OSDN Git Service

gcc/fortran:
[pf3gnuchains/gcc-fork.git] / gcc / fortran / intrinsic.texi
index 2f13838..8b17708 100644 (file)
@@ -1,7 +1,7 @@
 @ignore
-Copyright (C) 2005
+Copyright (C) 2005, 2006, 2007
 Free Software Foundation, Inc.
-This is part of the GFORTRAN manual.   
+This is part of the GNU Fortran manual.   
 For copying conditions, see the file gfortran.texi.
 
 Permission is granted to copy, distribute and/or modify this document
@@ -16,7 +16,7 @@ included in the gfdl(7) man page.
 Some basic guidelines for editing this document:
 
   (1) The intrinsic procedures are to be listed in alphabetical order.
-  (2) The generic name is to be use.
+  (2) The generic name is to be used.
   (3) The specific names are included in the function index and in a
       table at the end of the node (See ABS entry).
   (4) Try to maintain the same style for each entry.
@@ -24,66 +24,260 @@ Some basic guidelines for editing this document:
 
 @end ignore
 
+@tex
+\gdef\acos{\mathop{\rm acos}\nolimits}
+\gdef\asin{\mathop{\rm asin}\nolimits}
+\gdef\atan{\mathop{\rm atan}\nolimits}
+\gdef\acosh{\mathop{\rm acosh}\nolimits}
+\gdef\asinh{\mathop{\rm asinh}\nolimits}
+\gdef\atanh{\mathop{\rm atanh}\nolimits}
+@end tex
+
+
 @node Intrinsic Procedures
 @chapter Intrinsic Procedures
-@cindex Intrinsic Procedures
-
-This portion of the document is incomplete and undergoing massive expansion 
-and editing.  All contributions and corrections are strongly encouraged. 
+@cindex intrinsic procedures
 
 @menu
-* Introduction:     Introduction
-* @code{ABORT}:     ABORT,     Abort the program     
-* @code{ABS}:       ABS,       Absolute value     
-* @code{ACHAR}:     ACHAR,     Character in @acronym{ASCII} collating sequence
-* @code{ACOS}:      ACOS,      Arccosine function
-* @code{ADJUSTL}:   ADJUSTL,   Left adjust a string
-* @code{ADJUSTR}:   ADJUSTR,   Right adjust a string
-* @code{AIMAG}:     AIMAG,     Imaginary part of complex number
-* @code{AINT}:      AINT,      Truncate to a whole number
-* @code{ALL}:       ALL,       Determine if all values are true
-* @code{ALLOCATED}: ALLOCATED, Status of allocatable entity
-* @code{ANINT}:     ANINT,     Nearest whole number
-* @code{ANY}:       ANY,       Determine if any values are true
-* @code{ASIN}:      ASIN,      Arcsine function
-* @code{ATAN}:      ATAN,      Arctangent function
-* @code{BESJ0}:     BESJ0,     Bessel function of the first kind of order 0
-* @code{BESJ1}:     BESJ1,     Bessel function of the first kind of order 1
-* @code{BESJN}:     BESJN,     Bessel function of the first kind
-* @code{BESY0}:     BESY0,     Bessel function of the second kind of order 0
-* @code{BESY1}:     BESY1,     Bessel function of the second kind of order 1
-* @code{BESYN}:     BESYN,     Bessel function of the second kind
-* @code{COS}:       COS,       Cosine function
-* @code{COSH}:      COSH,      Hyperbolic cosine function
-* @code{ERF}:       ERF,       Error function
-* @code{ERFC}:      ERFC,      Complementary error function
-* @code{EXP}:       EXP,       Cosine function
-* @code{LOG}:       LOG,       Logarithm function
-* @code{LOG10}:     LOG10,     Base 10 logarithm function 
-* @code{SQRT}:      SQRT,      Square-root function
-* @code{SIN}:       SIN,       Sine function
-* @code{SINH}:      SINH,      Hyperbolic sine function
-* @code{TAN}:       TAN,       Tangent function
-* @code{TANH}:      TANH,      Hyperbolic tangent function
+* Introduction:         Introduction to Intrinsics
+* @code{ABORT}:         ABORT,     Abort the program     
+* @code{ABS}:           ABS,       Absolute value     
+* @code{ACCESS}:        ACCESS,    Checks file access modes
+* @code{ACHAR}:         ACHAR,     Character in @acronym{ASCII} collating sequence
+* @code{ACOS}:          ACOS,      Arccosine function
+* @code{ACOSH}:         ACOSH,     Hyperbolic arccosine function
+* @code{ADJUSTL}:       ADJUSTL,   Left adjust a string
+* @code{ADJUSTR}:       ADJUSTR,   Right adjust a string
+* @code{AIMAG}:         AIMAG,     Imaginary part of complex number
+* @code{AINT}:          AINT,      Truncate to a whole number
+* @code{ALARM}:         ALARM,     Set an alarm clock
+* @code{ALL}:           ALL,       Determine if all values are true
+* @code{ALLOCATED}:     ALLOCATED, Status of allocatable entity
+* @code{AND}:           AND,       Bitwise logical AND
+* @code{ANINT}:         ANINT,     Nearest whole number
+* @code{ANY}:           ANY,       Determine if any values are true
+* @code{ASIN}:          ASIN,      Arcsine function
+* @code{ASINH}:         ASINH,     Hyperbolic arcsine function
+* @code{ASSOCIATED}:    ASSOCIATED, Status of a pointer or pointer/target pair
+* @code{ATAN}:          ATAN,      Arctangent function
+* @code{ATAN2}:         ATAN2,     Arctangent function
+* @code{ATANH}:         ATANH,     Hyperbolic arctangent function
+* @code{BESJ0}:         BESJ0,     Bessel function of the first kind of order 0
+* @code{BESJ1}:         BESJ1,     Bessel function of the first kind of order 1
+* @code{BESJN}:         BESJN,     Bessel function of the first kind
+* @code{BESY0}:         BESY0,     Bessel function of the second kind of order 0
+* @code{BESY1}:         BESY1,     Bessel function of the second kind of order 1
+* @code{BESYN}:         BESYN,     Bessel function of the second kind
+* @code{BIT_SIZE}:      BIT_SIZE,  Bit size inquiry function
+* @code{BTEST}:         BTEST,     Bit test function
+* @code{C_ASSOCIATED}:  C_ASSOCIATED, Status of a C pointer
+* @code{C_F_POINTER}:   C_F_POINTER, Convert C into Fortran pointer
+* @code{C_F_PROCPOINTER}: C_F_PROCPOINTER, Convert C into Fortran procedure pointer
+* @code{C_FUNLOC}:      C_FUNLOC,  Obtain the C address of a procedure
+* @code{C_LOC}:         C_LOC,     Obtain the C address of an object
+* @code{CEILING}:       CEILING,   Integer ceiling function
+* @code{CHAR}:          CHAR,      Integer-to-character conversion function
+* @code{CHDIR}:         CHDIR,     Change working directory
+* @code{CHMOD}:         CHMOD,     Change access permissions of files
+* @code{CMPLX}:         CMPLX,     Complex conversion function
+* @code{COMMAND_ARGUMENT_COUNT}: COMMAND_ARGUMENT_COUNT, Get number of command line arguments
+* @code{COMPLEX}:       COMPLEX,   Complex conversion function
+* @code{CONJG}:         CONJG,     Complex conjugate function
+* @code{COS}:           COS,       Cosine function
+* @code{COSH}:          COSH,      Hyperbolic cosine function
+* @code{COUNT}:         COUNT,     Count occurrences of TRUE in an array
+* @code{CPU_TIME}:      CPU_TIME,  CPU time subroutine
+* @code{CSHIFT}:        CSHIFT,    Circular shift elements of an array
+* @code{CTIME}:         CTIME,     Subroutine (or function) to convert a time into a string
+* @code{DATE_AND_TIME}: DATE_AND_TIME, Date and time subroutine
+* @code{DBLE}:          DBLE,      Double precision conversion function
+* @code{DCMPLX}:        DCMPLX,    Double complex conversion function
+* @code{DFLOAT}:        DFLOAT,    Double precision conversion function
+* @code{DIGITS}:        DIGITS,    Significant digits function
+* @code{DIM}:           DIM,       Positive difference
+* @code{DOT_PRODUCT}:   DOT_PRODUCT, Dot product function
+* @code{DPROD}:         DPROD,     Double product function
+* @code{DREAL}:         DREAL,     Double real part function
+* @code{DTIME}:         DTIME,     Execution time subroutine (or function)
+* @code{EOSHIFT}:       EOSHIFT,   End-off shift elements of an array
+* @code{EPSILON}:       EPSILON,   Epsilon function
+* @code{ERF}:           ERF,       Error function
+* @code{ERFC}:          ERFC,      Complementary error function
+* @code{ETIME}:         ETIME,     Execution time subroutine (or function)
+* @code{EXIT}:          EXIT,      Exit the program with status.
+* @code{EXP}:           EXP,       Exponential function
+* @code{EXPONENT}:      EXPONENT,  Exponent function
+* @code{FDATE}:         FDATE,     Subroutine (or function) to get the current time as a string
+* @code{FGET}:          FGET,      Read a single character in stream mode from stdin
+* @code{FGETC}:         FGETC,     Read a single character in stream mode
+* @code{FLOAT}:         FLOAT,     Convert integer to default real
+* @code{FLOOR}:         FLOOR,     Integer floor function
+* @code{FLUSH}:         FLUSH,     Flush I/O unit(s)
+* @code{FNUM}:          FNUM,      File number function
+* @code{FPUT}:          FPUT,      Write a single character in stream mode to stdout
+* @code{FPUTC}:         FPUTC,     Write a single character in stream mode
+* @code{FRACTION}:      FRACTION,  Fractional part of the model representation
+* @code{FREE}:          FREE,      Memory de-allocation subroutine
+* @code{FSEEK}:         FSEEK,     Low level file positioning subroutine
+* @code{FSTAT}:         FSTAT,     Get file status
+* @code{FTELL}:         FTELL,     Current stream position
+* @code{GAMMA}:         GAMMA,     Gamma function
+* @code{GERROR}:        GERROR,    Get last system error message
+* @code{GETARG}:        GETARG,    Get command line arguments
+* @code{GET_COMMAND}:   GET_COMMAND, Get the entire command line
+* @code{GET_COMMAND_ARGUMENT}: GET_COMMAND_ARGUMENT, Get command line arguments
+* @code{GETCWD}:        GETCWD,    Get current working directory
+* @code{GETENV}:        GETENV,    Get an environmental variable
+* @code{GET_ENVIRONMENT_VARIABLE}: GET_ENVIRONMENT_VARIABLE, Get an environmental variable
+* @code{GETGID}:        GETGID,    Group ID function
+* @code{GETLOG}:        GETLOG,    Get login name
+* @code{GETPID}:        GETPID,    Process ID function
+* @code{GETUID}:        GETUID,    User ID function
+* @code{GMTIME}:        GMTIME,    Convert time to GMT info
+* @code{HOSTNM}:        HOSTNM,    Get system host name
+* @code{HUGE}:          HUGE,      Largest number of a kind
+* @code{IACHAR}:        IACHAR,    Code in @acronym{ASCII} collating sequence
+* @code{IAND}:          IAND,      Bitwise logical and
+* @code{IARGC}:         IARGC,     Get the number of command line arguments
+* @code{IBCLR}:         IBCLR,     Clear bit
+* @code{IBITS}:         IBITS,     Bit extraction
+* @code{IBSET}:         IBSET,     Set bit
+* @code{ICHAR}:         ICHAR,     Character-to-integer conversion function
+* @code{IDATE}:         IDATE,     Current local time (day/month/year)
+* @code{IEOR}:          IEOR,      Bitwise logical exclusive or
+* @code{IERRNO}:        IERRNO,    Function to get the last system error number
+* @code{INDEX}:         INDEX,     Position of a substring within a string
+* @code{INT}:           INT,       Convert to integer type
+* @code{INT2}:          INT2,      Convert to 16-bit integer type
+* @code{INT8}:          INT8,      Convert to 64-bit integer type
+* @code{IOR}:           IOR,       Bitwise logical or
+* @code{IRAND}:         IRAND,     Integer pseudo-random number
+* @code{IS_IOSTAT_END}:  IS_IOSTAT_END, Test for end-of-file value
+* @code{IS_IOSTAT_EOR}:  IS_IOSTAT_EOR, Test for end-of-record value
+* @code{ISATTY}:        ISATTY,    Whether a unit is a terminal device
+* @code{ISHFT}:         ISHFT,     Shift bits
+* @code{ISHFTC}:        ISHFTC,    Shift bits circularly
+* @code{ISNAN}:         ISNAN,     Tests for a NaN
+* @code{ITIME}:         ITIME,     Current local time (hour/minutes/seconds)
+* @code{KILL}:          KILL,      Send a signal to a process
+* @code{KIND}:          KIND,      Kind of an entity
+* @code{LBOUND}:        LBOUND,    Lower dimension bounds of an array
+* @code{LEN}:           LEN,       Length of a character entity
+* @code{LEN_TRIM}:      LEN_TRIM,  Length of a character entity without trailing blank characters
+* @code{LGAMMA}:        LGAMMA,    Logarithm of the Gamma function
+* @code{LGE}:           LGE,       Lexical greater than or equal
+* @code{LGT}:           LGT,       Lexical greater than
+* @code{LINK}:          LINK,      Create a hard link
+* @code{LLE}:           LLE,       Lexical less than or equal
+* @code{LLT}:           LLT,       Lexical less than
+* @code{LNBLNK}:        LNBLNK,    Index of the last non-blank character in a string
+* @code{LOC}:           LOC,       Returns the address of a variable
+* @code{LOG}:           LOG,       Logarithm function
+* @code{LOG10}:         LOG10,     Base 10 logarithm function 
+* @code{LOGICAL}:       LOGICAL,   Convert to logical type
+* @code{LONG}:          LONG,      Convert to integer type
+* @code{LSHIFT}:        LSHIFT,    Left shift bits
+* @code{LSTAT}:         LSTAT,     Get file status
+* @code{LTIME}:         LTIME,     Convert time to local time info
+* @code{MALLOC}:        MALLOC,    Dynamic memory allocation function
+* @code{MATMUL}:        MATMUL,    matrix multiplication
+* @code{MAX}:           MAX,       Maximum value of an argument list
+* @code{MAXEXPONENT}:   MAXEXPONENT, Maximum exponent of a real kind
+* @code{MAXLOC}:        MAXLOC,    Location of the maximum value within an array
+* @code{MAXVAL}:        MAXVAL,    Maximum value of an array
+* @code{MCLOCK}:        MCLOCK,    Time function
+* @code{MCLOCK8}:       MCLOCK8,   Time function (64-bit)
+* @code{MERGE}:         MERGE,     Merge arrays
+* @code{MIN}:           MIN,       Minimum value of an argument list
+* @code{MINEXPONENT}:   MINEXPONENT, Minimum exponent of a real kind
+* @code{MINLOC}:        MINLOC,    Location of the minimum value within an array
+* @code{MINVAL}:        MINVAL,    Minimum value of an array
+* @code{MOD}:           MOD,       Remainder function
+* @code{MODULO}:        MODULO,    Modulo function
+* @code{MOVE_ALLOC}:    MOVE_ALLOC, Move allocation from one object to another
+* @code{MVBITS}:        MVBITS,    Move bits from one integer to another
+* @code{NEAREST}:       NEAREST,   Nearest representable number
+* @code{NEW_LINE}:      NEW_LINE,  New line character
+* @code{NINT}:          NINT,      Nearest whole number
+* @code{NOT}:           NOT,       Logical negation
+* @code{NULL}:          NULL,      Function that returns an disassociated pointer
+* @code{OR}:            OR,        Bitwise logical OR
+* @code{PACK}:          PACK,      Pack an array into an array of rank one
+* @code{PERROR}:        PERROR,    Print system error message
+* @code{PRECISION}:     PRECISION, Decimal precision of a real kind
+* @code{PRESENT}:       PRESENT,   Determine whether an optional dummy argument is specified
+* @code{PRODUCT}:       PRODUCT,   Product of array elements
+* @code{RADIX}:         RADIX,     Base of a data model
+* @code{RANDOM_NUMBER}: RANDOM_NUMBER, Pseudo-random number
+* @code{RANDOM_SEED}:   RANDOM_SEED, Initialize a pseudo-random number sequence
+* @code{RAND}:          RAND,      Real pseudo-random number
+* @code{RANGE}:         RANGE,     Decimal exponent range of a real kind
+* @code{RAN}:           RAN,       Real pseudo-random number
+* @code{REAL}:          REAL,      Convert to real type 
+* @code{RENAME}:        RENAME,    Rename a file
+* @code{REPEAT}:        REPEAT,    Repeated string concatenation
+* @code{RESHAPE}:       RESHAPE,   Function to reshape an array
+* @code{RRSPACING}:     RRSPACING, Reciprocal of the relative spacing
+* @code{RSHIFT}:        RSHIFT,    Right shift bits
+* @code{SCALE}:         SCALE,     Scale a real value
+* @code{SCAN}:          SCAN,      Scan a string for the presence of a set of characters
+* @code{SECNDS}:        SECNDS,    Time function
+* @code{SECOND}:        SECOND,    CPU time function
+* @code{SELECTED_INT_KIND}: SELECTED_INT_KIND,  Choose integer kind
+* @code{SELECTED_REAL_KIND}: SELECTED_REAL_KIND,  Choose real kind
+* @code{SET_EXPONENT}:  SET_EXPONENT, Set the exponent of the model
+* @code{SHAPE}:         SHAPE,     Determine the shape of an array
+* @code{SIGN}:          SIGN,      Sign copying function
+* @code{SIGNAL}:        SIGNAL,    Signal handling subroutine (or function)
+* @code{SIN}:           SIN,       Sine function
+* @code{SINH}:          SINH,      Hyperbolic sine function
+* @code{SIZE}:          SIZE,      Function to determine the size of an array
+* @code{SIZEOF}:        SIZEOF,    Determine the size in bytes of an expression
+* @code{SLEEP}:         SLEEP,     Sleep for the specified number of seconds
+* @code{SNGL}:          SNGL,      Convert double precision real to default real
+* @code{SPACING}:       SPACING,   Smallest distance between two numbers of a given type
+* @code{SPREAD}:        SPREAD,    Add a dimension to an array 
+* @code{SQRT}:          SQRT,      Square-root function
+* @code{SRAND}:         SRAND,     Reinitialize the random number generator
+* @code{STAT}:          STAT,      Get file status
+* @code{SUM}:           SUM,       Sum of array elements
+* @code{SYMLNK}:        SYMLNK,    Create a symbolic link
+* @code{SYSTEM}:        SYSTEM,    Execute a shell command
+* @code{SYSTEM_CLOCK}:  SYSTEM_CLOCK, Time function
+* @code{TAN}:           TAN,       Tangent function
+* @code{TANH}:          TANH,      Hyperbolic tangent function
+* @code{TIME}:          TIME,      Time function
+* @code{TIME8}:         TIME8,     Time function (64-bit)
+* @code{TINY}:          TINY,      Smallest positive number of a real kind
+* @code{TRANSFER}:      TRANSFER,  Transfer bit patterns
+* @code{TRANSPOSE}:     TRANSPOSE, Transpose an array of rank two
+* @code{TRIM}:          TRIM,      Remove trailing blank characters of a string
+* @code{TTYNAM}:        TTYNAM,    Get the name of a terminal device.
+* @code{UBOUND}:        UBOUND,    Upper dimension bounds of an array
+* @code{UMASK}:         UMASK,     Set the file creation mask
+* @code{UNLINK}:        UNLINK,    Remove a file from the file system
+* @code{UNPACK}:        UNPACK,    Unpack an array of rank one into an array
+* @code{VERIFY}:        VERIFY,    Scan a string for the absence of a set of characters
+* @code{XOR}:           XOR,       Bitwise logical exclusive or
 @end menu
 
-@node Introduction
+@node Introduction to Intrinsics
 @section Introduction to intrinsic procedures
 
-Gfortran provides a rich set of intrinsic procedures that includes all
-the intrinsic procedures required by the Fortran 95 standard, a set of
-intrinsic procedures for backwards compatibility with Gnu Fortran 77
-(i.e., @command{g77}), and a small selection of intrinsic procedures
-from the Fortran 2003 standard.  Any description here, which conflicts with a 
-description in either the Fortran 95 standard or the Fortran 2003 standard,
-is unintentional and the standard(s) should be considered authoritative.
+The intrinsic procedures provided by GNU Fortran include all of the
+intrinsic procedures required by the Fortran 95 standard, a set of
+intrinsic procedures for backwards compatibility with G77, and a small
+selection of intrinsic procedures from the Fortran 2003 standard.  Any
+conflict between a description here and a description in either the
+Fortran 95 standard or the Fortran 2003 standard is unintentional, and
+the standard(s) should be considered authoritative.
 
 The enumeration of the @code{KIND} type parameter is processor defined in
-the Fortran 95 standard.  Gfortran defines the default integer type and
+the Fortran 95 standard.  GNU Fortran defines the default integer type and
 default real type by @code{INTEGER(KIND=4)} and @code{REAL(KIND=4)},
 respectively.  The standard mandates that both data types shall have
 another kind, which have more precision.  On typical target architectures
-supports by @command{gfortran}, this kind type parameter is @code{KIND=8}.
+supported by @command{gfortran}, this kind type parameter is @code{KIND=8}.
 Hence, @code{REAL(KIND=8)} and @code{DOUBLE PRECISION} are equivalent.
 In the description of generic intrinsic procedures, the kind type parameter
 will be specified by @code{KIND=*}, and in the description of specific
@@ -91,27 +285,29 @@ names for an intrinsic procedure the kind type parameter will be explicitly
 given (e.g., @code{REAL(KIND=4)} or @code{REAL(KIND=8)}).  Finally, for
 brevity the optional @code{KIND=} syntax will be omitted.
 
-Many of the intrinsics procedures take one or more optional arguments.
+Many of the intrinsic procedures take one or more optional arguments.
 This document follows the convention used in the Fortran 95 standard,
 and denotes such arguments by square brackets.
 
-@command{Gfortran} offers the @option{-std=f95} and @option{-std=gnu} options,
+GNU Fortran offers the @option{-std=f95} and @option{-std=gnu} options,
 which can be used to restrict the set of intrinsic procedures to a 
 given standard.  By default, @command{gfortran} sets the @option{-std=gnu}
-option, and so all intrinsic procedures describe here are accepted.  There
+option, and so all intrinsic procedures described here are accepted.  There
 is one caveat.  For a select group of intrinsic procedures, @command{g77}
 implemented both a function and a subroutine.  Both classes 
 have been implemented in @command{gfortran} for backwards compatibility
 with @command{g77}.  It is noted here that these functions and subroutines
 cannot be intermixed in a given subprogram.  In the descriptions that follow,
-the applicable option(s) is noted.
+the applicable standard for each intrinsic procedure is noted.
 
 
 
 @node ABORT
-@section @code{ABORT} --- Abort the program  
-@findex @code{ABORT}
-@cindex abort
+@section @code{ABORT} --- Abort the program
+@fnindex ABORT
+@cindex program termination, with core dump
+@cindex terminate program, with core dump
+@cindex core, dump
 
 @table @asis
 @item @emph{Description}:
@@ -119,11 +315,11 @@ the applicable option(s) is noted.
 systems that support a core dump, @code{ABORT} will produce a core dump,
 which is suitable for debugging purposes.
 
-@item @emph{Option}:
-gnu
+@item @emph{Standard}:
+GNU extension
 
-@item @emph{Type}:
-non-elemental subroutine
+@item @emph{Class}:
+Subroutine
 
 @item @emph{Syntax}:
 @code{CALL ABORT}
@@ -138,35 +334,39 @@ program test_abort
   if (i /= j) call abort
 end program test_abort
 @end smallexample
+
+@item @emph{See also}:
+@ref{EXIT}, @ref{KILL}
+
 @end table
 
 
 
 @node ABS
-@section @code{ABS} --- Absolute value  
-@findex @code{ABS} intrinsic
-@findex @code{CABS} intrinsic
-@findex @code{DABS} intrinsic
-@findex @code{IABS} intrinsic
-@findex @code{ZABS} intrinsic
-@findex @code{CDABS} intrinsic
+@section @code{ABS} --- Absolute value
+@fnindex ABS
+@fnindex CABS
+@fnindex DABS
+@fnindex IABS
+@fnindex ZABS
+@fnindex CDABS
 @cindex absolute value
 
 @table @asis
 @item @emph{Description}:
 @code{ABS(X)} computes the absolute value of @code{X}.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F77 and later, has overloads that are GNU extensions
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = ABS(X)}
+@code{RESULT = ABS(X)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
+@multitable @columnfractions .15 .70
 @item @var{X} @tab The type of the argument shall be an @code{INTEGER(*)},
 @code{REAL(*)}, or @code{COMPLEX(*)}.
 @end multitable
@@ -189,40 +389,99 @@ end program test_abs
 @end smallexample
 
 @item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument            @tab Return type       @tab Option
-@item @code{CABS(Z)}  @tab @code{COMPLEX(4) Z} @tab @code{REAL(4)}    @tab f95, gnu
-@item @code{DABS(X)}  @tab @code{REAL(8)    X} @tab @code{REAL(8)}    @tab f95, gnu
-@item @code{IABS(I)}  @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab f95, gnu
-@item @code{ZABS(Z)}  @tab @code{COMPLEX(8) Z} @tab @code{COMPLEX(8)} @tab gnu
-@item @code{CDABS(Z)} @tab @code{COMPLEX(8) Z} @tab @code{COMPLEX(8)} @tab gnu
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument            @tab Return type       @tab Standard
+@item @code{CABS(Z)}  @tab @code{COMPLEX(4) Z} @tab @code{REAL(4)}    @tab F77 and later
+@item @code{DABS(X)}  @tab @code{REAL(8)    X} @tab @code{REAL(8)}    @tab F77 and later
+@item @code{IABS(I)}  @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab F77 and later
+@item @code{ZABS(Z)}  @tab @code{COMPLEX(8) Z} @tab @code{COMPLEX(8)} @tab GNU extension
+@item @code{CDABS(Z)} @tab @code{COMPLEX(8) Z} @tab @code{COMPLEX(8)} @tab GNU extension
+@end multitable
+@end table
+
+
+
+@node ACCESS
+@section @code{ACCESS} --- Checks file access modes
+@fnindex ACCESS
+@cindex file system, access mode
+
+@table @asis
+@item @emph{Description}:
+@code{ACCESS(NAME, MODE)} checks whether the file @var{NAME} 
+exists, is readable, writable or executable. Except for the
+executable check, @code{ACCESS} can be replaced by
+Fortran 95's @code{INQUIRE}.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = ACCESS(NAME, MODE)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{NAME} @tab Scalar @code{CHARACTER} with the file name.
+Tailing blank are ignored unless the character @code{achar(0)} is
+present, then all characters up to and excluding @code{achar(0)} are
+used as file name.
+@item @var{MODE} @tab Scalar @code{CHARACTER} with the file access mode,
+may be any concatenation of @code{"r"} (readable), @code{"w"} (writable)
+and @code{"x"} (executable), or @code{" "} to check for existence.
 @end multitable
+
+@item @emph{Return value}:
+Returns a scalar @code{INTEGER}, which is @code{0} if the file is
+accessible in the given mode; otherwise or if an invalid argument
+has been given for @code{MODE} the value @code{1} is returned.
+
+@item @emph{Example}:
+@smallexample
+program access_test
+  implicit none
+  character(len=*), parameter :: file  = 'test.dat'
+  character(len=*), parameter :: file2 = 'test.dat  '//achar(0)
+  if(access(file,' ') == 0) print *, trim(file),' is exists'
+  if(access(file,'r') == 0) print *, trim(file),' is readable'
+  if(access(file,'w') == 0) print *, trim(file),' is writable'
+  if(access(file,'x') == 0) print *, trim(file),' is executable'
+  if(access(file2,'rwx') == 0) &
+    print *, trim(file2),' is readable, writable and executable'
+end program access_test
+@end smallexample
+@item @emph{Specific names}:
+@item @emph{See also}:
+
 @end table
 
 
 
 @node ACHAR
 @section @code{ACHAR} --- Character in @acronym{ASCII} collating sequence 
-@findex @code{ACHAR} intrinsic
+@fnindex ACHAR
 @cindex @acronym{ASCII} collating sequence
+@cindex collating sequence, @acronym{ASCII}
 
 @table @asis
 @item @emph{Description}:
 @code{ACHAR(I)} returns the character located at position @code{I}
 in the @acronym{ASCII} collating sequence.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F77 and later
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{C = ACHAR(I)}
+@code{RESULT = ACHAR(I)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{I} @tab The type shall be an @code{INTEGER(*)}.
+@multitable @columnfractions .15 .70
+@item @var{I} @tab The type shall be @code{INTEGER(*)}.
 @end multitable
 
 @item @emph{Return value}:
@@ -236,60 +495,127 @@ program test_achar
   c = achar(32)
 end program test_achar
 @end smallexample
+
+@item @emph{Note}:
+See @ref{ICHAR} for a discussion of converting between numerical values
+and formatted string representations.
+
+@item @emph{See also}:
+@ref{CHAR}, @ref{IACHAR}, @ref{ICHAR}
+
 @end table
 
 
 
 @node ACOS
 @section @code{ACOS} --- Arccosine function 
-@findex @code{ACOS} intrinsic
-@findex @code{DACOS} intrinsic
-@cindex arccosine
+@fnindex ACOS
+@fnindex DACOS
+@cindex trigonometric function, cosine, inverse
+@cindex cosine, inverse
 
 @table @asis
 @item @emph{Description}:
-@code{ACOS(X)} computes the arccosine of its @var{X}.
+@code{ACOS(X)} computes the arccosine of @var{X} (inverse of @code{COS(X)}).
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F77 and later
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = ACOS(X)}
+@code{RESULT = ACOS(X)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)}, and a magnitude that is
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)} with a magnitude that is
 less than one.
 @end multitable
 
 @item @emph{Return value}:
 The return value is of type @code{REAL(*)} and it lies in the
-range @math{ 0 \leq \arccos (x) \leq \pi}.  The kind type
-parameter is the same as @var{X}.
+range @math{ 0 \leq \acos(x) \leq \pi}. The kind type parameter 
+is the same as @var{X}.
 
 @item @emph{Example}:
 @smallexample
 program test_acos
   real(8) :: x = 0.866_8
-  x = achar(x)
+  x = acos(x)
 end program test_acos
 @end smallexample
 
 @item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DACOS(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab f95, gnu
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument          @tab Return type       @tab Standard
+@item @code{DACOS(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab F77 and later
+@end multitable
+
+@item @emph{See also}:
+Inverse function: @ref{COS}
+
+@end table
+
+
+
+@node ACOSH
+@section @code{ACOSH} --- Hyperbolic arccosine function
+@fnindex ACOSH
+@fnindex DACOSH
+@cindex area hyperbolic cosine
+@cindex hyperbolic arccosine
+@cindex hyperbolic function, cosine, inverse
+@cindex cosine, hyperbolic, inverse
+
+@table @asis
+@item @emph{Description}:
+@code{ACOSH(X)} computes the hyperbolic arccosine of @var{X} (inverse of
+@code{COSH(X)}).
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = ACOSH(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)} with a magnitude that is
+greater or equal to one.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)} and it lies in the
+range @math{0 \leq \acosh (x) \leq \infty}.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_acosh
+  REAL(8), DIMENSION(3) :: x = (/ 1.0, 2.0, 3.0 /)
+  WRITE (*,*) ACOSH(x)
+END PROGRAM
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name             @tab Argument          @tab Return type       @tab Standard
+@item @code{DACOSH(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension
 @end multitable
+
+@item @emph{See also}:
+Inverse function: @ref{COSH}
 @end table
 
 
 
 @node ADJUSTL
 @section @code{ADJUSTL} --- Left adjust a string 
-@findex @code{ADJUSTL} intrinsic
+@fnindex ADJUSTL
+@cindex string, adjust left
 @cindex adjust string
 
 @table @asis
@@ -297,17 +623,17 @@ end program test_acos
 @code{ADJUSTL(STR)} will left adjust a string by removing leading spaces.
 Spaces are inserted at the end of the string as needed.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F95 and later
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{STR = ADJUSTL(STR)}
+@code{RESULT = ADJUSTL(STR)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
+@multitable @columnfractions .15 .70
 @item @var{STR} @tab The type shall be @code{CHARACTER}.
 @end multitable
 
@@ -324,12 +650,17 @@ program test_adjustl
   print *, str
 end program test_adjustl
 @end smallexample
+
+@item @emph{See also}:
+@ref{ADJUSTR}, @ref{TRIM}
 @end table
 
 
+
 @node ADJUSTR
 @section @code{ADJUSTR} --- Right adjust a string 
-@findex @code{ADJUSTR} intrinsic
+@fnindex ADJUSTR
+@cindex string, adjust right
 @cindex adjust string
 
 @table @asis
@@ -337,17 +668,17 @@ end program test_adjustl
 @code{ADJUSTR(STR)} will right adjust a string by removing trailing spaces.
 Spaces are inserted at the start of the string as needed.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F95 and later
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{STR = ADJUSTR(STR)}
+@code{RESULT = ADJUSTR(STR)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
+@multitable @columnfractions .15 .70
 @item @var{STR} @tab The type shall be @code{CHARACTER}.
 @end multitable
 
@@ -364,30 +695,39 @@ program test_adjustr
   print *, str
 end program test_adjustr
 @end smallexample
+
+@item @emph{See also}:
+@ref{ADJUSTL}, @ref{TRIM}
 @end table
 
 
+
 @node AIMAG
 @section @code{AIMAG} --- Imaginary part of complex number  
-@findex @code{AIMAG} intrinsic
-@findex @code{DIMAG} intrinsic
-@cindex Imaginary part
+@fnindex AIMAG
+@fnindex DIMAG
+@fnindex IMAG
+@fnindex IMAGPART
+@cindex complex numbers, imaginary part
 
 @table @asis
 @item @emph{Description}:
 @code{AIMAG(Z)} yields the imaginary part of complex argument @code{Z}.
+The @code{IMAG(Z)} and @code{IMAGPART(Z)} intrinsic functions are provided
+for compatibility with @command{g77}, and their use in new code is 
+strongly discouraged.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F77 and later, has overloads that are GNU extensions
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = AIMAG(Z)}
+@code{RESULT = AIMAG(Z)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
+@multitable @columnfractions .15 .70
 @item @var{Z} @tab The type of the argument shall be @code{COMPLEX(*)}.
 @end multitable
 
@@ -407,43 +747,47 @@ end program test_aimag
 @end smallexample
 
 @item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument            @tab Return type       @tab Option
-@item @code{DIMAG(Z)} @tab @code{COMPLEX(8) Z} @tab @code{REAL(8)}    @tab f95, gnu
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument            @tab Return type       @tab Standard
+@item @code{DIMAG(Z)} @tab @code{COMPLEX(8) Z} @tab @code{REAL(8)}    @tab GNU extension
+@item @code{IMAG(Z)}  @tab @code{COMPLEX(*) Z} @tab @code{REAL(*)}    @tab GNU extension
+@item @code{IMAGPART(Z)} @tab @code{COMPLEX(*) Z} @tab @code{REAL(*)} @tab GNU extension
 @end multitable
 @end table
 
 
+
 @node AINT
-@section @code{AINT} --- Imaginary part of complex number  
-@findex @code{AINT} intrinsic
-@findex @code{DINT} intrinsic
-@cindex whole number
+@section @code{AINT} --- Truncate to a whole number
+@fnindex AINT
+@fnindex DINT
+@cindex floor
+@cindex rounding, floor
 
 @table @asis
 @item @emph{Description}:
 @code{AINT(X [, KIND])} truncates its argument to a whole number.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F77 and later
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = AINT(X)} @*
-@code{X = AINT(X, KIND)}
+@code{RESULT = AINT(X [, KIND])} 
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
+@multitable @columnfractions .15 .70
 @item @var{X}    @tab The type of the argument shall be @code{REAL(*)}.
-@item @var{KIND} @tab (Optional) @var{KIND} shall be a scalar integer
-initialization expression.
+@item @var{KIND} @tab (Optional) An @code{INTEGER(*)} initialization
+                      expression indicating the kind parameter of
+                     the result.
 @end multitable
 
 @item @emph{Return value}:
 The return value is of type real with the kind type parameter of the
-argument if the optional @var{KIND} is absence; otherwise, the kind
+argument if the optional @var{KIND} is absent; otherwise, the kind
 type parameter will be given by @var{KIND}.  If the magnitude of 
 @var{X} is less than one, then @code{AINT(X)} returns zero.  If the
 magnitude is equal to or greater than one, then it returns the largest
@@ -463,35 +807,87 @@ end program test_aint
 @end smallexample
 
 @item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name           @tab Argument         @tab Return type      @tab Option
-@item @code{DINT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)}   @tab f95, gnu
+@multitable @columnfractions .20 .20 .20 .25
+@item Name           @tab Argument         @tab Return type      @tab Standard
+@item @code{DINT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)}   @tab F77 and later
+@end multitable
+@end table
+
+
+
+@node ALARM
+@section @code{ALARM} --- Execute a routine after a given delay
+@fnindex ALARM
+@cindex delayed execution
+
+@table @asis
+@item @emph{Description}:
+@code{ALARM(SECONDS, HANDLER [, STATUS])} causes external subroutine @var{HANDLER}
+to be executed after a delay of @var{SECONDS} by using @code{alarm(2)} to
+set up a signal and @code{signal(2)} to catch it. If @var{STATUS} is
+supplied, it will be returned with the number of seconds remaining until
+any previously scheduled alarm was due to be delivered, or zero if there
+was no previously scheduled alarm.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL ALARM(SECONDS, HANDLER [, STATUS])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{SECONDS} @tab The type of the argument shall be a scalar
+@code{INTEGER}. It is @code{INTENT(IN)}.
+@item @var{HANDLER} @tab Signal handler (@code{INTEGER FUNCTION} or
+@code{SUBROUTINE}) or dummy/global @code{INTEGER} scalar. The scalar 
+values may be either @code{SIG_IGN=1} to ignore the alarm generated 
+or @code{SIG_DFL=0} to set the default action. It is @code{INTENT(IN)}.
+@item @var{STATUS}  @tab (Optional) @var{STATUS} shall be a scalar
+variable of the default @code{INTEGER} kind. It is @code{INTENT(OUT)}.
 @end multitable
+
+@item @emph{Example}:
+@smallexample
+program test_alarm
+  external handler_print
+  integer i
+  call alarm (3, handler_print, i)
+  print *, i
+  call sleep(10)
+end program test_alarm
+@end smallexample
+This will cause the external routine @var{handler_print} to be called
+after 3 seconds.
 @end table
 
 
+
 @node ALL
 @section @code{ALL} --- All values in @var{MASK} along @var{DIM} are true 
-  @findex @code{ALL} intrinsic
-@cindex true values
+@fnindex ALL
+@cindex array, apply condition
+@cindex array, condition testing
 
 @table @asis
 @item @emph{Description}:
 @code{ALL(MASK [, DIM])} determines if all the values are true in @var{MASK}
 in the array along dimension @var{DIM}.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F95 and later
 
-@item @emph{Type}:
-transformational function
+@item @emph{Class}:
+Transformational function
 
 @item @emph{Syntax}:
-@code{L = ALL(MASK)} @*
-@code{L = ALL(MASK, DIM)}
+@code{RESULT = ALL(MASK [, DIM])}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
+@multitable @columnfractions .15 .70
 @item @var{MASK} @tab The type of the argument shall be @code{LOGICAL(*)} and
 it shall not be scalar.
 @item @var{DIM}  @tab (Optional) @var{DIM} shall be a scalar integer
@@ -536,78 +932,132 @@ end program test_all
 @end table
 
 
+
 @node ALLOCATED
 @section @code{ALLOCATED} --- Status of an allocatable entity
-@findex @code{ALLOCATED} intrinsic
-@cindex allocation status
+@fnindex ALLOCATED
+@cindex allocation, status
 
 @table @asis
 @item @emph{Description}:
-@code{ALLOCATED(X)} checks the status of wether @var{X} is allocated.
+@code{ALLOCATED(X)} checks the status of whether @var{X} is allocated.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F95 and later
 
-@item @emph{Type}:
-inquiry function
+@item @emph{Class}:
+Inquiry function
 
 @item @emph{Syntax}:
-@code{L = ALLOCATED(X)}
+@code{RESULT = ALLOCATED(X)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
+@multitable @columnfractions .15 .70
 @item @var{X}    @tab The argument shall be an @code{ALLOCATABLE} array.
 @end multitable
 
 @item @emph{Return value}:
 The return value is a scalar @code{LOGICAL} with the default logical
 kind type parameter.  If @var{X} is allocated, @code{ALLOCATED(X)}
-is @code{.TRUE.}; otherwise, it returns the @code{.TRUE.} 
+is @code{.TRUE.}; otherwise, it returns @code{.FALSE.} 
 
 @item @emph{Example}:
 @smallexample
 program test_allocated
   integer :: i = 4
   real(4), allocatable :: x(:)
-  if (allocated(x) .eqv. .false.) allocate(x(i)
+  if (allocated(x) .eqv. .false.) allocate(x(i))
 end program test_allocated
 @end smallexample
 @end table
 
 
+
+@node AND
+@section @code{AND} --- Bitwise logical AND
+@fnindex AND
+@cindex bitwise logical and
+@cindex logical and, bitwise
+
+@table @asis
+@item @emph{Description}:
+Bitwise logical @code{AND}.
+
+This intrinsic routine is provided for backwards compatibility with 
+GNU Fortran 77.  For integer arguments, programmers should consider
+the use of the @ref{IAND} intrinsic defined by the Fortran standard.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{RESULT = AND(I, J)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{I} @tab The type shall be either @code{INTEGER(*)} or @code{LOGICAL}.
+@item @var{J} @tab The type shall be either @code{INTEGER(*)} or @code{LOGICAL}.
+@end multitable
+
+@item @emph{Return value}:
+The return type is either @code{INTEGER(*)} or @code{LOGICAL} after
+cross-promotion of the arguments. 
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_and
+  LOGICAL :: T = .TRUE., F = .FALSE.
+  INTEGER :: a, b
+  DATA a / Z'F' /, b / Z'3' /
+
+  WRITE (*,*) AND(T, T), AND(T, F), AND(F, T), AND(F, F)
+  WRITE (*,*) AND(a, b)
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+F95 elemental function: @ref{IAND}
+@end table
+
+
+
 @node ANINT
-@section @code{ANINT} --- Imaginary part of complex number  
-@findex @code{ANINT} intrinsic
-@findex @code{DNINT} intrinsic
-@cindex whole number
+@section @code{ANINT} --- Nearest whole number
+@fnindex ANINT
+@fnindex DNINT
+@cindex ceiling
+@cindex rounding, ceiling
 
 @table @asis
 @item @emph{Description}:
 @code{ANINT(X [, KIND])} rounds its argument to the nearest whole number.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F77 and later
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = ANINT(X)} @*
-@code{X = ANINT(X, KIND)}
+@code{RESULT = ANINT(X [, KIND])}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
+@multitable @columnfractions .15 .70
 @item @var{X}    @tab The type of the argument shall be @code{REAL(*)}.
-@item @var{KIND} @tab (Optional) @var{KIND} shall be a scalar integer
-initialization expression.
+@item @var{KIND} @tab (Optional) An @code{INTEGER(*)} initialization
+                      expression indicating the kind parameter of
+                     the result.
 @end multitable
 
 @item @emph{Return value}:
 The return value is of type real with the kind type parameter of the
-argument if the optional @var{KIND} is absence; otherwise, the kind
+argument if the optional @var{KIND} is absent; otherwise, the kind
 type parameter will be given by @var{KIND}.  If @var{X} is greater than
 zero, then @code{ANINT(X)} returns @code{AINT(X+0.5)}.  If @var{X} is
-less than or equal to zero, then return @code{AINT(X-0.5)}.
+less than or equal to zero, then it returns @code{AINT(X-0.5)}.
 
