                 struct obstack * lambda_obstack)
 {
-  lambda_loopnest ret;
-  struct loop *temp;
-  int depth = 0;
+  lambda_loopnest ret = NULL;
+  struct loop *temp = loop_nest;
+  int depth = depth_of_nest (loop_nest);
   size_t i;
-  VEC (lambda_loop) *loops = NULL;
-  VEC (tree) *uboundvars = NULL;
-  VEC (tree) *lboundvars  = NULL;
-  VEC (int) *steps = NULL;
+  VEC(lambda_loop,heap) *loops = NULL;
+  VEC(tree,heap) *uboundvars = NULL;
+  VEC(tree,heap) *lboundvars  = NULL;
+  VEC(int,heap) *steps = NULL;
   lambda_loop newloop;
   tree inductionvar = NULL;
-  
-  depth = depth_of_nest (loop_nest);
-  temp = loop_nest;
+  bool perfect_nest = perfect_nest_p (loop_nest);
+
+  if (!perfect_nest && !can_convert_to_perfect_nest (loop_nest))
+    goto fail;
+
   while (temp)
     {
       newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
                                         &inductionvar, *inductionvars,
                                         &lboundvars, &uboundvars,
-                                        &steps);
+                                         &steps, lambda_obstack);
       if (!newloop)
-       return NULL;
-      VEC_safe_push (tree, *inductionvars, inductionvar);
-      VEC_safe_push (lambda_loop, loops, newloop);
+       goto fail;
+
+      VEC_safe_push (tree, heap, *inductionvars, inductionvar);
+      VEC_safe_push (lambda_loop, heap, loops, newloop);
       temp = temp->inner;
     }
-  if (need_perfect_nest)
+
+  if (!perfect_nest)
     {
-      if (!perfect_nestify (currloops, loop_nest, 
-                           lboundvars, uboundvars, steps, *inductionvars))
+      if (!perfect_nestify (loop_nest, lboundvars, uboundvars, steps,
+                           *inductionvars))
        {
          if (dump_file)
-           fprintf (dump_file, "Not a perfect loop nest and couldn't convert to one.\n");    
-         return NULL;
+           fprintf (dump_file,
+                    "Not a perfect loop nest and couldn't convert to one.\n");    
+         goto fail;
        }
       else if (dump_file)
-       fprintf (dump_file, "Successfully converted loop nest to perfect loop nest.\n");
-
-      
+       fprintf (dump_file,
+                "Successfully converted loop nest to perfect loop nest.\n");
     }
-  ret = lambda_loopnest_new (depth, 2 * depth);
+
+  ret = lambda_loopnest_new (depth, 2 * depth, lambda_obstack);
+
   for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
     LN_LOOPS (ret)[i] = newloop;
 
+ fail:
+  VEC_free (lambda_loop, heap, loops);
+  VEC_free (tree, heap, uboundvars);
+  VEC_free (tree, heap, lboundvars);
+  VEC_free (int, heap, steps);
+  
   return ret;
-
 }
 
-
 /* Convert a lambda body vector LBV to a gcc tree, and return the new tree. 
    STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
    inserted for us are stored.  INDUCTION_VARS is the array of induction
@@ -1560,70 +1546,21 @@ gcc_loopnest_to_lambda_loopnest (struct loops *currloops,
 
 static tree
 lbv_to_gcc_expression (lambda_body_vector lbv, 
-                      tree type, VEC (tree) *induction_vars, 
-                      tree * stmts_to_insert)
+                      tree type, VEC(tree,heap) *induction_vars, 
+                      tree *stmts_to_insert)
 {
-  tree stmts, stmt, resvar, name;
-  tree iv;
-  size_t i;
-  tree_stmt_iterator tsi;
-
-  /* Create a statement list and a linear expression temporary.  */
-  stmts = alloc_stmt_list ();
-  resvar = create_tmp_var (type, "lbvtmp");
-  add_referenced_tmp_var (resvar);
-
-  /* Start at 0.  */
-  stmt = build (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
-  name = make_ssa_name (resvar, stmt);
-  TREE_OPERAND (stmt, 0) = name;
-  tsi = tsi_last (stmts);
-  tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+  int k;
+  tree resvar;
+  tree expr = build_linear_expr (type, LBV_COEFFICIENTS (lbv), induction_vars);
 
-  for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
-    {
-      if (LBV_COEFFICIENTS (lbv)[i] != 0)
-       {
-         tree newname;
-         tree coeffmult;
-         
-         /* newname = coefficient * induction_variable */
-         coeffmult = build_int_cst (type, LBV_COEFFICIENTS (lbv)[i]);
-         stmt = build (MODIFY_EXPR, void_type_node, resvar,
-                       fold (build (MULT_EXPR, type, iv, coeffmult)));
-
-         newname = make_ssa_name (resvar, stmt);
-         TREE_OPERAND (stmt, 0) = newname;
-         fold_stmt (&stmt);
-         tsi = tsi_last (stmts);
-         tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
-
-         /* name = name + newname */
-         stmt = build (MODIFY_EXPR, void_type_node, resvar,
-                       build (PLUS_EXPR, type, name, newname));
-         name = make_ssa_name (resvar, stmt);
-         TREE_OPERAND (stmt, 0) = name;
-         fold_stmt (&stmt);
-         tsi = tsi_last (stmts);
-         tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+  k = LBV_DENOMINATOR (lbv);
+  gcc_assert (k != 0);
+  if (k != 1)
+    expr = fold_build2 (CEIL_DIV_EXPR, type, expr, build_int_cst (type, k));
 
-       }
-    }
-
-  /* Handle any denominator that occurs.  */
-  if (LBV_DENOMINATOR (lbv) != 1)
-    {
-      tree denominator = build_int_cst (type, LBV_DENOMINATOR (lbv));
-      stmt = build (MODIFY_EXPR, void_type_node, resvar,
-                   build (CEIL_DIV_EXPR, type, name, denominator));
-      name = make_ssa_name (resvar, stmt);
-      TREE_OPERAND (stmt, 0) = name;
-      fold_stmt (&stmt);
-      tsi = tsi_last (stmts);
-      tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
-    }
-  *stmts_to_insert = stmts;
-  return name;
+  resvar = create_tmp_var (type, "lbvtmp");
+  add_referenced_var (resvar);
+  return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
 }
 
