/* Source code parsing and tree node generation for the GNU compiler for the Java(TM) language. Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. Contributed by Alexandre Petit-Bianco (apbianco@cygnus.com) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. The Free Software Foundation is independent of Sun Microsystems, Inc. */ /* This file parses java source code and issues a tree node image suitable for code generation (byte code and targeted CPU assembly language). The grammar conforms to the Java grammar described in "The Java(TM) Language Specification. J. Gosling, B. Joy, G. Steele. Addison Wesley 1996, ISBN 0-201-63451-1" The following modifications were brought to the original grammar: method_body: added the rule '| block SC_TK' static_initializer: added the rule 'static block SC_TK'. Note: All the extra rules described above should go away when the empty_statement rule will work. statement_nsi: 'nsi' should be read no_short_if. Some rules have been modified to support JDK1.1 inner classes definitions and other extensions. */ %{ #include "config.h" #include "system.h" #include #include "tree.h" #include "rtl.h" #include "real.h" #include "obstack.h" #include "toplev.h" #include "flags.h" #include "java-tree.h" #include "jcf.h" #include "lex.h" #include "parse.h" #include "zipfile.h" #include "convert.h" #include "buffer.h" #include "xref.h" #include "function.h" #include "except.h" #include "ggc.h" #include "debug.h" #ifndef DIR_SEPARATOR #define DIR_SEPARATOR '/' #endif /* Local function prototypes */ static char *java_accstring_lookup PARAMS ((int)); static void classitf_redefinition_error PARAMS ((const char *,tree, tree, tree)); static void variable_redefinition_error PARAMS ((tree, tree, tree, int)); static tree create_class PARAMS ((int, tree, tree, tree)); static tree create_interface PARAMS ((int, tree, tree)); static void end_class_declaration PARAMS ((int)); static tree find_field PARAMS ((tree, tree)); static tree lookup_field_wrapper PARAMS ((tree, tree)); static int duplicate_declaration_error_p PARAMS ((tree, tree, tree)); static void register_fields PARAMS ((int, tree, tree)); static tree parser_qualified_classname PARAMS ((tree)); static int parser_check_super PARAMS ((tree, tree, tree)); static int parser_check_super_interface PARAMS ((tree, tree, tree)); static void check_modifiers_consistency PARAMS ((int)); static tree lookup_cl PARAMS ((tree)); static tree lookup_java_method2 PARAMS ((tree, tree, int)); static tree method_header PARAMS ((int, tree, tree, tree)); static void fix_method_argument_names PARAMS ((tree ,tree)); static tree method_declarator PARAMS ((tree, tree)); static void parse_warning_context PARAMS ((tree cl, const char *msg, ...)) ATTRIBUTE_PRINTF_2; static void issue_warning_error_from_context PARAMS ((tree, const char *msg, va_list)) ATTRIBUTE_PRINTF (2, 0); static void parse_ctor_invocation_error PARAMS ((void)); static tree parse_jdk1_1_error PARAMS ((const char *)); static void complete_class_report_errors PARAMS ((jdep *)); static int process_imports PARAMS ((void)); static void read_import_dir PARAMS ((tree)); static int find_in_imports_on_demand PARAMS ((tree, tree)); static void find_in_imports PARAMS ((tree, tree)); static void check_inner_class_access PARAMS ((tree, tree, tree)); static int check_pkg_class_access PARAMS ((tree, tree, bool)); static void register_package PARAMS ((tree)); static tree resolve_package PARAMS ((tree, tree *, tree *)); static tree resolve_class PARAMS ((tree, tree, tree, tree)); static void declare_local_variables PARAMS ((int, tree, tree)); static void dump_java_tree PARAMS ((enum tree_dump_index, tree)); static void source_start_java_method PARAMS ((tree)); static void source_end_java_method PARAMS ((void)); static tree find_name_in_single_imports PARAMS ((tree)); static void check_abstract_method_header PARAMS ((tree)); static tree lookup_java_interface_method2 PARAMS ((tree, tree)); static tree resolve_expression_name PARAMS ((tree, tree *)); static tree maybe_create_class_interface_decl PARAMS ((tree, tree, tree, tree)); static int check_class_interface_creation PARAMS ((int, int, tree, tree, tree, tree)); static tree patch_method_invocation PARAMS ((tree, tree, tree, int, int *, tree *)); static int breakdown_qualified PARAMS ((tree *, tree *, tree)); static