 @item @emph{Example}:
 @smallexample
@@ -622,35 +1072,36 @@ end program test_anint
 @end smallexample
 
 @item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument         @tab Return type      @tab Option
-@item @code{DNINT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)}   @tab f95, gnu
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument         @tab Return type      @tab Standard
+@item @code{DNINT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)}   @tab F77 and later
 @end multitable
 @end table
 
 
+
 @node ANY
 @section @code{ANY} --- Any value in @var{MASK} along @var{DIM} is true 
-  @findex @code{ANY} intrinsic
-@cindex true values
+@fnindex ANY
+@cindex array, apply condition
+@cindex array, condition testing
 
 @table @asis
 @item @emph{Description}:
-@code{ANY(MASK [, DIM])} determines if any of the values is true in @var{MASK}
-in the array along dimension @var{DIM}.
+@code{ANY(MASK [, DIM])} determines if any of the values in the logical array
+@var{MASK} along dimension @var{DIM} are @code{.TRUE.}.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F95 and later
 
-@item @emph{Type}:
-transformational function
+@item @emph{Class}:
+Transformational function
 
 @item @emph{Syntax}:
-@code{L = ANY(MASK)} @*
-@code{L = ANY(MASK, DIM)}
+@code{RESULT = ANY(MASK [, DIM])}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
+@multitable @columnfractions .15 .70
 @item @var{MASK} @tab The type of the argument shall be @code{LOGICAL(*)} and
 it shall not be scalar.
 @item @var{DIM}  @tab (Optional) @var{DIM} shall be a scalar integer
@@ -695,34 +1146,36 @@ end program test_any
 @end table
 
 
+
 @node ASIN
 @section @code{ASIN} --- Arcsine function 
-@findex @code{ASIN} intrinsic
-@findex @code{DASIN} intrinsic
-@cindex arcsine
+@fnindex ASIN
+@fnindex DASIN
+@cindex trigonometric function, sine, inverse
+@cindex sine, inverse
 
 @table @asis
 @item @emph{Description}:
-@code{ASIN(X)} computes the arcsine of its @var{X}.
+@code{ASIN(X)} computes the arcsine of its @var{X} (inverse of @code{SIN(X)}).
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F77 and later
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = ASIN(X)}
+@code{RESULT = ASIN(X)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)}, and a magnitude that is
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}, and a magnitude that is
 less than one.
 @end multitable
 
 @item @emph{Return value}:
 The return value is of type @code{REAL(*)} and it lies in the
-range @math{ \pi / 2 \leq \arccos (x) \leq \pi / 2}.  The kind type
+range @math{-\pi / 2 \leq \asin (x) \leq \pi / 2}.  The kind type
 parameter is the same as @var{X}.
 
 @item @emph{Example}:
@@ -734,40 +1187,173 @@ end program test_asin
 @end smallexample
 
 @item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DASIN(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab f95, gnu
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument          @tab Return type       @tab Standard
+@item @code{DASIN(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab F77 and later
+@end multitable
+
+@item @emph{See also}:
+Inverse function: @ref{SIN}
+
+@end table
+
+
+
+@node ASINH
+@section @code{ASINH} --- Hyperbolic arcsine function
+@fnindex ASINH
+@fnindex DASINH
+@cindex area hyperbolic sine
+@cindex hyperbolic arcsine
+@cindex hyperbolic function, sine, inverse
+@cindex sine, hyperbolic, inverse
+
+@table @asis
+@item @emph{Description}:
+@code{ASINH(X)} computes the hyperbolic arcsine of @var{X} (inverse of @code{SINH(X)}).
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = ASINH(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}, with @var{X} a real number.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)} and it lies in the
+range @math{-\infty \leq \asinh (x) \leq \infty}.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_asinh
+  REAL(8), DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
+  WRITE (*,*) ASINH(x)
+END PROGRAM
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name             @tab Argument          @tab Return type       @tab Standard
+@item @code{DASINH(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension.
+@end multitable
+
+@item @emph{See also}:
+Inverse function: @ref{SINH}
+@end table
+
+
+
+@node ASSOCIATED
+@section @code{ASSOCIATED} --- Status of a pointer or pointer/target pair 
+@fnindex ASSOCIATED
+@cindex pointer, status
+@cindex association status
+
+@table @asis
+@item @emph{Description}:
+@code{ASSOCIATED(PTR [, TGT])} determines the status of the pointer @var{PTR}
+or if @var{PTR} is associated with the target @var{TGT}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = ASSOCIATED(PTR [, TGT])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{PTR} @tab @var{PTR} shall have the @code{POINTER} attribute and
+it can be of any type.
+@item @var{TGT} @tab (Optional) @var{TGT} shall be a @code{POINTER} or
+a @code{TARGET}.  It must have the same type, kind type parameter, and
+array rank as @var{PTR}.
 @end multitable
+The status of neither @var{PTR} nor @var{TGT} can be undefined.
+
+@item @emph{Return value}:
+@code{ASSOCIATED(PTR)} returns a scalar value of type @code{LOGICAL(4)}.
+There are several cases:
+@table @asis
+@item (A) If the optional @var{TGT} is not present, then @code{ASSOCIATED(PTR)}
+is true if @var{PTR} is associated with a target; otherwise, it returns false.
+@item (B) If @var{TGT} is present and a scalar target, the result is true if
+@var{TGT}
+is not a 0 sized storage sequence and the target associated with @var{PTR}
+occupies the same storage units.  If @var{PTR} is disassociated, then the 
+result is false.
+@item (C) If @var{TGT} is present and an array target, the result is true if
+@var{TGT} and @var{PTR} have the same shape, are not 0 sized arrays, are
+arrays whose elements are not 0 sized storage sequences, and @var{TGT} and
+@var{PTR} occupy the same storage units in array element order.
+As in case(B), the result is false, if @var{PTR} is disassociated.
+@item (D) If @var{TGT} is present and an scalar pointer, the result is true if
+target associated with @var{PTR} and the target associated with @var{TGT}
+are not 0 sized storage sequences and occupy the same storage units.
+The result is false, if either @var{TGT} or @var{PTR} is disassociated.
+@item (E) If @var{TGT} is present and an array pointer, the result is true if
+target associated with @var{PTR} and the target associated with @var{TGT}
+have the same shape, are not 0 sized arrays, are arrays whose elements are
+not 0 sized storage sequences, and @var{TGT} and @var{PTR} occupy the same
+storage units in array element order.
+The result is false, if either @var{TGT} or @var{PTR} is disassociated.
+@end table
+
+@item @emph{Example}:
+@smallexample
+program test_associated
+   implicit none
+   real, target  :: tgt(2) = (/1., 2./)
+   real, pointer :: ptr(:)
+   ptr => tgt
+   if (associated(ptr)     .eqv. .false.) call abort
+   if (associated(ptr,tgt) .eqv. .false.) call abort
+end program test_associated
+@end smallexample
+
+@item @emph{See also}:
+@ref{NULL}
 @end table
 
 
+
 @node ATAN
 @section @code{ATAN} --- Arctangent function 
-@findex @code{ATAN} intrinsic
-@findex @code{DATAN} intrinsic
-@cindex arctangent
+@fnindex ATAN
+@fnindex DATAN
+@cindex trigonometric function, tangent, inverse
+@cindex tangent, inverse
 
 @table @asis
 @item @emph{Description}:
 @code{ATAN(X)} computes the arctangent of @var{X}.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F77 and later
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = ATAN(X)}
+@code{RESULT = ATAN(X)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}.
 @end multitable
 
 @item @emph{Return value}:
 The return value is of type @code{REAL(*)} and it lies in the
-range @math{ - \pi / 2 \leq \arcsin (x) \leq \pi / 2}.
+range @math{ - \pi / 2 \leq \atan (x) \leq \pi / 2}.
 
 @item @emph{Example}:
 @smallexample
@@ -778,37 +1364,148 @@ end program test_atan
 @end smallexample
 
 @item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DATAN(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab f95, gnu
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument          @tab Return type       @tab Standard
+@item @code{DATAN(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab F77 and later
+@end multitable
+
+@item @emph{See also}:
+Inverse function: @ref{TAN}
+
+@end table
+
+
+
+@node ATAN2
+@section @code{ATAN2} --- Arctangent function 
+@fnindex ATAN2
+@fnindex DATAN2
+@cindex trigonometric function, tangent, inverse
+@cindex tangent, inverse
+
+@table @asis
+@item @emph{Description}:
+@code{ATAN2(Y,X)} computes the arctangent of the complex number
+@math{X + i Y}.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = ATAN2(Y,X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{Y} @tab The type shall be @code{REAL(*)}.
+@item @var{X} @tab The type and kind type parameter shall be the same as @var{Y}.
+If @var{Y} is zero, then @var{X} must be nonzero.
+@end multitable
+
+@item @emph{Return value}:
+The return value has the same type and kind type parameter as @var{Y}.
+It is the principal value of the complex number @math{X + i Y}.  If
+@var{X} is nonzero, then it lies in the range @math{-\pi \le \atan (x) \leq \pi}.
+The sign is positive if @var{Y} is positive.  If @var{Y} is zero, then
+the return value is zero if @var{X} is positive and @math{\pi} if @var{X}
+is negative.  Finally, if @var{X} is zero, then the magnitude of the result
+is @math{\pi/2}.
+
+@item @emph{Example}:
+@smallexample
+program test_atan2
+  real(4) :: x = 1.e0_4, y = 0.5e0_4
+  x = atan2(y,x)
+end program test_atan2
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument          @tab Return type    @tab Standard
+@item @code{DATAN2(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later
+@end multitable
+@end table
+
+
+
+@node ATANH
+@section @code{ATANH} --- Hyperbolic arctangent function
+@fnindex ASINH
+@fnindex DASINH
+@cindex area hyperbolic tangent
+@cindex hyperbolic arctangent
+@cindex hyperbolic function, tangent, inverse
+@cindex tangent, hyperbolic, inverse
+
+@table @asis
+@item @emph{Description}:
+@code{ATANH(X)} computes the hyperbolic arctangent of @var{X} (inverse
+of @code{TANH(X)}).
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = ATANH(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)} with a magnitude
+that is less than or equal to one.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)} and it lies in the
+range @math{-\infty \leq \atanh(x) \leq \infty}.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_atanh
+  REAL, DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
+  WRITE (*,*) ATANH(x)
+END PROGRAM
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name             @tab Argument          @tab Return type       @tab Standard
+@item @code{DATANH(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension
 @end multitable
+
+@item @emph{See also}:
+Inverse function: @ref{TANH}
 @end table
 
 
 
 @node BESJ0
 @section @code{BESJ0} --- Bessel function of the first kind of order 0
-@findex @code{BESJ0} intrinsic
-@findex @code{DBESJ0} intrinsic
-@cindex Bessel
+@fnindex BESJ0
+@fnindex DBESJ0
+@cindex Bessel function, first kind
 
 @table @asis
 @item @emph{Description}:
 @code{BESJ0(X)} computes the Bessel function of the first kind of order 0
 of @var{X}.
 
-@item @emph{Option}:
-gnu
+@item @emph{Standard}:
+GNU extension
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = BESJ0(X)}
+@code{RESULT = BESJ0(X)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar.
 @end multitable
 
 @item @emph{Return value}:
@@ -824,9 +1521,9 @@ end program test_besj0
 @end smallexample
 
 @item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DBESJ0(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab gnu
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument          @tab Return type       @tab Standard
+@item @code{DBESJ0(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}   @tab GNU extension
 @end multitable
 @end table
 
@@ -834,27 +1531,27 @@ end program test_besj0
 
 @node BESJ1
 @section @code{BESJ1} --- Bessel function of the first kind of order 1
-@findex @code{BESJ1} intrinsic
-@findex @code{DBESJ1} intrinsic
-@cindex Bessel
+@fnindex BESJ1
+@fnindex DBESJ1
+@cindex Bessel function, first kind
 
 @table @asis
 @item @emph{Description}:
 @code{BESJ1(X)} computes the Bessel function of the first kind of order 1
 of @var{X}.
 
-@item @emph{Option}:
-gnu
+@item @emph{Standard}:
+GNU extension
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = BESJ1(X)}
+@code{RESULT = BESJ1(X)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar.
 @end multitable
 
 @item @emph{Return value}:
@@ -870,9 +1567,9 @@ end program test_besj1
 @end smallexample
 
 @item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DBESJ1(X)}@tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab gnu
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument          @tab Return type       @tab Standard
+@item @code{DBESJ1(X)}@tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension
 @end multitable
 @end table
 
@@ -880,32 +1577,34 @@ end program test_besj1
 
 @node BESJN
 @section @code{BESJN} --- Bessel function of the first kind
-@findex @code{BESJN} intrinsic
-@findex @code{DBESJN} intrinsic
-@cindex Bessel
+@fnindex BESJN
+@fnindex DBESJN
+@cindex Bessel function, first kind
 
 @table @asis
 @item @emph{Description}:
 @code{BESJN(N, X)} computes the Bessel function of the first kind of order
 @var{N} of @var{X}.
 
-@item @emph{Option}:
-gnu
+If both arguments are arrays, their ranks and shapes shall conform.
+
+@item @emph{Standard}:
+GNU extension
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{Y = BESJN(N, X)}
+@code{RESULT = BESJN(N, X)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{N} @tab The type shall be an @code{INTEGER(*)}.
-@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@multitable @columnfractions .15 .70
+@item @var{N} @tab Shall be a scalar or an array of type  @code{INTEGER(*)}.
+@item @var{X} @tab Shall be a scalar or an array of type  @code{REAL(*)}.
 @end multitable
 
 @item @emph{Return value}:
-The return value is of type @code{REAL(*)}.
+The return value is a scalar of type @code{REAL(*)}.
 
 @item @emph{Example}:
 @smallexample
@@ -916,9 +1615,10 @@ end program test_besjn
 @end smallexample
 
 @item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DBESJN(X)}@tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab gnu
+@multitable @columnfractions .20 .20 .20 .25
+@item Name             @tab Argument            @tab Return type       @tab Standard
+@item @code{DBESJN(X)} @tab @code{INTEGER(*) N} @tab @code{REAL(8)}    @tab GNU extension
+@item                  @tab @code{REAL(8) X}    @tab                   @tab
 @end multitable
 @end table
 
@@ -926,31 +1626,31 @@ end program test_besjn
 
 @node BESY0
 @section @code{BESY0} --- Bessel function of the second kind of order 0
-@findex @code{BESY0} intrinsic
-@findex @code{DBESY0} intrinsic
-@cindex Bessel
+@fnindex BESY0
+@fnindex DBESY0
+@cindex Bessel function, second kind
 
 @table @asis
 @item @emph{Description}:
 @code{BESY0(X)} computes the Bessel function of the second kind of order 0
 of @var{X}.
 
-@item @emph{Option}:
-gnu
+@item @emph{Standard}:
+GNU extension
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = BESY0(X)}
+@code{RESULT = BESY0(X)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar.
 @end multitable
 
 @item @emph{Return value}:
-The return value is of type @code{REAL(*)}.
+The return value is a scalar of type @code{REAL(*)}.
 
 @item @emph{Example}:
 @smallexample
@@ -961,9 +1661,9 @@ end program test_besy0
 @end smallexample
 
 @item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DBESY0(X)}@tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab gnu
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument          @tab Return type       @tab Standard
+@item @code{DBESY0(X)}@tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension
 @end multitable
 @end table
 
@@ -971,31 +1671,31 @@ end program test_besy0
 
 @node BESY1
 @section @code{BESY1} --- Bessel function of the second kind of order 1
-@findex @code{BESY1} intrinsic
-@findex @code{DBESY1} intrinsic
-@cindex Bessel
+@fnindex BESY1
+@fnindex DBESY1
+@cindex Bessel function, second kind
 
 @table @asis
 @item @emph{Description}:
 @code{BESY1(X)} computes the Bessel function of the second kind of order 1
 of @var{X}.
 
-@item @emph{Option}:
-gnu
+@item @emph{Standard}:
+GNU extension
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = BESY1(X)}
+@code{RESULT = BESY1(X)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar.
 @end multitable
 
 @item @emph{Return value}:
-The return value is of type @code{REAL(*)}.
+The return value is a scalar of type @code{REAL(*)}.
 
 @item @emph{Example}:
 @smallexample
@@ -1006,9 +1706,9 @@ end program test_besy1
 @end smallexample
 
 @item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DBESY1(X)}@tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab gnu
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument          @tab Return type       @tab Standard
+@item @code{DBESY1(X)}@tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension
 @end multitable
 @end table
 
@@ -1016,32 +1716,34 @@ end program test_besy1
 
 @node BESYN
 @section @code{BESYN} --- Bessel function of the second kind
-@findex @code{BESYN} intrinsic
-@findex @code{DBESYN} intrinsic
-@cindex Bessel
+@fnindex BESYN
+@fnindex DBESYN
+@cindex Bessel function, second kind
 
 @table @asis
 @item @emph{Description}:
 @code{BESYN(N, X)} computes the Bessel function of the second kind of order
 @var{N} of @var{X}.
 
-@item @emph{Option}:
-gnu
+If both arguments are arrays, their ranks and shapes shall conform.
 
-@item @emph{Type}:
-elemental function
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{Y = BESYN(N, X)}
+@code{RESULT = BESYN(N, X)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{N} @tab The type shall be an @code{INTEGER(*)}.
-@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@multitable @columnfractions .15 .70
+@item @var{N} @tab Shall be a scalar or an array of type  @code{INTEGER(*)}.
+@item @var{X} @tab Shall be a scalar or an array of type  @code{REAL(*)}.
 @end multitable
 
 @item @emph{Return value}:
-The return value is of type @code{REAL(*)}.
+The return value is a scalar of type @code{REAL(*)}.
 
 @item @emph{Example}:
 @smallexample
@@ -1052,853 +1754,9279 @@ end program test_besyn
 @end smallexample
 
 @item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DBESYN(X)}@tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab gnu
+@multitable @columnfractions .20 .20 .20 .25
+@item Name               @tab Argument            @tab Return type     @tab Standard
+@item @code{DBESYN(N,X)} @tab @code{INTEGER(*) N} @tab @code{REAL(8)}  @tab GNU extension
+@item                    @tab @code{REAL(8)    X} @tab                 @tab 
 @end multitable
 @end table
 
 
-@node COS
-@section @code{COS} --- Cosine function 
-@findex @code{COS} intrinsic
-@findex @code{DCOS} intrinsic
-@findex @code{ZCOS} intrinsic
-@findex @code{CDCOS} intrinsic
-@cindex cosine
+
+@node BIT_SIZE
+@section @code{BIT_SIZE} --- Bit size inquiry function
+@fnindex BIT_SIZE
+@cindex bits, number of
+@cindex size of a variable, in bits
 
 @table @asis
 @item @emph{Description}:
-@code{COS(X)} computes the cosine of @var{X}.
+@code{BIT_SIZE(I)} returns the number of bits (integer precision plus sign bit)
+represented by the type of @var{I}.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F95 and later
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Inquiry function
 
 @item @emph{Syntax}:
-@code{X = COS(X)}
+@code{RESULT = BIT_SIZE(I)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)} or
-@code{COMPLEX(*)}.
+@multitable @columnfractions .15 .70
+@item @var{I} @tab The type shall be @code{INTEGER(*)}.
 @end multitable
 
 @item @emph{Return value}:
-The return value has same type and kind than @var{X}.
+The return value is of type @code{INTEGER(*)}
 
 @item @emph{Example}:
 @smallexample
-program test_cos
-  real :: x = 0.0
-  x = cos(x)
-end program test_cos
+program test_bit_size
+    integer :: i = 123
+    integer :: size
+    size = bit_size(i)
+    print *, size
+end program test_bit_size
 @end smallexample
-
-@item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DCOS(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab f95, gnu
-@item @code{CCOS(X)}  @tab @code{COMPLEX(4) X}  @tab @code{COMPLEX(4)}    @tab f95, gnu
-@item @code{ZCOS(X)}  @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab f95, gnu
-@item @code{CDCOS(X)} @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab f95, gnu
-@end multitable
 @end table
 
 
-@node COSH
-@section @code{COSH} --- Hyperbolic cosine function 
-@findex @code{COSH} intrinsic
-@findex @code{DCOSH} intrinsic
-@cindex hyperbolic cosine
+
+@node BTEST
+@section @code{BTEST} --- Bit test function
+@fnindex BTEST
+@cindex bits, testing
 
 @table @asis
 @item @emph{Description}:
-@code{COSH(X)} computes the hyperbolic cosine of @var{X}.
+@code{BTEST(I,POS)} returns logical @code{.TRUE.} if the bit at @var{POS}
+in @var{I} is set.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F95 and later
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = COSH(X)}
+@code{RESULT = BTEST(I, POS)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@multitable @columnfractions .15 .70
+@item @var{I} @tab The type shall be @code{INTEGER(*)}.
+@item @var{POS} @tab The type shall be @code{INTEGER(*)}.
 @end multitable
 
 @item @emph{Return value}:
-The return value is of type @code{REAL(*)} and it is positive
-(@math{ \cosh (x) \geq 0 }.
+The return value is of type @code{LOGICAL}
 
 @item @emph{Example}:
 @smallexample
-program test_cosh
-  real(8) :: x = 1.0_8
-  x = cosh(x)
-end program test_cosh
+program test_btest
+    integer :: i = 32768 + 1024 + 64
+    integer :: pos
+    logical :: bool
+    do pos=0,16
+        bool = btest(i, pos) 
+        print *, pos, bool
+    end do
+end program test_btest
 @end smallexample
+@end table
 
-@item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DCOSH(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab f95, gnu
+
+@node C_ASSOCIATED
+@section @code{C_ASSOCIATED} --- Status of a C pointer
+@fnindex C_ASSOCIATED
+@cindex association status, C pointer
+@cindex pointer, C association status
+
+@table @asis
+@item @emph{Description}:
+@code{C_ASSOICATED(c_prt1[, c_ptr2])} determines the status of the C pointer @var{c_ptr1}
+or if @var{c_ptr1} is associated with the target @var{c_ptr2}.
+
+@item @emph{Standard}:
+F2003 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = C_ASSOICATED(c_prt1[, c_ptr2])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{c_ptr1} @tab Scalar of the type @code{C_PTR} or @code{C_FUNPTR}.
+@item @var{c_ptr2} @tab (Optional) Scalar of the same type as @var{c_ptr1}.
 @end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{LOGICAL}; it is @code{.false.} if either
+@var{c_ptr1} is a C NULL pointer or if @var{c_ptr1} and @var{c_ptr2}
+point to different addresses.
+
+@item @emph{Example}:
+@smallexample
+subroutine association_test(a,b)
+  use iso_c_binding, only: c_associated, c_loc, c_ptr
+  implicit none
+  real, pointer :: a
+  type(c_ptr) :: b
+  if(c_associated(b, c_loc(a))) &
+     stop 'b and a do not point to same target'
+end subroutine association_test
+@end smallexample
+
+@item @emph{See also}:
+@ref{C_LOC}, @ref{C_FUNLOC}
 @end table
 
 
-@node ERF
-@section @code{ERF} --- Error function 
-@findex @code{ERF} intrinsic
-@cindex error
+@node C_FUNLOC
+@section @code{C_FUNLOC} --- Obtain the C address of a procedure
+@fnindex C_FUNLOC
+@cindex pointer, C address of procedures
 
 @table @asis
 @item @emph{Description}:
-@code{ERF(X)} computes the error function of @var{X}.
+@code{C_FUNLOC(x)} determines the C address of the argument.
 
-@item @emph{Option}:
-gnu
+@item @emph{Standard}:
+F2003 and later
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Inquiry function
 
 @item @emph{Syntax}:
-@code{X = ERF(X)}
+@code{RESULT = C_FUNLOC(x)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@multitable @columnfractions .15 .70
+@item @var{x} @tab Interoperable function or pointer to such function.
 @end multitable
 
 @item @emph{Return value}:
-The return value is of type @code{REAL(*)} and it is positive
-(@math{ - 1 \leq erf (x) \leq 1 }.
+The return value is of type @code{C_FUNPTR} and contains the C address
+of the argument.
 
 @item @emph{Example}:
 @smallexample
-program test_erf
-  real(8) :: x = 0.17_8
-  x = erf(x)
-end program test_erf
+module x
+  use iso_c_binding
+  implicit none
+contains
+  subroutine sub(a) bind(c)
+    real(c_float) :: a
+    a = sqrt(a)+5.0
+  end subroutine sub
+end module x
+program main
+  use iso_c_binding
+  use x
+  implicit none
+  interface
+    subroutine my_routine(p) bind(c,name='myC_func')
+      import :: c_funptr
+      type(c_funptr), intent(in) :: p
+    end subroutine
+  end interface
+  call my_routine(c_funloc(sub))
+end program main
 @end smallexample
 
-@item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DERF(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab gnu
+@item @emph{See also}:
+@ref{C_ASSOCIATED}, @ref{C_LOC}, @ref{C_F_POINTER}, @ref{C_F_PROCPOINTER}
+@end table
+
+
+@node C_F_PROCPOINTER
+@section @code{C_F_PROCPOINTER} --- Convert C into Fortran procedure pointer
+@fnindex C_F_PROCPOINTER
+@cindex pointer, C address of pointers
+
+@table @asis
+@item @emph{Description}:
+@code{C_F_PROCPOINTER(cptr, fptr)} Assign the target of the C function pointer
+@var{cptr} to the Fortran procedure pointer @var{fptr}.
+
+Note: Due to the currently lacking support of procedure pointers in GNU Fortran
+this function is not fully operable.
+
+@item @emph{Standard}:
+F2003 and later
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL C_F_PROCPOINTER(cptr, fptr)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{cptr}  @tab scalar of the type @code{C_FUNPTR}. It is
+                      @code{INTENT(IN)}.
+@item @var{fptr}  @tab procedure pointer interoperable with @var{cptr}. It is
+                      @code{INTENT(OUT)}.
 @end multitable
+
+@item @emph{Example}:
+@smallexample
+program main
+  use iso_c_binding
+  implicit none
+  abstract interface
+    function func(a)
+      import :: c_float
+      real(c_float), intent(in) :: a
+      real(c_float) :: func
+    end function
+  end interface
+  interface
+     function getIterFunc() bind(c,name="getIterFunc")
+       import :: c_funptr
+       type(c_funptr) :: getIterFunc
+     end function
+  end interface
+  type(c_funptr) :: cfunptr
+  procedure(func), pointer :: myFunc
+  cfunptr = getIterFunc()
+  call c_f_procpointer(cfunptr, myFunc)
+end program main
+@end smallexample
+
+@item @emph{See also}:
+@ref{C_LOC}, @ref{C_F_POINTER}
 @end table
 
 
+@node C_F_POINTER
+@section @code{C_F_POINTER} --- Convert C into Fortran pointer
+@fnindex C_F_POINTER
+@cindex pointer, convert C to Fortran
+
+@table @asis
+@item @emph{Description}:
+@code{C_F_POINTER(cptr, fptr[, shape])} Assign the target the C pointer
+@var{cptr} to the Fortran pointer @var{fptr} and specify its
+shape.
+
+@item @emph{Standard}:
+F2003 and later
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL C_F_POINTER(cptr, fptr[, shape])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{cptr}  @tab scalar of the type @code{C_PTR}. It is
+                      @code{INTENT(IN)}.
+@item @var{fptr}  @tab pointer interoperable with @var{cptr}. It is
+                      @code{INTENT(OUT)}.
+@item @var{shape} @tab (Optional) Rank-one array of type @code{INTEGER}
+                       with @code{INTENT(IN)}. It shall be present
+                      if and only if @var{fptr} is an array. The size
+                      must be equal to the rank of @var{fptr}.
+@end multitable
+
+@item @emph{Example}:
+@smallexample
+program main
+  use iso_c_binding
+  implicit none
+  interface
+    subroutine my_routine(p) bind(c,name='myC_func')
+      import :: c_ptr
+      type(c_ptr), intent(out) :: p
+    end subroutine
+  end interface
+  type(c_ptr) :: cptr
+  real,pointer :: a(:)
+  call my_routine(cptr)
+  call c_f_pointer(cptr, a, [12])
+end program main
+@end smallexample
+
+@item @emph{See also}:
+@ref{C_LOC}, @ref{C_F_PROCPOINTER}
+@end table
 
-@node ERFC
-@section @code{ERFC} --- Error function 
-@findex @code{ERFC} intrinsic
-@cindex error
+
+@node C_LOC
+@section @code{C_LOC} --- Obtain the C address of an object
+@fnindex C_LOC
+@cindex procedure pointer, convert C to Fortran
 
 @table @asis
 @item @emph{Description}:
-@code{ERFC(X)} computes the complementary error function of @var{X}.
+@code{C_LOC(x)} determines the C address of the argument.
 
-@item @emph{Option}:
-gnu
+@item @emph{Standard}:
+F2003 and later
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Inquiry function
 
 @item @emph{Syntax}:
-@code{X = ERFC(X)}
+@code{RESULT = C_LOC(x)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@multitable @columnfractions .15 .70
+@item @var{x} @tab Associated scalar pointer or interoperable scalar
+                  or allocated allocatable variable with @code{TARGET}
+                  attribute.
 @end multitable
 
 @item @emph{Return value}:
-The return value is of type @code{REAL(*)} and it is positive
-(@math{ 0 \leq erfc (x) \leq 2 }.
+The return value is of type @code{C_PTR} and contains the C address
+of the argument.
 
