/* Copyright (C) 2007, 2008 Free Software Foundation, Inc. Contributed by Andy Vaught Write float code factoring to this file by Jerry DeLisle F2003 I/O support contributed by Jerry DeLisle This file is part of the GNU Fortran 95 runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Libgfortran; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "config.h" typedef enum { S_NONE, S_MINUS, S_PLUS } sign_t; /* Given a flag that indicates if a value is negative or not, return a sign_t that gives the sign that we need to produce. */ static sign_t calculate_sign (st_parameter_dt *dtp, int negative_flag) { sign_t s = S_NONE; if (negative_flag) s = S_MINUS; else switch (dtp->u.p.sign_status) { case SIGN_SP: /* Show sign. */ s = S_PLUS; break; case SIGN_SS: /* Suppress sign. */ s = S_NONE; break; case SIGN_S: /* Processor defined. */ s = options.optional_plus ? S_PLUS : S_NONE; break; } return s; } /* Output a real number according to its format which is FMT_G free. */ static void output_float (st_parameter_dt *dtp, const fnode *f, char *buffer, size_t size, int sign_bit, bool zero_flag, int ndigits, int edigits) { char *out; char *digits; int e; char expchar; format_token ft; int w; int d; /* Number of digits before the decimal point. */ int nbefore; /* Number of zeros after the decimal point. */ int nzero; /* Number of digits after the decimal point. */ int nafter; /* Number of zeros after the decimal point, whatever the precision. */ int nzero_real; int leadzero; int nblanks; int i; sign_t sign; ft = f->format; w = f->u.real.w; d = f->u.real.d; nzero_real = -1; /* We should always know the field width and precision. */ if (d < 0) internal_error (&dtp->common, "Unspecified precision"); /* Use sprintf to print the number in the format +D.DDDDe+ddd For an N digit exponent, this gives us (MIN_FIELD_WIDTH-5)-N digits after the decimal point, plus another one before the decimal point. */ sign = calculate_sign (dtp, sign_bit); /* # The result will always contain a decimal point, even if no * digits follow it * * - The converted value is to be left adjusted on the field boundary * * + A sign (+ or -) always be placed before a number * * MIN_FIELD_WIDTH minimum field width * * * (ndigits-1) is used as the precision * * e format: [-]d.ddde±dd where there is one digit before the * decimal-point character and the number of digits after it is * equal to the precision. The exponent always contains at least two * digits; if the value is zero, the exponent is 00. */ /* Check the given string has punctuation in the correct places. */ if (d != 0 && (buffer[2] != '.' || buffer[ndigits + 2] != 'e')) internal_error (&dtp->common, "printf is broken"); /* Read the exponent back in. */ e = atoi (&buffer[ndigits + 3]) + 1; /* Make sure zero comes out as 0.0e0. */ if (zero_flag) { e = 0; if (compile_options.sign_zero == 1) sign = calculate_sign (dtp, sign_bit); else sign = calculate_sign (dtp, 0); } /* Normalize the fractional component. */ buffer[2] = buffer[1]; digits = &buffer[2]; /* Figure out where to place the decimal point. */ switch (ft) { case FMT_F: nbefore = e + dtp->u.p.scale_factor; if (nbefore < 0) { nzero = -nbefore; nzero_real = nzero; if (nzero > d) nzero = d; nafter = d - nzero; nbefore = 0; } else { nzero = 0; nafter = d; } expchar = 0; break; case FMT_E: case FMT_D: i = dtp->u.p.scale_factor; if (d <= 0 && i == 0) { generate_error (&dtp->common, LIBERROR_FORMAT, "Precision not " "greater than zero in format specifier 'E' or 'D'"); return; } if (i <= -d || i >= d + 2) { generate_error (&dtp->common, LIBERROR_FORMAT, "Scale factor " "out of range in format specifier 'E' or 'D'"); return; } if (!zero_flag) e -= i; if (i < 0) { nbefore = 0; nzero = -i; nafter = d + i; } else if (i > 0) { nbefore = i; nzero = 0; nafter = (d - i) + 1; } else /* i == 0 */ { nbefore = 0; nzero = 0; nafter = d; } if (ft == FMT_E) expchar = 'E'; else expchar = 'D'; break; case FMT_EN: /* The exponent must be a multiple of three, with 1-3 digits before the decimal point. */ if (!zero_flag) e--; if (e >= 0) nbefore = e % 3; else { nbefore = (-e) % 3; if (nbefore != 0) nbefore = 3 - nbefore; } e -= nbefore; nbefore++; nzero = 0; nafter = d; expchar = 'E'; break; case FMT_ES: if (!zero_flag) e--; nbefore = 1; nzero = 0; nafter = d; expchar = 'E'; break; default: /* Should never happen. */ internal_error (&dtp->common, "Unexpected format token"); } /* Round the value. */ if (nbefore + nafter == 0) { ndigits = 0; if (nzero_real == d && digits[0] >= '5') { /* We rounded to zero but shouldn't have */ nzero--; nafter = 1; digits[0] = '1'; ndigits = 1; } } else if (nbefore + nafter < ndigits) { ndigits = nbefore + nafter; i = ndigits; if (digits[i] >= '5') { /* Propagate the carry. */ for (i--; i >= 0; i--) { if (digits[i] != '9') { digits[i]++; break; } digits[i] = '0'; } if (i < 0) { /* The carry overflowed. Fortunately we have some spare space at the start of the buffer. We may discard some digits, but this is ok because we already know they are zero. */ digits--; digits[0] = '1'; if (ft == FMT_F) { if (nzero > 0) { nzero--; nafter++; } else nbefore++; } else if (ft == FMT_EN) { nbefore++; if (nbefore == 4) { nbefore = 1; e += 3; } } else e++; } } } /* Calculate the format of the exponent field. */ if (expchar) { edigits = 1; for (i = abs (e); i >= 10; i /= 10) edigits++; if (f->u.real.e < 0) { /* Width not specified. Must be no more than 3 digits. */ if (e > 999 || e < -999) edigits = -1; else { edigits = 4; if (e > 99 || e < -99) expchar = ' '; } } else { /* Exponent width specified, check it is wide enough. */ if (edigits > f->u.real.e) edigits = -1; else edigits = f->u.real.e + 2; } } else edigits = 0; /* Pick a field size if none was specified. */ if (w <= 0) w = nbefore + nzero + nafter + (sign != S_NONE ? 2 : 1); /* Create the ouput buffer. */ out = write_block (dtp, w); if (out == NULL) return; /* Zero values always output as positive, even if the value was negative before rounding. */ for (i = 0; i < ndigits; i++) { if (digits[i] != '0') break; } if (i == ndigits) { /* The output is zero, so set the sign according to the sign bit unless -fno-sign-zero was specified. */ if (compile_options.sign_zero == 1) sign = calculate_sign (dtp, sign_bit); else sign = calculate_sign (dtp, 0); } /* Work out how much padding is needed. */ nblanks = w - (nbefore + nzero + nafter + edigits + 1); if (sign != S_NONE) nblanks--; /* Check the value fits in the specified field width. */ if (nblanks < 0 || edigits == -1) { star_fill (out, w); return; } /* See if we have space for a zero before the decimal point. */ if (nbefore == 0 && nblanks > 0) { leadzero = 1; nblanks--; } else leadzero = 0; /* Pad to full field width. */ if ( ( nblanks > 0 ) && !dtp->u.p.no_leading_blank) { memset (out, ' ', nblanks); out += nblanks; } /* Output the initial sign (if any). */ if (sign == S_PLUS) *(out++) = '+'; else if (sign == S_MINUS) *(out++) = '-'; /* Output an optional leading zero. */ if (leadzero) *(out++) = '0'; /* Output the part before the decimal point, padding with zeros. */ if (nbefore > 0) { if (nbefore > ndigits) { i = ndigits; memcpy (out, digits, i); ndigits = 0; while (i < nbefore) out[i++] = '0'; } else { i = nbefore; memcpy (out, digits, i); ndigits -= i; } digits += i; out += nbefore; } /* Output the decimal point. */ *(out++) = dtp->u.p.decimal_status == DECIMAL_POINT ? '.' : ','; /* Output leading zeros