 /* Convert a linear expression from coefficient and constant form to a
@@ -1643,189 +1580,102 @@ static tree
 lle_to_gcc_expression (lambda_linear_expression lle,
                       lambda_linear_expression offset,
                       tree type,
-                      VEC(tree) *induction_vars,
-                      VEC(tree) *invariants,
-                      enum tree_code wrap, tree * stmts_to_insert)
+                      VEC(tree,heap) *induction_vars,
+                      VEC(tree,heap) *invariants,
+                      enum tree_code wrap, tree *stmts_to_insert)
 {
-  tree stmts, stmt, resvar, name;
-  size_t i;
-  tree_stmt_iterator tsi;
-  tree iv, invar;
-  VEC(tree) *results = NULL;
+  int k;
+  tree resvar;
+  tree expr = NULL_TREE;
+  VEC(tree,heap) *results = NULL;
 
-  name = NULL_TREE;
-  /* Create a statement list and a linear expression temporary.  */
-  stmts = alloc_stmt_list ();
-  resvar = create_tmp_var (type, "lletmp");
-  add_referenced_tmp_var (resvar);
+  gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
 
-  /* Build up the linear expressions, and put the variable representing the
-     result in the results array.  */
+  /* Build up the linear expressions.  */
   for (; lle != NULL; lle = LLE_NEXT (lle))
     {
-      /* Start at name = 0.  */
-      stmt = build (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
-      name = make_ssa_name (resvar, stmt);
-      TREE_OPERAND (stmt, 0) = name;
-      fold_stmt (&stmt);
-      tsi = tsi_last (stmts);
-      tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
-
-      /* First do the induction variables.  
-         at the end, name = name + all the induction variables added
-         together.  */
-      for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
-       {
-         if (LLE_COEFFICIENTS (lle)[i] != 0)
-           {
-             tree newname;
-             tree mult;
-             tree coeff;
+      expr = build_linear_expr (type, LLE_COEFFICIENTS (lle), induction_vars);
+      expr = fold_build2 (PLUS_EXPR, type, expr,
+                         build_linear_expr (type, 
+                                            LLE_INVARIANT_COEFFICIENTS (lle),
+                                            invariants));
+
+      k = LLE_CONSTANT (lle);
+      if (k)
+       expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
+
+      k = LLE_CONSTANT (offset);
+      if (k)
+       expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
+
+      k = LLE_DENOMINATOR (lle);
+      if (k != 1)
+       expr = fold_build2 (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
+                           type, expr, build_int_cst (type, k));
+
+      expr = fold (expr);
+      VEC_safe_push (tree, heap, results, expr);
+    }
 
-             /* mult = induction variable * coefficient.  */
-             if (LLE_COEFFICIENTS (lle)[i] == 1)
-               {
-                 mult = VEC_index (tree, induction_vars, i);
-               }
-             else
-               {
-                 coeff = build_int_cst (type,
-                                        LLE_COEFFICIENTS (lle)[i]);
-                 mult = fold (build (MULT_EXPR, type, iv, coeff));
-               }
+  gcc_assert (expr);
 
-             /* newname = mult */
-             stmt = build (MODIFY_EXPR, void_type_node, resvar, mult);
-             newname = make_ssa_name (resvar, stmt);
-             TREE_OPERAND (stmt, 0) = newname;
-             fold_stmt (&stmt);
-             tsi = tsi_last (stmts);
-             tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
-
-             /* name = name + newname */
-             stmt = build (MODIFY_EXPR, void_type_node, resvar,
-                           build (PLUS_EXPR, type, name, newname));
-             name = make_ssa_name (resvar, stmt);
-             TREE_OPERAND (stmt, 0) = name;
-             fold_stmt (&stmt);
-             tsi = tsi_last (stmts);
-             tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
-           }
-       }
+  /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR.  */
+  if (VEC_length (tree, results) > 1)
+    {
+      size_t i;
+      tree op;
 
-      /* Handle our invariants.
-         At the end, we have name = name + result of adding all multiplied
-         invariants.  */
-      for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
-       {
-         if (LLE_INVARIANT_COEFFICIENTS (lle)[i] != 0)
-           {
-             tree newname;
-             tree mult;
-             tree coeff;
-             int invcoeff = LLE_INVARIANT_COEFFICIENTS (lle)[i];
-             /* mult = invariant * coefficient  */
-             if (invcoeff == 1)
-               {
-                 mult = invar;
-               }
-             else
-               {
-                 coeff = build_int_cst (type, invcoeff);
-                 mult = fold (build (MULT_EXPR, type, invar, coeff));
-               }
+      expr = VEC_index (tree, results, 0);
+      for (i = 1; VEC_iterate (tree, results, i, op); i++)
+       expr = fold_build2 (wrap, type, expr, op);
+    }
 
-             /* newname = mult */
-             stmt = build (MODIFY_EXPR, void_type_node, resvar, mult);
-             newname = make_ssa_name (resvar, stmt);
-             TREE_OPERAND (stmt, 0) = newname;
-             fold_stmt (&stmt);
-             tsi = tsi_last (stmts);
-             tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
-
-             /* name = name + newname */
-             stmt = build (MODIFY_EXPR, void_type_node, resvar,
-                           build (PLUS_EXPR, type, name, newname));
-             name = make_ssa_name (resvar, stmt);
-             TREE_OPERAND (stmt, 0) = name;
-             fold_stmt (&stmt);
-             tsi = tsi_last (stmts);
-             tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
-           }
-       }
+  VEC_free (tree, heap, results);
 
-      /* Now handle the constant.
-         name = name + constant.  */
-      if (LLE_CONSTANT (lle) != 0)
-       {
-         stmt = build (MODIFY_EXPR, void_type_node, resvar,
-                       build (PLUS_EXPR, type, name, 
-                              build_int_cst (type, LLE_CONSTANT (lle))));
-         name = make_ssa_name (resvar, stmt);
-         TREE_OPERAND (stmt, 0) = name;
-         fold_stmt (&stmt);
-         tsi = tsi_last (stmts);
-         tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
-       }
+  resvar = create_tmp_var (type, "lletmp");
+  add_referenced_var (resvar);
+  return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
+}
 
-      /* Now handle the offset.
-         name = name + linear offset.  */
-      if (LLE_CONSTANT (offset) != 0)
-       {
-         stmt = build (MODIFY_EXPR, void_type_node, resvar,
-                       build (PLUS_EXPR, type, name, 
-                              build_int_cst (type, LLE_CONSTANT (offset))));
-         name = make_ssa_name (resvar, stmt);
-         TREE_OPERAND (stmt, 0) = name;
-         fold_stmt (&stmt);
-         tsi = tsi_last (stmts);
-         tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
-       }
+/* Remove the induction variable defined at IV_STMT.  */
 