 @item @emph{Example}:
 @smallexample
-program test_erfc
-  real(8) :: x = 0.17_8
-  x = erfc(x)
-end program test_erfc
+subroutine association_test(a,b)
+  use iso_c_binding, only: c_associated, c_loc, c_ptr
+  implicit none
+  real, pointer :: a
+  type(c_ptr) :: b
+  if(c_associated(b, c_loc(a))) &
+     stop 'b and a do not point to same target'
+end subroutine association_test
 @end smallexample
 
-@item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DERFC(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab gnu
-@end multitable
+@item @emph{See also}:
+@ref{C_ASSOCIATED}, @ref{C_FUNLOC}, @ref{C_F_POINTER}, @ref{C_F_PROCPOINTER}
 @end table
 
 
-
-@node EXP
-@section @code{EXP} --- Exponential function 
-@findex @code{EXP} intrinsic
-@findex @code{DEXP} intrinsic
-@findex @code{ZEXP} intrinsic
-@findex @code{CDEXP} intrinsic
-@cindex exponential
+@node CEILING
+@section @code{CEILING} --- Integer ceiling function
+@fnindex CEILING
+@cindex ceiling
+@cindex rounding, ceiling
 
 @table @asis
 @item @emph{Description}:
-@code{EXP(X)} computes the base @math{e} exponential of @var{X}.
+@code{CEILING(X)} returns the least integer greater than or equal to @var{X}.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F95 and later
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = EXP(X)}
+@code{RESULT = CEILING(X [, KIND])}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)} or
-@code{COMPLEX(*)}.
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}.
+@item @var{KIND} @tab (Optional) An @code{INTEGER(*)} initialization
+                      expression indicating the kind parameter of
+                     the result.
 @end multitable
 
 @item @emph{Return value}:
-The return value has same type and kind than @var{X}.
+The return value is of type @code{INTEGER(KIND)}
 
 @item @emph{Example}:
 @smallexample
-program test_exp
-  real :: x = 1.0
-  x = exp(x)
-end program test_exp
+program test_ceiling
+    real :: x = 63.29
+    real :: y = -63.59
+    print *, ceiling(x) ! returns 64
+    print *, ceiling(y) ! returns -63
+end program test_ceiling
 @end smallexample
 
-@item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DEXP(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab f95, gnu
-@item @code{CEXP(X)}  @tab @code{COMPLEX(4) X}  @tab @code{COMPLEX(4)}    @tab f95, gnu
-@item @code{ZEXP(X)}  @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab f95, gnu
-@item @code{CDEXP(X)} @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab f95, gnu
-@end multitable
+@item @emph{See also}:
+@ref{FLOOR}, @ref{NINT}
+
 @end table
 
 
-@node LOG
-@section @code{LOG} --- Logarithm function
-@findex @code{LOG} intrinsic
-@findex @code{ALOG} intrinsic
-@findex @code{DLOG} intrinsic
-@findex @code{CLOG} intrinsic
-@findex @code{ZLOG} intrinsic
-@findex @code{CDLOG} intrinsic
-@cindex logarithm
+
+@node CHAR
+@section @code{CHAR} --- Character conversion function
+@fnindex CHAR
+@cindex conversion, to character
 
 @table @asis
 @item @emph{Description}:
-@code{LOG(X)} computes the logarithm of @var{X}.
+@code{CHAR(I [, KIND])} returns the character represented by the integer @var{I}.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F77 and later
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = LOG(X)}
+@code{RESULT = CHAR(I [, KIND])}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)} or
-@code{COMPLEX(*)}.
+@multitable @columnfractions .15 .70
+@item @var{I} @tab The type shall be @code{INTEGER(*)}.
+@item @var{KIND} @tab (Optional) An @code{INTEGER(*)} initialization
+                      expression indicating the kind parameter of
+                     the result.
 @end multitable
 
 @item @emph{Return value}:
-The return value is of type @code{REAL(*)} or @code{COMPLEX(*)}.
-The kind type parameter is the same as @var{X}.
+The return value is of type @code{CHARACTER(1)}
 
 @item @emph{Example}:
 @smallexample
-program test_log
-  real(8) :: x = 1.0_8
-  complex :: z = (1.0, 2.0)
-  x = log(x)
-  z = log(z)
-end program test_log
+program test_char
+    integer :: i = 74
+    character(1) :: c
+    c = char(i)
+    print *, i, c ! returns 'J'
+end program test_char
 @end smallexample
 
-@item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{ALOG(X)}  @tab @code{REAL(4) X}  @tab @code{REAL(4)}    @tab f95, gnu
-@item @code{DLOG(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab f95, gnu
-@item @code{CLOG(X)}  @tab @code{COMPLEX(4) X}  @tab @code{COMPLEX(4)}    @tab f95, gnu
-@item @code{ZLOG(X)}  @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab f95, gnu
-@item @code{CDLOG(X)} @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab f95, gnu
+@item @emph{Note}:
+See @ref{ICHAR} for a discussion of converting between numerical values
+and formatted string representations.
+
+@item @emph{See also}:
+@ref{ACHAR}, @ref{IACHAR}, @ref{ICHAR}
+
+@end table
+
+
+
+@node CHDIR
+@section @code{CHDIR} --- Change working directory
+@fnindex CHDIR
+@cindex system, working directory
+
+@table @asis
+@item @emph{Description}:
+Change current working directory to a specified path.
+
+This intrinsic is provided in both subroutine and function forms; however,
+only one form can be used in any given program unit.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{CALL CHDIR(NAME [, STATUS])}
+@item @code{STATUS = CHDIR(NAME)}
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{NAME}   @tab The type shall be @code{CHARACTER(*)} and shall
+                        specify a valid path within the file system.
+@item @var{STATUS} @tab (Optional) @code{INTEGER} status flag of the default
+                        kind.  Returns 0 on success, and a system specific
+                        and nonzero error code otherwise.
 @end multitable
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_chdir
+  CHARACTER(len=255) :: path
+  CALL getcwd(path)
+  WRITE(*,*) TRIM(path)
+  CALL chdir("/tmp")
+  CALL getcwd(path)
+  WRITE(*,*) TRIM(path)
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{GETCWD}
 @end table
 
 
 
-@node LOG10
-@section @code{LOG10} --- Base 10 logarithm function
-@findex @code{LOG10} intrinsic
-@findex @code{ALOG10} intrinsic
-@findex @code{DLOG10} intrinsic
-@cindex logarithm
+@node CHMOD
+@section @code{CHMOD} --- Change access permissions of files
+@fnindex CHMOD
+@cindex file system, change access mode
 
 @table @asis
 @item @emph{Description}:
-@code{LOG10(X)} computes the base 10 logarithm of @var{X}.
+@code{CHMOD} changes the permissions of a file. This function invokes
+@code{/bin/chmod} and might therefore not work on all platforms.
+
+This intrinsic is provided in both subroutine and function forms; however,
+only one form can be used in any given program unit.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+GNU extension
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Subroutine, function
 
 @item @emph{Syntax}:
-@code{X = LOG10(X)}
+@multitable @columnfractions .80
+@item @code{CALL CHMOD(NAME, MODE[, STATUS])}
+@item @code{STATUS = CHMOD(NAME, MODE)}
+@end multitable
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)} or
-@code{COMPLEX(*)}.
+@multitable @columnfractions .15 .70
+@item @var{NAME} @tab Scalar @code{CHARACTER} with the file name.
+Trailing blanks are ignored unless the character @code{achar(0)} is
+present, then all characters up to and excluding @code{achar(0)} are
+used as the file name.
+
+@item @var{MODE} @tab Scalar @code{CHARACTER} giving the file permission.
+@var{MODE} uses the same syntax as the @var{MODE} argument of
+@code{/bin/chmod}.
+
+@item @var{STATUS} @tab (optional) scalar @code{INTEGER}, which is
+@code{0} on success and nonzero otherwise.
 @end multitable
 
 @item @emph{Return value}:
-The return value is of type @code{REAL(*)} or @code{COMPLEX(*)}.
-The kind type parameter is the same as @var{X}.
+In either syntax, @var{STATUS} is set to @code{0} on success and nonzero
+otherwise.
 
 @item @emph{Example}:
+@code{CHMOD} as subroutine
 @smallexample
-program test_log10
-  real(8) :: x = 10.0_8
-  x = log10(x)
-end program test_log10
+program chmod_test
+  implicit none
+  integer :: status
+  call chmod('test.dat','u+x',status)
+  print *, 'Status: ', status
+end program chmod_test
+@end smallexample
+@code{CHMOD} as function:
+@smallexample
+program chmod_test
+  implicit none
+  integer :: status
+  status = chmod('test.dat','u+x')
+  print *, 'Status: ', status
+end program chmod_test
 @end smallexample
 
-@item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{ALOG10(X)}  @tab @code{REAL(4) X}  @tab @code{REAL(4)}    @tab f95, gnu
-@item @code{DLOG10(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab f95, gnu
-@end multitable
 @end table
 
 
 
-@node SIN
-@section @code{SIN} --- Sine function 
-@findex @code{SIN} intrinsic
-@findex @code{DSIN} intrinsic
-@findex @code{ZSIN} intrinsic
-@findex @code{CDSIN} intrinsic
-@cindex sine
+@node CMPLX
+@section @code{CMPLX} --- Complex conversion function
+@fnindex CMPLX
+@cindex complex numbers, conversion to
+@cindex conversion, to complex
 
 @table @asis
 @item @emph{Description}:
-@code{SIN(X)} computes the sine of @var{X}.
+@code{CMPLX(X [, Y [, KIND]])} returns a complex number where @var{X} is converted to
+the real component.  If @var{Y} is present it is converted to the imaginary
+component.  If @var{Y} is not present then the imaginary component is set to
+0.0.  If @var{X} is complex then @var{Y} must not be present.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F77 and later
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = SIN(X)}
+@code{RESULT = CMPLX(X [, Y [, KIND]])}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)} or
-@code{COMPLEX(*)}.
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type may be @code{INTEGER(*)}, @code{REAL(*)},
+                   or @code{COMPLEX(*)}.
+@item @var{Y} @tab (Optional; only allowed if @var{X} is not
+                   @code{COMPLEX(*)}.)  May be @code{INTEGER(*)}
+                  or @code{REAL(*)}.
+@item @var{KIND} @tab (Optional) An @code{INTEGER(*)} initialization
+                      expression indicating the kind parameter of
+                     the result.
 @end multitable
 
 @item @emph{Return value}:
-The return value has same type and king than @var{X}.
+The return value is of @code{COMPLEX} type, with a kind equal to
+@var{KIND} if it is specified.  If @var{KIND} is not specified, the
+result is of the default @code{COMPLEX} kind, regardless of the kinds of
+@var{X} and @var{Y}. 
 
 @item @emph{Example}:
 @smallexample
-program test_sin
-  real :: x = 0.0
-  x = sin(x)
-end program test_sin
+program test_cmplx
+    integer :: i = 42
+    real :: x = 3.14
+    complex :: z
+    z = cmplx(i, x)
+    print *, z, cmplx(x)
+end program test_cmplx
 @end smallexample
 
-@item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DSIN(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab f95, gnu
-@item @code{CSIN(X)}  @tab @code{COMPLEX(4) X}  @tab @code{COMPLEX(4)}    @tab f95, gnu
-@item @code{ZSIN(X)}  @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab f95, gnu
-@item @code{CDSIN(X)} @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab f95, gnu
-@end multitable
+@item @emph{See also}:
+@ref{COMPLEX}
 @end table
 
 
 
-
-@node SINH
-@section @code{SINH} --- Hyperbolic sine function 
-@findex @code{SINH} intrinsic
-@findex @code{DSINH} intrinsic
-@cindex hyperbolic sine
+@node COMMAND_ARGUMENT_COUNT
+@section @code{COMMAND_ARGUMENT_COUNT} --- Get number of command line arguments
+@fnindex COMMAND_ARGUMENT_COUNT
+@cindex command-line arguments
+@cindex command-line arguments, number of
+@cindex arguments, to program
 
 @table @asis
 @item @emph{Description}:
-@code{SINH(X)} computes the hyperbolic sine of @var{X}.
+@code{COMMAND_ARGUMENT_COUNT()} returns the number of arguments passed on the
+command line when the containing program was invoked.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F2003
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Inquiry function
 
 @item @emph{Syntax}:
-@code{X = SINH(X)}
+@code{RESULT = COMMAND_ARGUMENT_COUNT()}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@multitable @columnfractions .15 .70
+@item None
 @end multitable
 
 @item @emph{Return value}:
-The return value is of type @code{REAL(*)}.
+The return value is of type @code{INTEGER(4)}
 
 @item @emph{Example}:
 @smallexample
-program test_sinh
-  real(8) :: x = - 1.0_8
-  x = sinh(x)
-end program test_sinh
+program test_command_argument_count
+    integer :: count
+    count = command_argument_count()
+    print *, count
+end program test_command_argument_count
 @end smallexample
 
-@item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DSINH(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab f95, gnu
-@end multitable
+@item @emph{See also}:
+@ref{GET_COMMAND}, @ref{GET_COMMAND_ARGUMENT}
 @end table
 
 
 
-@node SQRT
-@section @code{SQRT} --- Square-root function
-@findex @code{SQRT} intrinsic
-@findex @code{DSQRT} intrinsic
-@findex @code{CSQRT} intrinsic
-@findex @code{ZSQRT} intrinsic
-@findex @code{CDSQRT} intrinsic
-@cindex square-root
+@node COMPLEX
+@section @code{COMPLEX} --- Complex conversion function
+@fnindex COMPLEX
+@cindex complex numbers, conversion to
+@cindex conversion, to complex
 
 @table @asis
 @item @emph{Description}:
-@code{SQRT(X)} computes the square root of @var{X}.
+@code{COMPLEX(X, Y)} returns a complex number where @var{X} is converted
+to the real component and @var{Y} is converted to the imaginary
+component.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+GNU extension
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = SQRT(X)}
+@code{RESULT = COMPLEX(X, Y)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)} or
-@code{COMPLEX(*)}.
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type may be @code{INTEGER(*)} or @code{REAL(*)}.
+@item @var{Y} @tab The type may be @code{INTEGER(*)} or @code{REAL(*)}.
 @end multitable
 
 @item @emph{Return value}:
-The return value is of type @code{REAL(*)} or @code{COMPLEX(*)}.
-The kind type parameter is the same as @var{X}.
+If @var{X} and @var{Y} are both of @code{INTEGER} type, then the return
+value is of default @code{COMPLEX} type.
+
+If @var{X} and @var{Y} are of @code{REAL} type, or one is of @code{REAL}
+type and one is of @code{INTEGER} type, then the return value is of
+@code{COMPLEX} type with a kind equal to that of the @code{REAL}
+argument with the highest precision.  
 
 @item @emph{Example}:
 @smallexample
-program test_sqrt
-  real(8) :: x = 2.0_8
-  complex :: z = (1.0, 2.0)
-  x = sqrt(x)
-  z = sqrt(z)
-end program test_sqrt
+program test_complex
+    integer :: i = 42
+    real :: x = 3.14
+    print *, complex(i, x)
+end program test_complex
 @end smallexample
 
-@item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DSQRT(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab f95, gnu
-@item @code{CSQRT(X)}  @tab @code{COMPLEX(4) X}  @tab @code{COMPLEX(4)}    @tab f95, gnu
-@item @code{ZSQRT(X)}  @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab f95, gnu
-@item @code{CDSQRT(X)} @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab f95, gnu
-@end multitable
+@item @emph{See also}:
+@ref{CMPLX}
 @end table
 
 
 
-@node TAN
-@section @code{TAN} --- Tangent function
-@findex @code{TAN} intrinsic
-@findex @code{DTAN} intrinsic
-@cindex tangent
+@node CONJG
+@section @code{CONJG} --- Complex conjugate function 
+@fnindex CONJG
+@fnindex DCONJG
+@cindex complex conjugate
 
 @table @asis
 @item @emph{Description}:
-@code{TAN(X)} computes the tangent of @var{X}.
+@code{CONJG(Z)} returns the conjugate of @var{Z}.  If @var{Z} is @code{(x, y)}
+then the result is @code{(x, -y)}
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F77 and later, has overloads that are GNU extensions
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = TAN(X)}
+@code{Z = CONJG(Z)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@multitable @columnfractions .15 .70
+@item @var{Z} @tab The type shall be @code{COMPLEX(*)}.
 @end multitable
 
 @item @emph{Return value}:
-The return value is of type @code{REAL(*)}.  The kind type parameter is
-the same as @var{X}.
+The return value is of type @code{COMPLEX(*)}.
 
 @item @emph{Example}:
 @smallexample
-program test_tan
-  real(8) :: x = 0.165_8
-  x = tan(x)
-end program test_tan
+program test_conjg
+    complex :: z = (2.0, 3.0)
+    complex(8) :: dz = (2.71_8, -3.14_8)
+    z= conjg(z)
+    print *, z
+    dz = dconjg(dz)
+    print *, dz
+end program test_conjg
 @end smallexample
 
 @item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DTAN(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab f95, gnu
+@multitable @columnfractions .20 .20 .20 .25
+@item Name             @tab Argument             @tab Return type          @tab Standard
+@item @code{DCONJG(Z)} @tab @code{COMPLEX(8) Z}  @tab @code{COMPLEX(8)}    @tab GNU extension
 @end multitable
 @end table
 
 
-@node TANH
-@section @code{TANH} --- Hyperbolic tangent function 
-@findex @code{TANH} intrinsic
-@findex @code{DTANH} intrinsic
-@cindex hyperbolic tangent
+
+@node COS
+@section @code{COS} --- Cosine function 
+@fnindex COS
+@fnindex DCOS
+@fnindex CCOS
+@fnindex ZCOS
+@fnindex CDCOS
+@cindex trigonometric function, cosine
+@cindex cosine
 
 @table @asis
 @item @emph{Description}:
-@code{TANH(X)} computes the hyperbolic tangent of @var{X}.
+@code{COS(X)} computes the cosine of @var{X}.
 
-@item @emph{Option}:
-f95, gnu
+@item @emph{Standard}:
+F77 and later, has overloads that are GNU extensions
 
-@item @emph{Type}:
-elemental function
+@item @emph{Class}:
+Elemental function
 
 @item @emph{Syntax}:
-@code{X = TANH(X)}
+@code{RESULT = COS(X)}
 
 @item @emph{Arguments}:
-@multitable @columnfractions .15 .80
-@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)} or
+@code{COMPLEX(*)}.
 @end multitable
 
 @item @emph{Return value}:
-The return value is of type @code{REAL(*)} and lies in the range
-@math{ - 1 \leq tanh(x) \leq 1 }.
+The return value is of type @code{REAL(*)} and it lies in the
+range @math{ -1 \leq \cos (x) \leq 1}.  The kind type
+parameter is the same as @var{X}.
 
 @item @emph{Example}:
 @smallexample
-program test_tanh
-  real(8) :: x = 2.1_8
-  x = tanh(x)
-end program test_tanh
+program test_cos
+  real :: x = 0.0
+  x = cos(x)
+end program test_cos
 @end smallexample
 
 @item @emph{Specific names}:
-@multitable @columnfractions .24 .24 .24 .24
-@item Name            @tab Argument          @tab Return type       @tab Option
-@item @code{DTANH(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab f95, gnu
-@end multitable
-@end table
-
-
-
-@comment gen   associated
-@comment 
-@comment gen   atan2
-@comment       datan2
-@comment 
-@comment gen   bit_size 
-@comment 
-@comment gen   btest
-@comment 
-@comment gen   ceiling
-@comment 
-@comment gen   char
-@comment 
-@comment gen   cmplx 
-@comment 
-@comment gen   command_argument_count
-@comment 
-@comment gen   conjg
-@comment       dconjg
-@comment 
-@comment gen   count
-@comment 
-@comment sub   cpu_time
-@comment 
-@comment gen   cshift
-@comment 
-@comment sub   date_and_time
-@comment 
-@comment gen   dble 
-@comment       dfloat
-@comment 
-@comment gen   dcmplx
-@comment 
-@comment gen   digits
-@comment 
-@comment gen   dim
-@comment       idim
-@comment       ddim
-@comment 
-@comment gen   dot_product
-@comment 
-@comment gen   dprod
-@comment 
-@comment gen   dreal 
-@comment 
-@comment sub   dtime
-@comment 
-@comment gen   eoshift
-@comment 
-@comment gen   epsilon
-@comment 
-@comment gen   etime
-@comment sub   etime
-@comment 
-@comment sub   exit
-@comment 
-@comment gen   exponent
-@comment 
-@comment gen   floor
-@comment 
-@comment sub   flush
-@comment 
-@comment gen   fnum
-@comment 
-@comment gen   fraction
-@comment 
-@comment gen   fstat
-@comment sub   fstat
-@comment 
-@comment sub   getarg
-@comment 
-@comment gen   getcwd
-@comment sub   getcwd
-@comment 
-@comment sub   getenv
-@comment 
-@comment gen   getgid
-@comment 
-@comment gen   getpid
-@comment 
-@comment gen   getuid
-@comment 
-@comment sub   get_command
-@comment 
-@comment sub   get_command_argument
-@comment 
-@comment sub   get_environment_variable
-@comment 
-@comment gen   huge
-@comment 
-@comment gen   iachar
-@comment 
-@comment gen   iand
-@comment 
-@comment gen   iargc
-@comment 
-@comment gen   ibclr
-@comment 
-@comment gen   ibits
-@comment 
-@comment gen   ibset
-@comment 
-@comment gen   ichar
-@comment 
-@comment gen   ieor
-@comment 
-@comment gen   index
-@comment 
-@comment gen   int
-@comment       ifix
-@comment       idint
-@comment 
-@comment gen   ior
-@comment 
-@comment gen   irand
-@comment 
-@comment gen   ishft
-@comment 
-@comment gen   ishftc
-@comment 
-@comment gen   kind
-@comment 
-@comment gen   lbound
-@comment 
-@comment gen   len
-@comment 
-@comment gen   len_trim
-@comment 
-@comment gen   lge
-@comment 
-@comment gen   lgt
-@comment 
-@comment gen   lle
-@comment 
-@comment gen   llt
-@comment 
-@comment gen   logical
-@comment 
-@comment gen   matmul
-@comment 
-@comment gen   max
-@comment       max0
-@comment       amax0
-@comment       amax1
-@comment       max1
-@comment       dmax1
-@comment 
-@comment gen   maxexponent
-@comment 
-@comment gen   maxloc
-@comment 
-@comment gen   maxval
-@comment 
-@comment gen   merge
-@comment 
-@comment gen   min
-@comment       min0
-@comment       amin0
-@comment       amin1
-@comment       min1
-@comment       dmin1
-@comment 
-@comment gen   minexponent
-@comment 
-@comment gen   minloc
-@comment 
-@comment gen   minval
-@comment 
-@comment gen   mod
-@comment       amod
-@comment       dmod
-@comment 
-@comment gen   modulo
-@comment 
-@comment sub   mvbits
-@comment 
-@comment gen   nearest
-@comment 
-@comment gen   nint
-@comment       idnint
-@comment 
-@comment gen   not
-@comment 
-@comment gen   null
-@comment 
-@comment gen   pack
-@comment 
-@comment gen   precision
-@comment 
-@comment gen   present
-@comment 
-@comment gen   product
-@comment 
-@comment gen   radix
-@comment 
-@comment gen   rand
-@comment       ran 
-@comment 
-@comment sub   random_number
-@comment 
-@comment sub   random_seed
-@comment 
-@comment gen   range
-@comment 
-@comment gen   real
-@comment       float
-@comment       sngl
-@comment 
-@comment gen   repeat
-@comment 
-@comment gen   reshape
-@comment 
-@comment gen   rrspacing
-@comment 
-@comment gen   scale
-@comment 
-@comment gen   scan
-@comment 
-@comment gen   second
-@comment sub   second
-@comment 
-@comment gen   selected_int_kind
-@comment 
-@comment gen   selected_real_kind
-@comment 
-@comment gen   set_exponent
-@comment 
-@comment gen   shape
-@comment 
-@comment gen   sign
-@comment       isign
-@comment       dsign
-@comment 
-@comment gen   size
-@comment 
-@comment gen   spacing
-@comment 
-@comment gen   spread
-@comment 
-@comment sub   srand
-@comment 
-@comment gen   stat
-@comment sub   stat
-@comment 
-@comment gen   sum
-@comment 
-@comment gen   system
-@comment sub   system
-@comment 
-@comment sub system_clock
-@comment 
-@comment gen   tiny
-@comment 
-@comment gen   transfer
-@comment 
-@comment gen   transpose
-@comment 
-@comment gen   trim
-@comment 
-@comment gen   ubound
-@comment 
-@comment gen   umask
-@comment sub   umask
-@comment 
-@comment gen   unlink
-@comment sub   unlink
-@comment 
-@comment gen   unpack
-@comment 
-@comment gen   verify
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument            @tab Return type       @tab Standard
+@item @code{DCOS(X)}  @tab @code{REAL(8) X}    @tab @code{REAL(8)}    @tab F77 and later
+@item @code{CCOS(X)}  @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab F77 and later
+@item @code{ZCOS(X)}  @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
+@item @code{CDCOS(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
+@end multitable
+
+@item @emph{See also}:
+Inverse function: @ref{ACOS}
+
+@end table
 