after the decimal point. */ if (nzero > 0) { for (i = 0; i < nzero; i++) *(out++) = '0'; } /* Output digits after the decimal point, padding with zeros. */ if (nafter > 0) { if (nafter > ndigits) i = ndigits; else i = nafter; memcpy (out, digits, i); while (i < nafter) out[i++] = '0'; digits += i; ndigits -= i; out += nafter; } /* Output the exponent. */ if (expchar) { if (expchar != ' ') { *(out++) = expchar; edigits--; } #if HAVE_SNPRINTF snprintf (buffer, size, "%+0*d", edigits, e); #else sprintf (buffer, "%+0*d", edigits, e); #endif memcpy (out, buffer, edigits); } if (dtp->u.p.no_leading_blank) { out += edigits; memset( out , ' ' , nblanks ); dtp->u.p.no_leading_blank = 0; } #undef STR #undef STR1 #undef MIN_FIELD_WIDTH } /* Write "Infinite" or "Nan" as appropriate for the given format. */ static void write_infnan (st_parameter_dt *dtp, const fnode *f, int isnan_flag, int sign_bit) { char * p, fin; int nb = 0; if (f->format != FMT_B && f->format != FMT_O && f->format != FMT_Z) { nb = f->u.real.w; /* If the field width is zero, the processor must select a width not zero. 4 is chosen to allow output of '-Inf' or '+Inf' */ if (nb == 0) nb = 4; p = write_block (dtp, nb); if (p == NULL) return; if (nb < 3) { memset (p, '*',nb); return; } memset(p, ' ', nb); if (!isnan_flag) { if (sign_bit) { /* If the sign is negative and the width is 3, there is insufficient room to output '-Inf', so output asterisks */ if (nb == 3) { memset (p, '*',nb); return; } /* The negative sign is mandatory */ fin = '-'; } else /* The positive sign is optional, but we output it for consistency */ fin = '+'; if (nb > 8) /* We have room, so output 'Infinity' */ memcpy(p + nb - 8, "Infinity", 8); else /* For the case of width equals 8, there is not enough room for the sign and 'Infinity' so we go with 'Inf' */ memcpy(p + nb - 3, "Inf", 3); if (nb < 9 && nb > 3) p[nb - 4] = fin; /* Put the sign in front of Inf */ else if (nb > 8) p[nb - 9] = fin; /* Put the sign in front of Infinity */ } else memcpy(p + nb - 3, "NaN", 3); return; } } /* Returns the value of 10**d. */ #define CALCULATE_EXP(x) \ inline static GFC_REAL_ ## x \ calculate_exp_ ## x (int d)\ {\ int i;\ GFC_REAL_ ## x r = 1.0;\ for (i = 0; i< (d >= 0 ? d : -d); i++)\ r *= 10;\ r = (d >= 0) ? r : 1.0 / r;\ return r;\ } CALCULATE_EXP(4) CALCULATE_EXP(8) #ifdef HAVE_GFC_REAL_10 CALCULATE_EXP(10) #endif #ifdef HAVE_GFC_REAL_16 CALCULATE_EXP(16) #endif #undef CALCULATE_EXP /* Generate corresponding I/O format for FMT_G and output. The rules to translate FMT_G to FMT_E or FMT_F from DEC fortran LRM (table 11-2, Chapter 11, "I/O Formatting", P11-25) is: Data Magnitude Equivalent Conversion 0< m < 0.1-0.5*10**(-d-1) Ew.d[Ee] m = 0 F(w-n).(d-1), n' ' 0.1-0.5*10**(-d-1)<= m < 1-0.5*10**(-d) F(w-n).d, n' ' 1-0.5*10**(-d)<= m < 10-0.5*10**(-d+1) F(w-n).(d-1), n' ' 10-0.5*10**(-d+1)<= m < 100-0.5*10**(-d+2) F(w-n).(d-2), n' ' ................ .......... 10**(d-1)-0.5*10**(-1)<= m <10**d-0.5 F(w-n).0,n(' ') m >= 10**d-0.5 Ew.d[Ee] notes: for Gw.d , n' ' means 4 blanks for Gw.dEe, n' ' means e+2 blanks */ #define OUTPUT_FLOAT_FMT_G(x) \ static void \ output_float_FMT_G_ ## x (st_parameter_dt *dtp, const fnode *f, \ GFC_REAL_ ## x m, char *buffer, size_t size, \ int sign_bit, bool zero_flag, int ndigits, int edigits) \ { \ int e = f->u.real.e;\ int d = f->u.real.d;\ int w = f->u.real.w;\ fnode *newf;\ GFC_REAL_ ## x exp_d;\ int low, high, mid;\ int ubound, lbound;\ char *p;\ int save_scale_factor, nb = 0;\ \ save_scale_factor = dtp->u.p.scale_factor;\ newf = get_mem (sizeof (fnode));\ \ exp_d = calculate_exp_ ## x (d);\ if ((m > 0.0 && m < 0.1 - 0.05 / exp_d) || (m >= exp_d - 0.5 ) ||\ ((m == 0.0) && !