// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package x11 implements an X11 backend for the exp/gui package. // // The X protocol specification is at ftp://ftp.x.org/pub/X11R7.0/doc/PDF/proto.pdf. // A summary of the wire format can be found in XCB's xproto.xml. package x11 import ( "bufio" "exp/gui" "image" "image/draw" "io" "log" "net" "os" "strconv" "strings" "time" ) type resID uint32 // X resource IDs. // TODO(nigeltao): Handle window resizes. const ( windowHeight = 600 windowWidth = 800 ) const ( keymapLo = 8 keymapHi = 255 ) type conn struct { c io.Closer r *bufio.Reader w *bufio.Writer gc, window, root, visual resID img *image.RGBA eventc chan interface{} mouseState gui.MouseEvent buf [256]byte // General purpose scratch buffer. flush chan bool flushBuf0 [24]byte flushBuf1 [4 * 1024]byte } // writeSocket runs in its own goroutine, serving both FlushImage calls // directly from the exp/gui client and indirectly from X expose events. // It paints c.img to the X server via PutImage requests. func (c *conn) writeSocket() { defer c.c.Close() for _ = range c.flush { b := c.img.Bounds() if b.Empty() { continue } // Each X request has a 16-bit length (in terms of 4-byte units). To avoid going over // this limit, we send PutImage for each row of the image, rather than trying to paint // the entire image in one X request. This approach could easily be optimized (or the // X protocol may have an escape sequence to delimit very large requests). // TODO(nigeltao): See what XCB's xcb_put_image does in this situation. units := 6 + b.Dx() if units > 0xffff || b.Dy() > 0xffff { log.Print("x11: window is too large for PutImage") return } c.flushBuf0[0] = 0x48 // PutImage opcode. c.flushBuf0[1] = 0x02 // XCB_IMAGE_FORMAT_Z_PIXMAP. c.flushBuf0[2] = uint8(units) c.flushBuf0[3] = uint8(units >> 8) setU32LE(c.flushBuf0[4:8], uint32(c.window)) setU32LE(c.flushBuf0[8:12], uint32(c.gc)) setU32LE(c.flushBuf0[12:16], 1<<16|uint32(b.Dx())) c.flushBuf0[21] = 0x18 // depth = 24 bits. for y := b.Min.Y; y < b.Max.Y; y++ { setU32LE(c.flushBuf0[16:20], uint32(y<<16)) if _, err := c.w.Write(c.flushBuf0[:24]); err != nil { if err != os.EOF { log.Println("x11:", err.String()) } return } p := c.img.Pix[(y-b.Min.Y)*c.img.Stride:] for x, dx := 0, 4*b.Dx(); x < dx; { nx := dx - x if nx > len(c.flushBuf1) { nx = len(c.flushBuf1) &^ 3 } for i := 0; i < nx; i += 4 { // X11's order is BGRX, not RGBA. c.flushBuf1[i+0] = p[x+i+2] c.flushBuf1[i+1] = p[x+i+1] c.flushBuf1[i+2] = p[x+i+0] } x += nx if _, err := c.w.Write(c.flushBuf1[:nx]); err != nil { if err != os.EOF { log.Println("x11:", err.String()) } return } } } if err := c.w.Flush(); err != nil { if err != os.EOF { log.Println("x11:", err.String()) } return } } } func (c *conn) Screen() draw.Image { return c.img } func (c *conn) FlushImage() { select { case c.flush <- false: // Flush notification sent. default: // Could not send. // Flush notification must be pending already. } } func (c *conn) Close() os.Error { // Shut down the writeSocket goroutine. This will close the socket to the // X11 server, which will cause c.eventc to close. close(c.flush) for _ = range c.eventc { // Drain the channel to allow the readSocket goroutine to shut down. } return nil } func (c *conn) EventChan() <-chan interface{} { return c.eventc } // readSocket runs in its own goroutine, reading X events and sending gui // events on c's EventChan. func (c *conn) readSocket() { var ( keymap [256][]int keysymsPerKeycode int ) defer close(c.eventc) for { // X events are always 32 bytes long. if _, err := io.ReadFull(c.r, c.buf[:32]); err != nil { if err != os.EOF { c.eventc <- gui.ErrEvent{err} } return } switch c.buf[0] { case 0x01: // Reply from a request (e.g. GetKeyboardMapping). cookie := int(c.buf[3])<<8 | int(c.buf[2]) if cookie != 1 { // We issued only one request (GetKeyboardMapping) with a cookie of 1, // so we shouldn't get any other reply from the X server. c.eventc <- gui.ErrEvent{os.NewError("x11: unexpected cookie")} return } keysymsPerKeycode = int(c.buf[1]) b := make([]int, 256*keysymsPerKeycode) for i := range keymap { keymap[i] = b[i*keysymsPerKeycode : (i+1)*keysymsPerKeycode] } for i := keymapLo; i <= keymapHi; i++ { m := keymap[i] for j := range m { u, err := readU32LE(c.r, c.buf[:4]) if err != nil { if err != os.EOF { c.eventc <- gui.ErrEvent{err} } return } m[j] = int(u) } } case 0x02, 0x03: // Key press, key release. // X Keyboard Encoding is documented at http://tronche.com/gui/x/xlib/input/keyboard-encoding.html // TODO(nigeltao): Do we need to implement the "MODE SWITCH / group modifier" feature // or is that some no-longer-used X construct? if keysymsPerKeycode < 2 { // Either we haven't yet received the GetKeyboardMapping reply or // the X server has sent one that's too short. continue } keycode := int(c.buf[1]) shift := int(c.buf[28]) & 0x01 keysym := keymap[keycode][shift] if keysym == 0 { keysym = keymap[keycode][0] } // TODO(nigeltao): Should we send KeyEvents for Shift/Ctrl/Alt? Should Shift-A send // the same int down the channel as the sent on just the A key? // TODO(nigeltao): How should IME events (e.g. key presses that should generate CJK text) work? Or // is that outside the scope of the gui.Window interface? if c.buf[0] == 0x03 { keysym = -keysym } c.eventc <- gui.KeyEvent{keysym} case 0x04, 0x05: // Button press, button release. mask := 1 << (c.buf[1] - 1) if c.buf[0] == 0x04 { c.mouseState.Buttons |= mask } else { c.mouseState.Buttons &^= mask } c.mouseState.Nsec = time.Nanoseconds() c.eventc <- c.mouseState case 0x06: // Motion notify. c.mouseState.Loc.X = int(int16(c.buf[25])<<8 | int16(c.buf[24])) c.mouseState.Loc.Y = int(int16(c.buf[27])<<8 | int16(c.buf[26])) c.mouseState.Nsec = time.Nanoseconds() c.eventc <- c.mouseState case 0x0c: // Expose. // A single user action could trigger multiple expose events (e.g. if moving another // window with XShape'd rounded corners over our window). In that case, the X server will // send a uint16 count (in bytes 16-17) of the number of additional expose events coming. // We could parse each event for the (x, y, width, height) and maintain a minimal dirty // rectangle, but for now, the simplest approach is to paint the entire window, when // receiving the final event in the series. if c.buf[17] == 0 && c.buf[16] == 0 { // TODO(nigeltao): Should we ignore the very first expose event? A freshly mapped window // will trigger expose, but until the first c.FlushImage call, there's probably nothing to // paint but black. For an 800x600 window, at 4 bytes per pixel, each repaint writes about // 2MB over the socket. c.FlushImage() } // TODO(nigeltao): Should we listen to DestroyNotify (0x11) and ResizeRequest (0x19) events? // What about EnterNotify (0x07) and LeaveNotify (0x08)? } } } // connect connects to the X server given by the full X11 display name (e.g. // ":12.0") and returns the connection as well as the portion of the full name // that is the display number (e.g. "12"). // Examples: // connect(":1") // calls net.Dial("unix", "", "/tmp/.X11-unix/X1"), displayStr="1" // connect("/tmp/launch-123/:0") // calls net.Dial("unix", "", "/tmp/launch-123/:0"), displayStr="0" // connect("hostname:2.1") // calls