-      /* Handle any denominator that occurs.  */
-      if (LLE_DENOMINATOR (lle) != 1)
+void
+remove_iv (tree iv_stmt)
+{
+  if (TREE_CODE (iv_stmt) == PHI_NODE)
+    {
+      int i;
+
+      for (i = 0; i < PHI_NUM_ARGS (iv_stmt); i++)
        {
-         if (wrap == MAX_EXPR)
-           stmt = build (MODIFY_EXPR, void_type_node, resvar,
-                         build (CEIL_DIV_EXPR, type, name, 
-                                build_int_cst (type, LLE_DENOMINATOR (lle))));
-         else if (wrap == MIN_EXPR)
-           stmt = build (MODIFY_EXPR, void_type_node, resvar,
-                         build (FLOOR_DIV_EXPR, type, name, 
-                                build_int_cst (type, LLE_DENOMINATOR (lle))));
-         else
-           gcc_unreachable();
+         tree stmt;
+         imm_use_iterator imm_iter;
+         tree arg = PHI_ARG_DEF (iv_stmt, i);
+         bool used = false;
+
+         if (TREE_CODE (arg) != SSA_NAME)
+           continue;
 
-         /* name = {ceil, floor}(name/denominator) */
-         name = make_ssa_name (resvar, stmt);
-         TREE_OPERAND (stmt, 0) = name;
-         tsi = tsi_last (stmts);
-         tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+         FOR_EACH_IMM_USE_STMT (stmt, imm_iter, arg)
+           if (stmt != iv_stmt)
+             used = true;
+
+         if (!used)
+           remove_iv (SSA_NAME_DEF_STMT (arg));
        }
-      VEC_safe_push (tree, results, name);
-    }
 
-  /* Again, out of laziness, we don't handle this case yet.  It's not
-     hard, it just hasn't occurred.  */
-  gcc_assert (VEC_length (tree, results) <= 2);
-  
-  /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR.  */
-  if (VEC_length (tree, results) > 1)
-    {
-      tree op1 = VEC_index (tree, results, 0);
-      tree op2 = VEC_index (tree, results, 1);
-      stmt = build (MODIFY_EXPR, void_type_node, resvar,
-                   build (wrap, type, op1, op2));
-      name = make_ssa_name (resvar, stmt);
-      TREE_OPERAND (stmt, 0) = name;
-      tsi = tsi_last (stmts);
-      tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+      remove_phi_node (iv_stmt, NULL_TREE, true);
     }
+  else
+    {
+      block_stmt_iterator bsi = bsi_for_stmt (iv_stmt);
 
-  *stmts_to_insert = stmts;
-  return name;
+      bsi_remove (&bsi, true);
+      release_defs (iv_stmt); 
+    }
 }
 
+
 /* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
    it, back into gcc code.  This changes the
    loops, their induction variables, and their bodies, so that they
@@ -1840,16 +1690,17 @@ lle_to_gcc_expression (lambda_linear_expression lle,
 
 void
 lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
-                                VEC(tree) *old_ivs,
-                                VEC(tree) *invariants,
+                                VEC(tree,heap) *old_ivs,
+                                VEC(tree,heap) *invariants,
+                                VEC(tree,heap) **remove_ivs,
                                 lambda_loopnest new_loopnest,
-                                lambda_trans_matrix transform)
+                                 lambda_trans_matrix transform,
+                                 struct obstack * lambda_obstack)
 {
-
   struct loop *temp;
   size_t i = 0;
   size_t depth = 0;
-  VEC(tree) *new_ivs = NULL;
+  VEC(tree,heap) *new_ivs = NULL;
   tree oldiv;
   
   block_stmt_iterator bsi;
@@ -1873,6 +1724,8 @@ lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
       tree newupperbound, newlowerbound;
       lambda_linear_expression offset;
       tree type;
+      bool insert_after;
+      tree inc_stmt;
 
       oldiv = VEC_index (tree, old_ivs, i);
       type = TREE_TYPE (oldiv);
@@ -1880,9 +1733,9 @@ lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
       /* First, build the new induction variable temporary  */
 
       ivvar = create_tmp_var (type, "lnivtmp");
-      add_referenced_tmp_var (ivvar);
+      add_referenced_var (ivvar);
 
-      VEC_safe_push (tree, new_ivs, ivvar);
+      VEC_safe_push (tree, heap, new_ivs, ivvar);
 
       newloop = LN_LOOPS (new_loopnest)[i];
 
@@ -1900,8 +1753,12 @@ lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
                                             type,
                                             new_ivs,
                                             invariants, MAX_EXPR, &stmts);
-      bsi_insert_on_edge (loop_preheader_edge (temp), stmts);
-      bsi_commit_edge_inserts ();
+
+      if (stmts)
+       {
+         bsi_insert_on_edge (loop_preheader_edge (temp), stmts);
+         bsi_commit_edge_inserts ();
+       }
       /* Build the new upper bound and insert its statements in the
          basic block of the exit condition */
       newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
@@ -1909,21 +1766,32 @@ lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
                                             type,
                                             new_ivs,
                                             invariants, MIN_EXPR, &stmts);
-      exit = temp->single_exit;
+      exit = single_exit (temp);
       exitcond = get_loop_exit_condition (temp);
       bb = bb_for_stmt (exitcond);
-      bsi = bsi_start (bb);
-      bsi_insert_after (&bsi, stmts, BSI_NEW_STMT);
+      bsi = bsi_after_labels (bb);
+      if (stmts)
+       bsi_insert_before (&bsi, stmts, BSI_NEW_STMT);
 
-      /* Create the new iv, and insert it's increment on the latch
-         block.  */
+      /* Create the new iv.  */
 
-      bb = EDGE_PRED (temp->latch, 0)->src;
-      bsi = bsi_last (bb);
+      standard_iv_increment_position (temp, &bsi, &insert_after);
       create_iv (newlowerbound,
                 build_int_cst (type, LL_STEP (newloop)),
-                ivvar, temp, &bsi, false, &ivvar,
-                &ivvarinced);
+                ivvar, temp, &bsi, insert_after, &ivvar,
+                NULL);
+
+      /* Unfortunately, the incremented ivvar that create_iv inserted may not
+        dominate the block containing the exit condition.
+        So we simply create our own incremented iv to use in the new exit
+        test,  and let redundancy elimination sort it out.  */
+      inc_stmt = build2 (PLUS_EXPR, type, 
+                        ivvar, build_int_cst (type, LL_STEP (newloop)));
+      inc_stmt = build_gimple_modify_stmt (SSA_NAME_VAR (ivvar), inc_stmt);
+      ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
+      GIMPLE_STMT_OPERAND (inc_stmt, 0) = ivvarinced;
+      bsi = bsi_for_stmt (exitcond);
+      bsi_insert_before (&bsi, inc_stmt, BSI_SAME_STMT);
 
       /* Replace the exit condition with the new upper bound
          comparison.  */
@@ -1937,10 +1805,10 @@ lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
       if (exit->flags & EDGE_FALSE_VALUE)
        testtype = swap_tree_comparison (testtype);
 
