// PR c++/42358 // { dg-do assemble } // { dg-options -std=c++0x } typedef __PTRDIFF_TYPE__ ptrdiff_t; typedef __SIZE_TYPE__ size_t; namespace std __attribute__ ((__visibility__ ("default"))) { using ::size_t; } namespace std __attribute__ ((__visibility__ ("default"))) { struct __sfinae_types { typedef char __one; typedef struct { } __two; }; template struct integral_constant { static const _Tp value = __v; typedef _Tp value_type; typedef integral_constant<_Tp, __v> type; }; typedef integral_constant false_type; template struct remove_cv; template struct __is_void_helper : public false_type { }; template struct is_void : public integral_constant::type>::value)> { }; template struct is_array : public false_type { }; template struct is_function : public false_type { }; template struct extent : public integral_constant { }; template struct remove_const { typedef _Tp type; }; template struct remove_volatile { typedef _Tp type; }; template struct remove_cv { typedef typename remove_const::type>::type type; }; template struct is_lvalue_reference : public false_type { }; template struct is_rvalue_reference : public false_type { }; template struct is_reference : public integral_constant::value || is_rvalue_reference<_Tp>::value)> { }; template struct remove_reference { typedef _Tp type; }; template::value && !is_void<_Tp>::value> struct __add_rvalue_reference_helper { typedef _Tp type; }; template struct add_rvalue_reference : public __add_rvalue_reference_helper<_Tp> { }; template typename add_rvalue_reference<_Tp>::type declval(); template::value || is_void<_To>::value || is_function<_To>::value || is_array<_To>::value)> struct __is_convertible_helper { }; template struct __is_convertible_helper<_From, _To, false> : public __sfinae_types { static __one __test(_To); static __two __test(...); static const bool __value = sizeof(__test(declval<_From>())) == 1; }; template struct is_convertible : public integral_constant::__value> { }; template struct enable_if { }; template struct enable_if { typedef _Tp type; }; template struct identity { typedef _Tp type; }; template inline typename enable_if::value, _Tp&&>::type forward(typename std::identity<_Tp>::type& __t) { } template inline typename enable_if::value, _Tp>::type forward(typename std::identity<_Tp>::type __t) { } template inline typename std::remove_reference<_Tp>::type&& move(_Tp&& __t) { } template struct pair { typedef _T1 first_type; typedef _T2 second_type; _T1 first; _T2 second; template::value>::type> pair(_U1&& __x, const _T2& __y) : first(std::forward<_U1>(__x)), second(__y) { } template::value>::type> pair(const _T1& __x, _U2&& __y) : first(__x), second(std::forward<_U2>(__y)) { } template::value && std::is_convertible<_U2, _T2>::value>::type> pair(_U1&& __x, _U2&& __y) : first(std::forward<_U1>(__x)), second(std::forward<_U2>(__y)) { } template pair(pair<_U1, _U2>&& __p) : first(std::move(__p.first)), second(std::move(__p.second)) { } template pair& operator=(pair<_U1, _U2>&& __p) { } }; struct input_iterator_tag { }; struct output_iterator_tag { }; struct forward_iterator_tag : public input_iterator_tag { }; struct bidirectional_iterator_tag : public forward_iterator_tag { }; template struct iterator { typedef _Category iterator_category; typedef _Tp value_type; typedef _Distance difference_type; typedef _Pointer pointer; typedef _Reference reference; }; template struct iterator_traits { typedef typename _Iterator::iterator_category iterator_category; typedef typename _Iterator::value_type value_type; typedef typename _Iterator::difference_type difference_type; typedef typename _Iterator::pointer pointer; typedef typename _Iterator::reference reference; }; template inline typename iterator_traits<_Iter>::iterator_category __iterator_category(const _Iter&) { } template inline typename iterator_traits<_InputIterator>::difference_type __distance(_InputIterator __first, _InputIterator __last, input_iterator_tag) { } template inline typename iterator_traits<_InputIterator>::difference_type distance(_InputIterator __first, _InputIterator __last) { return std::__distance(__first, __last, std::__iterator_category(__first)); } template class reverse_iterator : public iterator::iterator_category, typename iterator_traits<_Iterator>::value_type, typename iterator_traits<_Iterator>::difference_type, typename iterator_traits<_Iterator>::pointer, typename iterator_traits<_Iterator>::reference> { }; template class back_insert_iterator : public iterator { }; } namespace __gnu_cxx __attribute__ ((__visibility__ ("default"))) { template class new_allocator { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp* pointer; typedef const _Tp* const_pointer; typedef _Tp& reference; typedef const _Tp& const_reference; typedef _Tp value_type; new_allocator() throw() { } new_allocator(const new_allocator&) throw() { } template