net.Dial("tcp", "", "hostname:6002"), displayStr="2" // connect("tcp/hostname:1.0") // calls net.Dial("tcp", "", "hostname:6001"), displayStr="1" func connect(display string) (conn net.Conn, displayStr string, err os.Error) { colonIdx := strings.LastIndex(display, ":") if colonIdx < 0 { return nil, "", os.NewError("bad display: " + display) } // Parse the section before the colon. var protocol, host, socket string if display[0] == '/' { socket = display[:colonIdx] } else { if i := strings.LastIndex(display, "/"); i < 0 { // The default protocol is TCP. protocol = "tcp" host = display[:colonIdx] } else { protocol = display[:i] host = display[i+1 : colonIdx] } } // Parse the section after the colon. after := display[colonIdx+1:] if after == "" { return nil, "", os.NewError("bad display: " + display) } if i := strings.LastIndex(after, "."); i < 0 { displayStr = after } else { displayStr = after[:i] } displayInt, err := strconv.Atoi(displayStr) if err != nil || displayInt < 0 { return nil, "", os.NewError("bad display: " + display) } // Make the connection. if socket != "" { conn, err = net.Dial("unix", socket+":"+displayStr) } else if host != "" { conn, err = net.Dial(protocol, host+":"+strconv.Itoa(6000+displayInt)) } else { conn, err = net.Dial("unix", "/tmp/.X11-unix/X"+displayStr) } if err != nil { return nil, "", os.NewError("cannot connect to " + display + ": " + err.String()) } return } // authenticate authenticates ourselves with the X server. // displayStr is the "12" out of ":12.0". func authenticate(w *bufio.Writer, displayStr string) os.Error { key, value, err := readAuth(displayStr) if err != nil { return err } // Assume that the authentication protocol is "MIT-MAGIC-COOKIE-1". if len(key) != 18 || len(value) != 16 { return os.NewError("unsupported Xauth") } // 0x006c means little-endian. 0x000b, 0x0000 means X major version 11, minor version 0. // 0x0012 and 0x0010 means the auth key and value have lengths 18 and 16. // The final 0x0000 is padding, so that the string length is a multiple of 4. _, err = io.WriteString(w, "\x6c\x00\x0b\x00\x00\x00\x12\x00\x10\x00\x00\x00") if err != nil { return err } _, err = io.WriteString(w, key) if err != nil { return err } // Again, the 0x0000 is padding. _, err = io.WriteString(w, "\x00\x00") if err != nil { return err } _, err = io.WriteString(w, value) if err != nil { return err } err = w.Flush() if err != nil { return err } return nil } // readU8 reads a uint8 from r, using b as a scratch buffer. func readU8(r io.Reader, b []byte) (uint8, os.Error) { _, err := io.ReadFull(r, b[:1]) if err != nil { return 0, err } return uint8(b[0]), nil } // readU16LE reads a little-endian uint16 from r, using b as a scratch buffer. func readU16LE(r io.Reader, b []byte) (uint16, os.Error) { _, err := io.ReadFull(r, b[:2]) if err != nil { return 0, err } return uint16(b[0]) | uint16(b[1])<<8, nil } // readU32LE reads a little-endian uint32 from r, using b as a scratch buffer. func readU32LE(r io.Reader, b []byte) (uint32, os.Error) { _, err := io.ReadFull(r, b[:4]) if err != nil { return 0, err } return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24, nil } // setU32LE sets b[:4] to be the little-endian representation of u. func setU32LE(b []byte, u uint32) { b[0] = byte((u >> 0) & 0xff) b[1] = byte((u >> 8) & 0xff) b[2] = byte((u >> 16) & 0xff) b[3] = byte((u >> 24) & 0xff) } // checkPixmapFormats checks that we have an agreeable X pixmap Format. func checkPixmapFormats(r io.Reader, b []byte, n int) (agree bool, err os.Error) { for i := 0; i < n; i++ { _, err = io.ReadFull(r, b[:8]) if err != nil { return } // Byte 0 is depth, byte 1 