+
+
+@node COSH
+@section @code{COSH} --- Hyperbolic cosine function 
+@fnindex COSH
+@fnindex DCOSH
+@cindex hyperbolic cosine
+@cindex hyperbolic function, cosine
+@cindex cosine, hyperbolic
+
+@table @asis
+@item @emph{Description}:
+@code{COSH(X)} computes the hyperbolic cosine of @var{X}.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{X = COSH(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)} and it is positive
+(@math{ \cosh (x) \geq 0 }.
+
+@item @emph{Example}:
+@smallexample
+program test_cosh
+  real(8) :: x = 1.0_8
+  x = cosh(x)
+end program test_cosh
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument          @tab Return type       @tab Standard
+@item @code{DCOSH(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab F77 and later
+@end multitable
+
+@item @emph{See also}:
+Inverse function: @ref{ACOSH}
+
+@end table
+
+
+
+@node COUNT
+@section @code{COUNT} --- Count function
+@fnindex COUNT
+@cindex array, conditionally count elements
+@cindex array, element counting
+@cindex array, number of elements
+
+@table @asis
+@item @emph{Description}:
+
+@code{COUNT(MASK [, DIM [, KIND]])} counts the number of @code{.TRUE.}
+elements of @var{MASK} along the dimension of @var{DIM}.  If @var{DIM} is
+omitted it is taken to be @code{1}.  @var{DIM} is a scaler of type
+@code{INTEGER} in the range of @math{1 /leq DIM /leq n)} where @math{n}
+is the rank of @var{MASK}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{RESULT = COUNT(MASK [, DIM [, KIND]])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{MASK} @tab The type shall be @code{LOGICAL}.
+@item @var{DIM}  @tab (Optional) The type shall be @code{INTEGER}.
+@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
+                      expression indicating the kind parameter of
+                     the result.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER} and of kind @var{KIND}. If
+@var{KIND} is absent, the return value is of default integer kind.
+The result has a rank equal to that of @var{MASK}.
+
+@item @emph{Example}:
+@smallexample
+program test_count
+    integer, dimension(2,3) :: a, b
+    logical, dimension(2,3) :: mask
+    a = reshape( (/ 1, 2, 3, 4, 5, 6 /), (/ 2, 3 /))
+    b = reshape( (/ 0, 7, 3, 4, 5, 8 /), (/ 2, 3 /))
+    print '(3i3)', a(1,:)
+    print '(3i3)', a(2,:)
+    print *
+    print '(3i3)', b(1,:)
+    print '(3i3)', b(2,:)
+    print *
+    mask = a.ne.b
+    print '(3l3)', mask(1,:)
+    print '(3l3)', mask(2,:)
+    print *
+    print '(3i3)', count(mask)
+    print *
+    print '(3i3)', count(mask, 1)
+    print *
+    print '(3i3)', count(mask, 2)
+end program test_count
+@end smallexample
+@end table
+
+
+
+@node CPU_TIME
+@section @code{CPU_TIME} --- CPU elapsed time in seconds
+@fnindex CPU_TIME
+@cindex time, elapsed
+
+@table @asis
+@item @emph{Description}:
+Returns a @code{REAL(*)} value representing the elapsed CPU time in
+seconds.  This is useful for testing segments of code to determine
+execution time.
+
+If a time source is available, time will be reported with microsecond
+resolution. If no time source is available, @var{TIME} is set to
+@code{-1.0}.
+
+Note that @var{TIME} may contain a, system dependent, arbitrary offset
+and may not start with @code{0.0}. For @code{CPU_TIME}, the absolute
+value is meaningless, only differences between subsequent calls to
+this subroutine, as shown in the example below, should be used.
+
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL CPU_TIME(TIME)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{TIME} @tab The type shall be @code{REAL(*)} with @code{INTENT(OUT)}.
+@end multitable
+
+@item @emph{Return value}:
+None
+
+@item @emph{Example}:
+@smallexample
+program test_cpu_time
+    real :: start, finish
+    call cpu_time(start)
+        ! put code to test here
+    call cpu_time(finish)
+    print '("Time = ",f6.3," seconds.")',finish-start
+end program test_cpu_time
+@end smallexample
+
+@item @emph{See also}:
+@ref{SYSTEM_CLOCK}, @ref{DATE_AND_TIME}
+@end table
+
+
+
+@node CSHIFT
+@section @code{CSHIFT} --- Circular shift elements of an array
+@fnindex CSHIFT
+@cindex array, shift circularly
+@cindex array, permutation
+@cindex array, rotate
+
+@table @asis
+@item @emph{Description}:
+@code{CSHIFT(ARRAY, SHIFT [, DIM])} performs a circular shift on elements of
+@var{ARRAY} along the dimension of @var{DIM}.  If @var{DIM} is omitted it is
+taken to be @code{1}.  @var{DIM} is a scaler of type @code{INTEGER} in the
+range of @math{1 /leq DIM /leq n)} where @math{n} is the rank of @var{ARRAY}.
+If the rank of @var{ARRAY} is one, then all elements of @var{ARRAY} are shifted
+by @var{SHIFT} places.  If rank is greater than one, then all complete rank one
+sections of @var{ARRAY} along the given dimension are shifted.  Elements
+shifted out one end of each rank one section are shifted back in the other end.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{RESULT = CSHIFT(ARRAY, SHIFT [, DIM])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{ARRAY}  @tab Shall be an array of any type.
+@item @var{SHIFT}  @tab The type shall be @code{INTEGER}.
+@item @var{DIM}    @tab The type shall be @code{INTEGER}.
+@end multitable
+
+@item @emph{Return value}:
+Returns an array of same type and rank as the @var{ARRAY} argument.
+
+@item @emph{Example}:
+@smallexample
+program test_cshift
+    integer, dimension(3,3) :: a
+    a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
+    print '(3i3)', a(1,:)
+    print '(3i3)', a(2,:)
+    print '(3i3)', a(3,:)    
+    a = cshift(a, SHIFT=(/1, 2, -1/), DIM=2)
+    print *
+    print '(3i3)', a(1,:)
+    print '(3i3)', a(2,:)
+    print '(3i3)', a(3,:)
+end program test_cshift
+@end smallexample
+@end table
+
+
+
+@node CTIME
+@section @code{CTIME} --- Convert a time into a string
+@fnindex CTIME
+@cindex time, conversion to string
+@cindex conversion, to string
+
+@table @asis
+@item @emph{Description}:
+@code{CTIME} converts a system time value, such as returned by
+@code{TIME8()}, to a string of the form @samp{Sat Aug 19 18:13:14 1995}.
+
+This intrinsic is provided in both subroutine and function forms; however,
+only one form can be used in any given program unit.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{CALL CTIME(TIME, RESULT)}.
+@item @code{RESULT = CTIME(TIME)}, (not recommended).
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{TIME}    @tab The type shall be of type @code{INTEGER(KIND=8)}.
+@item @var{RESULT}  @tab The type shall be of type @code{CHARACTER}.
+@end multitable
+
+@item @emph{Return value}:
+The converted date and time as a string.
+
+@item @emph{Example}:
+@smallexample
+program test_ctime
+    integer(8) :: i
+    character(len=30) :: date
+    i = time8()
+
+    ! Do something, main part of the program
+    
+    call ctime(i,date)
+    print *, 'Program was started on ', date
+end program test_ctime
+@end smallexample
+
+@item @emph{See Also}:
+@ref{GMTIME}, @ref{LTIME}, @ref{TIME}, @ref{TIME8}
+@end table
+
+
+
+@node DATE_AND_TIME
+@section @code{DATE_AND_TIME} --- Date and time subroutine
+@fnindex DATE_AND_TIME
+@cindex date, current
+@cindex current date
+@cindex time, current
+@cindex current time
+
+@table @asis
+@item @emph{Description}:
+@code{DATE_AND_TIME(DATE, TIME, ZONE, VALUES)} gets the corresponding date and
+time information from the real-time system clock.  @var{DATE} is
+@code{INTENT(OUT)} and has form ccyymmdd.  @var{TIME} is @code{INTENT(OUT)} and
+has form hhmmss.sss.  @var{ZONE} is @code{INTENT(OUT)} and has form (+-)hhmm,
+representing the difference with respect to Coordinated Universal Time (UTC).
+Unavailable time and date parameters return blanks.
+
+@var{VALUES} is @code{INTENT(OUT)} and provides the following:
+
+@multitable @columnfractions .15 .30 .40
+@item @tab @code{VALUE(1)}: @tab The year
+@item @tab @code{VALUE(2)}: @tab The month
+@item @tab @code{VALUE(3)}: @tab The day of the month
+@item @tab @code{VALUE(4)}: @tab Time difference with UTC in minutes
+@item @tab @code{VALUE(5)}: @tab The hour of the day
+@item @tab @code{VALUE(6)}: @tab The minutes of the hour
+@item @tab @code{VALUE(7)}: @tab The seconds of the minute
+@item @tab @code{VALUE(8)}: @tab The milliseconds of the second
+@end multitable            
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{DATE}  @tab (Optional) The type shall be @code{CHARACTER(8)} or larger.
+@item @var{TIME}  @tab (Optional) The type shall be @code{CHARACTER(10)} or larger.
+@item @var{ZONE}  @tab (Optional) The type shall be @code{CHARACTER(5)} or larger.
+@item @var{VALUES}@tab (Optional) The type shall be @code{INTEGER(8)}.
+@end multitable
+
+@item @emph{Return value}:
+None
+
+@item @emph{Example}:
+@smallexample
+program test_time_and_date
+    character(8)  :: date
+    character(10) :: time
+    character(5)  :: zone
+    integer,dimension(8) :: values
+    ! using keyword arguments
+    call date_and_time(date,time,zone,values)
+    call date_and_time(DATE=date,ZONE=zone)
+    call date_and_time(TIME=time)
+    call date_and_time(VALUES=values)
+    print '(a,2x,a,2x,a)', date, time, zone
+    print '(8i5))', values
+end program test_time_and_date
+@end smallexample
+
+@item @emph{See also}:
+@ref{CPU_TIME}, @ref{SYSTEM_CLOCK}
+@end table
+
+
+
+@node DBLE
+@section @code{DBLE} --- Double conversion function 
+@fnindex DBLE
+@cindex conversion, to real
+
+@table @asis
+@item @emph{Description}:
+@code{DBLE(X)} Converts @var{X} to double precision real type.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = DBLE(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{INTEGER(*)}, @code{REAL(*)},
+                   or @code{COMPLEX(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type double precision real.
+
+@item @emph{Example}:
+@smallexample
+program test_dble
+    real    :: x = 2.18
+    integer :: i = 5
+    complex :: z = (2.3,1.14)
+    print *, dble(x), dble(i), dble(z)
+end program test_dble
+@end smallexample
+
+@item @emph{See also}:
+@ref{DFLOAT}, @ref{FLOAT}, @ref{REAL}
+@end table
+
+
+
+@node DCMPLX
+@section @code{DCMPLX} --- Double complex conversion function
+@fnindex DCMPLX
+@cindex complex numbers, conversion to
+@cindex conversion, to complex
+
+@table @asis
+@item @emph{Description}:
+@code{DCMPLX(X [,Y])} returns a double complex number where @var{X} is
+converted to the real component.  If @var{Y} is present it is converted to the
+imaginary component.  If @var{Y} is not present then the imaginary component is
+set to 0.0.  If @var{X} is complex then @var{Y} must not be present.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = DCMPLX(X [, Y])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type may be @code{INTEGER(*)}, @code{REAL(*)},
+                   or @code{COMPLEX(*)}.
+@item @var{Y} @tab (Optional if @var{X} is not @code{COMPLEX(*)}.) May be
+                   @code{INTEGER(*)} or @code{REAL(*)}. 
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{COMPLEX(8)}
+
+@item @emph{Example}:
+@smallexample
+program test_dcmplx
+    integer :: i = 42
+    real :: x = 3.14
+    complex :: z
+    z = cmplx(i, x)
+    print *, dcmplx(i)
+    print *, dcmplx(x)
+    print *, dcmplx(z)
+    print *, dcmplx(x,i)
+end program test_dcmplx
+@end smallexample
+@end table
+
+
+
+@node DFLOAT
+@section @code{DFLOAT} --- Double conversion function 
+@fnindex DFLOAT
+@cindex conversion, to real
+
+@table @asis
+@item @emph{Description}:
+@code{DFLOAT(X)} Converts @var{X} to double precision real type.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = DFLOAT(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{INTEGER(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type double precision real.
+
+@item @emph{Example}:
+@smallexample
+program test_dfloat
+    integer :: i = 5
+    print *, dfloat(i)
+end program test_dfloat
+@end smallexample
+
+@item @emph{See also}:
+@ref{DBLE}, @ref{FLOAT}, @ref{REAL}
+@end table
+
+
+
+@node DIGITS
+@section @code{DIGITS} --- Significant digits function
+@fnindex DIGITS
+@cindex model representation, significant digits
+
+@table @asis
+@item @emph{Description}:
+@code{DIGITS(X)} returns the number of significant digits of the internal model
+representation of @var{X}.  For example, on a system using a 32-bit
+floating point representation, a default real number would likely return 24.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = DIGITS(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type may be @code{INTEGER(*)} or @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER}.
+
+@item @emph{Example}:
+@smallexample
+program test_digits
+    integer :: i = 12345
+    real :: x = 3.143
+    real(8) :: y = 2.33
+    print *, digits(i)
+    print *, digits(x)
+    print *, digits(y)
+end program test_digits
+@end smallexample
+@end table
+
+
+
+@node DIM
+@section @code{DIM} --- Positive difference
+@fnindex DIM
+@fnindex IDIM
+@fnindex DDIM
+@cindex positive difference
+
+@table @asis
+@item @emph{Description}:
+@code{DIM(X,Y)} returns the difference @code{X-Y} if the result is positive;
+otherwise returns zero.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = DIM(X, Y)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{INTEGER(*)} or @code{REAL(*)}
+@item @var{Y} @tab The type shall be the same type and kind as @var{X}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER(*)} or @code{REAL(*)}.
+
+@item @emph{Example}:
+@smallexample
+program test_dim
+    integer :: i
+    real(8) :: x
+    i = dim(4, 15)
+    x = dim(4.345_8, 2.111_8)
+    print *, i
+    print *, x
+end program test_dim
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name             @tab Argument              @tab Return type       @tab Standard
+@item @code{IDIM(X,Y)} @tab @code{INTEGER(4) X,Y} @tab @code{INTEGER(4)} @tab F77 and later
+@item @code{DDIM(X,Y)} @tab @code{REAL(8) X,Y}    @tab @code{REAL(8)}    @tab F77 and later
+@end multitable
+@end table
+
+
+
+@node DOT_PRODUCT
+@section @code{DOT_PRODUCT} --- Dot product function
+@fnindex DOT_PRODUCT
+@cindex dot product
+@cindex vector product
+@cindex product, vector
+
+@table @asis
+@item @emph{Description}:
+@code{DOT_PRODUCT(X,Y)} computes the dot product multiplication of two vectors
+@var{X} and @var{Y}.  The two vectors may be either numeric or logical
+and must be arrays of rank one and of equal size. If the vectors are
+@code{INTEGER(*)} or @code{REAL(*)}, the result is @code{SUM(X*Y)}. If the
+vectors are @code{COMPLEX(*)}, the result is @code{SUM(CONJG(X)*Y)}. If the 
+vectors are @code{LOGICAL}, the result is @code{ANY(X.AND.Y)}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{RESULT = DOT_PRODUCT(X, Y)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be numeric or @code{LOGICAL}, rank 1.
+@item @var{Y} @tab The type shall be numeric or @code{LOGICAL}, rank 1.
+@end multitable
+
+@item @emph{Return value}:
+If the arguments are numeric, the return value is a scaler of numeric type,
+@code{INTEGER(*)}, @code{REAL(*)}, or @code{COMPLEX(*)}.  If the arguments are
+@code{LOGICAL}, the return value is @code{.TRUE.} or @code{.FALSE.}.
+
+@item @emph{Example}:
+@smallexample
+program test_dot_prod
+    integer, dimension(3) :: a, b
+    a = (/ 1, 2, 3 /)
+    b = (/ 4, 5, 6 /)
+    print '(3i3)', a
+    print *
+    print '(3i3)', b
+    print *
+    print *, dot_product(a,b)
+end program test_dot_prod
+@end smallexample
+@end table
+
+
+
+@node DPROD
+@section @code{DPROD} --- Double product function
+@fnindex DPROD
+@cindex product, double-precision
+
+@table @asis
+@item @emph{Description}:
+@code{DPROD(X,Y)} returns the product @code{X*Y}.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = DPROD(X, Y)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL}.
+@item @var{Y} @tab The type shall be @code{REAL}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(8)}.
+
+@item @emph{Example}:
+@smallexample
+program test_dprod
+    real :: x = 5.2
+    real :: y = 2.3
+    real(8) :: d
+    d = dprod(x,y)
+    print *, d
+end program test_dprod
+@end smallexample
+@end table
+
+
+
+@node DREAL
+@section @code{DREAL} --- Double real part function
+@fnindex DREAL
+@cindex complex numbers, real part
+
+@table @asis
+@item @emph{Description}:
+@code{DREAL(Z)} returns the real part of complex variable @var{Z}.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = DREAL(Z)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{Z} @tab The type shall be @code{COMPLEX(8)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(8)}.
+
+@item @emph{Example}:
+@smallexample
+program test_dreal
+    complex(8) :: z = (1.3_8,7.2_8)
+    print *, dreal(z)
+end program test_dreal
+@end smallexample
+
+@item @emph{See also}:
+@ref{AIMAG}
+
+@end table
+
+
+
+@node DTIME
+@section @code{DTIME} --- Execution time subroutine (or function)
+@fnindex DTIME
+@cindex time, elapsed
+@cindex elapsed time
+
+@table @asis
+@item @emph{Description}:
+@code{DTIME(TARRAY, RESULT)} initially returns the number of seconds of runtime
+since the start of the process's execution in @var{RESULT}.  @var{TARRAY}
+returns the user and system components of this time in @code{TARRAY(1)} and
+@code{TARRAY(2)} respectively. @var{RESULT} is equal to @code{TARRAY(1) +
+TARRAY(2)}.
+
+Subsequent invocations of @code{DTIME} return values accumulated since the
+previous invocation.
+
+On some systems, the underlying timings are represented using types with
+sufficiently small limits that overflows (wrap around) are possible, such as
+32-bit types. Therefore, the values returned by this intrinsic might be, or
+become, negative, or numerically less than previous values, during a single
+run of the compiled program.
+
+Please note, that this implementation is thread safe if used within OpenMP
+directives, i. e. its state will be consistent while called from multiple
+threads. However, if @code{DTIME} is called from multiple threads, the result
+is still the time since the last invocation. This may not give the intended
+results. If possible, use @code{CPU_TIME} instead.
+
+This intrinsic is provided in both subroutine and function forms; however,
+only one form can be used in any given program unit.
+
+@var{TARRAY} and @var{RESULT} are @code{INTENT(OUT)} and provide the following:
+
+@multitable @columnfractions .15 .30 .40
+@item @tab @code{TARRAY(1)}: @tab User time in seconds.
+@item @tab @code{TARRAY(2)}: @tab System time in seconds.
+@item @tab @code{RESULT}: @tab Run time since start in seconds.
+@end multitable
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{CALL DTIME(TARRAY, RESULT)}.
+@item @code{RESULT = DTIME(TARRAY)}, (not recommended).
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{TARRAY}@tab The type shall be @code{REAL, DIMENSION(2)}.
+@item @var{RESULT}@tab The type shall be @code{REAL}.
+@end multitable
+
+@item @emph{Return value}:
+Elapsed time in seconds since the last invocation or since the start of program
+execution if not called before.
+
+@item @emph{Example}:
+@smallexample
+program test_dtime
+    integer(8) :: i, j
+    real, dimension(2) :: tarray
+    real :: result
+    call dtime(tarray, result)
+    print *, result
+    print *, tarray(1)
+    print *, tarray(2)   
+    do i=1,100000000    ! Just a delay
+        j = i * i - i
+    end do
+    call dtime(tarray, result)
+    print *, result
+    print *, tarray(1)
+    print *, tarray(2)
+end program test_dtime
+@end smallexample
+
+@item @emph{See also}:
+@ref{CPU_TIME}
+
+@end table
+
+
+
+@node EOSHIFT
+@section @code{EOSHIFT} --- End-off shift elements of an array
+@fnindex EOSHIFT
+@cindex array, shift
+
+@table @asis
+@item @emph{Description}:
+@code{EOSHIFT(ARRAY, SHIFT[,BOUNDARY, DIM])} performs an end-off shift on
+elements of @var{ARRAY} along the dimension of @var{DIM}.  If @var{DIM} is
+omitted it is taken to be @code{1}.  @var{DIM} is a scaler of type
+@code{INTEGER} in the range of @math{1 /leq DIM /leq n)} where @math{n} is the
+rank of @var{ARRAY}.  If the rank of @var{ARRAY} is one, then all elements of
+@var{ARRAY} are shifted by @var{SHIFT} places.  If rank is greater than one,
+then all complete rank one sections of @var{ARRAY} along the given dimension are
+shifted.  Elements shifted out one end of each rank one section are dropped.  If
+@var{BOUNDARY} is present then the corresponding value of from @var{BOUNDARY}
+is copied back in the other end.  If @var{BOUNDARY} is not present then the
+following are copied in depending on the type of @var{ARRAY}.
+
+@multitable @columnfractions .15 .80
+@item @emph{Array Type} @tab @emph{Boundary Value}
+@item Numeric  @tab 0 of the type and kind of @var{ARRAY}.
+@item Logical  @tab @code{.FALSE.}.
+@item Character(@var{len}) @tab @var{len} blanks.
+@end multitable
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{RESULT = EOSHIFT(ARRAY, SHIFT [, BOUNDARY, DIM])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{ARRAY}  @tab May be any type, not scaler.
+@item @var{SHIFT}  @tab The type shall be @code{INTEGER}.
+@item @var{BOUNDARY} @tab Same type as @var{ARRAY}. 
+@item @var{DIM}    @tab The type shall be @code{INTEGER}.
+@end multitable
+
+@item @emph{Return value}:
+Returns an array of same type and rank as the @var{ARRAY} argument.
+
+@item @emph{Example}:
+@smallexample
+program test_eoshift
+    integer, dimension(3,3) :: a
+    a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
+    print '(3i3)', a(1,:)
+    print '(3i3)', a(2,:)
+    print '(3i3)', a(3,:)    
+    a = EOSHIFT(a, SHIFT=(/1, 2, 1/), BOUNDARY=-5, DIM=2)
+    print *
+    print '(3i3)', a(1,:)
+    print '(3i3)', a(2,:)
+    print '(3i3)', a(3,:)
+end program test_eoshift
+@end smallexample
+@end table
+
+
+
+@node EPSILON
+@section @code{EPSILON} --- Epsilon function
+@fnindex EPSILON
+@cindex model representation, epsilon
+
+@table @asis
+@item @emph{Description}:
+@code{EPSILON(X)} returns a nearly negligible number relative to @code{1}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = EPSILON(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of same type as the argument.
+
+@item @emph{Example}:
+@smallexample
+program test_epsilon
+    real :: x = 3.143
+    real(8) :: y = 2.33
+    print *, EPSILON(x)
+    print *, EPSILON(y)
+end program test_epsilon
+@end smallexample
+@end table
+
+
+
+@node ERF
+@section @code{ERF} --- Error function 
+@fnindex ERF
+@cindex error function
+
+@table @asis
+@item @emph{Description}:
+@code{ERF(X)} computes the error function of @var{X}.
+
+@item @emph{Standard}:
+GNU Extension
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = ERF(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar.
+@end multitable
+
+@item @emph{Return value}:
+The return value is a scalar of type @code{REAL(*)} and it is positive
+(@math{ - 1 \leq erf (x) \leq 1 }.
+
+@item @emph{Example}:
+@smallexample
+program test_erf
+  real(8) :: x = 0.17_8
+  x = erf(x)
+end program test_erf
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument          @tab Return type       @tab Standard
+@item @code{DERF(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension
+@end multitable
+@end table
+
+
+
+@node ERFC
+@section @code{ERFC} --- Error function 
+@fnindex ERFC
+@cindex error function, complementary
+
+@table @asis
+@item @emph{Description}:
+@code{ERFC(X)} computes the complementary error function of @var{X}.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = ERFC(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar.
+@end multitable
+
+@item @emph{Return value}:
+The return value is a scalar of type @code{REAL(*)} and it is positive
+(@math{ 0 \leq erfc (x) \leq 2 }.
+
+@item @emph{Example}:
+@smallexample
+program test_erfc
+  real(8) :: x = 0.17_8
+  x = erfc(x)
+end program test_erfc
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument          @tab Return type       @tab Standard
+@item @code{DERFC(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension
+@end multitable
+@end table
+
+
+
+@node ETIME
+@section @code{ETIME} --- Execution time subroutine (or function)
+@fnindex ETIME
+@cindex time, elapsed
+
+@table @asis
+@item @emph{Description}:
+@code{ETIME(TARRAY, RESULT)} returns the number of seconds of runtime
+since the start of the process's execution in @var{RESULT}.  @var{TARRAY}
+returns the user and system components of this time in @code{TARRAY(1)} and
+@code{TARRAY(2)} respectively. @var{RESULT} is equal to @code{TARRAY(1) + TARRAY(2)}.
+
+On some systems, the underlying timings are represented using types with
+sufficiently small limits that overflows (wrap around) are possible, such as
+32-bit types. Therefore, the values returned by this intrinsic might be, or
+become, negative, or numerically less than previous values, during a single
+run of the compiled program.
+
+This intrinsic is provided in both subroutine and function forms; however,
+only one form can be used in any given program unit.
+
+@var{TARRAY} and @var{RESULT} are @code{INTENT(OUT)} and provide the following:
+
+@multitable @columnfractions .15 .30 .60
+@item @tab @code{TARRAY(1)}: @tab User time in seconds.
+@item @tab @code{TARRAY(2)}: @tab System time in seconds.
+@item @tab @code{RESULT}: @tab Run time since start in seconds.
+@end multitable
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{CALL ETIME(TARRAY, RESULT)}.
+@item @code{RESULT = ETIME(TARRAY)}, (not recommended).
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{TARRAY}@tab The type shall be @code{REAL, DIMENSION(2)}.
+@item @var{RESULT}@tab The type shall be @code{REAL}.
+@end multitable
+
+@item @emph{Return value}:
+Elapsed time in seconds since the start of program execution.
+
+@item @emph{Example}:
+@smallexample
+program test_etime
+    integer(8) :: i, j
+    real, dimension(2) :: tarray
+    real :: result
+    call ETIME(tarray, result)
+    print *, result
+    print *, tarray(1)
+    print *, tarray(2)   
+    do i=1,100000000    ! Just a delay
+        j = i * i - i
+    end do
+    call ETIME(tarray, result)
+    print *, result
+    print *, tarray(1)
+    print *, tarray(2)
+end program test_etime
+@end smallexample
+
+@item @emph{See also}:
+@ref{CPU_TIME}
+
+@end table
+
+
+
+@node EXIT
+@section @code{EXIT} --- Exit the program with status. 
+@fnindex EXIT
+@cindex program termination
+@cindex terminate program
+
+@table @asis
+@item @emph{Description}:
+@code{EXIT} causes immediate termination of the program with status.  If status
+is omitted it returns the canonical @emph{success} for the system.  All Fortran
+I/O units are closed. 
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL EXIT([STATUS])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{STATUS} @tab Shall be an @code{INTEGER} of the default kind.
+@end multitable
+
+@item @emph{Return value}:
+@code{STATUS} is passed to the parent process on exit.
+
+@item @emph{Example}:
+@smallexample
+program test_exit
+  integer :: STATUS = 0
+  print *, 'This program is going to exit.'
+  call EXIT(STATUS)
+end program test_exit
+@end smallexample
+
+@item @emph{See also}:
+@ref{ABORT}, @ref{KILL}
+@end table
+
+
+
+@node EXP
+@section @code{EXP} --- Exponential function 
+@fnindex EXP
+@fnindex DEXP
+@fnindex CEXP
+@fnindex ZEXP
+@fnindex CDEXP
+@cindex exponential function
+@cindex logarithmic function, inverse
+
+@table @asis
+@item @emph{Description}:
+@code{EXP(X)} computes the base @math{e} exponential of @var{X}.
+
+@item @emph{Standard}:
+F77 and later, has overloads that are GNU extensions
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = EXP(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)} or
+@code{COMPLEX(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value has same type and kind as @var{X}.
+
+@item @emph{Example}:
+@smallexample
+program test_exp
+  real :: x = 1.0
+  x = exp(x)
+end program test_exp
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument             @tab Return type         @tab Standard
+@item @code{DEXP(X)}  @tab @code{REAL(8) X}     @tab @code{REAL(8)}      @tab F77 and later
+@item @code{CEXP(X)}  @tab @code{COMPLEX(4) X}  @tab @code{COMPLEX(4)}   @tab F77 and later
+@item @code{ZEXP(X)}  @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}   @tab GNU extension
+@item @code{CDEXP(X)} @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}   @tab GNU extension
+@end multitable
+@end table
+
+
+
+@node EXPONENT
+@section @code{EXPONENT} --- Exponent function 
+@fnindex EXPONENT
+@cindex real number, exponent
+@cindex floating point, exponent
+
+@table @asis
+@item @emph{Description}:
+@code{EXPONENT(X)} returns the value of the exponent part of @var{X}. If @var{X}
+is zero the value returned is zero. 
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = EXPONENT(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type default @code{INTEGER}.
+
+@item @emph{Example}:
+@smallexample
+program test_exponent
+  real :: x = 1.0
+  integer :: i
+  i = exponent(x)
+  print *, i
+  print *, exponent(0.0)
+end program test_exponent
+@end smallexample
+@end table
+
+
+
+@node FDATE
+@section @code{FDATE} --- Get the current time as a string
+@fnindex FDATE
+@cindex time, current
+@cindex current time
+@cindex date, current
+@cindex current date
+
+@table @asis
+@item @emph{Description}:
+@code{FDATE(DATE)} returns the current date (using the same format as
+@code{CTIME}) in @var{DATE}. It is equivalent to @code{CALL CTIME(DATE,
+TIME())}.
+
+This intrinsic is provided in both subroutine and function forms; however,
+only one form can be used in any given program unit.
+
+@var{DATE} is an @code{INTENT(OUT)} @code{CHARACTER} variable.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{CALL FDATE(DATE)}.
+@item @code{DATE = FDATE()}, (not recommended).
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{DATE}@tab The type shall be of type @code{CHARACTER}.
+@end multitable
+
+@item @emph{Return value}:
+The current date as a string.
+
+@item @emph{Example}:
+@smallexample
+program test_fdate
+    integer(8) :: i, j
+    character(len=30) :: date
+    call fdate(date)
+    print *, 'Program started on ', date
+    do i = 1, 100000000 ! Just a delay
+        j = i * i - i
+    end do
+    call fdate(date)
+    print *, 'Program ended on ', date
+end program test_fdate
+@end smallexample
+@end table
+
+
+
+@node FLOAT
+@section @code{FLOAT} --- Convert integer to default real
+@fnindex FLOAT
+@cindex conversion, to real
+
+@table @asis
+@item @emph{Description}:
+@code{FLOAT(I)} converts the integer @var{I} to a default real value.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = FLOAT(I)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{I} @tab The type shall be @code{INTEGER(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type default @code{REAL}.
+
+@item @emph{Example}:
+@smallexample
+program test_float
+    integer :: i = 1
+    if (float(i) /= 1.) call abort
+end program test_float
+@end smallexample
+
+@item @emph{See also}:
+@ref{DBLE}, @ref{DFLOAT}, @ref{REAL}
+@end table
+
+
+
+@node FGET
+@section @code{FGET} --- Read a single character in stream mode from stdin 
+@fnindex FGET
+@cindex read character, stream mode
+@cindex stream mode, read character
+@cindex file operation, read character
+
+@table @asis
+@item @emph{Description}:
+Read a single character in stream mode from stdin by bypassing normal 
+formatted output. Stream I/O should not be mixed with normal record-oriented 
+(formatted or unformatted) I/O on the same unit; the results are unpredictable.
+
+This intrinsic is provided in both subroutine and function forms; however,
+only one form can be used in any given program unit.
+
+Note that the @code{FGET} intrinsic is provided for backwards compatibility with 
+@command{g77}.  GNU Fortran provides the Fortran 2003 Stream facility.
+Programmers should consider the use of new stream IO feature in new code 
+for future portability. See also @ref{Fortran 2003 status}.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@code{CALL FGET(C [, STATUS])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{C}      @tab The type shall be @code{CHARACTER}.
+@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}.
+                        Returns 0 on success, -1 on end-of-file, and a
+                        system specific positive error code otherwise.
+@end multitable
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_fget
+  INTEGER, PARAMETER :: strlen = 100
+  INTEGER :: status, i = 1
+  CHARACTER(len=strlen) :: str = ""
+
+  WRITE (*,*) 'Enter text:'
+  DO
+    CALL fget(str(i:i), status)
+    if (status /= 0 .OR. i > strlen) exit
+    i = i + 1
+  END DO
+  WRITE (*,*) TRIM(str)
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{FGETC}, @ref{FPUT}, @ref{FPUTC}
+@end table
+
+
+
+@node FGETC
+@section @code{FGETC} --- Read a single character in stream mode
+@fnindex FGETC
+@cindex read character, stream mode
+@cindex stream mode, read character
+@cindex file operation, read character
+
+@table @asis
+@item @emph{Description}:
+Read a single character in stream mode by bypassing normal formatted output. 
+Stream I/O should not be mixed with normal record-oriented (formatted or 
+unformatted) I/O on the same unit; the results are unpredictable.
+
+This intrinsic is provided in both subroutine and function forms; however,
+only one form can be used in any given program unit.
+
+Note that the @code{FGET} intrinsic is provided for backwards compatibility
+with @command{g77}.  GNU Fortran provides the Fortran 2003 Stream facility.
+Programmers should consider the use of new stream IO feature in new code 
+for future portability. See also @ref{Fortran 2003 status}.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@code{CALL FGETC(UNIT, C [, STATUS])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{UNIT}   @tab The type shall be @code{INTEGER}.
+@item @var{C}      @tab The type shall be @code{CHARACTER}.
+@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}. Returns 0 on success,
+                        -1 on end-of-file and a system specific positive error code otherwise.
+@end multitable
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_fgetc
+  INTEGER :: fd = 42, status
+  CHARACTER :: c
+
+  OPEN(UNIT=fd, FILE="/etc/passwd", ACTION="READ", STATUS = "OLD")
+  DO
+    CALL fgetc(fd, c, status)
+    IF (status /= 0) EXIT
+    call fput(c)
+  END DO
+  CLOSE(UNIT=fd)
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{FGET}, @ref{FPUT}, @ref{FPUTC}
+@end table
+
+
+
+@node FLOOR
+@section @code{FLOOR} --- Integer floor function
+@fnindex FLOOR
+@cindex floor
+@cindex rounding, floor
+
+@table @asis
+@item @emph{Description}:
+@code{FLOOR(X)} returns the greatest integer less than or equal to @var{X}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = FLOOR(X [, KIND])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}.
+@item @var{KIND} @tab (Optional) An @code{INTEGER(*)} initialization
+                      expression indicating the kind parameter of
+                     the result.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER(KIND)}
+
+@item @emph{Example}:
+@smallexample
+program test_floor
+    real :: x = 63.29
+    real :: y = -63.59
+    print *, floor(x) ! returns 63
+    print *, floor(y) ! returns -64
+end program test_floor
+@end smallexample
+
+@item @emph{See also}:
+@ref{CEILING}, @ref{NINT}
+
+@end table
+
+
+
+@node FLUSH
+@section @code{FLUSH} --- Flush I/O unit(s)
+@fnindex FLUSH
+@cindex file operation, flush
+
+@table @asis
+@item @emph{Description}:
+Flushes Fortran unit(s) currently open for output. Without the optional
+argument, all units are flushed, otherwise just the unit specified.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL FLUSH(UNIT)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{UNIT} @tab (Optional) The type shall be @code{INTEGER}.
+@end multitable
+
+@item @emph{Note}:
+Beginning with the Fortran 2003 standard, there is a @code{FLUSH}
+statement that should be preferred over the @code{FLUSH} intrinsic.
+
+@end table
+
+
+
+@node FNUM
+@section @code{FNUM} --- File number function
+@fnindex FNUM
+@cindex file operation, file number
+
+@table @asis
+@item @emph{Description}:
+@code{FNUM(UNIT)} returns the POSIX file descriptor number corresponding to the
+open Fortran I/O unit @code{UNIT}.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{RESULT = FNUM(UNIT)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{UNIT} @tab The type shall be @code{INTEGER}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER}
+
+@item @emph{Example}:
+@smallexample
+program test_fnum
+  integer :: i
+  open (unit=10, status = "scratch")
+  i = fnum(10)
+  print *, i
+  close (10)
+end program test_fnum
+@end smallexample
+@end table
+
+
+
+@node FPUT
+@section @code{FPUT} --- Write a single character in stream mode to stdout 
+@fnindex FPUT
+@cindex write character, stream mode
+@cindex stream mode, write character
+@cindex file operation, write character
+
+@table @asis
+@item @emph{Description}:
+Write a single character in stream mode to stdout by bypassing normal 
+formatted output. Stream I/O should not be mixed with normal record-oriented 
+(formatted or unformatted) I/O on the same unit; the results are unpredictable.
+
+This intrinsic is provided in both subroutine and function forms; however,
+only one form can be used in any given program unit.
+
+Note that the @code{FGET} intrinsic is provided for backwards compatibility with 
+@command{g77}.  GNU Fortran provides the Fortran 2003 Stream facility.
+Programmers should consider the use of new stream IO feature in new code 
+for future portability. See also @ref{Fortran 2003 status}.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@code{CALL FPUT(C [, STATUS])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{C}      @tab The type shall be @code{CHARACTER}.
+@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}. Returns 0 on success,
+                        -1 on end-of-file and a system specific positive error code otherwise.
+@end multitable
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_fput
+  CHARACTER(len=10) :: str = "gfortran"
+  INTEGER :: i
+  DO i = 1, len_trim(str)
+    CALL fput(str(i:i))
+  END DO
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{FPUTC}, @ref{FGET}, @ref{FGETC}
+@end table
+
+
+
+@node FPUTC
+@section @code{FPUTC} --- Write a single character in stream mode
+@fnindex FPUTC
+@cindex write character, stream mode
+@cindex stream mode, write character
+@cindex file operation, write character
+
+@table @asis
+@item @emph{Description}:
+Write a single character in stream mode by bypassing normal formatted 
+output. Stream I/O should not be mixed with normal record-oriented 
+(formatted or unformatted) I/O on the same unit; the results are unpredictable.
+
+This intrinsic is provided in both subroutine and function forms; however,
+only one form can be used in any given program unit.
+
+Note that the @code{FGET} intrinsic is provided for backwards compatibility with 
+@command{g77}.  GNU Fortran provides the Fortran 2003 Stream facility.
+Programmers should consider the use of new stream IO feature in new code 
+for future portability. See also @ref{Fortran 2003 status}.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@code{CALL FPUTC(UNIT, C [, STATUS])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{UNIT}   @tab The type shall be @code{INTEGER}.
+@item @var{C}      @tab The type shall be @code{CHARACTER}.
+@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}. Returns 0 on success,
+                        -1 on end-of-file and a system specific positive error code otherwise.
+@end multitable
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_fputc
+  CHARACTER(len=10) :: str = "gfortran"
+  INTEGER :: fd = 42, i
+
+  OPEN(UNIT = fd, FILE = "out", ACTION = "WRITE", STATUS="NEW")
+  DO i = 1, len_trim(str)
+    CALL fputc(fd, str(i:i))
+  END DO
+  CLOSE(fd)
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{FPUT}, @ref{FGET}, @ref{FGETC}
+@end table
+
+
+
+@node FRACTION
+@section @code{FRACTION} --- Fractional part of the model representation
+@fnindex FRACTION
+@cindex real number, fraction
+@cindex floating point, fraction
+
+@table @asis
+@item @emph{Description}:
+@code{FRACTION(X)} returns the fractional part of the model
+representation of @code{X}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{Y = FRACTION(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type of the argument shall be a @code{REAL}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of the same type and kind as the argument.
+The fractional part of the model representation of @code{X} is returned;
+it is @code{X * RADIX(X)**(-EXPONENT(X))}.
+
+@item @emph{Example}:
+@smallexample
+program test_fraction
+  real :: x
+  x = 178.1387e-4
+  print *, fraction(x), x * radix(x)**(-exponent(x))
+end program test_fraction
+@end smallexample
+
+@end table
+
+
+
+@node FREE
+@section @code{FREE} --- Frees memory
+@fnindex FREE
+@cindex pointer, cray
+
+@table @asis
+@item @emph{Description}:
+Frees memory previously allocated by @code{MALLOC()}. The @code{FREE}
+intrinsic is an extension intended to be used with Cray pointers, and is
+provided in GNU Fortran to allow user to compile legacy code. For
+new code using Fortran 95 pointers, the memory de-allocation intrinsic is
+@code{DEALLOCATE}.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL FREE(PTR)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{PTR} @tab The type shall be @code{INTEGER}. It represents the
+location of the memory that should be de-allocated.
+@end multitable
+
+@item @emph{Return value}:
+None
+
+@item @emph{Example}:
+See @code{MALLOC} for an example.
+
+@item @emph{See also}:
+@ref{MALLOC}
+@end table
+
+
+
+@node FSEEK
+@section @code{FSEEK} --- Low level file positioning subroutine
+@fnindex FSEEK
+@cindex file operation, seek