-      COND_EXPR_COND (exitcond) = build (testtype,
-                                        boolean_type_node,
-                                        newupperbound, ivvarinced);
-      modify_stmt (exitcond);
+      COND_EXPR_COND (exitcond) = build2 (testtype,
+                                         boolean_type_node,
+                                         newupperbound, ivvarinced);
+      update_stmt (exitcond);
       VEC_replace (tree, new_ivs, i, ivvar);
 
       i++;
@@ -1952,65 +1820,53 @@ lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
 
   for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
     {
-      int j;
-      dataflow_t imm = get_immediate_uses (SSA_NAME_DEF_STMT (oldiv));
-      for (j = 0; j < num_immediate_uses (imm); j++)
-       {
-         tree stmt = immediate_use (imm, j);
-         use_operand_p use_p;
-         ssa_op_iter iter;
+      imm_use_iterator imm_iter;
+      use_operand_p use_p;
+      tree oldiv_def;
+      tree oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
+      tree stmt;
+
+      if (TREE_CODE (oldiv_stmt) == PHI_NODE)
+        oldiv_def = PHI_RESULT (oldiv_stmt);
+      else
+       oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
+      gcc_assert (oldiv_def != NULL_TREE);
+
+      FOR_EACH_IMM_USE_STMT (stmt, imm_iter, oldiv_def)
+        {
+         tree newiv, stmts;
+         lambda_body_vector lbv, newlbv;
+
          gcc_assert (TREE_CODE (stmt) != PHI_NODE);
-         FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
+
+         /* Compute the new expression for the induction
+            variable.  */
+         depth = VEC_length (tree, new_ivs);
+          lbv = lambda_body_vector_new (depth, lambda_obstack);
+         LBV_COEFFICIENTS (lbv)[i] = 1;
+         
+          newlbv = lambda_body_vector_compute_new (transform, lbv,
+                                                   lambda_obstack);
+
+         newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
+                                        new_ivs, &stmts);
+         if (stmts)
            {
-             if (USE_FROM_PTR (use_p) == oldiv)
-               {
-                 tree newiv, stmts;
-                 lambda_body_vector lbv, newlbv;
-                 /* Compute the new expression for the induction
-                    variable.  */
-                 depth = VEC_length (tree, new_ivs);
-                 lbv = lambda_body_vector_new (depth);
-                 LBV_COEFFICIENTS (lbv)[i] = 1;
-                 
-                 newlbv = lambda_body_vector_compute_new (transform, lbv);
-
-                 newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
-                                                new_ivs, &stmts);
-                 bsi = bsi_for_stmt (stmt);
-                 /* Insert the statements to build that
-                    expression.  */
-                 bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
-                 propagate_value (use_p, newiv);
-                 modify_stmt (stmt);
-                 
-               }
+             bsi = bsi_for_stmt (stmt);
+             bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
            }
-       }
-    }
-}
 
+         FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
+           propagate_value (use_p, newiv);
+         update_stmt (stmt);
+       }
 
-/* Returns true when the vector V is lexicographically positive, in
-   other words, when the first nonzero element is positive.  */
-
-static bool
-lambda_vector_lexico_pos (lambda_vector v, 
-                         unsigned n)
-{
-  unsigned i;
-  for (i = 0; i < n; i++)
-    {
-      if (v[i] == 0)
-       continue;
-      if (v[i] < 0)
-       return false;
-      if (v[i] > 0)
-       return true;
+      /* Remove the now unused induction variable.  */
+      VEC_safe_push (tree, heap, *remove_ivs, oldiv_stmt);
     }
-  return true;
+  VEC_free (tree, heap, new_ivs);
 }
 
-
 /* Return TRUE if this is not interesting statement from the perspective of
    determining if we have a perfect loop nest.  */
 
@@ -2044,16 +1900,11 @@ phi_loop_edge_uses_def (struct loop *loop, tree phi, tree def)
 static bool
 stmt_uses_phi_result (tree stmt, tree phi_result)
 {
-  use_optype uses = STMT_USE_OPS (stmt);
+  tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
   
   /* This is conservatively true, because we only want SIMPLE bumpers
      of the form x +- constant for our pass.  */
-  if (NUM_USES (uses) != 1)
-    return false;
-  if (USE_OP (uses, 0) == phi_result)
-    return true;
-  
-  return false;
+  return (use == phi_result);
 }
 
 /* STMT is a bumper stmt for LOOP if the version it defines is used in the
@@ -2067,17 +1918,16 @@ stmt_is_bumper_for_loop (struct loop *loop, tree stmt)
 {
   tree use;
   tree def;
-  def_optype defs = STMT_DEF_OPS (stmt);
-  dataflow_t imm;
-  int i;
+  imm_use_iterator iter;
+  use_operand_p use_p;
   
-  if (NUM_DEFS (defs) != 1)
+  def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
+  if (!def)
     return false;
-  def = DEF_OP (defs, 0);
-  imm = get_immediate_uses (stmt);
-  for (i = 0; i < num_immediate_uses (imm); i++)
+
+  FOR_EACH_IMM_USE_FAST (use_p, iter, def)
     {
-      use = immediate_use (imm, i);
+      use = USE_STMT (use_p);
       if (TREE_CODE (use) == PHI_NODE)
        {
          if (phi_loop_edge_uses_def (loop, use, def))
@@ -2122,133 +1972,370 @@ perfect_nest_p (struct loop *loop)
   size_t i;
   tree exit_cond;
 
+  /* Loops at depth 0 are perfect nests.  */
   if (!loop->inner)
     return true;
+
   bbs = get_loop_body (loop);
   exit_cond = get_loop_exit_condition (loop);
+
   for (i = 0; i < loop->num_nodes; i++)
     {
       if (bbs[i]->loop_father == loop)
        {
          block_stmt_iterator bsi;
+
          for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
            {
              tree stmt = bsi_stmt (bsi);
+
+             if (TREE_CODE (stmt) == COND_EXPR
+                 && exit_cond != stmt)
+               goto non_perfectly_nested;
+
              if (stmt == exit_cond
                  || not_interesting_stmt (stmt)
                  || stmt_is_bumper_for_loop (loop, stmt))
                continue;
+
+           non_perfectly_nested:
              free (bbs);
              return false;
            }
        }
     }
+
   free (bbs);
-  /* See if the inner loops are perfectly nested as well.  */
-  if (loop->inner)    
-    return perfect_nest_p (loop->inner);
-  return true;
+
+  return perfect_nest_p (loop->inner);
 }
 
