#define LIBFFI_ASM #include #include #include .file "ppc_closure.S" #ifndef __powerpc64__ ENTRY(ffi_closure_SYSV) .LFB1: stwu %r1,-144(%r1) .LCFI0: mflr %r0 .LCFI1: stw %r0,148(%r1) # we want to build up an areas for the parameters passed # in registers (both floating point and integer) # so first save gpr 3 to gpr 10 (aligned to 4) stw %r3, 16(%r1) stw %r4, 20(%r1) stw %r5, 24(%r1) stw %r6, 28(%r1) stw %r7, 32(%r1) stw %r8, 36(%r1) stw %r9, 40(%r1) stw %r10,44(%r1) # next save fpr 1 to fpr 8 (aligned to 8) stfd %f1, 48(%r1) stfd %f2, 56(%r1) stfd %f3, 64(%r1) stfd %f4, 72(%r1) stfd %f5, 80(%r1) stfd %f6, 88(%r1) stfd %f7, 96(%r1) stfd %f8, 104(%r1) # set up registers for the routine that actually does the work # get the context pointer from the trampoline mr %r3,%r11 # now load up the pointer to the result storage addi %r4,%r1,112 # now load up the pointer to the saved gpr registers addi %r5,%r1,16 # now load up the pointer to the saved fpr registers */ addi %r6,%r1,48 # now load up the pointer to the outgoing parameter # stack in the previous frame # i.e. the previous frame pointer + 8 addi %r7,%r1,152 # make the call bl ffi_closure_helper_SYSV@local # now r3 contains the return type # so use it to look up in a table # so we know how to deal with each type # Extract the size of the return type for small structures. # Then calculate (4 - size) and multiply the result by 8. # This gives the value needed for the shift operation below. # This part is only needed for FFI_SYSV and small structures. addi %r5,%r3,-(FFI_SYSV_TYPE_SMALL_STRUCT) cmpwi cr0,%r5,4 ble cr0,.Lnext addi %r5,%r5,-4 .Lnext: addi %r5,%r5,-4 neg %r5,%r5 slwi %r5,%r5,3 # look up the proper starting point in table # by using return type as offset addi %r6,%r1,112 # get pointer to results area bl .Lget_ret_type0_addr # get pointer to .Lret_type0 into LR mflr %r4 # move to r4 slwi %r3,%r3,4 # now multiply return type by 16 add %r3,%r3,%r4 # add contents of table to table address mtctr %r3 bctr # jump to it .LFE1: # Each of the ret_typeX code fragments has to be exactly 16 bytes long # (4 instructions). For cache effectiveness we align to a 16 byte boundary # first. .align 4 nop nop nop .Lget_ret_type0_addr: blrl # case FFI_TYPE_VOID .Lret_type0: b .Lfinish nop nop nop # case FFI_TYPE_INT .Lret_type1: lwz %r3,0(%r6) b .Lfinish nop nop # case FFI_TYPE_FLOAT .Lret_type2: lfs %f1,0(%r6) b .Lfinish nop nop # case FFI_TYPE_DOUBLE .Lret_type3: lfd %f1,0(%r6) b .Lfinish nop nop # case FFI_TYPE_LONGDOUBLE .Lret_type4: lfd %f1,0(%r6) b .Lfinish nop nop # case FFI_TYPE_UINT8 .Lret_type5: lbz %r3,3(%r6) b .Lfinish nop nop # case FFI_TYPE_SINT8 .Lret_type6: lbz %r3,3(%r6) extsb %r3,%r3 b .Lfinish nop # case FFI_TYPE_UINT16 .Lret_type7: lhz %r3,2(%r6) b .Lfinish nop nop # case FFI_TYPE_SINT16 .Lret_type8: lha %r3,2(%r6) b .Lfinish