is bits-per-pixel, byte 2 is scanline-pad, the rest (5) is padding. if b[0] == 24 && b[1] == 32 { agree = true } } return } // checkDepths checks that we have an agreeable X Depth (i.e. one that has an agreeable X VisualType). func checkDepths(r io.Reader, b []byte, n int, visual uint32) (agree bool, err os.Error) { for i := 0; i < n; i++ { var depth, visualsLen uint16 depth, err = readU16LE(r, b) if err != nil { return } depth &= 0xff visualsLen, err = readU16LE(r, b) if err != nil { return } // Ignore 4 bytes of padding. _, err = io.ReadFull(r, b[:4]) if err != nil { return } for j := 0; j < int(visualsLen); j++ { // Read 24 bytes: visual(4), class(1), bits per rgb value(1), colormap entries(2), // red mask(4), green mask(4), blue mask(4), padding(4). v, _ := readU32LE(r, b) _, _ = readU32LE(r, b) rm, _ := readU32LE(r, b) gm, _ := readU32LE(r, b) bm, _ := readU32LE(r, b) _, err = readU32LE(r, b) if err != nil { return } if v == visual && rm == 0xff0000 && gm == 0xff00 && bm == 0xff && depth == 24 { agree = true } } } return } // checkScreens checks that we have an agreeable X Screen. func checkScreens(r io.Reader, b []byte, n int) (root, visual uint32, err os.Error) { for i := 0; i < n; i++ { var root0, visual0, x uint32 root0, err = readU32LE(r, b) if err != nil { return } // Ignore the next 7x4 bytes, which is: colormap, whitepixel, blackpixel, current input masks, // width and height (pixels), width and height (mm), min and max installed maps. _, err = io.ReadFull(r, b[:28]) if err != nil { return } visual0, err = readU32LE(r, b) if err != nil { return } // Next 4 bytes: backing stores, save unders, root depth, allowed depths length. x, err = readU32LE(r, b) if err != nil { return } nDepths := int(x >> 24) var agree bool agree, err = checkDepths(r, b, nDepths, visual0) if err != nil { return } if agree && root == 0 { root = root0 visual = visual0 } } return } // handshake performs the protocol handshake with the X server, and ensures // that the server provides a compatible Screen, Depth, etc. func (c *conn) handshake() os.Error { _, err := io.ReadFull(c.r, c.buf[:8]) if err != nil { return err } // Byte 0 should be 1 (success), bytes 2:6 should be 0xb0000000 (major/minor version 11.0). if c.buf[0] != 1 || c.buf[2] != 11 || c.buf[3] != 0 || c.buf[4] != 0 || c.buf[5] != 0 { return os.NewError("unsupported X version") } // Ignore the release number. _, err = io.ReadFull(c.r, c.buf[:4]) if err != nil { return err } // Read the resource ID base. resourceIdBase, err := readU32LE(c.r, c.buf[:4]) if err != nil { return err } // Read the resource ID mask. resourceIdMask, err := readU32LE(c.r, c.buf[:4]) if err != nil { return err } if resourceIdMask < 256 { return os.NewError("X resource ID mask is too small") } // Ignore the motion buffer size. _, err = io.ReadFull(c.r, c.buf[:4]) if err != nil { return err } // Read the vendor length and round it up to a multiple of 4, // for X11 protocol alignment reasons. vendorLen, err := readU16LE(c.r, c.buf[:2]) if err != nil { return err } vendorLen = (vendorLen + 3) &^ 3 // Read the maximum request length. maxReqLen, err := readU16LE(c.r, c.buf[:2]) if err != nil { return err } if maxReqLen != 0xffff { return os.NewError("unsupported X maximum request length") } // Read the roots length. rootsLen, err := readU8(c.r, c.buf[:1]) if err != nil { return err } // Read the pixmap formats length. pixmapFormatsLen, err := readU8(c.r, c.buf[:1]) if err != nil { return err } // Ignore some things that we don't care about (totaling 10 + vendorLen