-/* Replace the USES of tree X in STMT with tree Y */
+/* Replace the USES of X in STMT, or uses with the same step as X with Y.
+   YINIT is the initial value of Y, REPLACEMENTS is a hash table to
+   avoid creating duplicate temporaries and FIRSTBSI is statement
+   iterator where new temporaries should be inserted at the beginning
+   of body basic block.  */
 
 static void
-replace_uses_of_x_with_y (tree stmt, tree x, tree y)
+replace_uses_equiv_to_x_with_y (struct loop *loop, tree stmt, tree x, 
+                               int xstep, tree y, tree yinit,
+                               htab_t replacements,
+                               block_stmt_iterator *firstbsi)
 {
-  use_optype uses = STMT_USE_OPS (stmt);
-  size_t i;
-  for (i = 0; i < NUM_USES (uses); i++)
+  ssa_op_iter iter;
+  use_operand_p use_p;
+
+  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
+    {
+      tree use = USE_FROM_PTR (use_p);
+      tree step = NULL_TREE;
+      tree scev, init, val, var, setstmt;
+      struct tree_map *h, in;
+      void **loc;
+
+      /* Replace uses of X with Y right away.  */
+      if (use == x)
+       {
+         SET_USE (use_p, y);
+         continue;
+       }
+
+      scev = instantiate_parameters (loop,
+                                    analyze_scalar_evolution (loop, use));
+
+      if (scev == NULL || scev == chrec_dont_know)
+       continue;
+
+      step = evolution_part_in_loop_num (scev, loop->num);
+      if (step == NULL
+         || step == chrec_dont_know
+         || TREE_CODE (step) != INTEGER_CST
+         || int_cst_value (step) != xstep)
+       continue;
+
+      /* Use REPLACEMENTS hash table to cache already created
+        temporaries.  */
+      in.hash = htab_hash_pointer (use);
+      in.base.from = use;
+      h = (struct tree_map *) htab_find_with_hash (replacements, &in, in.hash);
+      if (h != NULL)
+       {
+         SET_USE (use_p, h->to);
+         continue;
+       }
+
+      /* USE which has the same step as X should be replaced
+        with a temporary set to Y + YINIT - INIT.  */
+      init = initial_condition_in_loop_num (scev, loop->num);
+      gcc_assert (init != NULL && init != chrec_dont_know);
+      if (TREE_TYPE (use) == TREE_TYPE (y))
+       {
+         val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), init, yinit);
+         val = fold_build2 (PLUS_EXPR, TREE_TYPE (y), y, val);
+         if (val == y)
+           {
+             /* If X has the same type as USE, the same step
+                and same initial value, it can be replaced by Y.  */
+             SET_USE (use_p, y);
+             continue;
+           }
+       }
+      else
+       {
+         val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), y, yinit);
+         val = fold_convert (TREE_TYPE (use), val);
+         val = fold_build2 (PLUS_EXPR, TREE_TYPE (use), val, init);
+       }
+
+      /* Create a temporary variable and insert it at the beginning
+        of the loop body basic block, right after the PHI node
+        which sets Y.  */
+      var = create_tmp_var (TREE_TYPE (use), "perfecttmp");
+      add_referenced_var (var);
+      val = force_gimple_operand_bsi (firstbsi, val, false, NULL,
+                                     true, BSI_SAME_STMT);
+      setstmt = build_gimple_modify_stmt (var, val);
+      var = make_ssa_name (var, setstmt);
+      GIMPLE_STMT_OPERAND (setstmt, 0) = var;
+      bsi_insert_before (firstbsi, setstmt, BSI_SAME_STMT);
+      update_stmt (setstmt);
+      SET_USE (use_p, var);
+      h = GGC_NEW (struct tree_map);
+      h->hash = in.hash;
+      h->base.from = use;
+      h->to = var;
+      loc = htab_find_slot_with_hash (replacements, h, in.hash, INSERT);
+      gcc_assert ((*(struct tree_map **)loc) == NULL);
+      *(struct tree_map **) loc = h;
+    }
+}
+
+/* Return true if STMT is an exit PHI for LOOP */
+
+static bool
+exit_phi_for_loop_p (struct loop *loop, tree stmt)
+{
+  
+  if (TREE_CODE (stmt) != PHI_NODE
+      || PHI_NUM_ARGS (stmt) != 1
+      || bb_for_stmt (stmt) != single_exit (loop)->dest)
+    return false;
+  
+  return true;
+}
+
+/* Return true if STMT can be put back into the loop INNER, by
+   copying it to the beginning of that loop and changing the uses.  */
+
+static bool
+can_put_in_inner_loop (struct loop *inner, tree stmt)
+{
+  imm_use_iterator imm_iter;
+  use_operand_p use_p;
+  
+  gcc_assert (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT);
+  if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)
+      || !expr_invariant_in_loop_p (inner, GIMPLE_STMT_OPERAND (stmt, 1)))
+    return false;
+  
+  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, GIMPLE_STMT_OPERAND (stmt, 0))
+    {
+      if (!exit_phi_for_loop_p (inner, USE_STMT (use_p)))
+       {
+         basic_block immbb = bb_for_stmt (USE_STMT (use_p));
+
+         if (!flow_bb_inside_loop_p (inner, immbb))
+           return false;
+       }
+    }
+  return true;  
+}
+
+/* Return true if STMT can be put *after* the inner loop of LOOP.  */
+static bool
+can_put_after_inner_loop (struct loop *loop, tree stmt)
+{
+  imm_use_iterator imm_iter;
+  use_operand_p use_p;
+
+  if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
+    return false;
+  
+  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, GIMPLE_STMT_OPERAND (stmt, 0))
     {
-      if (USE_OP (uses, i) == x)
-       SET_USE_OP (uses, i, y);
+      if (!exit_phi_for_loop_p (loop, USE_STMT (use_p)))
+       {
+         basic_block immbb = bb_for_stmt (USE_STMT (use_p));
+         
+         if (!dominated_by_p (CDI_DOMINATORS,
+                              immbb,
+                              loop->inner->header)
+             && !can_put_in_inner_loop (loop->inner, stmt))
+           return false;
+       }
     }
+  return true;
 }
 