+@cindex file operation, position
+
+@table @asis
+@item @emph{Description}:
+Moves @var{UNIT} to the specified @var{OFFSET}. If @var{WHENCE} 
+is set to 0, the @var{OFFSET} is taken as an absolute value @code{SEEK_SET},
+if set to 1, @var{OFFSET} is taken to be relative to the current position 
+@code{SEEK_CUR}, and if set to 2 relative to the end of the file @code{SEEK_END}.
+On error, @var{STATUS} is set to a nonzero value. If @var{STATUS} the seek 
+fails silently.
+
+This intrinsic routine is not fully backwards compatible with @command{g77}. 
+In @command{g77}, the @code{FSEEK} takes a statement label instead of a 
+@var{STATUS} variable. If FSEEK is used in old code, change
+@smallexample
+  CALL FSEEK(UNIT, OFFSET, WHENCE, *label)
+@end smallexample 
+to
+@smallexample
+  INTEGER :: status
+  CALL FSEEK(UNIT, OFFSET, WHENCE, status)
+  IF (status /= 0) GOTO label
+@end smallexample 
+
+Please note that GNU Fortran provides the Fortran 2003 Stream facility.
+Programmers should consider the use of new stream IO feature in new code 
+for future portability. See also @ref{Fortran 2003 status}.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL FSEEK(UNIT, OFFSET, WHENCE[, STATUS])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{UNIT}   @tab Shall be a scalar of type @code{INTEGER}.
+@item @var{OFFSET} @tab Shall be a scalar of type @code{INTEGER}.
+@item @var{WHENCE} @tab Shall be a scalar of type @code{INTEGER}.
+Its value shall be either 0, 1 or 2.
+@item @var{STATUS} @tab (Optional) shall be a scalar of type 
+@code{INTEGER(4)}.
+@end multitable
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_fseek
+  INTEGER, PARAMETER :: SEEK_SET = 0, SEEK_CUR = 1, SEEK_END = 2
+  INTEGER :: fd, offset, ierr
+
+  ierr   = 0
+  offset = 5
+  fd     = 10
+
+  OPEN(UNIT=fd, FILE="fseek.test")
+  CALL FSEEK(fd, offset, SEEK_SET, ierr)  ! move to OFFSET
+  print *, FTELL(fd), ierr
+
+  CALL FSEEK(fd, 0, SEEK_END, ierr)       ! move to end
+  print *, FTELL(fd), ierr
+
+  CALL FSEEK(fd, 0, SEEK_SET, ierr)       ! move to beginning
+  print *, FTELL(fd), ierr
+
+  CLOSE(UNIT=fd)
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{FTELL}
+@end table
+
+
+
+@node FSTAT
+@section @code{FSTAT} --- Get file status
+@fnindex FSTAT
+@cindex file system, file status
+
+@table @asis
+@item @emph{Description}:
+@code{FSTAT} is identical to @ref{STAT}, except that information about an 
+already opened file is obtained.
+
+The elements in @code{BUFF} are the same as described by @ref{STAT}.
+
+This intrinsic is provided in both subroutine and function forms; however,
+only one form can be used in any given program unit.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@code{CALL FSTAT(UNIT, BUFF [, STATUS])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{UNIT}   @tab An open I/O unit number of type @code{INTEGER}.
+@item @var{BUFF}   @tab The type shall be @code{INTEGER(4), DIMENSION(13)}.
+@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)}. Returns 0 
+                        on success and a system specific error code otherwise.
+@end multitable
+
+@item @emph{Example}:
+See @ref{STAT} for an example.
+
+@item @emph{See also}:
+To stat a link: @ref{LSTAT}, to stat a file: @ref{STAT}
+@end table
+
+
+
+@node FTELL
+@section @code{FTELL} --- Current stream position
+@fnindex FTELL
+@cindex file operation, position
+
+@table @asis
+@item @emph{Description}:
+Retrieves the current position within an open file.
+
+This intrinsic is provided in both subroutine and function forms; however,
+only one form can be used in any given program unit.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{CALL FTELL(UNIT, OFFSET)}
+@item @code{OFFSET = FTELL(UNIT)}
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{OFFSET}  @tab Shall of type @code{INTEGER}.
+@item @var{UNIT}    @tab Shall of type @code{INTEGER}.
+@end multitable
+
+@item @emph{Return value}:
+In either syntax, @var{OFFSET} is set to the current offset of unit
+number @var{UNIT}, or to @math{-1} if the unit is not currently open.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_ftell
+  INTEGER :: i
+  OPEN(10, FILE="temp.dat")
+  CALL ftell(10,i)
+  WRITE(*,*) i
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{FSEEK}
+@end table
+
+
+
+@node GAMMA
+@section @code{GAMMA} --- Gamma function
+@fnindex GAMMA
+@fnindex DGAMMA
+@cindex Gamma function
+@cindex Factorial function
+
+@table @asis
+@item @emph{Description}:
+@code{GAMMA(X)} computes Gamma (@math{\Gamma}) of @var{X}. For positive,
+integer values of @var{X} the Gamma function simplifies to the factorial
+function @math{\Gamma(x)=(x-1)!}.
+
+@tex
+$$
+\Gamma(x) = \int_0^\infty t^{x-1}{\rm e}^{-t}\,{\rm d}t
+$$
+@end tex
+
+@item @emph{Standard}:
+GNU Extension
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{X = GAMMA(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab Shall be of type @code{REAL} and neither zero
+nor a negative integer.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL} of the same kind as @var{X}.
+
+@item @emph{Example}:
+@smallexample
+program test_gamma
+  real :: x = 1.0
+  x = gamma(x) ! returns 1.0
+end program test_gamma
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name             @tab Argument         @tab Return type       @tab Standard
+@item @code{GAMMA(X)}  @tab @code{REAL(4) X} @tab @code{REAL(4)}    @tab GNU Extension
+@item @code{DGAMMA(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)}    @tab GNU Extension
+@end multitable
+
+@item @emph{See also}:
+Logarithm of the Gamma function: @ref{LGAMMA}
+
+@end table
+
+
+
+@node GERROR
+@section @code{GERROR} --- Get last system error message
+@fnindex GERROR
+@cindex system, error handling
+
+@table @asis
+@item @emph{Description}:
+Returns the system error message corresponding to the last system error.
+This resembles the functionality of @code{strerror(3)} in C.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL GERROR(RESULT)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{RESULT}  @tab Shall of type @code{CHARACTER(*)}.
+@end multitable
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_gerror
+  CHARACTER(len=100) :: msg
+  CALL gerror(msg)
+  WRITE(*,*) msg
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{IERRNO}, @ref{PERROR}
+@end table
+
+
+
+@node GETARG
+@section @code{GETARG} --- Get command line arguments
+@fnindex GETARG
+@cindex command-line arguments
+@cindex arguments, to program
+
+@table @asis
+@item @emph{Description}:
+Retrieve the @var{N}th argument that was passed on the
+command line when the containing program was invoked.
+
+This intrinsic routine is provided for backwards compatibility with 
+GNU Fortran 77.  In new code, programmers should consider the use of 
+the @ref{GET_COMMAND_ARGUMENT} intrinsic defined by the Fortran 2003 
+standard.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL GETARG(POS, VALUE)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{POS}   @tab Shall be of type @code{INTEGER} and not wider than
+the default integer kind; @math{@var{POS} \geq 0}
+@item @var{VALUE} @tab Shall be of type @code{CHARACTER(*)}. 
+@end multitable
+
+@item @emph{Return value}:
+After @code{GETARG} returns, the @var{VALUE} argument holds the
+@var{POS}th command line argument. If @var{VALUE} can not hold the
+argument, it is truncated to fit the length of @var{VALUE}. If there are
+less than @var{POS} arguments specified at the command line, @var{VALUE}
+will be filled with blanks. If @math{@var{POS} = 0}, @var{VALUE} is set
+to the name of the program (on systems that support this feature).
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_getarg
+  INTEGER :: i
+  CHARACTER(len=32) :: arg
+
+  DO i = 1, iargc()
+    CALL getarg(i, arg)
+    WRITE (*,*) arg
+  END DO
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+GNU Fortran 77 compatibility function: @ref{IARGC}
+
+F2003 functions and subroutines: @ref{GET_COMMAND}, @ref{GET_COMMAND_ARGUMENT},
+@ref{COMMAND_ARGUMENT_COUNT}
+@end table
+
+
+
+@node GET_COMMAND
+@section @code{GET_COMMAND} --- Get the entire command line
+@fnindex GET_COMMAND
+@cindex command-line arguments
+@cindex arguments, to program
+
+@table @asis
+@item @emph{Description}:
+Retrieve the entire command line that was used to invoke the program.
+
+@item @emph{Standard}:
+F2003
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL GET_COMMAND(CMD)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{CMD} @tab Shall be of type @code{CHARACTER(*)}. 
+@end multitable
+
+@item @emph{Return value}:
+Stores the entire command line that was used to invoke the program in @var{ARG}. 
+If @var{ARG} is not large enough, the command will be truncated. 
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_get_command
+  CHARACTER(len=255) :: cmd
+  CALL get_command(cmd)
+  WRITE (*,*) TRIM(cmd)
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{GET_COMMAND_ARGUMENT}, @ref{COMMAND_ARGUMENT_COUNT}
+@end table
+
+
+
+@node GET_COMMAND_ARGUMENT
+@section @code{GET_COMMAND_ARGUMENT} --- Get command line arguments
+@fnindex GET_COMMAND_ARGUMENT
+@cindex command-line arguments
+@cindex arguments, to program
+
+@table @asis
+@item @emph{Description}:
+Retrieve the @var{N}th argument that was passed on the
+command line when the containing program was invoked.
+
+@item @emph{Standard}:
+F2003
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL GET_COMMAND_ARGUMENT(N, ARG)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{N}   @tab Shall be of type @code{INTEGER(4)}, @math{@var{N} \geq 0}
+@item @var{ARG} @tab Shall be of type @code{CHARACTER(*)}. 
+@end multitable
+
+@item @emph{Return value}:
+After @code{GET_COMMAND_ARGUMENT} returns, the @var{ARG} argument holds the 
+@var{N}th command line argument. If @var{ARG} can not hold the argument, it is 
+truncated to fit the length of @var{ARG}. If there are less than @var{N}
+arguments specified at the command line, @var{ARG} will be filled with blanks. 
+If @math{@var{N} = 0}, @var{ARG} is set to the name of the program (on systems
+that support this feature).
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_get_command_argument
+  INTEGER :: i
+  CHARACTER(len=32) :: arg
+
+  i = 0
+  DO
+    CALL get_command_argument(i, arg)
+    IF (LEN_TRIM(arg) == 0) EXIT
+
+    WRITE (*,*) TRIM(arg)
+    i = i+1
+  END DO
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{GET_COMMAND}, @ref{COMMAND_ARGUMENT_COUNT}
+@end table
+
+
+
+@node GETCWD
+@section @code{GETCWD} --- Get current working directory
+@fnindex GETCWD
+@cindex system, working directory
+
+@table @asis
+@item @emph{Description}:
+Get current working directory.
+
+This intrinsic is provided in both subroutine and function forms; however,
+only one form can be used in any given program unit.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@code{CALL GETCWD(CWD [, STATUS])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{CWD}    @tab The type shall be @code{CHARACTER(*)}.
+@item @var{STATUS} @tab (Optional) status flag. Returns 0 on success, 
+                        a system specific and nonzero error code otherwise.
+@end multitable
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_getcwd
+  CHARACTER(len=255) :: cwd
+  CALL getcwd(cwd)
+  WRITE(*,*) TRIM(cwd)
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{CHDIR}
+@end table
+
+
+
+@node GETENV
+@section @code{GETENV} --- Get an environmental variable
+@fnindex GETENV
+@cindex environment variable
+
+@table @asis
+@item @emph{Description}:
+Get the @var{VALUE} of the environmental variable @var{ENVVAR}.
+
+This intrinsic routine is provided for backwards compatibility with 
+GNU Fortran 77.  In new code, programmers should consider the use of 
+the @ref{GET_ENVIRONMENT_VARIABLE} intrinsic defined by the Fortran
+2003 standard.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL GETENV(ENVVAR, VALUE)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{ENVVAR} @tab Shall be of type @code{CHARACTER(*)}. 
+@item @var{VALUE}  @tab Shall be of type @code{CHARACTER(*)}. 
+@end multitable
+
+@item @emph{Return value}:
+Stores the value of @var{ENVVAR} in @var{VALUE}. If @var{VALUE} is 
+not large enough to hold the data, it is truncated. If @var{ENVVAR}
+is not set, @var{VALUE} will be filled with blanks.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_getenv
+  CHARACTER(len=255) :: homedir
+  CALL getenv("HOME", homedir)
+  WRITE (*,*) TRIM(homedir)
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{GET_ENVIRONMENT_VARIABLE}
+@end table
+
+
+
+@node GET_ENVIRONMENT_VARIABLE
+@section @code{GET_ENVIRONMENT_VARIABLE} --- Get an environmental variable
+@fnindex GET_ENVIRONMENT_VARIABLE
+@cindex environment variable
+
+@table @asis
+@item @emph{Description}:
+Get the @var{VALUE} of the environmental variable @var{ENVVAR}.
+
+@item @emph{Standard}:
+F2003
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL GET_ENVIRONMENT_VARIABLE(ENVVAR, VALUE)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{ENVVAR} @tab Shall be of type @code{CHARACTER(*)}. 
+@item @var{VALUE}  @tab Shall be of type @code{CHARACTER(*)}. 
+@end multitable
+
+@item @emph{Return value}:
+Stores the value of @var{ENVVAR} in @var{VALUE}. If @var{VALUE} is 
+not large enough to hold the data, it is truncated. If @var{ENVVAR}
+is not set, @var{VALUE} will be filled with blanks.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_getenv
+  CHARACTER(len=255) :: homedir
+  CALL get_environment_variable("HOME", homedir)
+  WRITE (*,*) TRIM(homedir)
+END PROGRAM
+@end smallexample
+@end table
+
+
+
+@node GETGID
+@section @code{GETGID} --- Group ID function
+@fnindex GETGID
+@cindex system, group id
+
+@table @asis
+@item @emph{Description}:
+Returns the numerical group ID of the current process.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{RESULT = GETGID()}
+
+@item @emph{Return value}:
+The return value of @code{GETGID} is an @code{INTEGER} of the default
+kind.
+
+
+@item @emph{Example}:
+See @code{GETPID} for an example.
+
+@item @emph{See also}:
+@ref{GETPID}, @ref{GETUID}
+@end table
+
+
+
+@node GETLOG
+@section @code{GETLOG} --- Get login name
+@fnindex GETLOG
+@cindex system, login name
+@cindex login name
+
+@table @asis
+@item @emph{Description}:
+Gets the username under which the program is running.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL GETLOG(LOGIN)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{LOGIN} @tab Shall be of type @code{CHARACTER(*)}.
+@end multitable
+
+@item @emph{Return value}:
+Stores the current user name in @var{LOGIN}.  (On systems where POSIX
+functions @code{geteuid} and @code{getpwuid} are not available, and 
+the @code{getlogin} function is not implemented either, this will
+return a blank string.)
+
+@item @emph{Example}:
+@smallexample
+PROGRAM TEST_GETLOG
+  CHARACTER(32) :: login
+  CALL GETLOG(login)
+  WRITE(*,*) login
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{GETUID}
+@end table
+
+
+
+@node GETPID
+@section @code{GETPID} --- Process ID function
+@fnindex GETPID
+@cindex system, process id
+@cindex process id
+
+@table @asis
+@item @emph{Description}:
+Returns the numerical process identifier of the current process.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{RESULT = GETPID()}
+
+@item @emph{Return value}:
+The return value of @code{GETPID} is an @code{INTEGER} of the default
+kind.
+
+
+@item @emph{Example}:
+@smallexample
+program info
+  print *, "The current process ID is ", getpid()
+  print *, "Your numerical user ID is ", getuid()
+  print *, "Your numerical group ID is ", getgid()
+end program info
+@end smallexample
+
+@item @emph{See also}:
+@ref{GETGID}, @ref{GETUID}
+@end table
+
+
+
+@node GETUID
+@section @code{GETUID} --- User ID function
+@fnindex GETUID
+@cindex system, user id
+@cindex user id
+
+@table @asis
+@item @emph{Description}:
+Returns the numerical user ID of the current process.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{RESULT = GETUID()}
+
+@item @emph{Return value}:
+The return value of @code{GETUID} is an @code{INTEGER} of the default
+kind.
+
+
+@item @emph{Example}:
+See @code{GETPID} for an example.
+
+@item @emph{See also}:
+@ref{GETPID}, @ref{GETLOG}
+@end table
+
+
+
+@node GMTIME
+@section @code{GMTIME} --- Convert time to GMT info
+@fnindex GMTIME
+@cindex time, conversion to GMT info
+
+@table @asis
+@item @emph{Description}:
+Given a system time value @var{STIME} (as provided by the @code{TIME8()}
+intrinsic), fills @var{TARRAY} with values extracted from it appropriate
+to the UTC time zone (Universal Coordinated Time, also known in some
+countries as GMT, Greenwich Mean Time), using @code{gmtime(3)}.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL GMTIME(STIME, TARRAY)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{STIME}  @tab An @code{INTEGER(*)} scalar expression
+                        corresponding to a system time, with 
+                       @code{INTENT(IN)}.
+@item @var{TARRAY} @tab A default @code{INTEGER} array with 9 elements,
+                        with @code{INTENT(OUT)}.
+@end multitable
+
+@item @emph{Return value}:
+The elements of @var{TARRAY} are assigned as follows:
+@enumerate
+@item Seconds after the minute, range 0--59 or 0--61 to allow for leap
+      seconds
+@item Minutes after the hour, range 0--59
+@item Hours past midnight, range 0--23
+@item Day of month, range 0--31
+@item Number of months since January, range 0--12
+@item Years since 1900
+@item Number of days since Sunday, range 0--6
+@item Days since January 1
+@item Daylight savings indicator: positive if daylight savings is in
+      effect, zero if not, and negative if the information is not
+      available.
+@end enumerate
+
+@item @emph{See also}:
+@ref{CTIME}, @ref{LTIME}, @ref{TIME}, @ref{TIME8}
+
+@end table
+
+
+
+@node HOSTNM
+@section @code{HOSTNM} --- Get system host name
+@fnindex HOSTNM
+@cindex system, host name
+
+@table @asis
+@item @emph{Description}:
+Retrieves the host name of the system on which the program is running.
+
+This intrinsic is provided in both subroutine and function forms; however,
+only one form can be used in any given program unit.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{CALL HOSTNM(NAME[, STATUS])}
+@item @code{STATUS = HOSTNM(NAME)}
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{NAME}    @tab Shall of type @code{CHARACTER(*)}.
+@item @var{STATUS}  @tab (Optional) status flag of type @code{INTEGER}.
+                         Returns 0 on success, or a system specific error
+                         code otherwise.
+@end multitable
+
+@item @emph{Return value}:
+In either syntax, @var{NAME} is set to the current hostname if it can
+be obtained, or to a blank string otherwise.
+
+@end table
+
+
+
+@node HUGE
+@section @code{HUGE} --- Largest number of a kind
+@fnindex HUGE
+@cindex limits, largest number
+@cindex model representation, largest number
+
+@table @asis
+@item @emph{Description}:
+@code{HUGE(X)} returns the largest number that is not an infinity in
+the model of the type of @code{X}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = HUGE(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab Shall be of type @code{REAL} or @code{INTEGER}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of the same type and kind as @var{X}
+
+@item @emph{Example}:
+@smallexample
+program test_huge_tiny
+  print *, huge(0), huge(0.0), huge(0.0d0)
+  print *, tiny(0.0), tiny(0.0d0)
+end program test_huge_tiny
+@end smallexample
+@end table
+
+
+
+@node IACHAR
+@section @code{IACHAR} --- Code in @acronym{ASCII} collating sequence 
+@fnindex IACHAR
+@cindex @acronym{ASCII} collating sequence
+@cindex collating sequence, @acronym{ASCII}
+@cindex conversion, to integer
+
+@table @asis
+@item @emph{Description}:
+@code{IACHAR(C)} returns the code for the @acronym{ASCII} character
+in the first character position of @code{C}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = IACHAR(C [, KIND])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{C}    @tab Shall be a scalar @code{CHARACTER}, with @code{INTENT(IN)}
+@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
+                      expression indicating the kind parameter of
+                     the result.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER} and of kind @var{KIND}. If
+@var{KIND} is absent, the return value is of default integer kind.
+
+@item @emph{Example}:
+@smallexample
+program test_iachar
+  integer i
+  i = iachar(' ')
+end program test_iachar
+@end smallexample
+
+@item @emph{Note}:
+See @ref{ICHAR} for a discussion of converting between numerical values
+and formatted string representations.
+
+@item @emph{See also}:
+@ref{ACHAR}, @ref{CHAR}, @ref{ICHAR}
+
+@end table
+
+
+
+@node IAND
+@section @code{IAND} --- Bitwise logical and
+@fnindex IAND
+@cindex bitwise logical and
+@cindex logical and, bitwise
+
+@table @asis
+@item @emph{Description}:
+Bitwise logical @code{AND}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = IAND(I, J)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{I} @tab The type shall be @code{INTEGER(*)}.
+@item @var{J} @tab The type shall be @code{INTEGER(*)}, of the same
+kind as @var{I}.  (As a GNU extension, different kinds are also 
+permitted.)
+@end multitable
+
+@item @emph{Return value}:
+The return type is @code{INTEGER(*)}, of the same kind as the
+arguments.  (If the argument kinds differ, it is of the same kind as
+the larger argument.)
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_iand
+  INTEGER :: a, b
+  DATA a / Z'F' /, b / Z'3' /
+  WRITE (*,*) IAND(a, b)
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{IOR}, @ref{IEOR}, @ref{IBITS}, @ref{IBSET}, @ref{IBCLR}, @ref{NOT}
+
+@end table
+
+
+
+@node IARGC
+@section @code{IARGC} --- Get the number of command line arguments
+@fnindex IARGC
+@cindex command-line arguments
+@cindex command-line arguments, number of
+@cindex arguments, to program
+
+@table @asis
+@item @emph{Description}:
+@code{IARGC()} returns the number of arguments passed on the
+command line when the containing program was invoked.
+
+This intrinsic routine is provided for backwards compatibility with 
+GNU Fortran 77.  In new code, programmers should consider the use of 
+the @ref{COMMAND_ARGUMENT_COUNT} intrinsic defined by the Fortran 2003 
+standard.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{RESULT = IARGC()}
+
+@item @emph{Arguments}:
+None.
+
+@item @emph{Return value}:
+The number of command line arguments, type @code{INTEGER(4)}.
+
+@item @emph{Example}:
+See @ref{GETARG}
+
+@item @emph{See also}:
+GNU Fortran 77 compatibility subroutine: @ref{GETARG}
+
+F2003 functions and subroutines: @ref{GET_COMMAND}, @ref{GET_COMMAND_ARGUMENT},
+@ref{COMMAND_ARGUMENT_COUNT}
+@end table
+
+
+
+@node IBCLR
+@section @code{IBCLR} --- Clear bit
+@fnindex IBCLR
+@cindex bits, unset
+@cindex bits, clear
+
+@table @asis
+@item @emph{Description}:
+@code{IBCLR} returns the value of @var{I} with the bit at position
+@var{POS} set to zero.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = IBCLR(I, POS)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{I} @tab The type shall be @code{INTEGER(*)}.
+@item @var{POS} @tab The type shall be @code{INTEGER(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER(*)} and of the same kind as
+@var{I}.
+
+@item @emph{See also}:
+@ref{IBITS}, @ref{IBSET}, @ref{IAND}, @ref{IOR}, @ref{IEOR}, @ref{MVBITS}
+
+@end table
+
+
+
+@node IBITS
+@section @code{IBITS} --- Bit extraction
+@fnindex IBITS
+@cindex bits, get
+@cindex bits, extract
+
+@table @asis
+@item @emph{Description}:
+@code{IBITS} extracts a field of length @var{LEN} from @var{I},
+starting from bit position @var{POS} and extending left for @var{LEN}
+bits.  The result is right-justified and the remaining bits are
+zeroed.  The value of @code{POS+LEN} must be less than or equal to the
+value @code{BIT_SIZE(I)}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = IBITS(I, POS, LEN)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{I} @tab The type shall be @code{INTEGER(*)}.
+@item @var{POS} @tab The type shall be @code{INTEGER(*)}.
+@item @var{LEN} @tab The type shall be @code{INTEGER(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER(*)} and of the same kind as
+@var{I}.
+
+@item @emph{See also}:
+@ref{BIT_SIZE}, @ref{IBCLR}, @ref{IBSET}, @ref{IAND}, @ref{IOR}, @ref{IEOR}
+@end table
+
+
+
+@node IBSET
+@section @code{IBSET} --- Set bit
+@fnindex IBSET
+@cindex bits, set
+
+@table @asis
+@item @emph{Description}:
+@code{IBSET} returns the value of @var{I} with the bit at position
+@var{POS} set to one.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = IBSET(I, POS)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{I} @tab The type shall be @code{INTEGER(*)}.
+@item @var{POS} @tab The type shall be @code{INTEGER(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER(*)} and of the same kind as
+@var{I}.
+
+@item @emph{See also}:
+@ref{IBCLR}, @ref{IBITS}, @ref{IAND}, @ref{IOR}, @ref{IEOR}, @ref{MVBITS}
+
+@end table
+
+
+
+@node ICHAR
+@section @code{ICHAR} --- Character-to-integer conversion function
+@fnindex ICHAR
+@cindex conversion, to integer
+
+@table @asis
+@item @emph{Description}:
+@code{ICHAR(C)} returns the code for the character in the first character
+position of @code{C} in the system's native character set.
+The correspondence between characters and their codes is not necessarily
+the same across different GNU Fortran implementations.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = ICHAR(C [, KIND])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{C}    @tab Shall be a scalar @code{CHARACTER}, with @code{INTENT(IN)}
+@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
+                      expression indicating the kind parameter of
+                     the result.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER} and of kind @var{KIND}. If
+@var{KIND} is absent, the return value is of default integer kind.
+
+@item @emph{Example}:
+@smallexample
+program test_ichar
+  integer i
+  i = ichar(' ')
+end program test_ichar
+@end smallexample
+
+@item @emph{Note}:
+No intrinsic exists to convert between a numeric value and a formatted
+character string representation -- for instance, given the
+@code{CHARACTER} value @code{'154'}, obtaining an @code{INTEGER} or
+@code{REAL} value with the value 154, or vice versa. Instead, this
+functionality is provided by internal-file I/O, as in the following
+example:
+@smallexample
+program read_val
+  integer value
+  character(len=10) string, string2
+  string = '154'
+  
+  ! Convert a string to a numeric value
+  read (string,'(I10)') value
+  print *, value
+  
+  ! Convert a value to a formatted string
+  write (string2,'(I10)') value
+  print *, string2
+end program read_val
+@end smallexample
+
+@item @emph{See also}:
+@ref{ACHAR}, @ref{CHAR}, @ref{IACHAR}
+
+@end table
+
+
+
+@node IDATE
+@section @code{IDATE} --- Get current local time subroutine (day/month/year) 
+@fnindex IDATE
+@cindex date, current
+@cindex current date
+
+@table @asis
+@item @emph{Description}:
+@code{IDATE(TARRAY)} Fills @var{TARRAY} with the numerical values at the  
+current local time. The day (in the range 1-31), month (in the range 1-12), 
+and year appear in elements 1, 2, and 3 of @var{TARRAY}, respectively. 
+The year has four significant digits.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL IDATE(TARRAY)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{TARRAY} @tab The type shall be @code{INTEGER, DIMENSION(3)} and
+the kind shall be the default integer kind.
+@end multitable
+
+@item @emph{Return value}:
+Does not return.
+
+@item @emph{Example}:
+@smallexample
+program test_idate
+  integer, dimension(3) :: tarray
+  call idate(tarray)
+  print *, tarray(1)
+  print *, tarray(2)
+  print *, tarray(3)
+end program test_idate
+@end smallexample
+@end table
+
+
+
+@node IEOR
+@section @code{IEOR} --- Bitwise logical exclusive or
+@fnindex IEOR
+@cindex bitwise logical exclusive or
+@cindex logical exclusive or, bitwise
+
+@table @asis
+@item @emph{Description}:
+@code{IEOR} returns the bitwise boolean exclusive-OR of @var{I} and
+@var{J}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = IEOR(I, J)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{I} @tab The type shall be @code{INTEGER(*)}.
+@item @var{J} @tab The type shall be @code{INTEGER(*)}, of the same
+kind as @var{I}.  (As a GNU extension, different kinds are also 
+permitted.)
+@end multitable
+
+@item @emph{Return value}:
+The return type is @code{INTEGER(*)}, of the same kind as the
+arguments.  (If the argument kinds differ, it is of the same kind as
+the larger argument.)
+
+@item @emph{See also}:
+@ref{IOR}, @ref{IAND}, @ref{IBITS}, @ref{IBSET}, @ref{IBCLR}, @ref{NOT}
+@end table
+
+
+
+@node IERRNO
+@section @code{IERRNO} --- Get the last system error number
+@fnindex IERRNO
+@cindex system, error handling
+
+@table @asis
+@item @emph{Description}:
+Returns the last system error number, as given by the C @code{errno()}
+function.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{RESULT = IERRNO()}
+
+@item @emph{Arguments}:
+None.
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER} and of the default integer
+kind.
+
+@item @emph{See also}:
+@ref{PERROR}
+@end table
+
+
+
+@node INDEX
+@section @code{INDEX} --- Position of a substring within a string
+@fnindex INDEX
+@cindex substring position
+@cindex string, find substring
+
+@table @asis
+@item @emph{Description}:
+Returns the position of the start of the first occurrence of string
+@var{SUBSTRING} as a substring in @var{STRING}, counting from one.  If
+@var{SUBSTRING} is not present in @var{STRING}, zero is returned.  If 
+the @var{BACK} argument is present and true, the return value is the
+start of the last occurrence rather than the first.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = INDEX(STRING, SUBSTRING [, BACK [, KIND]])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{STRING} @tab Shall be a scalar @code{CHARACTER(*)}, with
+@code{INTENT(IN)}
+@item @var{SUBSTRING} @tab Shall be a scalar @code{CHARACTER(*)}, with
+@code{INTENT(IN)}
+@item @var{BACK} @tab (Optional) Shall be a scalar @code{LOGICAL(*)}, with
+@code{INTENT(IN)}
+@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
+                      expression indicating the kind parameter of
+                     the result.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER} and of kind @var{KIND}. If
+@var{KIND} is absent, the return value is of default integer kind.
+
+@item @emph{See also}:
+@ref{SCAN}, @ref{VERIFY}
+@end table
+
+
+
+@node INT
+@section @code{INT} --- Convert to integer type
+@fnindex INT
+@fnindex IFIX
+@fnindex IDINT
+@cindex conversion, to integer
+
+@table @asis
+@item @emph{Description}:
+Convert to integer type
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = INT(A [, KIND))}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{A}    @tab Shall be of type @code{INTEGER(*)},
+                      @code{REAL(*)}, or @code{COMPLEX(*)}.
+@item @var{KIND} @tab (Optional) An @code{INTEGER(*)} initialization
+                      expression indicating the kind parameter of
+                     the result.
+@end multitable
+
+@item @emph{Return value}:
+These functions return a @code{INTEGER(*)} variable or array under 
+the following rules: 
+
+@table @asis
+@item (A)
+If @var{A} is of type @code{INTEGER(*)}, @code{INT(A) = A} 
+@item (B)
+If @var{A} is of type @code{REAL(*)} and @math{|A| < 1}, @code{INT(A)} equals @code{0}. 
+If @math{|A| \geq 1}, then @code{INT(A)} equals the largest integer that does not exceed 
+the range of @var{A} and whose sign is the same as the sign of @var{A}.
+@item (C)
+If @var{A} is of type @code{COMPLEX(*)}, rule B is applied to the real part of @var{A}.
+@end table
+
+@item @emph{Example}:
+@smallexample
+program test_int
+  integer :: i = 42
+  complex :: z = (-3.7, 1.0)
+  print *, int(i)
+  print *, int(z), int(z,8)
+end program
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name             @tab Argument            @tab Return type       @tab Standard
+@item @code{IFIX(A)}   @tab @code{REAL(4) A}    @tab @code{INTEGER}    @tab F77 and later
+@item @code{IDINT(A)}  @tab @code{REAL(8) A}    @tab @code{INTEGER}    @tab F77 and later
+@end multitable
+
+@end table
+
+
+
+@node INT2
+@section @code{INT2} --- Convert to 16-bit integer type
+@fnindex INT2
+@fnindex SHORT
+@cindex conversion, to integer
+
+@table @asis
+@item @emph{Description}:
+Convert to a @code{KIND=2} integer type. This is equivalent to the
+standard @code{INT} intrinsic with an optional argument of
+@code{KIND=2}, and is only included for backwards compatibility.
+
+The @code{SHORT} intrinsic is equivalent to @code{INT2}.
+
+@item @emph{Standard}:
+GNU extension.
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = INT2(A)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{A}    @tab Shall be of type @code{INTEGER(*)},
+                      @code{REAL(*)}, or @code{COMPLEX(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is a @code{INTEGER(2)} variable.
+
+@item @emph{See also}:
+@ref{INT}, @ref{INT8}, @ref{LONG}
+@end table
+
+
+
+@node INT8
+@section @code{INT8} --- Convert to 64-bit integer type
+@fnindex INT8
+@cindex conversion, to integer
+
+@table @asis
+@item @emph{Description}:
+Convert to a @code{KIND=8} integer type. This is equivalent to the
+standard @code{INT} intrinsic with an optional argument of
+@code{KIND=8}, and is only included for backwards compatibility.
+
+@item @emph{Standard}:
+GNU extension.
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = INT8(A)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{A}    @tab Shall be of type @code{INTEGER(*)},
+                      @code{REAL(*)}, or @code{COMPLEX(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is a @code{INTEGER(8)} variable.
+
+@item @emph{See also}:
+@ref{INT}, @ref{INT2}, @ref{LONG}
+@end table
+
+
+
+@node IOR
+@section @code{IOR} --- Bitwise logical or
+@fnindex IOR
+@cindex bitwise logical or
+@cindex logical or, bitwise
+
+@table @asis
+@item @emph{Description}:
+@code{IOR} returns the bitwise boolean inclusive-OR of @var{I} and
+@var{J}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = IOR(I, J)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{I} @tab The type shall be @code{INTEGER(*)}.
+@item @var{J} @tab The type shall be @code{INTEGER(*)}, of the same
+kind as @var{I}.  (As a GNU extension, different kinds are also 
+permitted.)
+@end multitable
+
+@item @emph{Return value}:
+The return type is @code{INTEGER(*)}, of the same kind as the
+arguments.  (If the argument kinds differ, it is of the same kind as
+the larger argument.)
+
+@item @emph{See also}:
+@ref{IEOR}, @ref{IAND}, @ref{IBITS}, @ref{IBSET}, @ref{IBCLR}, @ref{NOT}
+@end table
+
+
+
+@node IRAND
+@section @code{IRAND} --- Integer pseudo-random number
+@fnindex IRAND
+@cindex random number generation
+
+@table @asis
+@item @emph{Description}:
+@code{IRAND(FLAG)} returns a pseudo-random number from a uniform
+distribution between 0 and a system-dependent limit (which is in most
+cases 2147483647). If @var{FLAG} is 0, the next number
+in the current sequence is returned; if @var{FLAG} is 1, the generator
+is restarted by @code{CALL SRAND(0)}; if @var{FLAG} has any other value,
+it is used as a new seed with @code{SRAND}.
+
+This intrinsic routine is provided for backwards compatibility with
+GNU Fortran 77. It implements a simple modulo generator as provided 
+by @command{g77}. For new code, one should consider the use of 
+@ref{RANDOM_NUMBER} as it implements a superior algorithm.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{RESULT = IRAND(FLAG)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{FLAG} @tab Shall be a scalar @code{INTEGER} of kind 4.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of @code{INTEGER(kind=4)} type.
+
+@item @emph{Example}:
+@smallexample
+program test_irand
+  integer,parameter :: seed = 86456
+  
+  call srand(seed)
+  print *, irand(), irand(), irand(), irand()
+  print *, irand(seed), irand(), irand(), irand()
+end program test_irand
+@end smallexample
+
+@end table
+
+
+
+@node IS_IOSTAT_END
+@section @code{IS_IOSTAT_END} --- Test for end-of-file value
+@fnindex IS_IOSTAT_END
+@cindex IOSTAT, end of file
+
+@table @asis
+@item @emph{Description}:
+@code{IS_IOSTAT_END} tests whether an variable has the value of the I/O
+status ``end of file''. The function is equivalent to comparing the variable
+with the @code{IOSTAT_END} parameter of the intrinsic module
+@code{ISO_FORTRAN_ENV}.
+
+@item @emph{Standard}:
+Fortran 2003.
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = IS_IOSTAT_END(I)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{I} @tab Shall be of the type @code{INTEGER}.
+@end multitable
+
+@item @emph{Return value}:
+Returns a @code{LOGICAL} of the default kind, which @code{.TRUE.} if
+@var{I} has the value which indicates an end of file condition for
+IOSTAT= specifiers, and is @code{.FALSE.} otherwise.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM iostat
+  IMPLICIT NONE
+  INTEGER :: stat, i
+  OPEN(88, FILE='test.dat')
+  READ(88, *, IOSTAT=stat) i
+  IF(IS_IOSTAT_END(stat)) STOP 'END OF FILE'
+END PROGRAM
+@end smallexample
+@end table
+
+
+
+@node IS_IOSTAT_EOR
+@section @code{IS_IOSTAT_EOR} --- Test for end-of-record value
+@fnindex IS_IOSTAT_EOR
+@cindex IOSTAT, end of record
+
+@table @asis
+@item @emph{Description}:
+@code{IS_IOSTAT_EOR} tests whether an variable has the value of the I/O
+status ``end of record''. The function is equivalent to comparing the
+variable with the @code{IOSTAT_EOR} parameter of the intrinsic module
+@code{ISO_FORTRAN_ENV}.
+
+@item @emph{Standard}:
+Fortran 2003.
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = IS_IOSTAT_EOR(I)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{I} @tab Shall be of the type @code{INTEGER}.
+@end multitable
+
+@item @emph{Return value}:
+Returns a @code{LOGICAL} of the default kind, which @code{.TRUE.} if
+@var{I} has the value which indicates an end of file condition for
+IOSTAT= specifiers, and is @code{.FALSE.} otherwise.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM iostat
+  IMPLICIT NONE
+  INTEGER :: stat, i(50)
+  OPEN(88, FILE='test.dat', FORM='UNFORMATTED')
+  READ(88, IOSTAT=stat) i
+  IF(IS_IOSTAT_EOR(stat)) STOP 'END OF RECORD'
+END PROGRAM
+@end smallexample
+@end table
+
+
+
+@node ISATTY
+@section @code{ISATTY} --- Whether a unit is a terminal device.
+@fnindex ISATTY
+@cindex system, terminal
+
+@table @asis
+@item @emph{Description}:
+Determine whether a unit is connected to a terminal device.
+
+@item @emph{Standard}:
+GNU extension.
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{RESULT = ISATTY(UNIT)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{UNIT} @tab Shall be a scalar @code{INTEGER(*)}.
+@end multitable
+
+@item @emph{Return value}:
+Returns @code{.TRUE.} if the @var{UNIT} is connected to a terminal 
+device, @code{.FALSE.} otherwise.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_isatty
+  INTEGER(kind=1) :: unit
+  DO unit = 1, 10
+    write(*,*) isatty(unit=unit)
+  END DO
+END PROGRAM
+@end smallexample
+@item @emph{See also}:
+@ref{TTYNAM}
+@end table
+
+
+
+@node ISHFT
+@section @code{ISHFT} --- Shift bits
+@fnindex ISHFT
+@cindex bits, shift
+
+@table @asis
+@item @emph{Description}:
+@code{ISHFT} returns a value corresponding to @var{I} with all of the
+bits shifted @var{SHIFT} places.  A value of @var{SHIFT} greater than
+zero corresponds to a left shift, a value of zero corresponds to no
+shift, and a value less than zero corresponds to a right shift.  If the
+absolute value of @var{SHIFT} is greater than @code{BIT_SIZE(I)}, the
+value is undefined.  Bits shifted out from the left end or right end are
+lost; zeros are shifted in from the opposite end.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = ISHFT(I, SHIFT)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{I} @tab The type shall be @code{INTEGER(*)}.
+@item @var{SHIFT} @tab The type shall be @code{INTEGER(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER(*)} and of the same kind as
+@var{I}.
+
+@item @emph{See also}:
+@ref{ISHFTC}
+@end table
+
+
+
+@node ISHFTC
+@section @code{ISHFTC} --- Shift bits circularly
+@fnindex ISHFTC
+@cindex bits, shift circular
+
+@table @asis
+@item @emph{Description}:
+@code{ISHFTC} returns a value corresponding to @var{I} with the
+rightmost @var{SIZE} bits shifted circularly @var{SHIFT} places; that
+is, bits shifted out one end are shifted into the opposite end.  A value
+of @var{SHIFT} greater than zero corresponds to a left shift, a value of
+zero corresponds to no shift, and a value less than zero corresponds to
+a right shift.  The absolute value of @var{SHIFT} must be less than
+@var{SIZE}.  If the @var{SIZE} argument is omitted, it is taken to be
+equivalent to @code{BIT_SIZE(I)}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = ISHFTC(I, SHIFT [, SIZE])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{I} @tab The type shall be @code{INTEGER(*)}.
+@item @var{SHIFT} @tab The type shall be @code{INTEGER(*)}.
+@item @var{SIZE} @tab (Optional) The type shall be @code{INTEGER(*)};
+the value must be greater than zero and less than or equal to
+@code{BIT_SIZE(I)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER(*)} and of the same kind as
+@var{I}.
+
+@item @emph{See also}:
+@ref{ISHFT}
+@end table
+
+
+
+@node ISNAN
+@section @code{ISNAN} --- Test for a NaN
+@fnindex ISNAN
+@cindex IEEE, ISNAN
+
+@table @asis
+@item @emph{Description}:
+@code{ISNAN} tests whether a floating-point value is an IEEE
+Not-a-Number (NaN).