(compile_options.allow_std & GFC_STD_F2003)))\ { \ newf->format = FMT_E;\ newf->u.real.w = w;\ newf->u.real.d = d;\ newf->u.real.e = e;\ nb = 0;\ goto finish;\ }\ \ mid = 0;\ low = 0;\ high = d + 1;\ lbound = 0;\ ubound = d + 1;\ \ while (low <= high)\ { \ GFC_REAL_ ## x temp;\ mid = (low + high) / 2;\ \ temp = 0.1 * calculate_exp_ ## x (mid) - 0.5\ * calculate_exp_ ## x (mid - d - 1);\ \ if (m < temp)\ { \ ubound = mid;\ if (ubound == lbound + 1)\ break;\ high = mid - 1;\ }\ else if (m > temp)\ { \ lbound = mid;\ if (ubound == lbound + 1)\ { \ mid ++;\ break;\ }\ low = mid + 1;\ }\ else\ break;\ }\ \ if (e < 0)\ nb = 4;\ else\ nb = e + 2;\ \ newf->format = FMT_F;\ newf->u.real.w = f->u.real.w - nb;\ \ if (m == 0.0)\ newf->u.real.d = d - 1;\ else\ newf->u.real.d = - (mid - d - 1);\ \ dtp->u.p.scale_factor = 0;\ \ finish:\ output_float (dtp, newf, buffer, size, sign_bit, zero_flag, ndigits, \ edigits);\ dtp->u.p.scale_factor = save_scale_factor;\ \ free_mem(newf);\ \ if (nb > 0)\ { \ p = write_block (dtp, nb);\ if (p == NULL)\ return;\ memset (p, ' ', nb);\ }\ }\ OUTPUT_FLOAT_FMT_G(4) OUTPUT_FLOAT_FMT_G(8) #ifdef HAVE_GFC_REAL_10 OUTPUT_FLOAT_FMT_G(10) #endif #ifdef HAVE_GFC_REAL_16 OUTPUT_FLOAT_FMT_G(16) #endif #undef OUTPUT_FLOAT_FMT_G /* Define a macro to build code for write_float. */ #ifdef HAVE_SNPRINTF #define DTOA \ snprintf (buffer, size, "%+-#" STR(MIN_FIELD_WIDTH) ".*" \ "e", ndigits - 1, tmp); #define DTOAL \ snprintf (buffer, size, "%+-#" STR(MIN_FIELD_WIDTH) ".*" \ "Le", ndigits - 1, tmp); #else #define DTOA \ sprintf (buffer, "%+-#" STR(MIN_FIELD_WIDTH) ".*" \ "e", ndigits - 1, tmp); #define DTOAL \ sprintf (buffer, "%+-#" STR(MIN_FIELD_WIDTH) ".*" \ "Le", ndigits - 1, tmp); #endif #define WRITE_FLOAT(x,y)\ {\ GFC_REAL_ ## x tmp;\ tmp = * (GFC_REAL_ ## x *)source;\ sign_bit = signbit (tmp);\ if (!isfinite (tmp))\ { \ write_infnan (dtp, f, isnan (tmp), sign_bit);\ return;\ }\ tmp = sign_bit ? -tmp : tmp;\ if (f->u.real.d == 0 && f->format == FMT_F)\ {\ if (tmp < 0.5)\ tmp = 0.0;\ else if (tmp < 1.0)\ tmp = tmp + 0.5;\ }\ zero_flag = (tmp == 0.0);\ \ DTOA ## y\ \ if (f->format != FMT_G)\ output_float (dtp, f, buffer, size, sign_bit, zero_flag, ndigits, \ edigits);\ else \ output_float_FMT_G_ ## x (dtp, f, tmp, buffer, size, sign_bit, \ zero_flag, ndigits, edigits);\ }\ /* Output a real number according to its format. */ static void write_float (st_parameter_dt *dtp, const fnode *f, const char *source, int len) { #if defined(HAVE_GFC_REAL_16) && __LDBL_DIG__ > 18 # define MIN_FIELD_WIDTH 46 #else # define MIN_FIELD_WIDTH 31 #endif #define STR(x) STR1(x) #define STR1(x) #x /* This must be large enough to accurately hold any value. */ char buffer[MIN_FIELD_WIDTH+1]; int sign_bit, ndigits, edigits; bool zero_flag; size_t size; size = MIN_FIELD_WIDTH+1; /* printf pads blanks for us on the exponent so we just need it big enough to handle the largest number of exponent digits expected. */ edigits=4; if (f->format == FMT_F || f->format == FMT_EN || f->format == FMT_G || ((f->format == FMT_D || f->format == FMT_E) && dtp->u.p.scale_factor != 0)) { /* Always convert at full precision to avoid double rounding. */ ndigits = MIN_FIELD_WIDTH - 4 - edigits; } else { /* The number of digits is known, so let printf do the rounding. */ if (f->format == FMT_ES) ndigits = f->u.real.d + 1; else ndigits = f->u.real.d; if (ndigits > MIN_FIELD_WIDTH - 4 - edigits) ndigits = MIN_FIELD_WIDTH - 4 - edigits; } switch (len) { case 4: WRITE_FLOAT(4,) break; case 8: WRITE_FLOAT(8,) break; #ifdef HAVE_GFC_REAL_10 case 10: WRITE_FLOAT(10,L) break; #endif #ifdef HAVE_GFC_REAL_16 case 16: WRITE_FLOAT(16,L) break; #endif default: internal_error (NULL, "bad real kind"); } }