-/* Return TRUE if STMT uses tree OP in it's uses.  */
+/* Return true when the induction variable IV is simple enough to be
+   re-synthesized.  */
 
 static bool
-stmt_uses_op (tree stmt, tree op)
+can_duplicate_iv (tree iv, struct loop *loop)
 {
-  use_optype uses = STMT_USE_OPS (stmt);
-  size_t i;
-  for (i = 0; i < NUM_USES (uses); i++)
+  tree scev = instantiate_parameters
+    (loop, analyze_scalar_evolution (loop, iv));
+
+  if (!automatically_generated_chrec_p (scev))
     {
-      if (USE_OP (uses, i) == op)
+      tree step = evolution_part_in_loop_num (scev, loop->num);
+
+      if (step && step != chrec_dont_know && TREE_CODE (step) == INTEGER_CST)
+       return true;
+    }
+
+  return false;
+}
+
+/* If this is a scalar operation that can be put back into the inner
+   loop, or after the inner loop, through copying, then do so. This
+   works on the theory that any amount of scalar code we have to
+   reduplicate into or after the loops is less expensive that the win
+   we get from rearranging the memory walk the loop is doing so that
+   it has better cache behavior.  */
+
+static bool
+cannot_convert_modify_to_perfect_nest (tree stmt, struct loop *loop)
+{
+  
+  use_operand_p use_a, use_b;
+  imm_use_iterator imm_iter;
+  ssa_op_iter op_iter, op_iter1;
+  tree op0 = GIMPLE_STMT_OPERAND (stmt, 0);
+
+  /* The statement should not define a variable used in the inner
+     loop.  */
+  if (TREE_CODE (op0) == SSA_NAME
+      && !can_duplicate_iv (op0, loop))
+    FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0)
+      if (bb_for_stmt (USE_STMT (use_a))->loop_father
+         == loop->inner)
        return true;
+
+  FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE)
+    {
+      tree node, op = USE_FROM_PTR (use_a);
+
+      /* The variables should not be used in both loops.  */
+      if (!can_duplicate_iv (op, loop))
+       FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op)
+         if (bb_for_stmt (USE_STMT (use_b))->loop_father
+             == loop->inner)
+           return true;
+
+      /* The statement should not use the value of a scalar that was
+        modified in the loop.  */
+      node = SSA_NAME_DEF_STMT (op);
+      if (TREE_CODE (node) == PHI_NODE)
+       FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE)
+       {
+         tree arg = USE_FROM_PTR (use_b);
+
+         if (TREE_CODE (arg) == SSA_NAME)
+           {
+             tree arg_stmt = SSA_NAME_DEF_STMT (arg);
+
+             if (bb_for_stmt (arg_stmt)
+                 && (bb_for_stmt (arg_stmt)->loop_father
+                     == loop->inner))
+               return true;
+           }
+       }
     }
+
   return false;
 }
 
-/* Return TRUE if LOOP is an imperfect nest that we can convert to a perfect
-   one.  LOOPIVS is a vector of induction variables, one per loop.  
-   ATM, we only handle imperfect nests of depth 2, where all of the statements
-   occur after the inner loop.  */
+/* Return true when BB contains statements that can harm the transform
+   to a perfect loop nest.  */
 
 static bool
-can_convert_to_perfect_nest (struct loop *loop,
-                            VEC (tree) *loopivs)
+cannot_convert_bb_to_perfect_nest (basic_block bb, struct loop *loop)
+{
+  block_stmt_iterator bsi;
+  tree exit_condition = get_loop_exit_condition (loop);
+
+  for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
+    { 
+      tree stmt = bsi_stmt (bsi);
+
+      if (stmt == exit_condition
+         || not_interesting_stmt (stmt)
+         || stmt_is_bumper_for_loop (loop, stmt))
+       continue;
+
+      if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
+       {
+         if (cannot_convert_modify_to_perfect_nest (stmt, loop))
+           return true;
+
+         if (can_duplicate_iv (GIMPLE_STMT_OPERAND (stmt, 0), loop))
+           continue;
+
+         if (can_put_in_inner_loop (loop->inner, stmt)
+             || can_put_after_inner_loop (loop, stmt))
+           continue;
+       }
+
+      /* If the bb of a statement we care about isn't dominated by the
+        header of the inner loop, then we can't handle this case
+        right now.  This test ensures that the statement comes
+        completely *after* the inner loop.  */
+      if (!dominated_by_p (CDI_DOMINATORS,
+                          bb_for_stmt (stmt), 
+                          loop->inner->header))
+       return true;
+    }
+
+  return false;
+}
+
+/* Return TRUE if LOOP is an imperfect nest that we can convert to a
+   perfect one.  At the moment, we only handle imperfect nests of
+   depth 2, where all of the statements occur after the inner loop.  */
+
+static bool
+can_convert_to_perfect_nest (struct loop *loop)
 {
   basic_block *bbs;
-  tree exit_condition, phi;
+  tree phi;
   size_t i;
-  block_stmt_iterator bsi;
-  basic_block exitdest;
 
   /* Can't handle triply nested+ loops yet.  */
   if (!loop->inner || loop->inner->inner)
     return false;
   
-  /* We only handle moving the after-inner-body statements right now, so make
-     sure all the statements we need to move are located in that position.  */
   bbs = get_loop_body (loop);
-  exit_condition = get_loop_exit_condition (loop);
   for (i = 0; i < loop->num_nodes; i++)
-    {
-      if (bbs[i]->loop_father == loop)
-       {
-         for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
-           { 
-             size_t j;
-             tree stmt = bsi_stmt (bsi);
-             if (stmt == exit_condition
-                 || not_interesting_stmt (stmt)
-                 || stmt_is_bumper_for_loop (loop, stmt))
-               continue;
-             /* If the statement uses inner loop ivs, we == screwed.  */
-             for (j = 1; j < VEC_length (tree, loopivs); j++)
-               if (stmt_uses_op (stmt, VEC_index (tree, loopivs, j)))
-                 {
-                   free (bbs);
-                   return false;
-                 }
-             
-             /* If the bb of a statement we care about isn't dominated by 
-                the header of the inner loop, then we are also screwed.  */
-             if (!dominated_by_p (CDI_DOMINATORS,
-                                  bb_for_stmt (stmt), 
-                                  loop->inner->header))
-               {
-                 free (bbs);
-                 return false;
-               }
-           }
-       }
-    }  
+    if (bbs[i]->loop_father == loop
+       && cannot_convert_bb_to_perfect_nest (bbs[i], loop))
+      goto fail;
 
   /* We also need to make sure the loop exit only has simple copy phis in it,
-     otherwise we don't know how to transform it into a perfect nest right
-     now.  */
-  exitdest = loop->single_exit->dest;
-  
-  for (phi = phi_nodes (exitdest); phi; phi = PHI_CHAIN (phi))
+     otherwise we don't know how to transform it into a perfect nest.  */
+  for (phi = phi_nodes (single_exit (loop)->dest); phi; phi = PHI_CHAIN (phi))
     if (PHI_NUM_ARGS (phi) != 1)
-      return false;
-
+      goto fail;
+  
+  free (bbs);
   return true;
+  
+ fail:
+  free (bbs);
+  return false;
 }
 
 /* Transform the loop nest into a perfect nest, if possible.
-   LOOPS is the current struct loops *
    LOOP is the loop nest to transform into a perfect nest
    LBOUNDS are the lower bounds for the loops to transform
    UBOUNDS are the upper bounds for the loops to transform
@@ -2283,54 +2370,49 @@ can_convert_to_perfect_nest (struct loop *loop,
    }
 