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{ISNAN(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab Variable of the type @code{REAL}.
+
+@end multitable
+
+@item @emph{Return value}:
+Returns a default-kind @code{LOGICAL}. The returned value is @code{TRUE}
+if @var{X} is a NaN and @code{FALSE} otherwise.
+
+@item @emph{Example}:
+@smallexample
+program test_nan
+  implicit none
+  real :: x
+  x = -1.0
+  x = sqrt(x)
+  if (isnan(x)) stop '"x" is a NaN'
+end program test_nan
+@end smallexample
+@end table
+
+
+
+@node ITIME
+@section @code{ITIME} --- Get current local time subroutine (hour/minutes/seconds) 
+@fnindex ITIME
+@cindex time, current
+@cindex current time
+
+@table @asis
+@item @emph{Description}:
+@code{IDATE(TARRAY)} Fills @var{TARRAY} with the numerical values at the  
+current local time. The hour (in the range 1-24), minute (in the range 1-60), 
+and seconds (in the range 1-60) appear in elements 1, 2, and 3 of @var{TARRAY}, 
+respectively.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL ITIME(TARRAY)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{TARRAY} @tab The type shall be @code{INTEGER, DIMENSION(3)}
+and the kind shall be the default integer kind.
+@end multitable
+
+@item @emph{Return value}:
+Does not return.
+
+
+@item @emph{Example}:
+@smallexample
+program test_itime
+  integer, dimension(3) :: tarray
+  call itime(tarray)
+  print *, tarray(1)
+  print *, tarray(2)
+  print *, tarray(3)
+end program test_itime
+@end smallexample
+@end table
+
+
+
+@node KILL
+@section @code{KILL} --- Send a signal to a process
+@fnindex KILL
+
+@table @asis
+@item @emph{Description}:
+@item @emph{Standard}:
+Sends the signal specified by @var{SIGNAL} to the process @var{PID}.
+See @code{kill(2)}.
+
+This intrinsic is provided in both subroutine and function forms; however,
+only one form can be used in any given program unit.
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@code{CALL KILL(PID, SIGNAL [, STATUS])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{PID} @tab Shall be a scalar @code{INTEGER}, with
+@code{INTENT(IN)}
+@item @var{SIGNAL} @tab Shall be a scalar @code{INTEGER}, with
+@code{INTENT(IN)}
+@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)} or
+                        @code{INTEGER(8)}. Returns 0 on success, or a
+                        system-specific error code otherwise.
+@end multitable
+
+@item @emph{See also}:
+@ref{ABORT}, @ref{EXIT}
+@end table
+
+
+
+@node KIND
+@section @code{KIND} --- Kind of an entity
+@fnindex KIND
+@cindex kind
+
+@table @asis
+@item @emph{Description}:
+@code{KIND(X)} returns the kind value of the entity @var{X}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{K = KIND(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab Shall be of type @code{LOGICAL}, @code{INTEGER},
+@code{REAL}, @code{COMPLEX} or @code{CHARACTER}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is a scalar of type @code{INTEGER} and of the default
+integer kind.
+
+@item @emph{Example}:
+@smallexample
+program test_kind
+  integer,parameter :: kc = kind(' ')
+  integer,parameter :: kl = kind(.true.)
+
+  print *, "The default character kind is ", kc
+  print *, "The default logical kind is ", kl
+end program test_kind
+@end smallexample
+
+@end table
+
+
+
+@node LBOUND
+@section @code{LBOUND} --- Lower dimension bounds of an array
+@fnindex LBOUND
+@cindex array, lower bound
+
+@table @asis
+@item @emph{Description}:
+Returns the lower bounds of an array, or a single lower bound
+along the @var{DIM} dimension.
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = LBOUND(ARRAY [, DIM [, KIND]])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{ARRAY} @tab Shall be an array, of any type.
+@item @var{DIM} @tab (Optional) Shall be a scalar @code{INTEGER(*)}.
+@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
+                      expression indicating the kind parameter of
+                     the result.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER} and of kind @var{KIND}. If
+@var{KIND} is absent, the return value is of default integer kind.
+If @var{DIM} is absent, the result is an array of the lower bounds of
+@var{ARRAY}.  If @var{DIM} is present, the result is a scalar
+corresponding to the lower bound of the array along that dimension.  If
+@var{ARRAY} is an expression rather than a whole array or array
+structure component, or if it has a zero extent along the relevant
+dimension, the lower bound is taken to be 1.
+
+@item @emph{See also}:
+@ref{UBOUND}
+@end table
+
+
+
+@node LEN
+@section @code{LEN} --- Length of a character entity
+@fnindex LEN
+@cindex string, length
+
+@table @asis
+@item @emph{Description}:
+Returns the length of a character string.  If @var{STRING} is an array,
+the length of an element of @var{STRING} is returned.  Note that
+@var{STRING} need not be defined when this intrinsic is invoked, since
+only the length, not the content, of @var{STRING} is needed.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{L = LEN(STRING [, KIND])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{STRING} @tab Shall be a scalar or array of type
+@code{CHARACTER(*)}, with @code{INTENT(IN)}
+@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
+                      expression indicating the kind parameter of
+                     the result.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER} and of kind @var{KIND}. If
+@var{KIND} is absent, the return value is of default integer kind.
+
+@item @emph{See also}:
+@ref{LEN_TRIM}, @ref{ADJUSTL}, @ref{ADJUSTR}
+@end table
+
+
+
+@node LEN_TRIM
+@section @code{LEN_TRIM} --- Length of a character entity without trailing blank characters
+@fnindex LEN_TRIM
+@cindex string, length, without trailing whitespace
+
+@table @asis
+@item @emph{Description}:
+Returns the length of a character string, ignoring any trailing blanks.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = LEN_TRIM(STRING [, KIND])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{STRING} @tab Shall be a scalar of type @code{CHARACTER(*)},
+with @code{INTENT(IN)}
+@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
+                      expression indicating the kind parameter of
+                     the result.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER} and of kind @var{KIND}. If
+@var{KIND} is absent, the return value is of default integer kind.
+
+@item @emph{See also}:
+@ref{LEN}, @ref{ADJUSTL}, @ref{ADJUSTR}
+@end table
+
+
+
+@node LGAMMA
+@section @code{LGAMMA} --- Logarithm of the Gamma function
+@fnindex GAMMA
+@fnindex ALGAMA
+@fnindex DLGAMA
+@cindex Gamma function, logarithm of
+
+@table @asis
+@item @emph{Description}:
+@code{GAMMA(X)} computes the natural logrithm of the absolute value of the
+Gamma (@math{\Gamma}) function.
+
+@item @emph{Standard}:
+GNU Extension
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{X = LGAMMA(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab Shall be of type @code{REAL} and neither zero
+nor a negative integer.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL} of the same kind as @var{X}.
+
+@item @emph{Example}:
+@smallexample
+program test_log_gamma
+  real :: x = 1.0
+  x = lgamma(x) ! returns 0.0
+end program test_log_gamma
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name             @tab Argument         @tab Return type       @tab Standard
+@item @code{LGAMMA(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)}    @tab GNU Extension
+@item @code{ALGAMA(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)}    @tab GNU Extension
+@item @code{DLGAMA(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)}    @tab GNU Extension
+@end multitable
+
+@item @emph{See also}:
+Gamma function: @ref{GAMMA}
+
+@end table
+
+
+
+@node LGE
+@section @code{LGE} --- Lexical greater than or equal
+@fnindex LGE
+@cindex lexical comparison of strings
+@cindex string, comparison
+
+@table @asis
+@item @emph{Description}:
+Determines whether one string is lexically greater than or equal to
+another string, where the two strings are interpreted as containing
+ASCII character codes.  If the String A and String B are not the same
+length, the shorter is compared as if spaces were appended to it to form
+a value that has the same length as the longer.
+
+In general, the lexical comparison intrinsics @code{LGE}, @code{LGT},
+@code{LLE}, and @code{LLT} differ from the corresponding intrinsic
+operators @code{.GE.}, @code{.GT.}, @code{.LE.}, and @code{.LT.}, in
+that the latter use the processor's character ordering (which is not
+ASCII on some targets), whereas the former always use the ASCII
+ordering.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = LGE(STRING_A, STRING_B)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{STRING_A} @tab Shall be of default @code{CHARACTER} type.
+@item @var{STRING_B} @tab Shall be of default @code{CHARACTER} type.
+@end multitable
+
+@item @emph{Return value}:
+Returns @code{.TRUE.} if @code{STRING_A >= STRING_B}, and @code{.FALSE.}
+otherwise, based on the ASCII ordering.
+
+@item @emph{See also}:
+@ref{LGT}, @ref{LLE}, @ref{LLT}
+@end table
+
+
+
+@node LGT
+@section @code{LGT} --- Lexical greater than
+@fnindex LGT
+@cindex lexical comparison of strings
+@cindex string, comparison
+
+@table @asis
+@item @emph{Description}:
+Determines whether one string is lexically greater than another string,
+where the two strings are interpreted as containing ASCII character
+codes.  If the String A and String B are not the same length, the
+shorter is compared as if spaces were appended to it to form a value
+that has the same length as the longer.
+
+In general, the lexical comparison intrinsics @code{LGE}, @code{LGT},
+@code{LLE}, and @code{LLT} differ from the corresponding intrinsic
+operators @code{.GE.}, @code{.GT.}, @code{.LE.}, and @code{.LT.}, in
+that the latter use the processor's character ordering (which is not
+ASCII on some targets), whereas the former always use the ASCII
+ordering.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = LGT(STRING_A, STRING_B)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{STRING_A} @tab Shall be of default @code{CHARACTER} type.
+@item @var{STRING_B} @tab Shall be of default @code{CHARACTER} type.
+@end multitable
+
+@item @emph{Return value}:
+Returns @code{.TRUE.} if @code{STRING_A > STRING_B}, and @code{.FALSE.}
+otherwise, based on the ASCII ordering.
+
+@item @emph{See also}:
+@ref{LGE}, @ref{LLE}, @ref{LLT}
+@end table
+
+
+
+@node LINK
+@section @code{LINK} --- Create a hard link
+@fnindex LINK
+@cindex file system, create link
+@cindex file system, hard link
+
+@table @asis
+@item @emph{Description}:
+Makes a (hard) link from file @var{PATH1} to @var{PATH2}. A null
+character (@code{CHAR(0)}) can be used to mark the end of the names in
+@var{PATH1} and @var{PATH2}; otherwise, trailing blanks in the file
+names are ignored.  If the @var{STATUS} argument is supplied, it
+contains 0 on success or a nonzero error code upon return; see
+@code{link(2)}.
+
+This intrinsic is provided in both subroutine and function forms;
+however, only one form can be used in any given program unit.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{CALL LINK(PATH1, PATH2 [, STATUS])}
+@item @code{STATUS = LINK(PATH1, PATH2)}
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{PATH1} @tab Shall be of default @code{CHARACTER} type.
+@item @var{PATH2} @tab Shall be of default @code{CHARACTER} type.
+@item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
+@end multitable
+
+@item @emph{See also}:
+@ref{SYMLNK}, @ref{UNLINK}
+@end table
+
+
+
+@node LLE
+@section @code{LLE} --- Lexical less than or equal
+@fnindex LLE
+@cindex lexical comparison of strings
+@cindex string, comparison
+
+@table @asis
+@item @emph{Description}:
+Determines whether one string is lexically less than or equal to another
+string, where the two strings are interpreted as containing ASCII
+character codes.  If the String A and String B are not the same length,
+the shorter is compared as if spaces were appended to it to form a value
+that has the same length as the longer.
+
+In general, the lexical comparison intrinsics @code{LGE}, @code{LGT},
+@code{LLE}, and @code{LLT} differ from the corresponding intrinsic
+operators @code{.GE.}, @code{.GT.}, @code{.LE.}, and @code{.LT.}, in
+that the latter use the processor's character ordering (which is not
+ASCII on some targets), whereas the former always use the ASCII
+ordering.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = LLE(STRING_A, STRING_B)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{STRING_A} @tab Shall be of default @code{CHARACTER} type.
+@item @var{STRING_B} @tab Shall be of default @code{CHARACTER} type.
+@end multitable
+
+@item @emph{Return value}:
+Returns @code{.TRUE.} if @code{STRING_A <= STRING_B}, and @code{.FALSE.}
+otherwise, based on the ASCII ordering.
+
+@item @emph{See also}:
+@ref{LGE}, @ref{LGT}, @ref{LLT}
+@end table
+
+
+
+@node LLT
+@section @code{LLT} --- Lexical less than
+@fnindex LLT
+@cindex lexical comparison of strings
+@cindex string, comparison
+
+@table @asis
+@item @emph{Description}:
+Determines whether one string is lexically less than another string,
+where the two strings are interpreted as containing ASCII character
+codes.  If the String A and String B are not the same length, the
+shorter is compared as if spaces were appended to it to form a value
+that has the same length as the longer.
+
+In general, the lexical comparison intrinsics @code{LGE}, @code{LGT},
+@code{LLE}, and @code{LLT} differ from the corresponding intrinsic
+operators @code{.GE.}, @code{.GT.}, @code{.LE.}, and @code{.LT.}, in
+that the latter use the processor's character ordering (which is not
+ASCII on some targets), whereas the former always use the ASCII
+ordering.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = LLT(STRING_A, STRING_B)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{STRING_A} @tab Shall be of default @code{CHARACTER} type.
+@item @var{STRING_B} @tab Shall be of default @code{CHARACTER} type.
+@end multitable
+
+@item @emph{Return value}:
+Returns @code{.TRUE.} if @code{STRING_A < STRING_B}, and @code{.FALSE.}
+otherwise, based on the ASCII ordering.
+
+@item @emph{See also}:
+@ref{LGE}, @ref{LGT}, @ref{LLE}
+@end table
+
+
+
+@node LNBLNK
+@section @code{LNBLNK} --- Index of the last non-blank character in a string
+@fnindex LNBLNK
+@cindex string, find non-blank character
+
+@table @asis
+@item @emph{Description}:
+Returns the length of a character string, ignoring any trailing blanks.
+This is identical to the standard @code{LEN_TRIM} intrinsic, and is only
+included for backwards compatibility.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = LNBLNK(STRING)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{STRING} @tab Shall be a scalar of type @code{CHARACTER(*)},
+with @code{INTENT(IN)}
+@end multitable
+
+@item @emph{Return value}:
+The return value is of @code{INTEGER(kind=4)} type.
+
+@item @emph{See also}:
+@ref{INDEX}, @ref{LEN_TRIM}
+@end table
+
+
+
+@node LOC
+@section @code{LOC} --- Returns the address of a variable
+@fnindex LOC
+@cindex location of a variable in memory
+
+@table @asis
+@item @emph{Description}:
+@code{LOC(X)} returns the address of @var{X} as an integer.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = LOC(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab Variable of any type.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER}, with a @code{KIND}
+corresponding to the size (in bytes) of a memory address on the target
+machine.
+
+@item @emph{Example}:
+@smallexample
+program test_loc
+  integer :: i
+  real :: r
+  i = loc(r)
+  print *, i
+end program test_loc
+@end smallexample
+@end table
+
+
+
+@node LOG
+@section @code{LOG} --- Logarithm function
+@fnindex LOG
+@fnindex ALOG
+@fnindex DLOG
+@fnindex CLOG
+@fnindex ZLOG
+@fnindex CDLOG
+@cindex exponential function, inverse
+@cindex logarithmic function
+
+@table @asis
+@item @emph{Description}:
+@code{LOG(X)} computes the logarithm of @var{X}.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = LOG(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)} or
+@code{COMPLEX(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)} or @code{COMPLEX(*)}.
+The kind type parameter is the same as @var{X}.
+
+@item @emph{Example}:
+@smallexample
+program test_log
+  real(8) :: x = 1.0_8
+  complex :: z = (1.0, 2.0)
+  x = log(x)
+  z = log(z)
+end program test_log
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument          @tab Return type       @tab Standard
+@item @code{ALOG(X)}  @tab @code{REAL(4) X}  @tab @code{REAL(4)}    @tab f95, gnu
+@item @code{DLOG(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab f95, gnu
+@item @code{CLOG(X)}  @tab @code{COMPLEX(4) X}  @tab @code{COMPLEX(4)}    @tab f95, gnu
+@item @code{ZLOG(X)}  @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab f95, gnu
+@item @code{CDLOG(X)} @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab f95, gnu
+@end multitable
+@end table
+
+
+
+@node LOG10
+@section @code{LOG10} --- Base 10 logarithm function
+@fnindex LOG10
+@fnindex ALOG10
+@fnindex DLOG10
+@cindex exponential function, inverse
+@cindex logarithmic function
+
+@table @asis
+@item @emph{Description}:
+@code{LOG10(X)} computes the base 10 logarithm of @var{X}.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = LOG10(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)} or @code{COMPLEX(*)}.
+The kind type parameter is the same as @var{X}.
+
+@item @emph{Example}:
+@smallexample
+program test_log10
+  real(8) :: x = 10.0_8
+  x = log10(x)
+end program test_log10
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument          @tab Return type       @tab Standard
+@item @code{ALOG10(X)}  @tab @code{REAL(4) X}  @tab @code{REAL(4)}    @tab F95 and later
+@item @code{DLOG10(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab F95 and later
+@end multitable
+@end table
+
+
+
+@node LOGICAL
+@section @code{LOGICAL} --- Convert to logical type
+@fnindex LOGICAL
+@cindex conversion, to logical
+
+@table @asis
+@item @emph{Description}:
+Converts one kind of @code{LOGICAL} variable to another.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = LOGICAL(L [, KIND])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{L}    @tab The type shall be @code{LOGICAL(*)}.
+@item @var{KIND} @tab (Optional) An @code{INTEGER(*)} initialization
+                      expression indicating the kind parameter of
+                     the result.
+@end multitable
+
+@item @emph{Return value}:
+The return value is a @code{LOGICAL} value equal to @var{L}, with a
+kind corresponding to @var{KIND}, or of the default logical kind if
+@var{KIND} is not given.
+
+@item @emph{See also}:
+@ref{INT}, @ref{REAL}, @ref{CMPLX}
+@end table
+
+
+
+@node LONG
+@section @code{LONG} --- Convert to integer type
+@fnindex LONG
+@cindex conversion, to integer
+
+@table @asis
+@item @emph{Description}:
+Convert to a @code{KIND=4} integer type, which is the same size as a C
+@code{long} integer.  This is equivalent to the standard @code{INT}
+intrinsic with an optional argument of @code{KIND=4}, and is only
+included for backwards compatibility.
+
+@item @emph{Standard}:
+GNU extension.
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = LONG(A)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{A}    @tab Shall be of type @code{INTEGER(*)},
+                      @code{REAL(*)}, or @code{COMPLEX(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is a @code{INTEGER(4)} variable.
+
+@item @emph{See also}:
+@ref{INT}, @ref{INT2}, @ref{INT8}
+@end table
+
+
+
+@node LSHIFT
+@section @code{LSHIFT} --- Left shift bits
+@fnindex LSHIFT
+@cindex bits, shift left
+
+@table @asis
+@item @emph{Description}:
+@code{LSHIFT} returns a value corresponding to @var{I} with all of the
+bits shifted left by @var{SHIFT} places.  If the absolute value of
+@var{SHIFT} is greater than @code{BIT_SIZE(I)}, the value is undefined. 
+Bits shifted out from the left end are lost; zeros are shifted in from
+the opposite end.
+
+This function has been superseded by the @code{ISHFT} intrinsic, which
+is standard in Fortran 95 and later.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = LSHIFT(I, SHIFT)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{I} @tab The type shall be @code{INTEGER(*)}.
+@item @var{SHIFT} @tab The type shall be @code{INTEGER(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER(*)} and of the same kind as
+@var{I}.
+
+@item @emph{See also}:
+@ref{ISHFT}, @ref{ISHFTC}, @ref{RSHIFT}
+
+@end table
+
+
+
+@node LSTAT
+@section @code{LSTAT} --- Get file status
+@fnindex LSTAT
+@cindex file system, file status
+
+@table @asis
+@item @emph{Description}:
+@code{LSTAT} is identical to @ref{STAT}, except that if path is a symbolic link, 
+then the link itself is statted, not the file that it refers to.
+
+The elements in @code{BUFF} are the same as described by @ref{STAT}.
+
+This intrinsic is provided in both subroutine and function forms; however,
+only one form can be used in any given program unit.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@code{CALL LSTAT(FILE, BUFF [, STATUS])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{FILE}   @tab The type shall be @code{CHARACTER(*)}, a valid path within the file system.
+@item @var{BUFF}   @tab The type shall be @code{INTEGER(4), DIMENSION(13)}.
+@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)}. Returns 0 
+                        on success and a system specific error code otherwise.
+@end multitable
+
+@item @emph{Example}:
+See @ref{STAT} for an example.
+
+@item @emph{See also}:
+To stat an open file: @ref{FSTAT}, to stat a file: @ref{STAT}
+@end table
+
+
+
+@node LTIME
+@section @code{LTIME} --- Convert time to local time info
+@fnindex LTIME
+@cindex time, conversion to local time info
+
+@table @asis
+@item @emph{Description}:
+Given a system time value @var{STIME} (as provided by the @code{TIME8()}
+intrinsic), fills @var{TARRAY} with values extracted from it appropriate
+to the local time zone using @code{localtime(3)}.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL LTIME(STIME, TARRAY)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{STIME}  @tab An @code{INTEGER(*)} scalar expression
+                        corresponding to a system time, with 
+                       @code{INTENT(IN)}.
+@item @var{TARRAY} @tab A default @code{INTEGER} array with 9 elements,
+                        with @code{INTENT(OUT)}.
+@end multitable
+
+@item @emph{Return value}:
+The elements of @var{TARRAY} are assigned as follows:
+@enumerate
+@item Seconds after the minute, range 0--59 or 0--61 to allow for leap
+      seconds
+@item Minutes after the hour, range 0--59
+@item Hours past midnight, range 0--23
+@item Day of month, range 0--31
+@item Number of months since January, range 0--12
+@item Years since 1900
+@item Number of days since Sunday, range 0--6
+@item Days since January 1
+@item Daylight savings indicator: positive if daylight savings is in
+      effect, zero if not, and negative if the information is not
+      available.
+@end enumerate
+
+@item @emph{See also}:
+@ref{CTIME}, @ref{GMTIME}, @ref{TIME}, @ref{TIME8}
+
+@end table
+
+
+
+@node MALLOC
+@section @code{MALLOC} --- Allocate dynamic memory
+@fnindex MALLOC
+@cindex pointer, cray
+
+@table @asis
+@item @emph{Description}:
+@code{MALLOC(SIZE)} allocates @var{SIZE} bytes of dynamic memory and
+returns the address of the allocated memory. The @code{MALLOC} intrinsic
+is an extension intended to be used with Cray pointers, and is provided
+in GNU Fortran to allow the user to compile legacy code. For new code
+using Fortran 95 pointers, the memory allocation intrinsic is
+@code{ALLOCATE}.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{PTR = MALLOC(SIZE)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{SIZE} @tab The type shall be @code{INTEGER(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER(K)}, with @var{K} such that
+variables of type @code{INTEGER(K)} have the same size as
+C pointers (@code{sizeof(void *)}).
+
+@item @emph{Example}:
+The following example demonstrates the use of @code{MALLOC} and
+@code{FREE} with Cray pointers. This example is intended to run on
+32-bit systems, where the default integer kind is suitable to store
+pointers; on 64-bit systems, ptr_x would need to be declared as
+@code{integer(kind=8)}.
+
+@smallexample
+program test_malloc
+  integer i
+  integer ptr_x
+  real*8 x(*), z
+  pointer(ptr_x,x)
+
+  ptr_x = malloc(20*8)
+  do i = 1, 20
+    x(i) = sqrt(1.0d0 / i)
+  end do
+  z = 0
+  do i = 1, 20
+    z = z + x(i)
+    print *, z
+  end do
+  call free(ptr_x)
+end program test_malloc
+@end smallexample
+
+@item @emph{See also}:
+@ref{FREE}
+@end table
+
+
+
+@node MATMUL
+@section @code{MATMUL} --- matrix multiplication
+@fnindex MATMUL
+@cindex matrix multiplication
+@cindex product, matrix
+
+@table @asis
+@item @emph{Description}:
+Performs a matrix multiplication on numeric or logical arguments.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{RESULT = MATMUL(MATRIX_A, MATRIX_B)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{MATRIX_A} @tab An array of @code{INTEGER(*)},
+                          @code{REAL(*)}, @code{COMPLEX(*)}, or
+                         @code{LOGICAL(*)} type, with a rank of
+                         one or two.
+@item @var{MATRIX_B} @tab An array of @code{INTEGER(*)},
+                          @code{REAL(*)}, or @code{COMPLEX(*)} type if
+                         @var{MATRIX_A} is of a numeric type;
+                         otherwise, an array of @code{LOGICAL(*)}
+                         type. The rank shall be one or two, and the
+                         first (or only) dimension of @var{MATRIX_B}
+                         shall be equal to the last (or only)
+                         dimension of @var{MATRIX_A}.
+@end multitable
+
+@item @emph{Return value}:
+The matrix product of @var{MATRIX_A} and @var{MATRIX_B}.  The type and
+kind of the result follow the usual type and kind promotion rules, as
+for the @code{*} or @code{.AND.} operators.
+
+@item @emph{See also}:
+@end table
+
+
+
+@node MAX
+@section @code{MAX} --- Maximum value of an argument list
+@fnindex MAX
+@fnindex MAX0
+@fnindex AMAX0
+@fnindex MAX1
+@fnindex AMAX1
+@fnindex DMAX1
+@cindex maximum value
+
+@table @asis
+@item @emph{Description}:
+Returns the argument with the largest (most positive) value.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = MAX(A1, A2 [, A3 [, ...]])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{A1}          @tab The type shall be @code{INTEGER(*)} or
+                             @code{REAL(*)}.
+@item @var{A2}, @var{A3}, ... @tab An expression of the same type and kind
+                             as @var{A1}.  (As a GNU extension, 
+                            arguments of different kinds are
+                            permitted.)
+@end multitable
+
+@item @emph{Return value}:
+The return value corresponds to the maximum value among the arguments,
+and has the same type and kind as the first argument.
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name             @tab Argument            @tab Return type         @tab Standard
+@item @code{MAX0(I)}   @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)}   @tab F77 and later
+@item @code{AMAX0(I)}  @tab @code{INTEGER(4) I} @tab @code{REAL(MAX(X))} @tab F77 and later
+@item @code{MAX1(X)}   @tab @code{REAL(*) X}    @tab @code{INT(MAX(X))}  @tab F77 and later
+@item @code{AMAX1(X)}  @tab @code{REAL(4)    X} @tab @code{REAL(4)}      @tab F77 and later
+@item @code{DMAX1(X)}  @tab @code{REAL(8)    X} @tab @code{REAL(8)}      @tab F77 and later
+@end multitable
+
+@item @emph{See also}:
+@ref{MAXLOC} @ref{MAXVAL}, @ref{MIN}
+
+@end table
+
+
+
+@node MAXEXPONENT
+@section @code{MAXEXPONENT} --- Maximum exponent of a real kind
+@fnindex MAXEXPONENT
+@cindex model representation, maximum exponent
+
+@table @asis
+@item @emph{Description}:
+@code{MAXEXPONENT(X)} returns the maximum exponent in the model of the
+type of @code{X}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = MAXEXPONENT(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab Shall be of type @code{REAL}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER} and of the default integer
+kind.
+
+@item @emph{Example}:
+@smallexample
+program exponents
+  real(kind=4) :: x
+  real(kind=8) :: y
+
+  print *, minexponent(x), maxexponent(x)
+  print *, minexponent(y), maxexponent(y)
+end program exponents
+@end smallexample
+@end table
+
+
+
+@node MAXLOC
+@section @code{MAXLOC} --- Location of the maximum value within an array
+@fnindex MAXLOC
+@cindex array, location of maximum element
+
+@table @asis
+@item @emph{Description}:
+Determines the location of the element in the array with the maximum
+value, or, if the @var{DIM} argument is supplied, determines the
+locations of the maximum element along each row of the array in the
+@var{DIM} direction.  If @var{MASK} is present, only the elements for
+which @var{MASK} is @code{.TRUE.} are considered.  If more than one
+element in the array has the maximum value, the location returned is
+that of the first such element in array element order.  If the array has
+zero size, or all of the elements of @var{MASK} are @code{.FALSE.}, then
+the result is an array of zeroes.  Similarly, if @var{DIM} is supplied
+and all of the elements of @var{MASK} along a given row are zero, the
+result value for that row is zero.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{RESULT = MAXLOC(ARRAY, DIM [, MASK])}
+@item @code{RESULT = MAXLOC(ARRAY [, MASK])}
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER(*)},
+                       @code{REAL(*)}, or @code{CHARACTER(*)}.
+@item @var{DIM}   @tab (Optional) Shall be a scalar of type
+                       @code{INTEGER(*)}, with a value between one
+                      and the rank of @var{ARRAY}, inclusive.  It
+                      may not be an optional dummy argument.
+@item @var{MASK}  @tab Shall be an array of type @code{LOGICAL(*)},
+                       and conformable with @var{ARRAY}.
+@end multitable
+
+@item @emph{Return value}:
+If @var{DIM} is absent, the result is a rank-one array with a length
+equal to the rank of @var{ARRAY}.  If @var{DIM} is present, the result
+is an array with a rank one less than the rank of @var{ARRAY}, and a
+size corresponding to the size of @var{ARRAY} with the @var{DIM}
+dimension removed.  If @var{DIM} is present and @var{ARRAY} has a rank
+of one, the result is a scalar.  In all cases, the result is of default
+@code{INTEGER} type.
+
+@item @emph{See also}:
+@ref{MAX}, @ref{MAXVAL}
+
+@end table
+
+
+
+@node MAXVAL
+@section @code{MAXVAL} --- Maximum value of an array
+@fnindex MAXVAL
+@cindex array, maximum value
+@cindex maximum value
+
+@table @asis
+@item @emph{Description}:
+Determines the maximum value of the elements in an array value, or, if
+the @var{DIM} argument is supplied, determines the maximum value along
+each row of the array in the @var{DIM} direction.  If @var{MASK} is
+present, only the elements for which @var{MASK} is @code{.TRUE.} are
+considered.  If the array has zero size, or all of the elements of
+@var{MASK} are @code{.FALSE.}, then the result is the most negative
+number of the type and kind of @var{ARRAY} if @var{ARRAY} is numeric, or
+a string of nulls if @var{ARRAY} is of character type.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{RESULT = MAXVAL(ARRAY, DIM [, MASK])}
+@item @code{RESULT = MAXVAL(ARRAY [, MASK])}
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER(*)},
+                       @code{REAL(*)}, or @code{CHARACTER(*)}.
+@item @var{DIM}   @tab (Optional) Shall be a scalar of type
+                       @code{INTEGER(*)}, with a value between one
+                      and the rank of @var{ARRAY}, inclusive.  It
+                      may not be an optional dummy argument.
+@item @var{MASK}  @tab Shall be an array of type @code{LOGICAL(*)},
+                       and conformable with @var{ARRAY}.
+@end multitable
+
+@item @emph{Return value}:
+If @var{DIM} is absent, or if @var{ARRAY} has a rank of one, the result
+is a scalar.  If @var{DIM} is present, the result is an array with a
+rank one less than the rank of @var{ARRAY}, and a size corresponding to
+the size of @var{ARRAY} with the @var{DIM} dimension removed.  In all
+cases, the result is of the same type and kind as @var{ARRAY}.
+
+@item @emph{See also}:
+@ref{MAX}, @ref{MAXLOC}
+@end table
+
+
+
+@node MCLOCK
+@section @code{MCLOCK} --- Time function
+@fnindex MCLOCK
+@cindex time, clock ticks
+@cindex clock ticks
+
+@table @asis
+@item @emph{Description}:
+Returns the number of clock ticks since the start of the process, based
+on the UNIX function @code{clock(3)}.
+
+This intrinsic is not fully portable, such as to systems with 32-bit
+@code{INTEGER} types but supporting times wider than 32 bits. Therefore,
+the values returned by this intrinsic might be, or become, negative, or
+numerically less than previous values, during a single run of the
+compiled program.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{RESULT = MCLOCK()}
+
+@item @emph{Return value}:
+The return value is a scalar of type @code{INTEGER(4)}, equal to the
+number of clock ticks since the start of the process, or @code{-1} if
+the system does not support @code{clock(3)}.
+
+@item @emph{See also}:
+@ref{CTIME}, @ref{GMTIME}, @ref{LTIME}, @ref{MCLOCK}, @ref{TIME}
+
+@end table
+
+
+
+@node MCLOCK8
+@section @code{MCLOCK8} --- Time function (64-bit)
+@fnindex MCLOCK8
+@cindex time, clock ticks
+@cindex clock ticks
+
+@table @asis
+@item @emph{Description}:
+Returns the number of clock ticks since the start of the process, based
+on the UNIX function @code{clock(3)}.
+
+@emph{Warning:} this intrinsic does not increase the range of the timing
+values over that returned by @code{clock(3)}. On a system with a 32-bit
+@code{clock(3)}, @code{MCLOCK8()} will return a 32-bit value, even though
+it is converted to a 64-bit @code{INTEGER(8)} value. That means
+overflows of the 32-bit value can still occur. Therefore, the values
+returned by this intrinsic might be or become negative or numerically
+less than previous values during a single run of the compiled program.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{RESULT = MCLOCK8()}
+
+@item @emph{Return value}:
+The return value is a scalar of type @code{INTEGER(8)}, equal to the
+number of clock ticks since the start of the process, or @code{-1} if
+the system does not support @code{clock(3)}.
+
+@item @emph{See also}:
+@ref{CTIME}, @ref{GMTIME}, @ref{LTIME}, @ref{MCLOCK}, @ref{TIME8}
+
+@end table
+
+
+
+@node MERGE
+@section @code{MERGE} --- Merge variables
+@fnindex MERGE
+@cindex array, merge arrays
+@cindex array, combine arrays
+
+@table @asis
+@item @emph{Description}:
+Select values from two arrays according to a logical mask.  The result
+is equal to @var{TSOURCE} if @var{MASK} is @code{.TRUE.}, or equal to
+@var{FSOURCE} if it is @code{.FALSE.}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = MERGE(TSOURCE, FSOURCE, MASK)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{TSOURCE} @tab May be of any type.
+@item @var{FSOURCE} @tab Shall be of the same type and type parameters
+                         as @var{TSOURCE}.
+@item @var{MASK}    @tab Shall be of type @code{LOGICAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The result is of the same type and type parameters as @var{TSOURCE}.
+
+@end table
+
+
+
+@node MIN
+@section @code{MIN} --- Minimum value of an argument list
+@fnindex MIN
+@fnindex MIN0
+@fnindex AMIN0
+@fnindex MIN1
+@fnindex AMIN1
+@fnindex DMIN1
+@cindex minimum value
+
+@table @asis
+@item @emph{Description}:
+Returns the argument with the smallest (most negative) value.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = MIN(A1, A2 [, A3, ...])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{A1}          @tab The type shall be @code{INTEGER(*)} or
+                             @code{REAL(*)}.
+@item @var{A2}, @var{A3}, ... @tab An expression of the same type and kind
+                             as @var{A1}.  (As a GNU extension, 
+                            arguments of different kinds are
+                            permitted.)
+@end multitable
+
+@item @emph{Return value}:
+The return value corresponds to the maximum value among the arguments,
+and has the same type and kind as the first argument.
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name             @tab Argument            @tab Return type         @tab Standard
+@item @code{MIN0(I)}   @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)}   @tab F77 and later
+@item @code{AMIN0(I)}  @tab @code{INTEGER(4) I} @tab @code{REAL(MIN(X))} @tab F77 and later
+@item @code{MIN1(X)}   @tab @code{REAL(*) X}    @tab @code{INT(MIN(X))}  @tab F77 and later
+@item @code{AMIN1(X)}  @tab @code{REAL(4)    X} @tab @code{REAL(4)}      @tab F77 and later
+@item @code{DMIN1(X)}  @tab @code{REAL(8)    X} @tab @code{REAL(8)}      @tab F77 and later
+@end multitable
+
+@item @emph{See also}:
+@ref{MAX}, @ref{MINLOC}, @ref{MINVAL}
+@end table
+
+
+
+@node MINEXPONENT
+@section @code{MINEXPONENT} --- Minimum exponent of a real kind
+@fnindex MINEXPONENT
+@cindex model representation, minimum exponent
+
+@table @asis
+@item @emph{Description}:
+@code{MINEXPONENT(X)} returns the minimum exponent in the model of the
+type of @code{X}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = MINEXPONENT(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab Shall be of type @code{REAL}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER} and of the default integer
+kind.
+
+@item @emph{Example}:
+See @code{MAXEXPONENT} for an example.
+@end table
+
+
+
+@node MINLOC
+@section @code{MINLOC} --- Location of the minimum value within an array
+@fnindex MINLOC
+@cindex array, location of minimum element
+
+@table @asis
+@item @emph{Description}:
+Determines the location of the element in the array with the minimum
+value, or, if the @var{DIM} argument is supplied, determines the
+locations of the minimum element along each row of the array in the
+@var{DIM} direction.  If @var{MASK} is present, only the elements for
+which @var{MASK} is @code{.TRUE.} are considered.  If more than one
+element in the array has the minimum value, the location returned is
+that of the first such element in array element order.  If the array has
+zero size, or all of the elements of @var{MASK} are @code{.FALSE.}, then
+the result is an array of zeroes.  Similarly, if @var{DIM} is supplied
+and all of the elements of @var{MASK} along a given row are zero, the
+result value for that row is zero.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{RESULT = MINLOC(ARRAY, DIM [, MASK])}
+@item @code{RESULT = MINLOC(ARRAY [, MASK])}
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER(*)},
+                       @code{REAL(*)}, or @code{CHARACTER(*)}.
+@item @var{DIM}   @tab (Optional) Shall be a scalar of type
+                       @code{INTEGER(*)}, with a value between one
+                      and the rank of @var{ARRAY}, inclusive.  It
+                      may not be an optional dummy argument.
+@item @var{MASK}  @tab Shall be an array of type @code{LOGICAL(*)},
+                       and conformable with @var{ARRAY}.
+@end multitable
+
+@item @emph{Return value}:
+If @var{DIM} is absent, the result is a rank-one array with a length
+equal to the rank of @var{ARRAY}.  If @var{DIM} is present, the result
+is an array with a rank one less than the rank of @var{ARRAY}, and a
+size corresponding to the size of @var{ARRAY} with the @var{DIM}
+dimension removed.  If @var{DIM} is present and @var{ARRAY} has a rank
+of one, the result is a scalar.  In all cases, the result is of default
+@code{INTEGER} type.
+
+@item @emph{See also}:
+@ref{MIN}, @ref{MINVAL}
+
+@end table
+
+
+
+@node MINVAL
+@section @code{MINVAL} --- Minimum value of an array
+@fnindex MINVAL
+@cindex array, minimum value
+@cindex minimum value
+
+@table @asis
+@item @emph{Description}:
+Determines the minimum value of the elements in an array value, or, if
+the @var{DIM} argument is supplied, determines the minimum value along
+each row of the array in the @var{DIM} direction.  If @var{MASK} is
+present, only the elements for which @var{MASK} is @code{.TRUE.} are
+considered.  If the array has zero size, or all of the elements of
+@var{MASK} are @code{.FALSE.}, then the result is @code{HUGE(ARRAY)} if
+@var{ARRAY} is numeric, or a string of @code{CHAR(255)} characters if
+@var{ARRAY} is of character type.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{RESULT = MINVAL(ARRAY, DIM [, MASK])}
+@item @code{RESULT = MINVAL(ARRAY [, MASK])}
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER(*)},
+                       @code{REAL(*)}, or @code{CHARACTER(*)}.
+@item @var{DIM}   @tab (Optional) Shall be a scalar of type
+                       @code{INTEGER(*)}, with a value between one
+                      and the rank of @var{ARRAY}, inclusive.  It
+                      may not be an optional dummy argument.
+@item @var{MASK}  @tab Shall be an array of type @code{LOGICAL(*)},
+                       and conformable with @var{ARRAY}.
+@end multitable
+
+@item @emph{Return value}:
+If @var{DIM} is absent, or if @var{ARRAY} has a rank of one, the result
+is a scalar.  If @var{DIM} is present, the result is an array with a
+rank one less than the rank of @var{ARRAY}, and a size corresponding to
+the size of @var{ARRAY} with the @var{DIM} dimension removed.  In all
+cases, the result is of the same type and kind as @var{ARRAY}.
+
+@item @emph{See also}:
+@ref{MIN}, @ref{MINLOC}
+
+@end table
+
+
+
+@node MOD