int in_same_package PARAMS ((tree, tree)); static tree resolve_and_layout PARAMS ((tree, tree)); static tree qualify_and_find PARAMS ((tree, tree, tree)); static tree resolve_no_layout PARAMS ((tree, tree)); static int invocation_mode PARAMS ((tree, int)); static tree find_applicable_accessible_methods_list PARAMS ((int, tree, tree, tree)); static void search_applicable_methods_list PARAMS ((int, tree, tree, tree, tree *, tree *)); static tree find_most_specific_methods_list PARAMS ((tree)); static int argument_types_convertible PARAMS ((tree, tree)); static tree patch_invoke PARAMS ((tree, tree, tree)); static int maybe_use_access_method PARAMS ((int, tree *, tree *)); static tree lookup_method_invoke PARAMS ((int, tree, tree, tree, tree)); static tree register_incomplete_type PARAMS ((int, tree, tree, tree)); static tree check_inner_circular_reference PARAMS ((tree, tree)); static tree check_circular_reference PARAMS ((tree)); static tree obtain_incomplete_type PARAMS ((tree)); static tree java_complete_lhs PARAMS ((tree)); static tree java_complete_tree PARAMS ((tree)); static tree maybe_generate_pre_expand_clinit PARAMS ((tree)); static int analyze_clinit_body PARAMS ((tree, tree)); static int maybe_yank_clinit PARAMS ((tree)); static void start_complete_expand_method PARAMS ((tree)); static void java_complete_expand_method PARAMS ((tree)); static void java_expand_method_bodies PARAMS ((tree)); static int unresolved_type_p PARAMS ((tree, tree *)); static void create_jdep_list PARAMS ((struct parser_ctxt *)); static tree build_expr_block PARAMS ((tree, tree)); static tree enter_block PARAMS ((void)); static tree exit_block PARAMS ((void)); static tree lookup_name_in_blocks PARAMS ((tree)); static void maybe_absorb_scoping_blocks PARAMS ((void)); static tree build_method_invocation PARAMS ((tree, tree)); static tree build_new_invocation PARAMS ((tree, tree)); static tree build_assignment PARAMS ((int, int, tree, tree)); static tree build_binop PARAMS ((enum tree_code, int, tree, tree)); static tree patch_assignment PARAMS ((tree, tree)); static tree patch_binop PARAMS ((tree, tree, tree)); static tree build_unaryop PARAMS ((int, int, tree)); static tree build_incdec PARAMS ((int, int, tree, int)); static tree patch_unaryop PARAMS ((tree, tree)); static tree build_cast PARAMS ((int, tree, tree)); static tree build_null_of_type PARAMS ((tree)); static tree patch_cast PARAMS ((tree, tree)); static int valid_ref_assignconv_cast_p PARAMS ((tree, tree, int)); static int valid_builtin_assignconv_identity_widening_p PARAMS ((tree, tree)); static int valid_cast_to_p PARAMS ((tree, tree)); static int valid_method_invocation_conversion_p PARAMS ((tree, tree)); static tree try_builtin_assignconv PARAMS ((tree, tree, tree)); static tree try_reference_assignconv PARAMS ((tree, tree)); static tree build_unresolved_array_type PARAMS ((tree)); static int build_type_name_from_array_name PARAMS ((tree, tree *)); static tree build_array_from_name PARAMS ((tree, tree, tree, tree *)); static tree build_array_ref PARAMS ((int, tree, tree)); static tree patch_array_ref PARAMS ((tree)); static tree make_qualified_name PARAMS ((tree, tree, int)); static tree merge_qualified_name PARAMS ((tree, tree)); static tree make_qualified_primary PARAMS ((tree, tree, int)); static int resolve_qualified_expression_name PARAMS ((tree, tree *, tree *, tree *)); static void qualify_ambiguous_name PARAMS ((tree)); static tree resolve_field_access PARAMS ((tree, tree *, tree *)); static tree build_newarray_node PARAMS ((tree, tree, int)); static tree patch_newarray PARAMS ((tree)); static tree resolve_type_during_patch PARAMS ((tree)); static tree build_this PARAMS ((int)); static tree build_wfl_wrap PARAMS ((tree, int)); static tree build_return PARAMS ((int, tree)); static tree patch_return PARAMS ((tree)); static tree maybe_access_field PARAMS ((tree, tree, tree)); static int complete_function_arguments PARAMS ((tree)); static int check_for_static_method_reference PARAMS ((tree, tree, tree, tree, tree)); static int not_accessible_p PARAMS ((tree, tree, tree, int)); static void check_deprecation PARAMS ((tree, tree)); static int class_in_current_package PARAMS ((tree)); static tree build_if_else_statement PARAMS ((int, tree, tree, tree)); static tree patch_if_else_statement PARAMS ((tree)); static tree add_stmt_to_compound PARAMS ((tree, tree, tree)); static tree add_stmt_to_block PARAMS ((tree, tree, tree)); static tree patch_exit_expr PARAMS ((tree)); static tree build_labeled_block PARAMS ((int, tree)); static tree finish_labeled_statement PARAMS ((tree, tree)); static tree build_bc_statement PARAMS ((int, int, tree)); static tree patch_bc_statement PARAMS ((tree)); static tree patch_loop_statement PARAMS ((tree)); static tree build_new_loop PARAMS ((tree)); static tree build_loop_body PARAMS ((int, tree, int)); static tree finish_loop_body PARAMS ((int, tree, tree, int)); static tree build_debugable_stmt PARAMS ((int, tree)); static tree finish_for_loop PARAMS ((int, tree, tree, tree)); static tree patch_switch_statement PARAMS ((tree)); static tree string_constant_concatenation PARAMS ((tree, tree)); static tree build_string_concatenation PARAMS ((tree, tree)); static tree patch_string_cst PARAMS ((tree)); static tree patch_string PARAMS ((tree)); static tree encapsulate_with_try_catch PARAMS ((int, tree, tree, tree)); static tree build_try_statement PARAMS ((int, tree, tree)); static tree build_try_finally_statement PARAMS ((int, tree, tree)); static tree patch_try_statement PARAMS ((tree)); static tree patch_synchronized_statement PARAMS ((tree, tree)); static tree patch_throw_statement PARAMS ((tree, tree)); static void check_thrown_exceptions PARAMS ((int, tree)); static int check_thrown_exceptions_do PARAMS ((tree)); static void purge_unchecked_exceptions PARAMS ((tree)); static bool ctors_unchecked_throws_clause_p PARAMS ((tree)); static void check_throws_clauses PARAMS ((tree, tree, tree)); static void finish_method_declaration PARAMS ((tree)); static tree build_super_invocation PARAMS ((tree)); static int verify_constructor_circularity PARAMS ((tree, tree)); static char *constructor_circularity_msg PARAMS ((tree, tree)); static tree build_this_super_qualified_invocation PARAMS ((int, tree, tree, int, int)); static const char *get_printable_method_name PARAMS ((tree)); static tree patch_conditional_expr PARAMS ((tree, tree, tree)); static tree generate_finit PARAMS ((tree)); static tree generate_instinit PARAMS ((tree)); static tree build_instinit_invocation PARAMS ((tree)); static void fix_constructors PARAMS ((tree)); static tree build_alias_initializer_parameter_list PARAMS ((int, tree, tree, int *)); static tree craft_constructor PARAMS ((tree, tree)); static int verify_constructor_super PARAMS ((tree)); static tree create_artificial_method PARAMS ((tree, int, tree, tree, tree)); static void start_artificial_method_body PARAMS ((tree)); static void end_artificial_method_body PARAMS ((tree)); static int check_method_redefinition PARAMS ((tree, tree)); static int check_method_types_complete PARAMS ((tree)); static void java_check_regular_methods PARAMS ((tree)); static void java_check_abstract_methods PARAMS ((tree)); static void unreachable_stmt_error PARAMS ((tree)); static tree find_expr_with_wfl PARAMS ((tree)); static void missing_return_error PARAMS ((tree)); static tree build_new_array_init PARAMS ((int, tree)); static tree patch_new_array_init PARAMS ((tree, tree)); static tree maybe_build_array_element_wfl PARAMS ((tree)); static int array_constructor_check_entry PARAMS ((tree, tree)); static const char *purify_type_name PARAMS ((const char *)); static tree fold_constant_for_init PARAMS ((tree, tree)); static tree strip_out_static_field_access_decl PARAMS ((tree)); static jdeplist *reverse_jdep_list PARAMS ((struct parser_ctxt *)); static void static_ref_err PARAMS ((tree, tree, tree)); static void parser_add_interface PARAMS ((tree, tree, tree)); static void add_superinterfaces PARAMS ((tree, tree)); static tree jdep_resolve_class PARAMS ((jdep *)); static int note_possible_classname PARAMS ((const char *, int)); static void java_complete_expand_classes PARAMS ((void)); static void java_complete_expand_class PARAMS ((tree)); static void java_complete_expand_methods PARAMS ((tree)); static tree cut_identifier_in_qualified PARAMS ((tree)); static tree java_stabilize_reference PARAMS ((tree)); static tree do_unary_numeric_promotion PARAMS ((tree)); static char * operator_string PARAMS ((tree)); static tree do_merge_string_cste PARAMS ((tree, const char *, int, int)); static tree merge_string_cste PARAMS ((tree, tree, int)); static tree java_refold PARAMS ((tree)); static int java_decl_equiv PARAMS ((tree, tree)); static int binop_compound_p PARAMS ((enum tree_code)); static tree search_loop PARAMS ((tree)); static int labeled_block_contains_loop_p PARAMS ((tree, tree)); static int check_abstract_method_definitions PARAMS ((int, tree, tree)); static void java_check_abstract_method_definitions PARAMS ((tree)); static void java_debug_context_do PARAMS ((int)); static void java_parser_context_push_initialized_field PARAMS ((void)); static void java_parser_context_pop_initialized_field PARAMS ((void)); static tree reorder_static_initialized PARAMS ((tree)); static void java_parser_context_suspend PARAMS ((void)); static void java_parser_context_resume PARAMS ((void)); static int pop_current_osb PARAMS ((struct parser_ctxt *)); /* JDK 1.1 work. FIXME */ static tree maybe_make_nested_class_name PARAMS ((tree)); static int make_nested_class_name PARAMS ((tree)); static void set_nested_class_simple_name_value PARAMS ((tree, int)); static void link_nested_class_to_enclosing PARAMS ((void)); static tree resolve_inner_class PARAMS ((htab_t, tree, tree *, tree *, tree)); static tree find_as_inner_class PARAMS ((tree, tree, tree)); static tree find_as_inner_class_do PARAMS ((tree, tree)); static int check_inner_class_redefinition PARAMS ((tree, tree)); static tree build_thisn_assign PARAMS ((void)); static tree build_current_thisn PARAMS ((tree)); static tree build_access_to_thisn PARAMS ((tree, tree, int)); static tree maybe_build_thisn_access_method PARAMS ((tree)); static tree build_outer_field_access PARAMS ((tree, tree)); static tree build_outer_field_access_methods PARAMS ((tree)); static tree build_outer_field_access_expr PARAMS ((int, tree, tree, tree, tree)); static tree build_outer_method_access_method PARAMS ((tree)); static tree build_new_access_id PARAMS ((void)); static tree build_outer_field_access_method PARAMS ((tree, tree, tree, tree, tree)); static int outer_field_access_p PARAMS ((tree, tree)); static int outer_field_expanded_access_p PARAMS ((tree, tree *, tree *, tree *)); static tree outer_field_access_fix PARAMS ((tree, tree, tree)); static tree build_incomplete_class_ref PARAMS ((int, tree)); static tree patch_incomplete_class_ref PARAMS ((tree)); static tree create_anonymous_class PARAMS ((int, tree)); static void patch_anonymous_class PARAMS ((tree, tree, tree)); static void add_inner_class_fields PARAMS ((tree, tree)); static tree build_dot_class_method PARAMS ((tree)); static tree build_dot_class_method_invocation PARAMS ((tree)); static void create_new_parser_context PARAMS ((int)); static void mark_parser_ctxt PARAMS ((void *)); static tree maybe_build_class_init_for_field PARAMS ((tree, tree)); static int attach_init_test_initialization_flags PARAMS ((PTR *, PTR)); static int emit_test_initialization PARAMS ((PTR *, PTR)); static char *string_convert_int_cst PARAMS ((tree)); /* Number of error found so far. */ int java_error_count; /* Number of warning found so far. */ int java_warning_count; /* Tell when not to fold, when doing xrefs */ int do_not_fold; /* Cyclic inheritance report, as it can be set by layout_class */ const char *cyclic_inheritance_report; /* The current parser context */ struct parser_ctxt *ctxp; /* List of things that were analyzed for which code will be generated */ struct parser_ctxt *ctxp_for_generation = NULL; /* binop_lookup maps token to tree_code. It is used where binary operations are involved and required by the parser. RDIV_EXPR covers both integral/floating point division. The code is changed once the type of both operator is worked out. */ static const enum tree_code binop_lookup[19] = { PLUS_EXPR, MINUS_EXPR, MULT_EXPR, RDIV_EXPR, TRUNC_MOD_EXPR, LSHIFT_EXPR, RSHIFT_EXPR, URSHIFT_EXPR, BIT_AND_EXPR, BIT_XOR_EXPR, BIT_IOR_EXPR, TRUTH_ANDIF_EXPR, TRUTH_ORIF_EXPR, EQ_EXPR, NE_EXPR, GT_EXPR, GE_EXPR, LT_EXPR, LE_EXPR, }; #define BINOP_LOOKUP(VALUE) \ binop_lookup [((VALUE) - PLUS_TK) % ARRAY_SIZE (binop_lookup)] /* This is the end index for binary operators that can also be used in compound assignements. */ #define BINOP_COMPOUND_CANDIDATES 11 /* The "$L" identifier we use to create labels. */ static GTY(()) tree label_id; /* The "StringBuffer" identifier used for the String `+' operator. */ static