    Return FALSE if we can't make this loop into a perfect nest.  */
+
 static bool
-perfect_nestify (struct loops *loops,
-                struct loop *loop,
-                VEC (tree) *lbounds,
-                VEC (tree) *ubounds,
-                VEC (int) *steps,
-                VEC (tree) *loopivs)
+perfect_nestify (struct loop *loop,
+                VEC(tree,heap) *lbounds,
+                VEC(tree,heap) *ubounds,
+                VEC(int,heap) *steps,
+                VEC(tree,heap) *loopivs)
 {
   basic_block *bbs;
   tree exit_condition;
-  tree then_label, else_label, cond_stmt;
+  tree cond_stmt;
   basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
-  size_t i;
-  block_stmt_iterator bsi;
+  int i;
+  block_stmt_iterator bsi, firstbsi;
+  bool insert_after;
   edge e;
   struct loop *newloop;
   tree phi;
   tree uboundvar;
   tree stmt;
   tree oldivvar, ivvar, ivvarinced;
-  VEC (tree) *phis = NULL;
+  VEC(tree,heap) *phis = NULL;
+  htab_t replacements = NULL;
 
-  if (!can_convert_to_perfect_nest (loop, loopivs))
-    return false;
-
-  /* Create the new loop */
-
-  olddest = loop->single_exit->dest;
-  preheaderbb =  loop_split_edge_with (loop->single_exit, NULL);
+  /* Create the new loop.  */
+  olddest = single_exit (loop)->dest;
+  preheaderbb = split_edge (single_exit (loop));
   headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
   
-  /* This is done because otherwise, it will release the ssa_name too early
-     when the edge gets redirected and it will get reused, causing the use of
-     the phi node to get rewritten.  */
-
+  /* Push the exit phi nodes that we are moving.  */
   for (phi = phi_nodes (olddest); phi; phi = PHI_CHAIN (phi))
     {
-      VEC_safe_push (tree, phis, PHI_RESULT (phi));
-      VEC_safe_push (tree, phis, PHI_ARG_DEF (phi, 0));
-      mark_for_rewrite (PHI_RESULT (phi));
+      VEC_reserve (tree, heap, phis, 2);
+      VEC_quick_push (tree, phis, PHI_RESULT (phi));
+      VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
     }
-  e = redirect_edge_and_branch (EDGE_SUCC (preheaderbb, 0), headerbb);
+  e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
 
   /* Remove the exit phis from the old basic block.  */
   while (phi_nodes (olddest) != NULL)
-    remove_phi_node (phi_nodes (olddest), NULL, olddest);
+    remove_phi_node (phi_nodes (olddest), NULL, false);
 
-  /* and add them to the new basic block.  */
+  /* and add them back to the new basic block.  */
   while (VEC_length (tree, phis) != 0)
     {
       tree def;
@@ -2338,21 +2420,19 @@ perfect_nestify (struct loops *loops,
       def = VEC_pop (tree, phis);
       phiname = VEC_pop (tree, phis);      
       phi = create_phi_node (phiname, preheaderbb);
-      add_phi_arg (phi, def, EDGE_PRED (preheaderbb, 0));
-    }       
+      add_phi_arg (phi, def, single_pred_edge (preheaderbb));
+    }
   flush_pending_stmts (e);
-  unmark_all_for_rewrite ();
+  VEC_free (tree, heap, phis);
 
   bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
   latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
   make_edge (headerbb, bodybb, EDGE_FALLTHRU); 
-  then_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (latchbb));
-  else_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (olddest));
-  cond_stmt = build (COND_EXPR, void_type_node,
-                    build (NE_EXPR, boolean_type_node, 
-                           integer_one_node, 
-                           integer_zero_node), 
-                    then_label, else_label);
+  cond_stmt = build3 (COND_EXPR, void_type_node,
+                     build2 (NE_EXPR, boolean_type_node, 
+                             integer_one_node, 
+                             integer_zero_node), 
+                     NULL_TREE, NULL_TREE);
   bsi = bsi_start (bodybb);
   bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
   e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
@@ -2360,73 +2440,128 @@ perfect_nestify (struct loops *loops,
   make_edge (latchbb, headerbb, EDGE_FALLTHRU);
 
   /* Update the loop structures.  */
-  newloop = duplicate_loop (loops, loop, olddest->loop_father);  
+  newloop = duplicate_loop (loop, olddest->loop_father);  
   newloop->header = headerbb;
   newloop->latch = latchbb;
-  newloop->single_exit = e;
   add_bb_to_loop (latchbb, newloop);
   add_bb_to_loop (bodybb, newloop);
   add_bb_to_loop (headerbb, newloop);
-  add_bb_to_loop (preheaderbb, olddest->loop_father);
   set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
   set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
   set_immediate_dominator (CDI_DOMINATORS, preheaderbb, 
-                          loop->single_exit->src);
+                          single_exit (loop)->src);
   set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
-  set_immediate_dominator (CDI_DOMINATORS, olddest, bodybb);
+  set_immediate_dominator (CDI_DOMINATORS, olddest,
+                          recompute_dominator (CDI_DOMINATORS, olddest));
   /* Create the new iv.  */
-  ivvar = create_tmp_var (integer_type_node, "perfectiv");
-  add_referenced_tmp_var (ivvar);
-  bsi = bsi_last (EDGE_PRED (newloop->latch, 0)->src);
+  oldivvar = VEC_index (tree, loopivs, 0);
+  ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv");
+  add_referenced_var (ivvar);
+  standard_iv_increment_position (newloop, &bsi, &insert_after);
   create_iv (VEC_index (tree, lbounds, 0),
-            build_int_cst (integer_type_node, VEC_index (int, steps, 0)),
-            ivvar, newloop, &bsi, false, &ivvar, &ivvarinced);      
+            build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)),
+            ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);       
 