+@section @code{MOD} --- Remainder function
+@fnindex MOD
+@fnindex AMOD
+@fnindex DMOD
+@cindex remainder
+@cindex division, remainder
+
+@table @asis
+@item @emph{Description}:
+@code{MOD(A,P)} computes the remainder of the division of A by P. It is
+calculated as @code{A - (INT(A/P) * P)}.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = MOD(A, P)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{A} @tab Shall be a scalar of type @code{INTEGER} or @code{REAL}
+@item @var{P} @tab Shall be a scalar of the same type as @var{A} and not
+equal to zero
+@end multitable
+
+@item @emph{Return value}:
+The kind of the return value is the result of cross-promoting
+the kinds of the arguments.
+
+@item @emph{Example}:
+@smallexample
+program test_mod
+  print *, mod(17,3)
+  print *, mod(17.5,5.5)
+  print *, mod(17.5d0,5.5)
+  print *, mod(17.5,5.5d0)
+
+  print *, mod(-17,3)
+  print *, mod(-17.5,5.5)
+  print *, mod(-17.5d0,5.5)
+  print *, mod(-17.5,5.5d0)
+
+  print *, mod(17,-3)
+  print *, mod(17.5,-5.5)
+  print *, mod(17.5d0,-5.5)
+  print *, mod(17.5,-5.5d0)
+end program test_mod
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name             @tab Arguments      @tab Return type    @tab Standard
+@item @code{AMOD(A,P)} @tab @code{REAL(4)} @tab @code{REAL(4)} @tab F95 and later
+@item @code{DMOD(A,P)} @tab @code{REAL(8)} @tab @code{REAL(8)} @tab F95 and later
+@end multitable
+@end table
+
+
+
+@node MODULO
+@section @code{MODULO} --- Modulo function
+@fnindex MODULO
+@cindex modulo
+@cindex division, modulo
+
+@table @asis
+@item @emph{Description}:
+@code{MODULO(A,P)} computes the @var{A} modulo @var{P}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = MODULO(A, P)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{A} @tab Shall be a scalar of type @code{INTEGER} or @code{REAL}
+@item @var{P} @tab Shall be a scalar of the same type and kind as @var{A}
+@end multitable
+
+@item @emph{Return value}:
+The type and kind of the result are those of the arguments.
+@table @asis
+@item If @var{A} and @var{P} are of type @code{INTEGER}:
+@code{MODULO(A,P)} has the value @var{R} such that @code{A=Q*P+R}, where
+@var{Q} is an integer and @var{R} is between 0 (inclusive) and @var{P}
+(exclusive).
+@item If @var{A} and @var{P} are of type @code{REAL}:
+@code{MODULO(A,P)} has the value of @code{A - FLOOR (A / P) * P}.
+@end table
+In all cases, if @var{P} is zero the result is processor-dependent.
+
+@item @emph{Example}:
+@smallexample
+program test_modulo
+  print *, modulo(17,3)
+  print *, modulo(17.5,5.5)
+
+  print *, modulo(-17,3)
+  print *, modulo(-17.5,5.5)
+
+  print *, modulo(17,-3)
+  print *, modulo(17.5,-5.5)
+end program
+@end smallexample
+
+@end table
+
+
+
+@node MOVE_ALLOC
+@section @code{MOVE_ALLOC} --- Move allocation from one object to another
+@fnindex MOVE_ALLOC
+@cindex moving allocation
+@cindex allocation, moving
+
+@table @asis
+@item @emph{Description}:
+@code{MOVE_ALLOC(SRC, DEST)} moves the allocation from @var{SRC} to
+@var{DEST}.  @var{SRC} will become deallocated in the process.
+
+@item @emph{Standard}:
+F2003 and later
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL MOVE_ALLOC(SRC, DEST)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{SRC}  @tab @code{ALLOCATABLE}, @code{INTENT(INOUT)}, may be
+                      of any type and kind.
+@item @var{DEST} @tab @code{ALLOCATABLE}, @code{INTENT(OUT)}, shall be
+                      of the same type, kind and rank as @var{SRC}
+@end multitable
+
+@item @emph{Return value}:
+None
+
+@item @emph{Example}:
+@smallexample
+program test_move_alloc
+    integer, allocatable :: a(:), b(:)
+
+    allocate(a(3))
+    a = [ 1, 2, 3 ]
+    call move_alloc(a, b)
+    print *, allocated(a), allocated(b)
+    print *, b
+end program test_move_alloc
+@end smallexample
+@end table
+
+
+
+@node MVBITS
+@section @code{MVBITS} --- Move bits from one integer to another
+@fnindex MVBITS
+@cindex bits, move
+
+@table @asis
+@item @emph{Description}:
+Moves @var{LEN} bits from positions @var{FROMPOS} through
+@code{FROMPOS+LEN-1} of @var{FROM} to positions @var{TOPOS} through
+@code{TOPOS+LEN-1} of @var{TO}. The portion of argument @var{TO} not
+affected by the movement of bits is unchanged. The values of
+@code{FROMPOS+LEN-1} and @code{TOPOS+LEN-1} must be less than
+@code{BIT_SIZE(FROM)}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental subroutine
+
+@item @emph{Syntax}:
+@code{CALL MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{FROM}    @tab The type shall be @code{INTEGER(*)}.
+@item @var{FROMPOS} @tab The type shall be @code{INTEGER(*)}.
+@item @var{LEN}     @tab The type shall be @code{INTEGER(*)}.
+@item @var{TO}      @tab The type shall be @code{INTEGER(*)}, of the
+                         same kind as @var{FROM}.
+@item @var{TOPOS}   @tab The type shall be @code{INTEGER(*)}.
+@end multitable
+
+@item @emph{See also}:
+@ref{IBCLR}, @ref{IBSET}, @ref{IBITS}, @ref{IAND}, @ref{IOR}, @ref{IEOR}
+@end table
+
+
+
+@node NEAREST
+@section @code{NEAREST} --- Nearest representable number
+@fnindex NEAREST
+@cindex real number, nearest different
+@cindex floating point, nearest different
+
+@table @asis
+@item @emph{Description}:
+@code{NEAREST(X, S)} returns the processor-representable number nearest
+to @code{X} in the direction indicated by the sign of @code{S}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = NEAREST(X, S)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab Shall be of type @code{REAL}.
+@item @var{S} @tab (Optional) shall be of type @code{REAL} and
+not equal to zero.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of the same type as @code{X}. If @code{S} is
+positive, @code{NEAREST} returns the processor-representable number
+greater than @code{X} and nearest to it. If @code{S} is negative,
+@code{NEAREST} returns the processor-representable number smaller than
+@code{X} and nearest to it.
+
+@item @emph{Example}:
+@smallexample
+program test_nearest
+  real :: x, y
+  x = nearest(42.0, 1.0)
+  y = nearest(42.0, -1.0)
+  write (*,"(3(G20.15))") x, y, x - y
+end program test_nearest
+@end smallexample
+@end table
+
+
+
+@node NEW_LINE
+@section @code{NEW_LINE} --- New line character
+@fnindex NEW_LINE
+@cindex newline
+@cindex output, newline
+
+@table @asis
+@item @emph{Description}:
+@code{NEW_LINE(C)} returns the new-line character.
+
+@item @emph{Standard}:
+F2003 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = NEW_LINE(C)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{C}    @tab The argument shall be a scalar or array of the
+                      type @code{CHARACTER}.
+@end multitable
+
+@item @emph{Return value}:
+Returns a @var{CHARACTER} scalar of length one with the new-line character of
+the same kind as parameter @var{C}.
+
+@item @emph{Example}:
+@smallexample
+program newline
+  implicit none
+  write(*,'(A)') 'This is record 1.'//NEW_LINE('A')//'This is record 2.'
+end program newline
+@end smallexample
+@end table
+
+
+
+@node NINT
+@section @code{NINT} --- Nearest whole number
+@fnindex NINT
+@fnindex IDNINT
+@cindex rounding, nearest whole number
+
+@table @asis
+@item @emph{Description}:
+@code{NINT(X)} rounds its argument to the nearest whole number.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = NINT(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X}    @tab The type of the argument shall be @code{REAL}.
+@end multitable
+
+@item @emph{Return value}:
+Returns @var{A} with the fractional portion of its magnitude eliminated by
+rounding to the nearest whole number and with its sign preserved,
+converted to an @code{INTEGER} of the default kind.
+
+@item @emph{Example}:
+@smallexample
+program test_nint
+  real(4) x4
+  real(8) x8
+  x4 = 1.234E0_4
+  x8 = 4.321_8
+  print *, nint(x4), idnint(x8)
+end program test_nint
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .25 .25 .25
+@item Name             @tab Argument         @tab Standard
+@item @code{IDNINT(X)} @tab @code{REAL(8)}   @tab F95 and later
+@end multitable
+
+@item @emph{See also}:
+@ref{CEILING}, @ref{FLOOR}
+
+@end table
+
+
+
+@node NOT
+@section @code{NOT} --- Logical negation
+@fnindex NOT
+@cindex bits, negate
+@cindex bitwise logical not
+@cindex logical not, bitwise
+
+@table @asis
+@item @emph{Description}:
+@code{NOT} returns the bitwise boolean inverse of @var{I}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = NOT(I)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{I} @tab The type shall be @code{INTEGER(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return type is @code{INTEGER(*)}, of the same kind as the
+argument.
+
+@item @emph{See also}:
+@ref{IAND}, @ref{IEOR}, @ref{IOR}, @ref{IBITS}, @ref{IBSET}, @ref{IBCLR}
+
+@end table
+
+
+
+@node NULL
+@section @code{NULL} --- Function that returns an disassociated pointer
+@fnindex NULL
+@cindex pointer, status
+@cindex pointer, disassociated
+
+@table @asis
+@item @emph{Description}:
+Returns a disassociated pointer.
+
+If @var{MOLD} is present, a dissassociated pointer of the same type is
+returned, otherwise the type is determined by context.
+
+In Fortran 95, @var{MOLD} is optional. Please note that F2003 includes
+cases where it is required.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{PTR => NULL([MOLD])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{MOLD} @tab (Optional) shall be a pointer of any association
+status and of any type.
+@end multitable
+
+@item @emph{Return value}:
+A disassociated pointer.
+
+@item @emph{Example}:
+@smallexample
+REAL, POINTER, DIMENSION(:) :: VEC => NULL ()
+@end smallexample
+
+@item @emph{See also}:
+@ref{ASSOCIATED}
+@end table
+
+
+
+@node OR
+@section @code{OR} --- Bitwise logical OR
+@fnindex OR
+@cindex bitwise logical or
+@cindex logical or, bitwise
+
+@table @asis
+@item @emph{Description}:
+Bitwise logical @code{OR}.
+
+This intrinsic routine is provided for backwards compatibility with 
+GNU Fortran 77.  For integer arguments, programmers should consider
+the use of the @ref{IOR} intrinsic defined by the Fortran standard.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{RESULT = OR(X, Y)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be either @code{INTEGER(*)} or @code{LOGICAL}.
+@item @var{Y} @tab The type shall be either @code{INTEGER(*)} or @code{LOGICAL}.
+@end multitable
+
+@item @emph{Return value}:
+The return type is either @code{INTEGER(*)} or @code{LOGICAL} 
+after cross-promotion of the arguments.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_or
+  LOGICAL :: T = .TRUE., F = .FALSE.
+  INTEGER :: a, b
+  DATA a / Z'F' /, b / Z'3' /
+
+  WRITE (*,*) OR(T, T), OR(T, F), OR(F, T), OR(F, F)
+  WRITE (*,*) OR(a, b)
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+F95 elemental function: @ref{IOR}
+@end table
+
+
+
+@node PACK
+@section @code{PACK} --- Pack an array into an array of rank one
+@fnindex PACK
+@cindex array, packing
+@cindex array, reduce dimension
+@cindex array, gather elements
+
+@table @asis
+@item @emph{Description}:
+Stores the elements of @var{ARRAY} in an array of rank one.
+
+The beginning of the resulting array is made up of elements whose @var{MASK} 
+equals @code{TRUE}. Afterwards, positions are filled with elements taken from
+@var{VECTOR}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{RESULT = PACK(ARRAY, MASK[,VECTOR]}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{ARRAY}  @tab Shall be an array of any type.
+@item @var{MASK}   @tab Shall be an array of type @code{LOGICAL} and 
+of the same size as @var{ARRAY}. Alternatively, it may be a @code{LOGICAL} 
+scalar.
+@item @var{VECTOR} @tab (Optional) shall be an array of the same type 
+as @var{ARRAY} and of rank one. If present, the number of elements in 
+@var{VECTOR} shall be equal to or greater than the number of true elements 
+in @var{MASK}. If @var{MASK} is scalar, the number of elements in 
+@var{VECTOR} shall be equal to or greater than the number of elements in
+@var{ARRAY}.
+@end multitable
+
+@item @emph{Return value}:
+The result is an array of rank one and the same type as that of @var{ARRAY}.
+If @var{VECTOR} is present, the result size is that of @var{VECTOR}, the
+number of @code{TRUE} values in @var{MASK} otherwise.
+
+@item @emph{Example}:
+Gathering nonzero elements from an array:
+@smallexample
+PROGRAM test_pack_1
+  INTEGER :: m(6)
+  m = (/ 1, 0, 0, 0, 5, 0 /)
+  WRITE(*, FMT="(6(I0, ' '))") pack(m, m /= 0)  ! "1 5"
+END PROGRAM
+@end smallexample
+
+Gathering nonzero elements from an array and appending elements from @var{VECTOR}:
+@smallexample
+PROGRAM test_pack_2
+  INTEGER :: m(4)
+  m = (/ 1, 0, 0, 2 /)
+  WRITE(*, FMT="(4(I0, ' '))") pack(m, m /= 0, (/ 0, 0, 3, 4 /))  ! "1 2 3 4"
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{UNPACK}
+@end table
+
+
+
+@node PERROR
+@section @code{PERROR} --- Print system error message
+@fnindex PERROR
+@cindex system, error handling
+
+@table @asis
+@item @emph{Description}:
+Prints (on the C @code{stderr} stream) a newline-terminated error
+message corresponding to the last system error. This is prefixed by
+@var{STRING}, a colon and a space. See @code{perror(3)}.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL PERROR(STRING)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{STRING} @tab A scalar of default @code{CHARACTER} type.
+@end multitable
+
+@item @emph{See also}:
+@ref{IERRNO}
+@end table
+
+
+
+@node PRECISION
+@section @code{PRECISION} --- Decimal precision of a real kind
+@fnindex PRECISION
+@cindex model representation, precision
+
+@table @asis
+@item @emph{Description}:
+@code{PRECISION(X)} returns the decimal precision in the model of the
+type of @code{X}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = PRECISION(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab Shall be of type @code{REAL} or @code{COMPLEX}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER} and of the default integer
+kind.
+
+@item @emph{Example}:
+@smallexample
+program prec_and_range
+  real(kind=4) :: x(2)
+  complex(kind=8) :: y
+
+  print *, precision(x), range(x)
+  print *, precision(y), range(y)
+end program prec_and_range
+@end smallexample
+@end table
+
+
+
+@node PRESENT
+@section @code{PRESENT} --- Determine whether an optional dummy argument is specified
+@fnindex PRESENT
+
+@table @asis
+@item @emph{Description}:
+Determines whether an optional dummy argument is present.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = PRESENT(A)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{A} @tab May be of any type and may be a pointer, scalar or array
+value, or a dummy procedure. It shall be the name of an optional dummy argument
+accessible within the current subroutine or function.
+@end multitable
+
+@item @emph{Return value}:
+Returns either @code{TRUE} if the optional argument @var{A} is present, or
+@code{FALSE} otherwise.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_present
+  WRITE(*,*) f(), f(42)      ! "F T"
+CONTAINS
+  LOGICAL FUNCTION f(x)
+    INTEGER, INTENT(IN), OPTIONAL :: x
+    f = PRESENT(x)
+  END FUNCTION
+END PROGRAM
+@end smallexample
+@end table
+
+
+
+@node PRODUCT
+@section @code{PRODUCT} --- Product of array elements
+@fnindex PRODUCT
+@cindex array, product
+@cindex array, multiply elements
+@cindex array, conditionally multiply elements
+@cindex multiply array elements
+
+@table @asis
+@item @emph{Description}:
+Multiplies the elements of @var{ARRAY} along dimension @var{DIM} if
+the corresponding element in @var{MASK} is @code{TRUE}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{RESULT = PRODUCT(ARRAY[, MASK])}
+@code{RESULT = PRODUCT(ARRAY, DIM[, MASK])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER(*)}, 
+@code{REAL(*)} or @code{COMPLEX(*)}.
+@item @var{DIM}   @tab (Optional) shall be a scalar of type 
+@code{INTEGER} with a value in the range from 1 to n, where n 
+equals the rank of @var{ARRAY}.
+@item @var{MASK}  @tab (Optional) shall be of type @code{LOGICAL} 
+and either be a scalar or an array of the same shape as @var{ARRAY}.
+@end multitable
+
+@item @emph{Return value}:
+The result is of the same type as @var{ARRAY}.
+
+If @var{DIM} is absent, a scalar with the product of all elements in 
+@var{ARRAY} is returned. Otherwise, an array of rank n-1, where n equals 
+the rank of @var{ARRAY}, and a shape similar to that of @var{ARRAY} with 
+dimension @var{DIM} dropped is returned.
+
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_product
+  INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
+  print *, PRODUCT(x)                    ! all elements, product = 120
+  print *, PRODUCT(x, MASK=MOD(x, 2)==1) ! odd elements, product = 15
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{SUM}
+@end table
+
+
+
+@node RADIX
+@section @code{RADIX} --- Base of a model number
+@fnindex RADIX
+@cindex model representation, base
+@cindex model representation, radix
+
+@table @asis
+@item @emph{Description}:
+@code{RADIX(X)} returns the base of the model representing the entity @var{X}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = RADIX(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab Shall be of type @code{INTEGER} or @code{REAL}
+@end multitable
+
+@item @emph{Return value}:
+The return value is a scalar of type @code{INTEGER} and of the default
+integer kind.
+
+@item @emph{Example}:
+@smallexample
+program test_radix
+  print *, "The radix for the default integer kind is", radix(0)
+  print *, "The radix for the default real kind is", radix(0.0)
+end program test_radix
+@end smallexample
+
+@end table
+
+
+
+@node RAN
+@section @code{RAN} --- Real pseudo-random number
+@fnindex RAN
+@cindex random number generation
+
+@table @asis
+@item @emph{Description}:
+For compatibility with HP FORTRAN 77/iX, the @code{RAN} intrinsic is
+provided as an alias for @code{RAND}.  See @ref{RAND} for complete
+documentation.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{See also}:
+@ref{RAND}, @ref{RANDOM_NUMBER}
+@end table
+
+
+
+@node RAND
+@section @code{RAND} --- Real pseudo-random number
+@fnindex RAND
+@cindex random number generation
+
+@table @asis
+@item @emph{Description}:
+@code{RAND(FLAG)} returns a pseudo-random number from a uniform
+distribution between 0 and 1. If @var{FLAG} is 0, the next number
+in the current sequence is returned; if @var{FLAG} is 1, the generator
+is restarted by @code{CALL SRAND(0)}; if @var{FLAG} has any other value,
+it is used as a new seed with @code{SRAND}.
+
+This intrinsic routine is provided for backwards compatibility with
+GNU Fortran 77. It implements a simple modulo generator as provided 
+by @command{g77}. For new code, one should consider the use of 
+@ref{RANDOM_NUMBER} as it implements a superior algorithm.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{RESULT = RAND(FLAG)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{FLAG} @tab Shall be a scalar @code{INTEGER} of kind 4.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of @code{REAL} type and the default kind.
+
+@item @emph{Example}:
+@smallexample
+program test_rand
+  integer,parameter :: seed = 86456
+  
+  call srand(seed)
+  print *, rand(), rand(), rand(), rand()
+  print *, rand(seed), rand(), rand(), rand()
+end program test_rand
+@end smallexample
+
+@item @emph{See also}:
+@ref{SRAND}, @ref{RANDOM_NUMBER}
+
+@end table
+
+
+
+@node RANDOM_NUMBER
+@section @code{RANDOM_NUMBER} --- Pseudo-random number
+@fnindex RANDOM_NUMBER
+@cindex random number generation
+
+@table @asis
+@item @emph{Description}:
+Returns a single pseudorandom number or an array of pseudorandom numbers
+from the uniform distribution over the range @math{ 0 \leq x < 1}.
+
+The runtime-library implements George Marsaglia's KISS (Keep It Simple 
+Stupid) random number generator (RNG). This RNG combines:
+@enumerate
+@item The congruential generator @math{x(n) = 69069 \cdot x(n-1) + 1327217885}
+with a period of @math{2^{32}},
+@item A 3-shift shift-register generator with a period of @math{2^{32} - 1},
+@item  Two 16-bit multiply-with-carry generators with a period of
+@math{597273182964842497 > 2^{59}}.
+@end enumerate
+The overall period exceeds @math{2^{123}}.
+
+Please note, this RNG is thread safe if used within OpenMP directives,
+i. e. its state will be consistent while called from multiple threads.
+However, the KISS generator does not create random numbers in parallel 
+from multiple sources, but in sequence from a single source. If an
+OpenMP-enabled application heavily relies on random numbers, one should 
+consider employing a dedicated parallel random number generator instead.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{RANDOM_NUMBER(HARVEST)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{HARVEST} @tab Shall be a scalar or an array of type @code{REAL(*)}.
+@end multitable
+
+@item @emph{Example}:
+@smallexample
+program test_random_number
+  REAL :: r(5,5)
+  CALL init_random_seed()         ! see example of RANDOM_SEED
+  CALL RANDOM_NUMBER(r)
+end program
+@end smallexample
+
+@item @emph{See also}:
+@ref{RANDOM_SEED}
+@end table
+
+
+
+@node RANDOM_SEED
+@section @code{RANDOM_SEED} --- Initialize a pseudo-random number sequence
+@fnindex RANDOM_SEED
+@cindex random number generation, seeding
+@cindex seeding a random number generator
+
+@table @asis
+@item @emph{Description}:
+Restarts or queries the state of the pseudorandom number generator used by 
+@code{RANDOM_NUMBER}.
+
+If @code{RANDOM_SEED} is called without arguments, it is initialized to
+a default state. The example below shows how to initialize the random 
+seed based on the system's time.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL RANDOM_SEED(SIZE, PUT, GET)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{SIZE} @tab (Optional) Shall be a scalar and of type default 
+@code{INTEGER}, with @code{INTENT(OUT)}. It specifies the minimum size 
+of the arrays used with the @var{PUT} and @var{GET} arguments.
+@item @var{PUT}  @tab (Optional) Shall be an array of type default 
+@code{INTEGER} and rank one. It is @code{INTENT(IN)} and the size of 
+the array must be larger than or equal to the number returned by the 
+@var{SIZE} argument.
+@item @var{GET}  @tab (Optional) Shall be an array of type default 
+@code{INTEGER} and rank one. It is @code{INTENT(OUT)} and the size 
+of the array must be larger than or equal to the number returned by 
+the @var{SIZE} argument.
+@end multitable
+
+@item @emph{Example}:
+@smallexample
+SUBROUTINE init_random_seed()
+  INTEGER :: i, n, clock
+  INTEGER, DIMENSION(:), ALLOCATABLE :: seed
+
+  CALL RANDOM_SEED(size = n)
+  ALLOCATE(seed(n))
+
+  CALL SYSTEM_CLOCK(COUNT=clock)
+
+  seed = clock + 37 * (/ (i - 1, i = 1, n) /)
+  CALL RANDOM_SEED(PUT = seed)
+
+  DEALLOCATE(seed)
+END SUBROUTINE
+@end smallexample
+
+@item @emph{See also}:
+@ref{RANDOM_NUMBER}
+@end table
+
+
+
+@node RANGE
+@section @code{RANGE} --- Decimal exponent range of a real kind
+@fnindex RANGE
+@cindex model representation, range
+
+@table @asis
+@item @emph{Description}:
+@code{RANGE(X)} returns the decimal exponent range in the model of the
+type of @code{X}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = RANGE(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab Shall be of type @code{REAL} or @code{COMPLEX}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER} and of the default integer
+kind.
+
+@item @emph{Example}:
+See @code{PRECISION} for an example.
+@end table
+
+
+
+@node REAL
+@section @code{REAL} --- Convert to real type 
+@fnindex REAL
+@fnindex REALPART
+@cindex conversion, to real
+@cindex complex numbers, real part
+
+@table @asis
+@item @emph{Description}:
+@code{REAL(X [, KIND])} converts its argument @var{X} to a real type.  The
+@code{REALPART(X)} function is provided for compatibility with @command{g77},
+and its use is strongly discouraged.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{RESULT = REAL(X [, KIND])}
+@item @code{RESULT = REALPART(Z)}
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X}    @tab Shall be @code{INTEGER(*)}, @code{REAL(*)}, or
+                      @code{COMPLEX(*)}.
+@item @var{KIND} @tab (Optional) An @code{INTEGER(*)} initialization
+                      expression indicating the kind parameter of
+                     the result.
+@end multitable
+
+@item @emph{Return value}:
+These functions return a @code{REAL(*)} variable or array under
+the following rules: 
+
+@table @asis
+@item (A)
+@code{REAL(X)} is converted to a default real type if @var{X} is an 
+integer or real variable.
+@item (B)
+@code{REAL(X)} is converted to a real type with the kind type parameter
+of @var{X} if @var{X} is a complex variable.
+@item (C)
+@code{REAL(X, KIND)} is converted to a real type with kind type
+parameter @var{KIND} if @var{X} is a complex, integer, or real
+variable.
+@end table
+
+@item @emph{Example}:
+@smallexample
+program test_real
+  complex :: x = (1.0, 2.0)
+  print *, real(x), real(x,8), realpart(x)
+end program test_real
+@end smallexample
+
+@item @emph{See also}:
+@ref{DBLE}, @ref{DFLOAT}, @ref{FLOAT}
+
+@end table
+
+
+
+@node RENAME
+@section @code{RENAME} --- Rename a file
+@fnindex RENAME
+@cindex file system, rename file
+
+@table @asis
+@item @emph{Description}:
+Renames a file from file @var{PATH1} to @var{PATH2}. A null
+character (@code{CHAR(0)}) can be used to mark the end of the names in
+@var{PATH1} and @var{PATH2}; otherwise, trailing blanks in the file
+names are ignored.  If the @var{STATUS} argument is supplied, it
+contains 0 on success or a nonzero error code upon return; see
+@code{rename(2)}.
+
+This intrinsic is provided in both subroutine and function forms;
+however, only one form can be used in any given program unit.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{CALL RENAME(PATH1, PATH2 [, STATUS])}
+@item @code{STATUS = RENAME(PATH1, PATH2)}
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{PATH1} @tab Shall be of default @code{CHARACTER} type.
+@item @var{PATH2} @tab Shall be of default @code{CHARACTER} type.
+@item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
+@end multitable
+
+@item @emph{See also}:
+@ref{LINK}
+
+@end table
+
+
+
+@node REPEAT
+@section @code{REPEAT} --- Repeated string concatenation 
+@fnindex REPEAT
+@cindex string, repeat
+@cindex string, concatenate
+
+@table @asis
+@item @emph{Description}:
+Concatenates @var{NCOPIES} copies of a string.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{RESULT = REPEAT(STRING, NCOPIES)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{STRING}  @tab Shall be scalar and of type @code{CHARACTER(*)}.
+@item @var{NCOPIES} @tab Shall be scalar and of type @code{INTEGER(*)}.
+@end multitable
+
+@item @emph{Return value}:
+A new scalar of type @code{CHARACTER} built up from @var{NCOPIES} copies 
+of @var{STRING}.
+
+@item @emph{Example}:
+@smallexample
+program test_repeat
+  write(*,*) repeat("x", 5)   ! "xxxxx"
+end program
+@end smallexample
+@end table
+
+
+
+@node RESHAPE
+@section @code{RESHAPE} --- Function to reshape an array
+@fnindex RESHAPE
+@cindex array, change dimensions
+@cindex array, transmogrify
+
+@table @asis
+@item @emph{Description}:
+Reshapes @var{SOURCE} to correspond to @var{SHAPE}. If necessary,
+the new array may be padded with elements from @var{PAD} or permuted
+as defined by @var{ORDER}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{RESULT = RESHAPE(SOURCE, SHAPE[, PAD, ORDER])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{SOURCE} @tab Shall be an array of any type.
+@item @var{SHAPE}  @tab Shall be of type @code{INTEGER} and an 
+array of rank one. Its values must be positive or zero.
+@item @var{PAD}    @tab (Optional) shall be an array of the same 
+type as @var{SOURCE}.
+@item @var{ORDER}  @tab (Optional) shall be of type @code{INTEGER}
+and an array of the same shape as @var{SHAPE}. Its values shall
+be a permutation of the numbers from 1 to n, where n is the size of 
+@var{SHAPE}. If @var{ORDER} is absent, the natural ordering shall
+be assumed.
+@end multitable
+
+@item @emph{Return value}:
+The result is an array of shape @var{SHAPE} with the same type as 
+@var{SOURCE}. 
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_reshape
+  INTEGER, DIMENSION(4) :: x
+  WRITE(*,*) SHAPE(x)                       ! prints "4"
+  WRITE(*,*) SHAPE(RESHAPE(x, (/2, 2/)))    ! prints "2 2"
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{SHAPE}
+@end table
+
+
+
+@node RRSPACING
+@section @code{RRSPACING} --- Reciprocal of the relative spacing
+@fnindex RRSPACING
+@cindex real number, relative spacing
+@cindex floating point, relative spacing
+
+
+@table @asis
+@item @emph{Description}:
+@code{RRSPACING(X)} returns the  reciprocal of the relative spacing of
+model numbers near @var{X}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = RRSPACING(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab Shall be of type @code{REAL}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of the same type and kind as @var{X}.
+The value returned is equal to
+@code{ABS(FRACTION(X)) * FLOAT(RADIX(X))**DIGITS(X)}.
+
+@item @emph{See also}:
+@ref{SPACING}
+@end table
+
+
+
+@node RSHIFT
+@section @code{RSHIFT} --- Right shift bits
+@fnindex RSHIFT
+@cindex bits, shift right
+
+@table @asis
+@item @emph{Description}:
+@code{RSHIFT} returns a value corresponding to @var{I} with all of the
+bits shifted right by @var{SHIFT} places.  If the absolute value of
+@var{SHIFT} is greater than @code{BIT_SIZE(I)}, the value is undefined. 
+Bits shifted out from the left end are lost; zeros are shifted in from
+the opposite end.
+
+This function has been superseded by the @code{ISHFT} intrinsic, which
+is standard in Fortran 95 and later.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = RSHIFT(I, SHIFT)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{I} @tab The type shall be @code{INTEGER(*)}.
+@item @var{SHIFT} @tab The type shall be @code{INTEGER(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER(*)} and of the same kind as
+@var{I}.
+
+@item @emph{See also}:
+@ref{ISHFT}, @ref{ISHFTC}, @ref{LSHIFT}
+
+@end table
+
+
+
+@node SCALE
+@section @code{SCALE} --- Scale a real value
+@fnindex SCALE
+@cindex real number, scale
+@cindex floating point, scale
+
+@table @asis
+@item @emph{Description}:
+@code{SCALE(X,I)} returns @code{X * RADIX(X)**I}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = SCALE(X, I)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type of the argument shall be a @code{REAL}.
+@item @var{I} @tab The type of the argument shall be a @code{INTEGER}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of the same type and kind as @var{X}.
+Its value is @code{X * RADIX(X)**I}.
+
+@item @emph{Example}:
+@smallexample
+program test_scale
+  real :: x = 178.1387e-4
+  integer :: i = 5
+  print *, scale(x,i), x*radix(x)**i
+end program test_scale
+@end smallexample
+
+@end table
+
+
+
+@node SCAN
+@section @code{SCAN} --- Scan a string for the presence of a set of characters
+@fnindex SCAN
+@cindex string, find subset
+
+@table @asis
+@item @emph{Description}:
+Scans a @var{STRING} for any of the characters in a @var{SET} 
+of characters.
+
+If @var{BACK} is either absent or equals @code{FALSE}, this function
+returns the position of the leftmost character of @var{STRING} that is
+in @var{SET}. If @var{BACK} equals @code{TRUE}, the rightmost position
+is returned. If no character of @var{SET} is found in @var{STRING}, the 
+result is zero.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = SCAN(STRING, SET[, BACK [, KIND]])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{STRING} @tab Shall be of type @code{CHARACTER(*)}.
+@item @var{SET}    @tab Shall be of type @code{CHARACTER(*)}.
+@item @var{BACK}   @tab (Optional) shall be of type @code{LOGICAL}.
+@item @var{KIND}   @tab (Optional) An @code{INTEGER} initialization
+                        expression indicating the kind parameter of
+                     the result.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER} and of kind @var{KIND}. If
+@var{KIND} is absent, the return value is of default integer kind.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_scan
+  WRITE(*,*) SCAN("FORTRAN", "AO")          ! 2, found 'O'
+  WRITE(*,*) SCAN("FORTRAN", "AO", .TRUE.)  ! 6, found 'A'
+  WRITE(*,*) SCAN("FORTRAN", "C++")         ! 0, found none
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{INDEX}, @ref{VERIFY}
+@end table
+
+
+
+@node SECNDS
+@section @code{SECNDS} --- Time function
+@fnindex SECNDS
+@cindex time, elapsed
+@cindex elapsed time
+
+@table @asis
+@item @emph{Description}:
+@code{SECNDS(X)} gets the time in seconds from the real-time system clock.
+@var{X} is a reference time, also in seconds. If this is zero, the time in
+seconds from midnight is returned. This function is non-standard and its
+use is discouraged.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{RESULT = SECNDS (X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{T}     @tab Shall be of type @code{REAL(4)}.
+@item @var{X}     @tab Shall be of type @code{REAL(4)}.
+@end multitable
+
+@item @emph{Return value}:
+None
+
+@item @emph{Example}:
+@smallexample
+program test_secnds
+    integer :: i
+    real(4) :: t1, t2
+    print *, secnds (0.0)   ! seconds since midnight
+    t1 = secnds (0.0)       ! reference time
+    do i = 1, 10000000      ! do something
+    end do
+    t2 = secnds (t1)        ! elapsed time
+    print *, "Something took ", t2, " seconds."
+end program test_secnds
+@end smallexample
+@end table
+
+
+
+@node SECOND
+@section @code{SECOND} --- CPU time function
+@fnindex SECOND
+@cindex time, elapsed
+@cindex elapsed time
+
+@table @asis
+@item @emph{Description}:
+Returns a @code{REAL(4)} value representing the elapsed CPU time in
+seconds.  This provides the same functionality as the standard
+@code{CPU_TIME} intrinsic, and is only included for backwards
+compatibility.
+
+This intrinsic is provided in both subroutine and function forms;
+however, only one form can be used in any given program unit.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{CALL SECOND(TIME)}
+@item @code{TIME = SECOND()}
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{TIME}  @tab Shall be of type @code{REAL(4)}.
+@end multitable
+
+@item @emph{Return value}:
+In either syntax, @var{TIME} is set to the process's current runtime in
+seconds.
+
+@item @emph{See also}:
+@ref{CPU_TIME}
+
+@end table
+
+
+
+@node SELECTED_INT_KIND
+@section @code{SELECTED_INT_KIND} --- Choose integer kind
+@fnindex SELECTED_INT_KIND
+@cindex integer kind
+@cindex kind, integer
+
+@table @asis
+@item @emph{Description}:
+@code{SELECTED_INT_KIND(I)} return the kind value of the smallest integer
+type that can represent all values ranging from @math{-10^I} (exclusive)
+to @math{10^I} (exclusive). If there is no integer kind that accommodates
+this range, @code{SELECTED_INT_KIND} returns @math{-1}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{RESULT = SELECTED_INT_KIND(I)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{I} @tab Shall be a scalar and of type @code{INTEGER}.
+@end multitable
+
+@item @emph{Example}:
+@smallexample
+program large_integers
+  integer,parameter :: k5 = selected_int_kind(5)
+  integer,parameter :: k15 = selected_int_kind(15)
+  integer(kind=k5) :: i5
+  integer(kind=k15) :: i15
+
+  print *, huge(i5), huge(i15)
+
+  ! The following inequalities are always true
+  print *, huge(i5) >= 10_k5**5-1
+  print *, huge(i15) >= 10_k15**15-1
+end program large_integers
+@end smallexample
+@end table
+
+
+
+@node SELECTED_REAL_KIND
+@section @code{SELECTED_REAL_KIND} --- Choose real kind
+@fnindex SELECTED_REAL_KIND
+@cindex real kind
+@cindex kind, real
+
+@table @asis
+@item @emph{Description}:
+@code{SELECTED_REAL_KIND(P,R)} return the kind value of a real data type
+with decimal precision greater of at least @code{P} digits and exponent
+range greater at least @code{R}. 
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{RESULT = SELECTED_REAL_KIND(P, R)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{P} @tab (Optional) shall be a scalar and of type @code{INTEGER}.
+@item @var{R} @tab (Optional) shall be a scalar and of type @code{INTEGER}.
+@end multitable
+At least one argument shall be present.
+
+@item @emph{Return value}:
+
+@code{SELECTED_REAL_KIND} returns the value of the kind type parameter of
+a real data type with decimal precision of at least @code{P} digits and a
+decimal exponent range of at least @code{R}. If more than one real data
+type meet the criteria, the kind of the data type with the smallest
+decimal precision is returned. If no real data type matches the criteria,
+the result is
+@table @asis
+@item -1 if the processor does not support a real data type with a
+precision greater than or equal to @code{P}
+@item -2 if the processor does not support a real type with an exponent
+range greater than or equal to @code{R}
+@item -3 if neither is supported.
+@end table
+
+@item @emph{Example}:
+@smallexample
+program real_kinds
+  integer,parameter :: p6 = selected_real_kind(6)
+  integer,parameter :: p10r100 = selected_real_kind(10,100)
+  integer,parameter :: r400 = selected_real_kind(r=400)
+  real(kind=p6) :: x
+  real(kind=p10r100) :: y
+  real(kind=r400) :: z
+
+  print *, precision(x), range(x)
+  print *, precision(y), range(y)
+  print *, precision(z), range(z)
+end program real_kinds
+@end smallexample
+@end table
+
+
+
+@node SET_EXPONENT
+@section @code{SET_EXPONENT} --- Set the exponent of the model
+@fnindex SET_EXPONENT
+@cindex real number, set exponent
+@cindex floating point, set exponent
+
+@table @asis
+@item @emph{Description}:
+@code{SET_EXPONENT(X, I)} returns the real number whose fractional part
+is that that of @var{X} and whose exponent part is @var{I}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = SET_EXPONENT(X, I)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab Shall be of type @code{REAL}.
+@item @var{I} @tab Shall be of type @code{INTEGER}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of the same type and kind as @var{X}.
+The real number whose fractional part
+is that that of @var{X} and whose exponent part if @var{I} is returned;
+it is @code{FRACTION(X) * RADIX(X)**I}.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_setexp
+  REAL :: x = 178.1387e-4
+  INTEGER :: i = 17
+  PRINT *, SET_EXPONENT(x, i), FRACTION(x) * RADIX(x)**i
+END PROGRAM
+@end smallexample
+
+@end table
+
+
+
+@node SHAPE
+@section @code{SHAPE} --- Determine the shape of an array
+@fnindex SHAPE
+@cindex array, shape
+
+@table @asis
+@item @emph{Description}:
+Determines the shape of an array.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = SHAPE(SOURCE)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{SOURCE} @tab Shall be an array or scalar of any type. 
+If @var{SOURCE} is a pointer it must be associated and allocatable 
+arrays must be allocated.
+@end multitable
+
+@item @emph{Return value}:
+An @code{INTEGER} array of rank one with as many elements as @var{SOURCE} 
+has dimensions. The elements of the resulting array correspond to the extend
+of @var{SOURCE} along the respective dimensions. If @var{SOURCE} is a scalar,
+the result is the rank one array of size zero.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_shape
+  INTEGER, DIMENSION(-1:1, -1:2) :: A
+  WRITE(*,*) SHAPE(A)             ! (/ 3, 4 /)
+  WRITE(*,*) SIZE(SHAPE(42))      ! (/ /)
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{RESHAPE}, @ref{SIZE}
+@end table
+
+
+
+@node SIGN
+@section @code{SIGN} --- Sign copying function
+@fnindex SIGN
+@fnindex ISIGN
+@fnindex DSIGN
+@cindex sign copying
+
+@table @asis
+@item @emph{Description}:
+@code{SIGN(A,B)} returns the value of @var{A} with the sign of @var{B}.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = SIGN(A, B)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{A} @tab Shall be of type @code{INTEGER} or @code{REAL}
+@item @var{B} @tab Shall be of the same type and kind as @var{A}
+@end multitable
+
+@item @emph{Return value}:
+The kind of the return value is that of @var{A} and @var{B}.
+If @math{B\ge 0} then the result is @code{ABS(A)}, else
+it is @code{-ABS(A)}.
+
+@item @emph{Example}:
+@smallexample
+program test_sign
+  print *, sign(-12,1)
+  print *, sign(-12,0)
+  print *, sign(-12,-1)
+
+  print *, sign(-12.,1.)
+  print *, sign(-12.,0.)
+  print *, sign(-12.,-1.)
+end program test_sign
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name              @tab Arguments      @tab Return type    @tab Standard
+@item @code{ISIGN(A,P)} @tab @code{INTEGER(4)} @tab @code{INTEGER(4)} @tab f95, gnu
+@item @code{DSIGN(A,P)} @tab @code{REAL(8)} @tab @code{REAL(8)} @tab f95, gnu
+@end multitable
+@end table
+
+
+
+@node SIGNAL
+@section @code{SIGNAL} --- Signal handling subroutine (or function)
+@fnindex SIGNAL
+@cindex system, signal handling
+
+@table @asis
+@item @emph{Description}:
+@code{SIGNAL(NUMBER, HANDLER [, STATUS])} causes external subroutine
+@var{HANDLER} to be executed with a single integer argument when signal
+@var{NUMBER} occurs.  If @var{HANDLER} is an integer, it can be used to
+turn off handling of signal @var{NUMBER} or revert to its default
+action.  See @code{signal(2)}.
+
+If @code{SIGNAL} is called as a subroutine and the @var{STATUS} argument
+is supplied, it is set to the value returned by @code{signal(2)}.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{CALL SIGNAL(NUMBER, HANDLER [, STATUS])}
+@item @code{STATUS = SIGNAL(NUMBER, HANDLER)}
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{NUMBER} @tab Shall be a scalar integer, with @code{INTENT(IN)}
+@item @var{HANDLER}@tab Signal handler (@code{INTEGER FUNCTION} or
+@code{SUBROUTINE}) or dummy/global @code{INTEGER} scalar.
+@code{INTEGER}. It is @code{INTENT(IN)}.