GTY(()) tree wfl_string_buffer; /* The "append" identifier used for String `+' operator. */ static GTY(()) tree wfl_append; /* The "toString" identifier used for String `+' operator. */ static GTY(()) tree wfl_to_string; /* The "java.lang" import qualified name. */ static GTY(()) tree java_lang_id; /* The generated `inst$' identifier used for generated enclosing instance/field access functions. */ static GTY(()) tree inst_id; /* The "java.lang.Cloneable" qualified name. */ static GTY(()) tree java_lang_cloneable; /* The "java.io.Serializable" qualified name. */ static GTY(()) tree java_io_serializable; /* Context and flag for static blocks */ static GTY(()) tree current_static_block; /* The generated `write_parm_value$' identifier. */ static GTY(()) tree wpv_id; /* The list of all packages we've seen so far */ static GTY(()) tree package_list; /* Hold THIS for the scope of the current method decl. */ static GTY(()) tree current_this; /* Hold a list of catch clauses list. The first element of this list is the list of the catch clauses of the currently analysed try block. */ static GTY(()) tree currently_caught_type_list; /* This holds a linked list of all the case labels for the current switch statement. It is only used when checking to see if there are duplicate labels. FIXME: probably this should just be attached to the switch itself; then it could be referenced via `ctxp->current_loop'. */ static GTY(()) tree case_label_list; /* Anonymous class counter. Will be reset to 1 every time a non anonymous class gets created. */ static int anonymous_class_counter = 1; static GTY(()) tree src_parse_roots[1]; /* All classes seen from source code */ #define gclass_list src_parse_roots[0] /* Check modifiers. If one doesn't fit, retrieve it in its declaration line and point it out. */ /* Should point out the one that don't fit. ASCII/unicode, going backward. FIXME */ #define check_modifiers(__message, __value, __mask) do { \ if ((__value) & ~(__mask)) \ { \ int i, remainder = (__value) & ~(__mask); \ for (i = 0; i <= 10; i++) \ if ((1 << i) & remainder) \ parse_error_context (ctxp->modifier_ctx [i], (__message), \ java_accstring_lookup (1 << i)); \ } \ } while (0) %} %union { tree node; int sub_token; struct { int token; int location; } operator; int value; } %{ #include "lex.c" %} %pure_parser /* Things defined here have to match the order of what's in the binop_lookup table. */ %token PLUS_TK MINUS_TK MULT_TK DIV_TK REM_TK %token LS_TK SRS_TK ZRS_TK %token AND_TK XOR_TK OR_TK %token BOOL_AND_TK BOOL_OR_TK %token EQ_TK NEQ_TK GT_TK GTE_TK LT_TK LTE_TK /* This maps to the same binop_lookup entry than the token above */ %token PLUS_ASSIGN_TK MINUS_ASSIGN_TK MULT_ASSIGN_TK DIV_ASSIGN_TK %token REM_ASSIGN_TK %token LS_ASSIGN_TK SRS_ASSIGN_TK ZRS_ASSIGN_TK %token AND_ASSIGN_TK XOR_ASSIGN_TK OR_ASSIGN_TK /* Modifier TOKEN have to be kept in this order. Don't scramble it */ %token PUBLIC_TK PRIVATE_TK PROTECTED_TK %token STATIC_TK FINAL_TK SYNCHRONIZED_TK %token VOLATILE_TK TRANSIENT_TK NATIVE_TK %token PAD_TK ABSTRACT_TK STRICT_TK %token MODIFIER_TK /* Keep those two in order, too */ %token DECR_TK INCR_TK /* From now one, things can be in any order */ %token DEFAULT_TK IF_TK THROW_TK %token BOOLEAN_TK DO_TK IMPLEMENTS_TK %token THROWS_TK BREAK_TK IMPORT_TK %token ELSE_TK INSTANCEOF_TK RETURN_TK %token VOID_TK CATCH_TK INTERFACE_TK %token CASE_TK EXTENDS_TK FINALLY_TK %token SUPER_TK WHILE_TK CLASS_TK %token SWITCH_TK CONST_TK TRY_TK %token FOR_TK NEW_TK CONTINUE_TK %token GOTO_TK PACKAGE_TK THIS_TK %token BYTE_TK SHORT_TK INT_TK LONG_TK %token CHAR_TK INTEGRAL_TK %token FLOAT_TK DOUBLE_TK FP_TK %token ID_TK %token REL_QM_TK REL_CL_TK NOT_TK NEG_TK %token ASSIGN_ANY_TK ASSIGN_TK %token OP_TK CP_TK OCB_TK CCB_TK OSB_TK CSB_TK SC_TK C_TK DOT_TK %token STRING_LIT_TK CHAR_LIT_TK INT_LIT_TK FP_LIT_TK %token TRUE_TK FALSE_TK BOOL_LIT_TK NULL_TK %type modifiers MODIFIER_TK final synchronized %type super ID_TK identifier %type name simple_name qualified_name %type type_declaration compilation_unit field_declaration method_declaration extends_interfaces interfaces interface_type_list class_member_declaration import_declarations package_declaration type_declarations interface_body interface_member_declaration constant_declaration interface_member_declarations interface_type