   /* Create the new upper bound.  This may be not just a variable, so we copy
      it to one just in case.  */
 
   exit_condition = get_loop_exit_condition (newloop);
   uboundvar = create_tmp_var (integer_type_node, "uboundvar");
-  add_referenced_tmp_var (uboundvar);
-  stmt = build (MODIFY_EXPR, void_type_node, uboundvar, 
-               VEC_index (tree, ubounds, 0));
+  add_referenced_var (uboundvar);
+  stmt = build_gimple_modify_stmt (uboundvar, VEC_index (tree, ubounds, 0));
   uboundvar = make_ssa_name (uboundvar, stmt);
-  TREE_OPERAND (stmt, 0) = uboundvar;
-  bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
-  COND_EXPR_COND (exit_condition) = build (GE_EXPR, 
-                                          boolean_type_node,
-                                          uboundvar,
-                                          ivvarinced);
-
-  bbs = get_loop_body (loop); 
-  /* Now replace the induction variable in the moved statements with the
-     correct loop induction variable.  */
+  GIMPLE_STMT_OPERAND (stmt, 0) = uboundvar;
+
+  if (insert_after)
+    bsi_insert_after (&bsi, stmt, BSI_SAME_STMT);
+  else
+    bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
+  update_stmt (stmt);
+  COND_EXPR_COND (exit_condition) = build2 (GE_EXPR, 
+                                           boolean_type_node,
+                                           uboundvar,
+                                           ivvarinced);
+  update_stmt (exit_condition);
+  replacements = htab_create_ggc (20, tree_map_hash,
+                                 tree_map_eq, NULL);
+  bbs = get_loop_body_in_dom_order (loop); 
+  /* Now move the statements, and replace the induction variable in the moved
+     statements with the correct loop induction variable.  */
   oldivvar = VEC_index (tree, loopivs, 0);
-  for (i = 0; i < loop->num_nodes; i++)
+  firstbsi = bsi_start (bodybb);
+  for (i = loop->num_nodes - 1; i >= 0 ; i--)
     {
       block_stmt_iterator tobsi = bsi_last (bodybb);
       if (bbs[i]->loop_father == loop)
        {
-         /* Note that the bsi only needs to be explicitly incremented
-            when we don't move something, since it is automatically
-            incremented when we do.  */
-         for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
+         /* If this is true, we are *before* the inner loop.
+            If this isn't true, we are *after* it.
+
+            The only time can_convert_to_perfect_nest returns true when we
+            have statements before the inner loop is if they can be moved
+            into the inner loop. 
+
+            The only time can_convert_to_perfect_nest returns true when we
+            have statements after the inner loop is if they can be moved into
+            the new split loop.  */
+
+         if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i]))
+           {
+             block_stmt_iterator header_bsi 
+               = bsi_after_labels (loop->inner->header);
+
+             for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
+               { 
+                 tree stmt = bsi_stmt (bsi);
+
+                 if (stmt == exit_condition
+                     || not_interesting_stmt (stmt)
+                     || stmt_is_bumper_for_loop (loop, stmt))
+                   {
+                     bsi_next (&bsi);
+                     continue;
+                   }
+
+                 bsi_move_before (&bsi, &header_bsi);
+               }
+           }
+         else
            { 
-             tree stmt = bsi_stmt (bsi);
-             if (stmt == exit_condition
-                 || not_interesting_stmt (stmt)
-                 || stmt_is_bumper_for_loop (loop, stmt))
-               {
-                 bsi_next (&bsi);
-                 continue;
+             /* Note that the bsi only needs to be explicitly incremented
+                when we don't move something, since it is automatically
+                incremented when we do.  */
+             for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
+               { 
+                 ssa_op_iter i;
+                 tree n, stmt = bsi_stmt (bsi);
+                 
+                 if (stmt == exit_condition
+                     || not_interesting_stmt (stmt)
+                     || stmt_is_bumper_for_loop (loop, stmt))
+                   {
+                     bsi_next (&bsi);
+                     continue;
+                   }
+                 
+                 replace_uses_equiv_to_x_with_y 
+                   (loop, stmt, oldivvar, VEC_index (int, steps, 0), ivvar,
+                    VEC_index (tree, lbounds, 0), replacements, &firstbsi);
+
+                 bsi_move_before (&bsi, &tobsi);
+                 
+                 /* If the statement has any virtual operands, they may
+                    need to be rewired because the original loop may
+                    still reference them.  */
+                 FOR_EACH_SSA_TREE_OPERAND (n, stmt, i, SSA_OP_ALL_VIRTUALS)
+                   mark_sym_for_renaming (SSA_NAME_VAR (n));
                }
-             replace_uses_of_x_with_y (stmt, oldivvar, ivvar);
-             bsi_move_before (&bsi, &tobsi);
            }
+         
        }
     }
+
   free (bbs);
-  flow_loops_find (loops, LOOP_ALL);
+  htab_delete (replacements);
   return perfect_nest_p (loop);
 }
 
@@ -2446,22 +2581,18 @@ perfect_nestify (struct loops *loops,
 bool
 lambda_transform_legal_p (lambda_trans_matrix trans, 
                          int nb_loops,
-                         varray_type dependence_relations)
+                         VEC (ddr_p, heap) *dependence_relations)
 {
-  unsigned int i;
+  unsigned int i, j;
   lambda_vector distres;
   struct data_dependence_relation *ddr;
 
-#if defined ENABLE_CHECKING
-  if (LTM_COLSIZE (trans) != nb_loops
-      || LTM_ROWSIZE (trans) != nb_loops)
-    abort ();
-#endif
+  gcc_assert (LTM_COLSIZE (trans) == nb_loops
+             && LTM_ROWSIZE (trans) == nb_loops);
 
   /* When there is an unknown relation in the dependence_relations, we
      know that it is no worth looking at this loop nest: give up.  */
-  ddr = (struct data_dependence_relation *) 
-    VARRAY_GENERIC_PTR (dependence_relations, 0);
+  ddr = VEC_index (ddr_p, dependence_relations, 0);
   if (ddr == NULL)
     return true;
   if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
@@ -2470,11 +2601,8 @@ lambda_transform_legal_p (lambda_trans_matrix trans,
   distres = lambda_vector_new (nb_loops);
 
   /* For each distance vector in the dependence graph.  */
-  for (i = 0; i < VARRAY_ACTIVE_SIZE (dependence_relations); i++)
+  for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
     {
-      ddr = (struct data_dependence_relation *) 
-       VARRAY_GENERIC_PTR (dependence_relations, i);     
-
       /* Don't care about relations for which we know that there is no
         dependence, nor about read-read (aka. output-dependences):
         these data accesses can happen in any order.  */
@@ -2488,15 +2616,18 @@ lambda_transform_legal_p (lambda_trans_matrix trans,
          
       /* If the dependence could not be captured by a distance vector,
         conservatively answer that the transform is not valid.  */
-      if (DDR_DIST_VECT (ddr) == NULL)
+      if (DDR_NUM_DIST_VECTS (ddr) == 0)
        return false;
 
       /* Compute trans.dist_vect */
-      lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops, 
-                                DDR_DIST_VECT (ddr), distres);
+      for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
+       {
+         lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops, 
+                                    DDR_DIST_VECT (ddr, j), distres);
 
-      if (!lambda_vector_lexico_pos (distres, nb_loops))
-       return false;
+         if (!lambda_vector_lexico_pos (distres, nb_loops))
+           return false;
+       }
     }
   return true;
 }