nop nop # case FFI_TYPE_UINT32 .Lret_type9: lwz %r3,0(%r6) b .Lfinish nop nop # case FFI_TYPE_SINT32 .Lret_type10: lwz %r3,0(%r6) b .Lfinish nop nop # case FFI_TYPE_UINT64 .Lret_type11: lwz %r3,0(%r6) lwz %r4,4(%r6) b .Lfinish nop # case FFI_TYPE_SINT64 .Lret_type12: lwz %r3,0(%r6) lwz %r4,4(%r6) b .Lfinish nop # case FFI_TYPE_STRUCT .Lret_type13: b .Lfinish nop nop nop # case FFI_TYPE_POINTER .Lret_type14: lwz %r3,0(%r6) b .Lfinish nop nop # The return types below are only used when the ABI type is FFI_SYSV. # case FFI_SYSV_TYPE_SMALL_STRUCT + 1. One byte struct. .Lret_type15: # fall through. nop nop nop nop # case FFI_SYSV_TYPE_SMALL_STRUCT + 2. Two byte struct. .Lret_type16: # fall through. nop nop nop nop # case FFI_SYSV_TYPE_SMALL_STRUCT + 3. Three byte struct. .Lret_type17: # fall through. nop nop nop nop # case FFI_SYSV_TYPE_SMALL_STRUCT + 4. Four byte struct. .Lret_type18: # this one handles the structs from above too. lwz %r3,0(%r6) srw %r3,%r3,%r5 b .Lfinish nop # case FFI_SYSV_TYPE_SMALL_STRUCT + 5. Five byte struct. .Lret_type19: # fall through. nop nop nop nop # case FFI_SYSV_TYPE_SMALL_STRUCT + 6. Six byte struct. .Lret_type20: # fall through. nop nop nop nop # case FFI_SYSV_TYPE_SMALL_STRUCT + 7. Seven byte struct. .Lret_type21: # fall through. nop nop nop nop # case FFI_SYSV_TYPE_SMALL_STRUCT + 8. Eight byte struct. .Lret_type22: # this one handles the above unhandled structs. lwz %r3,0(%r6) lwz %r4,4(%r6) bl __lshrdi3 # libgcc function to shift r3/r4, shift value in r5. b .Lfinish # case done .Lfinish: lwz %r0,148(%r1) mtlr %r0 addi %r1,%r1,144 blr END(ffi_closure_SYSV) .section ".eh_frame",EH_FRAME_FLAGS,@progbits .Lframe1: .4byte .LECIE1-.LSCIE1 # Length of Common Information Entry .LSCIE1: .4byte 0x0 # CIE Identifier Tag .byte 0x1 # CIE Version #if defined _RELOCATABLE || defined __PIC__ .ascii "zR\0" # CIE Augmentation #else .ascii "\0" # CIE Augmentation #endif .uleb128 0x1 # CIE Code Alignment Factor .sleb128 -4 # CIE Data Alignment Factor .byte 0x41 # CIE RA Column #if defined _RELOCATABLE || defined __PIC__ .uleb128 0x1 # Augmentation size .byte 0x1b # FDE Encoding (pcrel sdata4) #endif .byte 0xc # DW_CFA_def_cfa .uleb128 0x1 .uleb128 0x0 .align 2 .LECIE1: .LSFDE1: .4byte .LEFDE1-.LASFDE1 # FDE Length .LASFDE1: .4byte .LASFDE1-.Lframe1 # FDE CIE offset #if defined _RELOCATABLE || defined __PIC__ .4byte .LFB1-. # FDE initial location #else .4byte .LFB1 # FDE initial location #endif .4byte .LFE1-.LFB1 # FDE address range #if defined _RELOCATABLE || defined __PIC__ .uleb128 0x0 # Augmentation size #endif .byte 0x4 # DW_CFA_advance_loc4 .4byte .LCFI0-.LFB1 .byte 0xe # DW_CFA_def_cfa_offset .uleb128 144 .byte 0x4 # DW_CFA_advance_loc4 .4byte .LCFI1-.LCFI0 .byte 0x2f # DW_CFA_GNU_negative_offset_extended .uleb128 0x41 .uleb128 0x1 .align 2 .LEFDE1: #endif