+@item @var{STATUS} @tab (Optional) @var{STATUS} shall be a scalar
+integer. It has @code{INTENT(OUT)}.
+@end multitable
+
+@item @emph{Return value}:
+The @code{SIGNAL} function returns the value returned by @code{signal(2)}.
+
+@item @emph{Example}:
+@smallexample
+program test_signal
+  intrinsic signal
+  external handler_print
+
+  call signal (12, handler_print)
+  call signal (10, 1)
+
+  call sleep (30)
+end program test_signal
+@end smallexample
+@end table
+
+
+
+@node SIN
+@section @code{SIN} --- Sine function 
+@fnindex SIN
+@fnindex DSIN
+@fnindex CSIN
+@fnindex ZSIN
+@fnindex CDSIN
+@cindex trigonometric function, sine
+@cindex sine
+
+@table @asis
+@item @emph{Description}:
+@code{SIN(X)} computes the sine of @var{X}.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = SIN(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)} or
+@code{COMPLEX(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value has same type and kind as @var{X}.
+
+@item @emph{Example}:
+@smallexample
+program test_sin
+  real :: x = 0.0
+  x = sin(x)
+end program test_sin
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument          @tab Return type       @tab Standard
+@item @code{DSIN(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab f95, gnu
+@item @code{CSIN(X)}  @tab @code{COMPLEX(4) X}  @tab @code{COMPLEX(4)}    @tab f95, gnu
+@item @code{ZSIN(X)}  @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab f95, gnu
+@item @code{CDSIN(X)} @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab f95, gnu
+@end multitable
+
+@item @emph{See also}:
+@ref{ASIN}
+@end table
+
+
+
+@node SINH
+@section @code{SINH} --- Hyperbolic sine function 
+@fnindex SINH
+@fnindex DSINH
+@cindex hyperbolic sine
+@cindex hyperbolic function, sine
+@cindex sine, hyperbolic
+
+@table @asis
+@item @emph{Description}:
+@code{SINH(X)} computes the hyperbolic sine of @var{X}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = SINH(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)}.
+
+@item @emph{Example}:
+@smallexample
+program test_sinh
+  real(8) :: x = - 1.0_8
+  x = sinh(x)
+end program test_sinh
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument          @tab Return type       @tab Standard
+@item @code{DSINH(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab F95 and later
+@end multitable
+
+@item @emph{See also}:
+@ref{ASINH}
+@end table
+
+
+
+@node SIZE
+@section @code{SIZE} --- Determine the size of an array
+@fnindex SIZE
+@cindex array, size
+@cindex array, number of elements
+@cindex array, count elements
+
+@table @asis
+@item @emph{Description}:
+Determine the extent of @var{ARRAY} along a specified dimension @var{DIM},
+or the total number of elements in @var{ARRAY} if @var{DIM} is absent.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = SIZE(ARRAY[, DIM [, KIND]])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{ARRAY} @tab Shall be an array of any type. If @var{ARRAY} is
+a pointer it must be associated and allocatable arrays must be allocated.
+@item @var{DIM}   @tab (Optional) shall be a scalar of type @code{INTEGER} 
+and its value shall be in the range from 1 to n, where n equals the rank 
+of @var{ARRAY}.
+@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
+                      expression indicating the kind parameter of
+                     the result.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER} and of kind @var{KIND}. If
+@var{KIND} is absent, the return value is of default integer kind.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_size
+  WRITE(*,*) SIZE((/ 1, 2 /))    ! 2
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{SHAPE}, @ref{RESHAPE}
+@end table
+
+
+@node SIZEOF
+@section @code{SIZEOF} --- Size in bytes of an expression
+@fnindex SIZEOF
+@cindex expression size
+@cindex size of an expression
+
+@table @asis
+@item @emph{Description}:
+@code{SIZEOF(X)} calculates the number of bytes of storage the
+expression @code{X} occupies.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Intrinsic function
+
+@item @emph{Syntax}:
+@code{N = SIZEOF(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The argument shall be of any type, rank or shape.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type integer and of the system-dependent kind
+@var{C_SIZE_T} (from the @var{ISO_C_BINDING} module). Its value is the
+number of bytes occupied by the argument.  If the argument has the
+@code{POINTER} attribute, the number of bytes of the storage area pointed
+to is returned.  If the argument is of a derived type with @code{POINTER}
+or @code{ALLOCATABLE} components, the return value doesn't account for
+the sizes of the data pointed to by these components.
+
+@item @emph{Example}:
+@smallexample
+   integer :: i
+   real :: r, s(5)
+   print *, (sizeof(s)/sizeof(r) == 5)
+   end
+@end smallexample
+The example will print @code{.TRUE.} unless you are using a platform
+where default @code{REAL} variables are unusually padded.
+@end table
+
+@node SLEEP
+@section @code{SLEEP} --- Sleep for the specified number of seconds
+@fnindex SLEEP
+@cindex delayed execution
+
+@table @asis
+@item @emph{Description}:
+Calling this subroutine causes the process to pause for @var{SECONDS} seconds.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL SLEEP(SECONDS)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{SECONDS} @tab The type shall be of default @code{INTEGER}.
+@end multitable
+
+@item @emph{Example}:
+@smallexample
+program test_sleep
+  call sleep(5)
+end
+@end smallexample
+@end table
+
+
+
+@node SNGL
+@section @code{SNGL} --- Convert double precision real to default real
+@fnindex SNGL
+@cindex conversion, to real
+
+@table @asis
+@item @emph{Description}:
+@code{SNGL(A)} converts the double precision real @var{A}
+to a default real value. This is an archaic form of @code{REAL}
+that is specific to one type for @var{A}.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = SNGL(A)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{A} @tab The type shall be a double precision @code{REAL}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type default @code{REAL}.
+
+@item @emph{See also}:
+@ref{DBLE}
+@end table
+
+
+
+@node SPACING
+@section @code{SPACING} --- Smallest distance between two numbers of a given type
+@fnindex SPACING
+@cindex real number, relative spacing
+@cindex floating point, relative spacing
+
+@table @asis
+@item @emph{Description}:
+Determines the distance between the argument @var{X} and the nearest 
+adjacent number of the same type.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = SPACING(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab Shall be of type @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The result is of the same type as the input argument @var{X}.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_spacing
+  INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37)
+  INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200)
+
+  WRITE(*,*) spacing(1.0_SGL)      ! "1.1920929E-07"          on i686
+  WRITE(*,*) spacing(1.0_DBL)      ! "2.220446049250313E-016" on i686
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{RRSPACING}
+@end table
+
+
+
+@node SPREAD
+@section @code{SPREAD} --- Add a dimension to an array
+@fnindex SPREAD
+@cindex array, increase dimension
+@cindex array, duplicate elements
+@cindex array, duplicate dimensions
+
+@table @asis
+@item @emph{Description}:
+Replicates a @var{SOURCE} array @var{NCOPIES} times along a specified 
+dimension @var{DIM}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{RESULT = SPREAD(SOURCE, DIM, NCOPIES)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{SOURCE}  @tab Shall be a scalar or an array of any type and 
+a rank less than seven.
+@item @var{DIM}     @tab Shall be a scalar of type @code{INTEGER} with a 
+value in the range from 1 to n+1, where n equals the rank of @var{SOURCE}.
+@item @var{NCOPIES} @tab Shall be a scalar of type @code{INTEGER}.
+@end multitable
+
+@item @emph{Return value}:
+The result is an array of the same type as @var{SOURCE} and has rank n+1
+where n equals the rank of @var{SOURCE}.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_spread
+  INTEGER :: a = 1, b(2) = (/ 1, 2 /)
+  WRITE(*,*) SPREAD(A, 1, 2)            ! "1 1"
+  WRITE(*,*) SPREAD(B, 1, 2)            ! "1 1 2 2"
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{UNPACK}
+@end table
+
+
+
+@node SQRT
+@section @code{SQRT} --- Square-root function
+@fnindex SQRT
+@fnindex DSQRT
+@fnindex CSQRT
+@fnindex ZSQRT
+@fnindex CDSQRT
+@cindex root
+@cindex square-root
+
+@table @asis
+@item @emph{Description}:
+@code{SQRT(X)} computes the square root of @var{X}.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = SQRT(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)} or
+@code{COMPLEX(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)} or @code{COMPLEX(*)}.
+The kind type parameter is the same as @var{X}.
+
+@item @emph{Example}:
+@smallexample
+program test_sqrt
+  real(8) :: x = 2.0_8
+  complex :: z = (1.0, 2.0)
+  x = sqrt(x)
+  z = sqrt(z)
+end program test_sqrt
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name             @tab Argument             @tab Return type          @tab Standard
+@item @code{DSQRT(X)}  @tab @code{REAL(8) X}     @tab @code{REAL(8)}       @tab F95 and later
+@item @code{CSQRT(X)}  @tab @code{COMPLEX(4) X}  @tab @code{COMPLEX(4)}    @tab F95 and later
+@item @code{ZSQRT(X)}  @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab GNU extension
+@item @code{CDSQRT(X)} @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab GNU extension
+@end multitable
+@end table
+
+
+
+@node SRAND
+@section @code{SRAND} --- Reinitialize the random number generator
+@fnindex SRAND
+@cindex random number generation, seeding
+@cindex seeding a random number generator
+
+@table @asis
+@item @emph{Description}:
+@code{SRAND} reinitializes the pseudo-random number generator
+called by @code{RAND} and @code{IRAND}. The new seed used by the
+generator is specified by the required argument @var{SEED}.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL SRAND(SEED)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{SEED} @tab Shall be a scalar @code{INTEGER(kind=4)}.
+@end multitable
+
+@item @emph{Return value}:
+Does not return.
+
+@item @emph{Example}:
+See @code{RAND} and @code{IRAND} for examples.
+
+@item @emph{Notes}:
+The Fortran 2003 standard specifies the intrinsic @code{RANDOM_SEED} to
+initialize the pseudo-random numbers generator and @code{RANDOM_NUMBER}
+to generate pseudo-random numbers. Please note that in
+GNU Fortran, these two sets of intrinsics (@code{RAND},
+@code{IRAND} and @code{SRAND} on the one hand, @code{RANDOM_NUMBER} and
+@code{RANDOM_SEED} on the other hand) access two independent
+pseudo-random number generators.
+
+@item @emph{See also}:
+@ref{RAND}, @ref{RANDOM_SEED}, @ref{RANDOM_NUMBER}
+
+@end table
+
+
+
+@node STAT
+@section @code{STAT} --- Get file status
+@fnindex STAT
+@cindex file system, file status
+
+@table @asis
+@item @emph{Description}:
+This function returns information about a file. No permissions are required on 
+the file itself, but execute (search) permission is required on all of the 
+directories in path that lead to the file.
+
+The elements that are obtained and stored in the array @code{BUFF}:
+@multitable @columnfractions .15 .70
+@item @code{buff(1)}   @tab  Device ID 
+@item @code{buff(2)}   @tab  Inode number 
+@item @code{buff(3)}   @tab  File mode 
+@item @code{buff(4)}   @tab  Number of links 
+@item @code{buff(5)}   @tab  Owner's uid 
+@item @code{buff(6)}   @tab  Owner's gid 
+@item @code{buff(7)}   @tab  ID of device containing directory entry for file (0 if not available) 
+@item @code{buff(8)}   @tab  File size (bytes) 
+@item @code{buff(9)}   @tab  Last access time 
+@item @code{buff(10)}  @tab  Last modification time 
+@item @code{buff(11)}  @tab  Last file status change time 
+@item @code{buff(12)}  @tab  Preferred I/O block size (-1 if not available) 
+@item @code{buff(13)}  @tab  Number of blocks allocated (-1 if not available)
+@end multitable
+
+Not all these elements are relevant on all systems. 
+If an element is not relevant, it is returned as 0.
+
+This intrinsic is provided in both subroutine and function forms; however,
+only one form can be used in any given program unit.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@code{CALL STAT(FILE,BUFF[,STATUS])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{FILE}   @tab The type shall be @code{CHARACTER(*)}, a valid path within the file system.
+@item @var{BUFF}   @tab The type shall be @code{INTEGER(4), DIMENSION(13)}.
+@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)}. Returns 0 
+                        on success and a system specific error code otherwise.
+@end multitable
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_stat
+  INTEGER, DIMENSION(13) :: buff
+  INTEGER :: status
+
+  CALL STAT("/etc/passwd", buff, status)
+
+  IF (status == 0) THEN
+    WRITE (*, FMT="('Device ID:',               T30, I19)") buff(1)
+    WRITE (*, FMT="('Inode number:',            T30, I19)") buff(2)
+    WRITE (*, FMT="('File mode (octal):',       T30, O19)") buff(3)
+    WRITE (*, FMT="('Number of links:',         T30, I19)") buff(4)
+    WRITE (*, FMT="('Owner''s uid:',            T30, I19)") buff(5)
+    WRITE (*, FMT="('Owner''s gid:',            T30, I19)") buff(6)
+    WRITE (*, FMT="('Device where located:',    T30, I19)") buff(7)
+    WRITE (*, FMT="('File size:',               T30, I19)") buff(8)
+    WRITE (*, FMT="('Last access time:',        T30, A19)") CTIME(buff(9))
+    WRITE (*, FMT="('Last modification time',   T30, A19)") CTIME(buff(10))
+    WRITE (*, FMT="('Last status change time:', T30, A19)") CTIME(buff(11))
+    WRITE (*, FMT="('Preferred block size:',    T30, I19)") buff(12)
+    WRITE (*, FMT="('No. of blocks allocated:', T30, I19)") buff(13)
+  END IF
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+To stat an open file: @ref{FSTAT}, to stat a link: @ref{LSTAT}
+@end table
+
+
+
+@node SUM
+@section @code{SUM} --- Sum of array elements
+@fnindex SUM
+@cindex array, sum
+@cindex array, add elements
+@cindex array, conditionally add elements
+@cindex sum array elements
+
+@table @asis
+@item @emph{Description}:
+Adds the elements of @var{ARRAY} along dimension @var{DIM} if
+the corresponding element in @var{MASK} is @code{TRUE}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{RESULT = SUM(ARRAY[, MASK])}
+@code{RESULT = SUM(ARRAY, DIM[, MASK])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER(*)}, 
+@code{REAL(*)} or @code{COMPLEX(*)}.
+@item @var{DIM}   @tab (Optional) shall be a scalar of type 
+@code{INTEGER} with a value in the range from 1 to n, where n 
+equals the rank of @var{ARRAY}.
+@item @var{MASK}  @tab (Optional) shall be of type @code{LOGICAL} 
+and either be a scalar or an array of the same shape as @var{ARRAY}.
+@end multitable
+
+@item @emph{Return value}:
+The result is of the same type as @var{ARRAY}.
+
+If @var{DIM} is absent, a scalar with the sum of all elements in @var{ARRAY}
+is returned. Otherwise, an array of rank n-1, where n equals the rank of 
+@var{ARRAY},and a shape similar to that of @var{ARRAY} with dimension @var{DIM} 
+dropped is returned.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_sum
+  INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
+  print *, SUM(x)                        ! all elements, sum = 15
+  print *, SUM(x, MASK=MOD(x, 2)==1)     ! odd elements, sum = 9
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{PRODUCT}
+@end table
+
+
+
+@node SYMLNK
+@section @code{SYMLNK} --- Create a symbolic link
+@fnindex SYMLNK
+@cindex file system, create link
+@cindex file system, soft link
+
+@table @asis
+@item @emph{Description}:
+Makes a symbolic link from file @var{PATH1} to @var{PATH2}. A null
+character (@code{CHAR(0)}) can be used to mark the end of the names in
+@var{PATH1} and @var{PATH2}; otherwise, trailing blanks in the file
+names are ignored.  If the @var{STATUS} argument is supplied, it
+contains 0 on success or a nonzero error code upon return; see
+@code{symlink(2)}.  If the system does not supply @code{symlink(2)}, 
+@code{ENOSYS} is returned.
+
+This intrinsic is provided in both subroutine and function forms;
+however, only one form can be used in any given program unit.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{CALL SYMLNK(PATH1, PATH2 [, STATUS])}
+@item @code{STATUS = SYMLNK(PATH1, PATH2)}
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{PATH1} @tab Shall be of default @code{CHARACTER} type.
+@item @var{PATH2} @tab Shall be of default @code{CHARACTER} type.
+@item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
+@end multitable
+
+@item @emph{See also}:
+@ref{LINK}, @ref{UNLINK}
+
+@end table
+
+
+
+@node SYSTEM
+@section @code{SYSTEM} --- Execute a shell command
+@fnindex SYSTEM
+@cindex system, system call
+
+@table @asis
+@item @emph{Description}:
+Passes the command @var{COMMAND} to a shell (see @code{system(3)}). If
+argument @var{STATUS} is present, it contains the value returned by
+@code{system(3)}, which is presumably 0 if the shell command succeeded.
+Note that which shell is used to invoke the command is system-dependent
+and environment-dependent.
+
+This intrinsic is provided in both subroutine and function forms;
+however, only one form can be used in any given program unit.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{CALL SYSTEM(COMMAND [, STATUS])}
+@item @code{STATUS = SYSTEM(COMMAND)}
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{COMMAND} @tab Shall be of default @code{CHARACTER} type.
+@item @var{STATUS}  @tab (Optional) Shall be of default @code{INTEGER} type.
+@end multitable
+
+@item @emph{See also}:
+@end table
+
+
+
+@node SYSTEM_CLOCK
+@section @code{SYSTEM_CLOCK} --- Time function
+@fnindex SYSTEM_CLOCK
+@cindex time, clock ticks
+@cindex clock ticks
+
+@table @asis
+@item @emph{Description}:
+Determines the @var{COUNT} of milliseconds of wall clock time since 
+the Epoch (00:00:00 UTC, January 1, 1970) modulo @var{COUNT_MAX}, 
+@var{COUNT_RATE} determines the number of clock ticks per second.
+@var{COUNT_RATE} and @var{COUNT_MAX} are constant and specific to 
+@command{gfortran}.
+
+If there is no clock, @var{COUNT} is set to @code{-HUGE(COUNT)}, and
+@var{COUNT_RATE} and @var{COUNT_MAX} are set to zero 
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])}
+
+@item @emph{Arguments}:
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{COUNT}      @tab (Optional) shall be a scalar of type default 
+@code{INTEGER} with @code{INTENT(OUT)}.
+@item @var{COUNT_RATE} @tab (Optional) shall be a scalar of type default 
+@code{INTEGER} with @code{INTENT(OUT)}.
+@item @var{COUNT_MAX}  @tab (Optional) shall be a scalar of type default 
+@code{INTEGER} with @code{INTENT(OUT)}.
+@end multitable
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_system_clock
+  INTEGER :: count, count_rate, count_max
+  CALL SYSTEM_CLOCK(count, count_rate, count_max)
+  WRITE(*,*) count, count_rate, count_max
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{DATE_AND_TIME}, @ref{CPU_TIME}
+@end table
+
+
+
+@node TAN
+@section @code{TAN} --- Tangent function
+@fnindex TAN
+@fnindex DTAN
+@cindex trigonometric function, tangent
+@cindex tangent
+
+@table @asis
+@item @emph{Description}:
+@code{TAN(X)} computes the tangent of @var{X}.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = TAN(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)}.  The kind type parameter is
+the same as @var{X}.
+
+@item @emph{Example}:
+@smallexample
+program test_tan
+  real(8) :: x = 0.165_8
+  x = tan(x)
+end program test_tan
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument          @tab Return type       @tab Standard
+@item @code{DTAN(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab F95 and later
+@end multitable
+
+@item @emph{See also}:
+@ref{ATAN}
+@end table
+
+
+
+@node TANH
+@section @code{TANH} --- Hyperbolic tangent function 
+@fnindex TANH
+@fnindex DTANH
+@cindex hyperbolic tangent
+@cindex hyperbolic function, tangent
+@cindex tangent, hyperbolic
+
+@table @asis
+@item @emph{Description}:
+@code{TANH(X)} computes the hyperbolic tangent of @var{X}.
+
+@item @emph{Standard}:
+F77 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{X = TANH(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)} and lies in the range
+@math{ - 1 \leq tanh(x) \leq 1 }.
+
+@item @emph{Example}:
+@smallexample
+program test_tanh
+  real(8) :: x = 2.1_8
+  x = tanh(x)
+end program test_tanh
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .20 .20 .20 .25
+@item Name            @tab Argument          @tab Return type       @tab Standard
+@item @code{DTANH(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab F95 and later
+@end multitable
+
+@item @emph{See also}:
+@ref{ATANH}
+@end table
+
+
+
+@node TIME
+@section @code{TIME} --- Time function
+@fnindex TIME
+@cindex time, current
+@cindex current time
+
+@table @asis
+@item @emph{Description}:
+Returns the current time encoded as an integer (in the manner of the
+UNIX function @code{time(3)}). This value is suitable for passing to
+@code{CTIME()}, @code{GMTIME()}, and @code{LTIME()}.
+
+This intrinsic is not fully portable, such as to systems with 32-bit
+@code{INTEGER} types but supporting times wider than 32 bits. Therefore,
+the values returned by this intrinsic might be, or become, negative, or
+numerically less than previous values, during a single run of the
+compiled program.
+
+See @ref{TIME8}, for information on a similar intrinsic that might be
+portable to more GNU Fortran implementations, though to fewer Fortran
+compilers.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{RESULT = TIME()}
+
+@item @emph{Return value}:
+The return value is a scalar of type @code{INTEGER(4)}.
+
+@item @emph{See also}:
+@ref{CTIME}, @ref{GMTIME}, @ref{LTIME}, @ref{MCLOCK}, @ref{TIME8}
+
+@end table
+
+
+
+@node TIME8
+@section @code{TIME8} --- Time function (64-bit)
+@fnindex TIME8
+@cindex time, current
+@cindex current time
+
+@table @asis
+@item @emph{Description}:
+Returns the current time encoded as an integer (in the manner of the
+UNIX function @code{time(3)}). This value is suitable for passing to
+@code{CTIME()}, @code{GMTIME()}, and @code{LTIME()}.
+
+@emph{Warning:} this intrinsic does not increase the range of the timing
+values over that returned by @code{time(3)}. On a system with a 32-bit
+@code{time(3)}, @code{TIME8()} will return a 32-bit value, even though
+it is converted to a 64-bit @code{INTEGER(8)} value. That means
+overflows of the 32-bit value can still occur. Therefore, the values
+returned by this intrinsic might be or become negative or numerically
+less than previous values during a single run of the compiled program.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{RESULT = TIME8()}
+
+@item @emph{Return value}:
+The return value is a scalar of type @code{INTEGER(8)}.
+
+@item @emph{See also}:
+@ref{CTIME}, @ref{GMTIME}, @ref{LTIME}, @ref{MCLOCK8}, @ref{TIME}
+
+@end table
+
+
+
+@node TINY
+@section @code{TINY} --- Smallest positive number of a real kind
+@fnindex TINY
+@cindex limits, smallest number
+@cindex model representation, smallest number
+
+@table @asis
+@item @emph{Description}:
+@code{TINY(X)} returns the smallest positive (non zero) number
+in the model of the type of @code{X}.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = TINY(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab Shall be of type @code{REAL}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of the same type and kind as @var{X}
+
+@item @emph{Example}:
+See @code{HUGE} for an example.
+@end table
+
+
+
+@node TRANSFER
+@section @code{TRANSFER} --- Transfer bit patterns
+@fnindex TRANSFER
+@cindex bits, move
+@cindex type cast
+
+@table @asis
+@item @emph{Description}:
+Interprets the bitwise representation of @var{SOURCE} in memory as if it
+is the representation of a variable or array of the same type and type
+parameters as @var{MOLD}.
+
+This is approximately equivalent to the C concept of @emph{casting} one
+type to another.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{RESULT = TRANSFER(SOURCE, MOLD[, SIZE])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{SOURCE} @tab Shall be a scalar or an array of any type.
+@item @var{MOLD}   @tab Shall be a scalar or an array of any type.
+@item @var{SIZE}   @tab (Optional) shall be a scalar of type 
+@code{INTEGER}.
+@end multitable
+
+@item @emph{Return value}:
+The result has the same type as @var{MOLD}, with the bit level
+representation of @var{SOURCE}.  If @var{SIZE} is present, the result is
+a one-dimensional array of length @var{SIZE}.  If @var{SIZE} is absent
+but @var{MOLD} is an array (of any size or shape), the result is a one-
+dimensional array of the minimum length needed to contain the entirety
+of the bitwise representation of @var{SOURCE}.   If @var{SIZE} is absent
+and @var{MOLD} is a scalar, the result is a scalar.
+
+If the bitwise representation of the result is longer than that of
+@var{SOURCE}, then the leading bits of the result correspond to those of
+@var{SOURCE} and any trailing bits are filled arbitrarily.
+
+When the resulting bit representation does not correspond to a valid
+representation of a variable of the same type as @var{MOLD}, the results
+are undefined, and subsequent operations on the result cannot be
+guaranteed to produce sensible behavior.  For example, it is possible to
+create @code{LOGICAL} variables for which @code{@var{VAR}} and
+@code{.NOT.@var{VAR}} both appear to be true.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_transfer
+  integer :: x = 2143289344
+  print *, transfer(x, 1.0)    ! prints "NaN" on i686
+END PROGRAM
+@end smallexample
+@end table
+
+
+
+@node TRANSPOSE
+@section @code{TRANSPOSE} --- Transpose an array of rank two
+@fnindex TRANSPOSE
+@cindex array, transpose
+@cindex matrix, transpose
+@cindex transpose
+
+@table @asis
+@item @emph{Description}:
+Transpose an array of rank two. Element (i, j) of the result has the value 
+@code{MATRIX(j, i)}, for all i, j.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{RESULT = TRANSPOSE(MATRIX)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{MATRIX} @tab Shall be an array of any type and have a rank of two.
+@end multitable
+
+@item @emph{Return value}:
+The result has the the same type as @var{MATRIX}, and has shape 
+@code{(/ m, n /)} if @var{MATRIX} has shape @code{(/ n, m /)}.
+@end table
+
+
+
+@node TRIM
+@section @code{TRIM} --- Remove trailing blank characters of a string
+@fnindex TRIM
+@cindex string, remove trailing whitespace
+
+@table @asis
+@item @emph{Description}:
+Removes trailing blank characters of a string.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{RESULT = TRIM(STRING)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{STRING} @tab Shall be a scalar of type @code{CHARACTER(*)}.
+@end multitable
+
+@item @emph{Return value}:
+A scalar of type @code{CHARACTER(*)} which length is that of @var{STRING}
+less the number of trailing blanks.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_trim
+  CHARACTER(len=10), PARAMETER :: s = "GFORTRAN  "
+  WRITE(*,*) LEN(s), LEN(TRIM(s))  ! "10 8", with/without trailing blanks
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{ADJUSTL}, @ref{ADJUSTR}
+@end table
+
+
+
+@node TTYNAM
+@section @code{TTYNAM} --- Get the name of a terminal device.
+@fnindex TTYNAM
+@cindex system, terminal
+
+@table @asis
+@item @emph{Description}:
+Get the name of a terminal device. For more information, 
+see @code{ttyname(3)}.
+
+This intrinsic is provided in both subroutine and function forms; 
+however, only one form can be used in any given program unit. 
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{CALL TTYNAM(UNIT, NAME)}
+@item @code{NAME = TTYNAM(UNIT)}
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{UNIT} @tab Shall be a scalar @code{INTEGER(*)}.
+@item @var{NAME} @tab Shall be of type @code{CHARACTER(*)}.
+@end multitable
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_ttynam
+  INTEGER :: unit
+  DO unit = 1, 10
+    IF (isatty(unit=unit)) write(*,*) ttynam(unit)
+  END DO
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{ISATTY}
+@end table
+
+
+
+@node UBOUND
+@section @code{UBOUND} --- Upper dimension bounds of an array
+@fnindex UBOUND
+@cindex array, upper bound
+
+@table @asis
+@item @emph{Description}:
+Returns the upper bounds of an array, or a single upper bound
+along the @var{DIM} dimension.
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Inquiry function
+
+@item @emph{Syntax}:
+@code{RESULT = UBOUND(ARRAY [, DIM [, KIND]])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{ARRAY} @tab Shall be an array, of any type.
+@item @var{DIM} @tab (Optional) Shall be a scalar @code{INTEGER(*)}.
+@item @var{KIND}@tab (Optional) An @code{INTEGER} initialization
+                     expression indicating the kind parameter of
+                    the result.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER} and of kind @var{KIND}. If
+@var{KIND} is absent, the return value is of default integer kind.
+If @var{DIM} is absent, the result is an array of the upper bounds of
+@var{ARRAY}.  If @var{DIM} is present, the result is a scalar
+corresponding to the upper bound of the array along that dimension.  If
+@var{ARRAY} is an expression rather than a whole array or array
+structure component, or if it has a zero extent along the relevant
+dimension, the upper bound is taken to be the number of elements along
+the relevant dimension.
+
+@item @emph{See also}:
+@ref{LBOUND}
+@end table
+
+
+
+@node UMASK
+@section @code{UMASK} --- Set the file creation mask
+@fnindex UMASK
+@cindex file system, file creation mask
+
+@table @asis
+@item @emph{Description}:
+Sets the file creation mask to @var{MASK} and returns the old value in
+argument @var{OLD} if it is supplied. See @code{umask(2)}.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine
+
+@item @emph{Syntax}:
+@code{CALL UMASK(MASK [, OLD])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{MASK} @tab Shall be a scalar of type @code{INTEGER(*)}.
+@item @var{MASK} @tab (Optional) Shall be a scalar of type
+                      @code{INTEGER(*)}.
+@end multitable
+
+@end table
+
+
+
+@node UNLINK
+@section @code{UNLINK} --- Remove a file from the file system
+@fnindex UNLINK
+@cindex file system, remove file
+
+@table @asis
+@item @emph{Description}:
+Unlinks the file @var{PATH}. A null character (@code{CHAR(0)}) can be
+used to mark the end of the name in @var{PATH}; otherwise, trailing
+blanks in the file name are ignored.  If the @var{STATUS} argument is
+supplied, it contains 0 on success or a nonzero error code upon return;
+see @code{unlink(2)}.
+
+This intrinsic is provided in both subroutine and function forms;
+however, only one form can be used in any given program unit.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Subroutine, function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{CALL UNLINK(PATH [, STATUS])}
+@item @code{STATUS = UNLINK(PATH)}
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{PATH} @tab Shall be of default @code{CHARACTER} type.
+@item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
+@end multitable
+
+@item @emph{See also}:
+@ref{LINK}, @ref{SYMLNK}
+@end table
+
+
+
+@node UNPACK
+@section @code{UNPACK} --- Unpack an array of rank one into an array
+@fnindex UNPACK
+@cindex array, unpacking
+@cindex array, increase dimension
+@cindex array, scatter elements
+
+@table @asis
+@item @emph{Description}:
+Store the elements of @var{VECTOR} in an array of higher rank.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Syntax}:
+@code{RESULT = UNPACK(VECTOR, MASK, FIELD)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{VECTOR} @tab Shall be an array of any type and rank one. It 
+shall have at least as many elements as @var{MASK} has @code{TRUE} values.
+@item @var{MASK}   @tab Shall be an array of type @code{LOGICAL}.
+@item @var{FIELD}  @tab Shall be of the sam type as @var{VECTOR} and have
+the same shape as @var{MASK}.
+@end multitable
+
+@item @emph{Return value}:
+The resulting array corresponds to @var{FIELD} with @code{TRUE} elements
+of @var{MASK} replaced by values from @var{VECTOR} in array element order.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_unpack
+  integer :: vector(2)  = (/1,1/)
+  logical :: mask(4)  = (/ .TRUE., .FALSE., .FALSE., .TRUE. /)
+  integer :: field(2,2) = 0, unity(2,2)
+
+  ! result: unity matrix
+  unity = unpack(vector, reshape(mask, (/2,2/)), field)
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{PACK}, @ref{SPREAD}
+@end table
+
+
+
+@node VERIFY
+@section @code{VERIFY} --- Scan a string for the absence of a set of characters
+@fnindex VERIFY
+@cindex string, find missing set
+
+@table @asis
+@item @emph{Description}:
+Verifies that all the characters in a @var{SET} are present in a @var{STRING}.
+
+If @var{BACK} is either absent or equals @code{FALSE}, this function
+returns the position of the leftmost character of @var{STRING} that is
+not in @var{SET}. If @var{BACK} equals @code{TRUE}, the rightmost position
+is returned. If all characters of @var{SET} are found in @var{STRING}, the 
+result is zero.
+
+@item @emph{Standard}:
+F95 and later
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = VERIFY(STRING, SET[, BACK [, KIND]])}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{STRING} @tab Shall be of type @code{CHARACTER(*)}.
+@item @var{SET}    @tab Shall be of type @code{CHARACTER(*)}.
+@item @var{BACK}   @tab (Optional) shall be of type @code{LOGICAL}.
+@item @var{KIND}   @tab (Optional) An @code{INTEGER} initialization
+                        expression indicating the kind parameter of
+                       the result.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{INTEGER} and of kind @var{KIND}. If
+@var{KIND} is absent, the return value is of default integer kind.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_verify
+  WRITE(*,*) VERIFY("FORTRAN", "AO")           ! 1, found 'F'
+  WRITE(*,*) VERIFY("FORTRAN", "FOO")          ! 3, found 'R'
+  WRITE(*,*) VERIFY("FORTRAN", "C++")          ! 1, found 'F'
+  WRITE(*,*) VERIFY("FORTRAN", "C++", .TRUE.)  ! 7, found 'N'
+  WRITE(*,*) VERIFY("FORTRAN", "FORTRAN")      ! 0' found none
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+@ref{SCAN}, @ref{INDEX}
+@end table
+
+
+
+@node XOR
+@section @code{XOR} --- Bitwise logical exclusive OR
+@fnindex XOR
+@cindex bitwise logical exclusive or
+@cindex logical exclusive or, bitwise
+
+@table @asis
+@item @emph{Description}:
+Bitwise logical exclusive or. 
+
+This intrinsic routine is provided for backwards compatibility with 
+GNU Fortran 77.  For integer arguments, programmers should consider
+the use of the @ref{IEOR} intrinsic defined by the Fortran standard.
+
+@item @emph{Standard}:
+GNU extension
+
+@item @emph{Class}:
+Function
+
+@item @emph{Syntax}:
+@code{RESULT = XOR(X, Y)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be either @code{INTEGER(*)} or @code{LOGICAL}.
+@item @var{Y} @tab The type shall be either @code{INTEGER(*)} or @code{LOGICAL}.
+@end multitable
+
+@item @emph{Return value}:
+The return type is either @code{INTEGER(*)} or @code{LOGICAL}
+after cross-promotion of the arguments.
+
+@item @emph{Example}:
+@smallexample
+PROGRAM test_xor
+  LOGICAL :: T = .TRUE., F = .FALSE.
+  INTEGER :: a, b
+  DATA a / Z'F' /, b / Z'3' /
+
+  WRITE (*,*) XOR(T, T), XOR(T, F), XOR(F, T), XOR(F, F)
+  WRITE (*,*) XOR(a, b)
+END PROGRAM
+@end smallexample
+
+@item @emph{See also}:
+F95 elemental function: @ref{IEOR}
+@end table
+
+
+
+@node Intrinsic Modules
+@chapter Intrinsic Modules
+@cindex intrinsic Modules
+
+@c @node ISO_FORTRAN_ENV
+@section @code{ISO_FORTRAN_ENV}
+@table @asis
+@item @emph{Standard}:
+Fortran 2003
+@end table
+
+The @code{ISO_FORTRAN_ENV} module provides the following scalar default-integer
+named constants:
+
+@table @asis
+@item @code{CHARACTER_STORAGE_SIZE}:
+Size in bits of the character storage unit.
+
+@item @code{ERROR_UNIT}:
+Indentifies the preconnected unit used for error reporting.
+
+@item @code{FILE_STORAGE_SIZE}:
+Size in bits of the file-storage unit.
+
+@item @code{INPUT_UNIT}:
+Indentifies the preconnected unit indentified by the asterisk
+(@code{*}) in @code{READ} statement.
+
+@item @code{IOSTAT_END}:
+The value assigned to the variable passed to the IOSTAT= specifier of
+an input/output statement if an end-of-file condition occurred.
+
+@item @code{IOSTAT_EOR}:
+The value assigned to the variable passed to the IOSTAT= specifier of
+an input/output statement if an end-of-record condition occurred.
+
+@item @code{NUMERIC_STORAGE_SIZE}:
+The size in bits of the numeric storage unit.
+
+@item @code{OUTPUT_UNIT}:
+Indentifies the preconnected unit indentified by the asterisk
+(@code{*}) in @code{WRITE} statement.
+@end table
+
+@c @node ISO_C_BINDING
+@section @code{ISO_C_BINDING}
+@table @asis
+@item @emph{Standard}:
+Fortran 2003
+@end table
+
+The following intrinsic procedures are provided by the module; their
+definition can be found in the section Intrinsic Procedures of this
+manual.
+
+@table @asis
+@item @code{C_ASSOCIATED}
+@item @code{C_F_POINTER}
+@item @code{C_F_PROCPOINTER}
+@item @code{C_FUNLOC}
+@item @code{C_LOC}
+@end table
+
+The @code{ISO_C_BINDING} module provides the following named constants of the
+type integer, which can be used as KIND type parameter. Note that GNU
+Fortran currently does not support the @code{C_INT_FAST...} KIND type
+parameters (marked by an asterix (@code{*}) in the list below).
+The @code{C_INT_FAST...} parameters have therefore the value @math{-2}
+and cannot be used as KIND type parameter of the @code{INTEGER} type.
+
+@multitable @columnfractions .15 .35 .35
+@item Fortran Type  @tab Named constant         @tab C type
+@item @code{INTEGER}@tab @code{C_INT}           @tab @code{int}
+@item @code{INTEGER}@tab @code{C_SHORT}         @tab @code{short int}
+@item @code{INTEGER}@tab @code{C_LONG}          @tab @code{long int}
+@item @code{INTEGER}@tab @code{C_LONG_LONG}     @tab @code{long long int}
+@item @code{INTEGER}@tab @code{C_SIGNED_CHAR}   @tab @code{signed char}/@code{unsigned char}
+@item @code{INTEGER}@tab @code{C_SIZE_T}        @tab @code{size_t}
+@item @code{INTEGER}@tab @code{C_INT8_T}        @tab @code{int8_t}
+@item @code{INTEGER}@tab @code{C_INT16_T}       @tab @code{int16_t}
+@item @code{INTEGER}@tab @code{C_INT32_T}       @tab @code{int32_t}
+@item @code{INTEGER}@tab @code{C_INT64_T}       @tab @code{int64_t}
+@item @code{INTEGER}@tab @code{C_INT_LEAST8_T}  @tab @code{int_least8_t}
+@item @code{INTEGER}@tab @code{C_INT_LEAST16_T} @tab @code{int_least16_t}
+@item @code{INTEGER}@tab @code{C_INT_LEAST32_T} @tab @code{int_least32_t}
+@item @code{INTEGER}@tab @code{C_INT_LEAST64_T} @tab @code{int_least64_t}
+@item @code{INTEGER}@tab @code{C_INT_FAST8_T}*  @tab @code{int_fast8_t}
+@item @code{INTEGER}@tab @code{C_INT_FAST16_T}* @tab @code{int_fast16_t}
+@item @code{INTEGER}@tab @code{C_INT_FAST32_T}* @tab @code{int_fast32_t}
+@item @code{INTEGER}@tab @code{C_INT_FAST64_T}* @tab @code{int_fast64_t}
+@item @code{INTEGER}@tab @code{C_INTMAX_T}      @tab @code{intmax_t}
+@item @code{INTEGER}@tab @code{C_INTPTR_T}      @tab @code{intptr_t}
+@item @code{REAL}   @tab @code{C_FLOAT}         @tab @code{float}
+@item @code{REAL}   @tab @code{C_DOUBLE}        @tab @code{double}
+@item @code{REAL}   @tab @code{C_LONG_DOUBLE}   @tab @code{long double}
+@item @code{COMPLEX}@tab @code{C_FLOAT_COMPLEX} @tab @code{float _Complex}
+@item @code{COMPLEX}@tab @code{C_DOUBLE_COMPLEX}@tab @code{double _Complex}
+@item @code{COMPLEX}@tab @code{C_LONG_DOUBLE_COMPLEX}@tab @code{long double _Complex}
+@item @code{LOGICAL}@tab @code{C_BOOL}          @tab @code{_Bool}
+@item @code{CHARACTER}@tab @code{C_CHAR}        @tab @code{char}
+@end multitable
+
+Additionally, the following @code{(CHARACTER(KIND=C_CHAR)} are
+defined.
+
+@multitable @columnfractions .20 .45 .15
+@item Name                     @tab C definition    @tab Value
+@item @code{C_NULL_CHAR}       @tab null character  @tab @code{'\0'}
+@item @code{C_ALERT}           @tab alert           @tab @code{'\a'}
+@item @code{C_BACKSPACE}       @tab backspace       @tab @code{'\b'}
+@item @code{C_FORM_FEED}       @tab form feed       @tab @code{'\f'}
+@item @code{C_NEW_LINE}        @tab new line        @tab @code{'\n'}
+@item @code{C_CARRIAGE_RETURN} @tab carriage return @tab @code{'\r'}
+@item @code{C_HORIZONTAL_TAB}  @tab horizontal tab  @tab @code{'\t'}
+@item @code{C_VERTICAL_TAB}    @tab vertical tab    @tab @code{'\v'}
+@end multitable
+
+@c @node OpenMP Modules OMP_LIB and OMP_LIB_KINDS
+@section OpenMP Modules @code{OMP_LIB} and @code{OMP_LIB_KINDS}
+@table @asis
+@item @emph{Standard}:
+OpenMP Application Program Interface v2.5
+@end table
+
+
+The OpenMP Fortran runtime library routines are provided both in
+a form of two Fortran 90 modules, named @code{OMP_LIB} and 
+@code{OMP_LIB_KINDS}, and in a form of a Fortran @code{include} file named
+@file{omp_lib.h}. The procedures provided by @code{OMP_LIB} can be found
+in the @ref{Top,,Introduction,libgomp,GNU OpenMP runtime library} manual,
+the named constants defined in the @code{OMP_LIB_KINDS} module are listed
+below.
+
+For details refer to the actual
+@uref{http://www.openmp.org/drupal/mp-documents/spec25.pdf,
+OpenMP Application Program Interface v2.5}.
+
+@code{OMP_LIB_KINDS} provides the following scalar default-integer
+named constants:
+
+@table @asis
+@item @code{omp_integer_kind}
+@item @code{omp_logical_kind}
+@item @code{omp_lock_kind}
+@item @code{omp_nest_lock_kind}
+@end table