new_allocator(const new_allocator<_Tp1>&) throw() { } template void construct(pointer __p, _Args&&... __args) { } }; } namespace std __attribute__ ((__visibility__ ("default"))) { template class allocator: public __gnu_cxx::new_allocator<_Tp> { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp* pointer; typedef const _Tp* const_pointer; typedef _Tp& reference; typedef const _Tp& const_reference; typedef _Tp value_type; template struct rebind { typedef allocator<_Tp1> other; }; allocator() throw() { } template allocator(const allocator<_Tp1>&) throw() { } }; extern template class allocator; extern template class allocator; template struct unary_function { typedef _Arg argument_type; typedef _Result result_type; }; template struct binary_function { typedef _Arg1 first_argument_type; typedef _Arg2 second_argument_type; typedef _Result result_type; }; template struct less : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { } }; template struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> { const typename _Pair::first_type& operator()(const _Pair& __x) const { } }; struct _Rb_tree_node_base { typedef _Rb_tree_node_base* _Base_ptr; typedef const _Rb_tree_node_base* _Const_Base_ptr; }; template struct _Rb_tree_node : public _Rb_tree_node_base { typedef _Rb_tree_node<_Val>* _Link_type; _Val _M_value_field; template _Rb_tree_node(_Args&&... __args) : _Rb_tree_node_base(), _M_value_field(std::forward<_Args>(__args)...) { } }; template struct _Rb_tree_iterator { typedef _Tp value_type; typedef _Tp& reference; typedef _Tp* pointer; typedef bidirectional_iterator_tag iterator_category; typedef ptrdiff_t difference_type; typedef _Rb_tree_iterator<_Tp> _Self; typedef _Rb_tree_node_base::_Base_ptr _Base_ptr; typedef _Rb_tree_node<_Tp>* _Link_type; _Base_ptr _M_node; }; template struct _Rb_tree_const_iterator { typedef _Tp value_type; typedef const _Tp& reference; typedef const _Tp* pointer; typedef _Rb_tree_iterator<_Tp> iterator; typedef bidirectional_iterator_tag iterator_category; typedef ptrdiff_t difference_type; typedef _Rb_tree_const_iterator<_Tp> _Self; typedef _Rb_tree_node_base::_Const_Base_ptr _Base_ptr; typedef const _Rb_tree_node<_Tp>* _Link_type; explicit _Rb_tree_const_iterator(_Link_type __x) : _M_node(__x) { } _Rb_tree_const_iterator(const iterator& __it) : _M_node(__it._M_node) { } _Base_ptr _M_node; }; template > class _Rb_tree { typedef typename _Alloc::template rebind<_Rb_tree_node<_Val> >::other _Node_allocator; typedef _Rb_tree_node_base* _Base_ptr; typedef const _Rb_tree_node_base* _Const_Base_ptr; public: typedef _Key key_type; typedef _Val value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef _Rb_tree_node<_Val>* _Link_type; typedef const _Rb_tree_node<_Val>* _Const_Link_type; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Alloc allocator_type; _Node_allocator& _M_get_Node_allocator() { } _Link_type _M_get_node() { } template _Link_type _M_create_node(_Args&&... __args) { _Link_type __tmp = _M_get_node(); try { _M_get_Node_allocator().construct(__tmp, std::forward<_Args>(__args)...); } catch(...) { } } template struct _Rb_tree_impl : public _Node_allocator { _Key_compare _M_key_compare; _Rb_tree_node_base _M_header; size_type _M_node_count; _Rb_tree_impl(const _Key_compare& __comp, const _Node_allocator& __a) : _Node_allocator(__a), _M_key_compare(__comp), _M_header(), _M_node_count(0) { } void _M_initialize() { } }; _Rb_tree_impl<_Compare> _M_impl; _Base_ptr& _M_rightmost() { } _Link_type _M_begin() { } _Link_type _M_end() { } _Const_Link_type _M_end() const { } static _Link_type _S_right(_Base_ptr __x) { } static const_reference _S_value(_Const_Base_ptr __x) { } static const _Key& _S_key(_Const_Base_ptr __x) { return _KeyOfValue()(_S_value(__x)); } typedef _Rb_tree_iterator iterator; typedef _Rb_tree_const_iterator const_iterator; typedef std::reverse_iterator reverse_iterator; typedef std::reverse_iterator const_reverse_iterator; iterator _M_insert_(_Const_Base_ptr __x, _Const_Base_ptr __y, const value_type& __v); iterator _M_insert_lower(_Base_ptr __x, _Base_ptr __y, const value_type& __v); iterator _M_insert_equal_lower(const value_type& __x); iterator _M_lower_bound(_Link_type __x, _Link_type __y, const _Key& __k); iterator _M_upper_bound(_Link_type __x, _Link_type __y, const _Key& __k); _Rb_tree(const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_impl(__comp, __a) { } iterator end() { } iterator _M_insert_equal_(const_iterator __position, const value_type& __x); template void _M_insert_unique(_InputIterator __first, _InputIterator __last); template void _M_insert_equal(_InputIterator __first, _InputIterator __last); size_type count(const key_type& __k) const; pair equal_range(const key_type& __k); pair equal_range(const key_type& __k) const; }; template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_insert_(_Const_Base_ptr __x, _Const_Base_ptr __p, const _Val& __v) { _Link_type __z = _M_create_node(__v); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_insert_lower(_Base_ptr __x, _Base_ptr __p, const _Val& __v) { _Link_type __z = _M_create_node(__v); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_insert_equal_lower(const _Val& __v) { _Link_type __x = _M_begin(); _Link_type __y = _M_end(); return _M_insert_lower(__x, __y, __v); } template pair::iterator, typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator> _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: equal_range(const _Key& __k) { _Link_type __x = _M_begin(); _Link_type __y = _M_end(); while (__x != 0) { if (_M_impl._M_key_compare(_S_key(__x), __k)) __x = _S_right(__x); else { _Link_type __xu(__x), __yu(__y); return pair(_M_lower_bound(__x, __y, __k), _M_upper_bound(__xu, __yu, __k)); } } } template pair::const_iterator, typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::const_iterator> _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: equal_range(const _Key& __k) const { _Const_Link_type __y = _M_end(); return pair(const_iterator(__y), const_iterator(__y)); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_insert_equal_(const_iterator __position, const _Val& __v) { if (__position._M_node == _M_end()) { if (__position._M_node == _M_rightmost()) return _M_insert_(0, _M_rightmost(), __v); else return _M_insert_equal_lower(__v); } } template template void _Rb_tree<_Key, _Val, _KoV, _Cmp, _Alloc>:: _M_insert_equal(_II __first, _II __last) { for (; __first != __last; ++__first) _M_insert_equal_(end(), *__first); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::size_type _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: count(const _Key& __k) const { pair __p = equal_range(__k); const size_type __n = std::distance(__p.first, __p.second); } template class initializer_list { public: typedef _E value_type; typedef const _E& reference; typedef const _E& const_reference; typedef size_t size_type; typedef const _E* iterator; typedef const _E* const_iterator; iterator _M_array; size_type _M_len; initializer_list(const_iterator __a, size_type __l) : _M_array(__a), _M_len(__l) { } const_iterator begin() const { } const_iterator end() const { } }; template , typename _Alloc = std::allocator > > class multimap { typedef _Key key_type; typedef _Tp mapped_type; typedef std::pair value_type; typedef _Compare key_compare; typedef _Alloc allocator_type; typedef typename _Alloc::value_type _Alloc_value_type; typedef typename _Alloc::template rebind::other _Pair_alloc_type; typedef _Rb_tree, key_compare, _Pair_alloc_type> _Rep_type; _Rep_type _M_t; public: typedef typename _Pair_alloc_type::pointer pointer; typedef typename _Pair_alloc_type::const_pointer const_pointer; typedef typename _Pair_alloc_type::reference reference; typedef typename _Pair_alloc_type::const_reference const_reference; typedef typename _Rep_type::iterator iterator; typedef typename _Rep_type::const_iterator const_iterator; typedef typename _Rep_type::size_type size_type; typedef typename _Rep_type::difference_type difference_type; typedef typename _Rep_type::reverse_iterator reverse_iterator; typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; multimap(initializer_list __l, const _Compare& __comp = _Compare(), const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) { _M_t._M_insert_equal(__l.begin(), __l.end()); } template multimap(_InputIterator __first, _InputIterator __last) : _M_t() { } template multimap(_InputIterator __first, _InputIterator __last, const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) { } template void insert(_InputIterator __first, _InputIterator __last) { } size_type count(const key_type& __x) const { return _M_t.count(__x); } std::pair equal_range(const key_type& __x) { return _M_t.equal_range(__x); } template friend bool operator==(const multimap<_K1, _T1, _C1, _A1>&, const multimap<_K1, _T1, _C1, _A1>&); template friend bool operator<(const multimap<_K1, _T1, _C1, _A1>&, const multimap<_K1, _T1, _C1, _A1>&); }; } extern "C" { extern void __assert_fail (__const char *__assertion, __const char *__file, unsigned int __line, __const char *__function) throw () __attribute__ ((__noreturn__)); } using namespace std; int test01() { typedef multimap Container; typedef Container::iterator iterator; typedef pair itpair; Container m({ { 1, 1.0 } } ); itpair ip = m.equal_range(1); ((distance(ip.first, ip.second) == 3) ? static_cast (0) : __assert_fail ("distance(ip.first, ip.second) == 3", "/home/richard/src/trunk/libstdc++-v3/testsuite/23_containers/multimap/init-list.cc", 36, __PRETTY_FUNCTION__)); ((m.count(7) == 2) ? static_cast (0) : __assert_fail ("m.count(7) == 2", "/home/richard/src/trunk/libstdc++-v3/testsuite/23_containers/multimap/init-list.cc", 54, __PRETTY_FUNCTION__)); }