bytes): // imageByteOrder(1), bitmapFormatBitOrder(1), bitmapFormatScanlineUnit(1) bitmapFormatScanlinePad(1), // minKeycode(1), maxKeycode(1), padding(4), vendor (vendorLen). if 10+int(vendorLen) > cap(c.buf) { return os.NewError("unsupported X vendor") } _, err = io.ReadFull(c.r, c.buf[:10+int(vendorLen)]) if err != nil { return err } // Check that we have an agreeable pixmap format. agree, err := checkPixmapFormats(c.r, c.buf[:8], int(pixmapFormatsLen)) if err != nil { return err } if !agree { return os.NewError("unsupported X pixmap formats") } // Check that we have an agreeable screen. root, visual, err := checkScreens(c.r, c.buf[:24], int(rootsLen)) if err != nil { return err } if root == 0 || visual == 0 { return os.NewError("unsupported X screen") } c.gc = resID(resourceIdBase) c.window = resID(resourceIdBase + 1) c.root = resID(root) c.visual = resID(visual) return nil } // NewWindow calls NewWindowDisplay with $DISPLAY. func NewWindow() (gui.Window, os.Error) { display := os.Getenv("DISPLAY") if len(display) == 0 { return nil, os.NewError("$DISPLAY not set") } return NewWindowDisplay(display) } // NewWindowDisplay returns a new gui.Window, backed by a newly created and // mapped X11 window. The X server to connect to is specified by the display // string, such as ":1". func NewWindowDisplay(display string) (gui.Window, os.Error) { socket, displayStr, err := connect(display) if err != nil { return nil, err } c := new(conn) c.c = socket c.r = bufio.NewReader(socket) c.w = bufio.NewWriter(socket) err = authenticate(c.w, displayStr) if err != nil { return nil, err } err = c.handshake() if err != nil { return nil, err } // Now that we're connected, show a window, via three X protocol messages. // First, issue a GetKeyboardMapping request. This is the first request, and // will be associated with a cookie of 1. setU32LE(c.buf[0:4], 0x00020065) // 0x65 is the GetKeyboardMapping opcode, and the message is 2 x 4 bytes long. setU32LE(c.buf[4:8], uint32((keymapHi-keymapLo+1)<<8|keymapLo)) // Second, create a graphics context (GC). setU32LE(c.buf[8:12], 0x00060037) // 0x37 is the CreateGC opcode, and the message is 6 x 4 bytes long. setU32LE(c.buf[12:16], uint32(c.gc)) setU32LE(c.buf[16:20], uint32(c.root)) setU32LE(c.buf[20:24], 0x00010004) // Bit 2 is XCB_GC_FOREGROUND, bit 16 is XCB_GC_GRAPHICS_EXPOSURES. setU32LE(c.buf[24:28], 0x00000000) // The Foreground is black. setU32LE(c.buf[28:32], 0x00000000) // GraphicsExposures' value is unused. // Third, create the window. setU32LE(c.buf[32:36], 0x000a0001) // 0x01 is the CreateWindow opcode, and the message is 10 x 4 bytes long. setU32LE(c.buf[36:40], uint32(c.window)) setU32LE(c.buf[40:44], uint32(c.root)) setU32LE(c.buf[44:48], 0x00000000) // Initial (x, y) is (0, 0). setU32LE(c.buf[48:52], windowHeight<<16|windowWidth) setU32LE(c.buf[52:56], 0x00010000) // Border width is 0, XCB_WINDOW_CLASS_INPUT_OUTPUT is 1. setU32LE(c.buf[56:60], uint32(c.visual)) setU32LE(c.buf[60:64], 0x00000802) // Bit 1 is XCB_CW_BACK_PIXEL, bit 11 is XCB_CW_EVENT_MASK. setU32LE(c.buf[64:68], 0x00000000) // The Back-Pixel is black. setU32LE(c.buf[68:72], 0x0000804f) // Key/button press and release, pointer motion, and expose event masks. // Fourth, map the window. setU32LE(c.buf[72:76], 0x00020008) // 0x08 is the MapWindow opcode, and the message is 2 x 4 bytes long. setU32LE(c.buf[76:80], uint32(c.window)) // Write the bytes. _, err = c.w.Write(c.buf[:80]) if err != nil { return nil, err } err = c.w.Flush() if err != nil { return nil, err } c.img = image.NewRGBA(windowWidth, windowHeight) c.eventc = make(chan interface{}, 16) c.flush = make(chan bool, 1) go c.readSocket() go c.writeSocket() return c, nil }