abstract_method_declaration interface_type_list %type class_body_declaration class_member_declaration static_initializer constructor_declaration block %type class_body_declarations constructor_header %type class_or_interface_type class_type class_type_list constructor_declarator explicit_constructor_invocation %type dim_expr dim_exprs this_or_super throws %type variable_declarator_id variable_declarator variable_declarators variable_initializer variable_initializers constructor_body array_initializer %type class_body block_end constructor_block_end %type statement statement_without_trailing_substatement labeled_statement if_then_statement label_decl if_then_else_statement while_statement for_statement statement_nsi labeled_statement_nsi do_statement if_then_else_statement_nsi while_statement_nsi for_statement_nsi statement_expression_list for_init for_update statement_expression expression_statement primary_no_new_array expression primary array_creation_expression array_type class_instance_creation_expression field_access method_invocation array_access something_dot_new argument_list postfix_expression while_expression post_increment_expression post_decrement_expression unary_expression_not_plus_minus unary_expression pre_increment_expression pre_decrement_expression unary_expression_not_plus_minus cast_expression multiplicative_expression additive_expression shift_expression relational_expression equality_expression and_expression exclusive_or_expression inclusive_or_expression conditional_and_expression conditional_or_expression conditional_expression assignment_expression left_hand_side assignment for_header for_begin constant_expression do_statement_begin empty_statement switch_statement synchronized_statement throw_statement try_statement switch_expression switch_block catches catch_clause catch_clause_parameter finally anonymous_class_creation trap_overflow_corner_case %type return_statement break_statement continue_statement %type ASSIGN_TK MULT_ASSIGN_TK DIV_ASSIGN_TK %type REM_ASSIGN_TK PLUS_ASSIGN_TK MINUS_ASSIGN_TK %type LS_ASSIGN_TK SRS_ASSIGN_TK ZRS_ASSIGN_TK %type AND_ASSIGN_TK XOR_ASSIGN_TK OR_ASSIGN_TK %type ASSIGN_ANY_TK assignment_operator %token EQ_TK GTE_TK ZRS_TK SRS_TK GT_TK LTE_TK LS_TK %token BOOL_AND_TK AND_TK BOOL_OR_TK OR_TK INCR_TK PLUS_TK %token DECR_TK MINUS_TK MULT_TK DIV_TK XOR_TK REM_TK NEQ_TK %token NEG_TK REL_QM_TK REL_CL_TK NOT_TK LT_TK OCB_TK CCB_TK %token OP_TK OSB_TK DOT_TK THROW_TK INSTANCEOF_TK %type THIS_TK SUPER_TK RETURN_TK BREAK_TK CONTINUE_TK %type CASE_TK DEFAULT_TK TRY_TK CATCH_TK SYNCHRONIZED_TK %type NEW_TK %type method_body %type literal INT_LIT_TK FP_LIT_TK BOOL_LIT_TK CHAR_LIT_TK STRING_LIT_TK NULL_TK VOID_TK %type IF_TK WHILE_TK FOR_TK %type formal_parameter_list formal_parameter method_declarator method_header %type primitive_type reference_type type BOOLEAN_TK INTEGRAL_TK FP_TK /* Added or modified JDK 1.1 rule types */ %type type_literals %% /* 19.2 Production from 2.3: The Syntactic Grammar */ goal: { /* Register static variables with the garbage collector. */ ggc_add_root (&ctxp, 1, sizeof (struct parser_ctxt *), mark_parser_ctxt); ggc_add_root (&ctxp_for_generation, 1, sizeof (struct parser_ctxt *), mark_parser_ctxt); } compilation_unit {} ; /* 19.3 Productions from 3: Lexical structure */ literal: INT_LIT_TK | FP_LIT_TK | BOOL_LIT_TK | CHAR_LIT_TK | STRING_LIT_TK | NULL_TK ; /* 19.4 Productions from 4: Types, Values and Variables */ type: primitive_type | reference_type ; primitive_type: INTEGRAL_TK | FP_TK | BOOLEAN_TK ; reference_type: class_or_interface_type | array_type ; class_or_interface_type: name ; class_type: class_or_interface_type /* Default rule */ ; interface_type: class_or_interface_type ; array_type: primitive_type dims { int osb = pop_current_osb (ctxp); tree t = build_java_array_type (($1), -1); while (--osb) t = build_unresolved_array_type (t); $$ = t; } | name dims { int osb = pop_current_osb (ctxp); tree t = $1; while (osb--) t = build_unresolved_array_type (t); $$ = t; } ; /* 19.5 Productions from 6: Names */ name: simple_name /* Default rule */ | qualified_name /* Default rule */ ; simple_name: identifier /* Default rule */ ; qualified_name: name DOT_TK identifier { $$ = make_qualified_name ($1, $3, $2.location); } ; identifier: ID_TK ; /* 19.6: Production from 7: Packages */ compilation_unit: {$$ = NULL;} | package_declaration | import_declarations | type_declarations | package_declaration import_declarations | package_declaration type_declarations | import_declarations type_declarations | package_declaration import_declarations type_declarations ; import_declarations: import_declaration { $$ = NULL; } | import_declarations import_declaration { $$ = NULL; } ; type_declarations: type_declaration | type_declarations type_declaration ; package_declaration: PACKAGE_TK name SC_TK { ctxp->package = EXPR_WFL_NODE ($2); register_package (ctxp->package); } | PACKAGE_TK error {yyerror ("Missing name"); RECOVER;} | PACKAGE_TK name error {yyerror ("';' expected"); RECOVER;} ; import_declaration: single_type_import_declaration | type_import_on_demand_declaration ; single_type_import_declaration: IMPORT_TK name SC_TK { tree name = EXPR_WFL_NODE ($2), last_name; int i = IDENTIFIER_LENGTH (name)-1; const char *last = &IDENTIFIER_POINTER (name)[i]; while (last != IDENTIFIER_POINTER (name)) { if (last [0] == '.') break; last--; } last_name = get_identifier (++last); if (IS_A_SINGLE_IMPORT_CLASSFILE_NAME_P (last_name)) { tree err = find_name_in_single_imports (last_name); if (err && err != name) parse_error_context ($2, "Ambiguous class: `%s' and `%s'", IDENTIFIER_POINTER (name), IDENTIFIER_POINTER (err)); else REGISTER_IMPORT ($2, last_name); } else REGISTER_IMPORT ($2, last_name); } | IMPORT_TK error {yyerror ("Missing name"); RECOVER;} | IMPORT_TK name error {yyerror ("';' expected"); RECOVER;} ; type_import_on_demand_declaration: IMPORT_TK name DOT_TK MULT_TK SC_TK { tree name = EXPR_WFL_NODE ($2); tree it; /* Search for duplicates. */ for (it = ctxp->import_demand_list; it; it = TREE_CHAIN (it)) if (EXPR_WFL_NODE (TREE_PURPOSE (it)) == name) break; /* Don't import the same thing more than once, just ignore duplicates (7.5.2) */ if (! it) { read_import_dir ($2); ctxp->import_demand_list = chainon (ctxp->import_demand_list, build_tree_list ($2, NULL_TREE)); } } | IMPORT_TK name DOT_TK error {yyerror ("'*' expected"); RECOVER;} | IMPORT_TK name DOT_TK MULT_TK error {yyerror ("';' expected"); RECOVER;} ; type_declaration: class_declaration { end_class_declaration (0); } | interface_declaration { end_class_declaration (0); } | empty_statement | error { YYERROR_NOW; yyerror ("Class or interface declaration expected"); } ; /* 19.7 Shortened from the original: modifiers: modifier | modifiers modifier modifier: any of public... */ modifiers: MODIFIER_TK { $$ = (1 << $1); } | modifiers MODIFIER_TK { int acc = (1 << $2); if ($$ & acc) parse_error_context (ctxp->modifier_ctx [$2], "Modifier `%s' declared twice", java_accstring_lookup (acc)); else { $$ |= acc; } } ; /* 19.8.1 Production from $8.1: Class Declaration */ class_declaration: modifiers CLASS_TK identifier super interfaces { create_class ($1, $3, $4, $5); } class_body | CLASS_TK identifier super interfaces { create_class (0, $2, $3, $4); } class_body | modifiers CLASS_TK error {yyerror ("Missing class name"); RECOVER;} | CLASS_TK error {yyerror ("Missing class name"); RECOVER;} | CLASS_TK identifier error { if (!ctxp->class_err) yyerror ("'{' expected"); DRECOVER(class1); } | modifiers CLASS_TK identifier error {if (!ctxp->class_err) yyerror ("'{' expected"); RECOVER;} ; super: { $$ = NULL; } | EXTENDS_TK class_type { $$ = $2; } | EXTENDS_TK class_type error {yyerror ("'{' expected"); ctxp->class_err=1;} | EXTENDS_TK error {yyerror ("Missing super class name"); ctxp->class_err=1;} ; interfaces: { $$ = NULL_TREE; } | IMPLEMENTS_TK interface_type_list { $$ = $2; } | IMPLEMENTS_TK error { ctxp->class_err=1; yyerror ("Missing interface name"); } ; interface_type_list: interface_type { ctxp->interface_number = 1; $$ = build_tree_list ($1, NULL_TREE); } | interface_type_list C_TK interface_type { ctxp->interface_number++; $$ = chainon ($1, build_tree_list ($3, NULL_TREE)); } | interface_type_list C_TK error {yyerror ("Missing interface name"); RECOVER;} ; class_body: OCB_TK CCB_TK { /* Store the location of the `}' when doing xrefs */ if (flag_emit_xref) DECL_END_SOURCE_LINE (GET_CPC ()) = EXPR_WFL_ADD_COL ($2.location, 1); $$ = GET_CPC (); } | OCB_TK class_body_declarations CCB_TK { /* Store the location of the `}' when doing xrefs */ if (flag_emit_xref) DECL_END_SOURCE_LINE (GET_CPC ()) = EXPR_WFL_ADD_COL ($3.location, 1); $$ = GET_CPC (); } ; class_body_declarations: class_body_declaration | class_body_declarations class_body_declaration ; class_body_declaration: class_member_declaration | static_initializer | constructor_declaration | block /* Added, JDK1.1, instance initializer */ { if ($1 != empty_stmt_node) { TREE_CHAIN ($1) = CPC_INSTANCE_INITIALIZER_STMT (ctxp); SET_CPC_INSTANCE_INITIALIZER_STMT (ctxp, $1); } } ; class_member_declaration: field_declaration | method_declaration | class_declaration /* Added, JDK1.1 inner classes */ { end_class_declaration (1); } | interface_declaration /* Added, JDK1.1 inner interfaces */ { end_class_declaration (1); } | empty_statement ; /* 19.8.2 Productions from 8.3: Field Declarations */ field_declaration: type variable_declarators SC_TK { register_fields (0, $1, $2); } | modifiers type variable_declarators SC_TK { check_modifiers ("Illegal modifier `%s' for field declaration", $1, FIELD_MODIFIERS); check_modifiers_consistency ($1); register_fields ($1, $2, $3); } ; variable_declarators: /* Should we use build_decl_list () instead ? FIXME */ variable_declarator /* Default rule */ | variable_declarators C_TK variable_declarator { $$ = chainon ($1, $3); } | variable_declarators C_TK error {yyerror ("Missing term"); RECOVER;} ; variable_declarator: variable_declarator_id { $$ = build_tree_list ($1, NULL_TREE); } | variable_declarator_id ASSIGN_TK variable_initializer { if (java_error_count) $3 = NULL_TREE; $$ = build_tree_list ($1, build_assignment ($2.token, $2.location, $1, $3)); } | variable_declarator_id ASSIGN_TK error { yyerror ("Missing variable initializer"); $$ = build_tree_list ($1, NULL_TREE); RECOVER; } | variable_declarator_id ASSIGN_TK variable_initializer error { yyerror ("';' expected"); $$ = build_tree_list ($1, NULL_TREE); RECOVER; } ; variable_declarator_id: identifier | variable_declarator_id OSB_TK CSB_TK { $$ = build_unresolved_array_type ($1); } | identifier error {yyerror ("Invalid declaration"); DRECOVER(vdi);} | variable_declarator_id OSB_TK error { tree node = java_lval.node; if (node && (TREE_CODE (node) == INTEGER_CST || TREE_CODE (node) == EXPR_WITH_FILE_LOCATION)) yyerror ("Can't specify array dimension in a declaration"); else yyerror ("']' expected"); DRECOVER(vdi); } | variable_declarator_id CSB_TK error {yyerror ("Unbalanced ']'"); DRECOVER(vdi);} ; variable_initializer: expression | array_initializer ; /* 19.8.3 Productions from 8.4: Method Declarations */ method_declaration: method_header { current_function_decl = $1; if (current_function_decl && TREE_CODE (current_function_decl) == FUNCTION_DECL) source_start_java_method (current_function_decl); else current_function_decl = NULL_TREE; } method_body { finish_method_declaration ($3); } | method_header error {YYNOT_TWICE yyerror ("'{' expected"); RECOVER;} ; method_header: type method_declarator throws { $$ = method_header (0, $1, $2, $3); } | VOID_TK method_declarator throws { $$ = method_header (0, void_type_node, $2, $3); } | modifiers type method_declarator throws { $$ = method_header ($1, $2, $3, $4); } | modifiers VOID_TK method_declarator throws { $$ = method_header ($1, void_type_node, $3, $4); } | type error { yyerror ("Invalid method declaration, method name required"); RECOVER; } | modifiers type error {RECOVER;} | VOID_TK error {yyerror ("Identifier expected"); RECOVER;} | modifiers VOID_TK error {yyerror ("Identifier expected"); RECOVER;} | modifiers error { yyerror ("Invalid method declaration, return type required"); RECOVER; } ; method_declarator: identifier OP_TK CP_TK { ctxp->formal_parameter_number = 0; $$ = method_declarator ($1, NULL_TREE); } | identifier OP_TK formal_parameter_list CP_TK { $$ = method_declarator ($1, $3); } | method_declarator OSB_TK CSB_TK { EXPR_WFL_LINECOL (wfl_operator) = $2.location; TREE_PURPOSE ($1) = build_unresolved_array_type (TREE_PURPOSE ($1)); parse_warning_context (wfl_operator, "Discouraged form of returned type specification"); } | identifier OP_TK error {yyerror ("')' expected"); DRECOVER(method_declarator);} | method_declarator OSB_TK error {yyerror ("']' expected"); RECOVER;} ; formal_parameter_list: formal_parameter { ctxp->formal_parameter_number = 1; } | formal_parameter_list C_TK formal_parameter { ctxp->formal_parameter_number += 1; $$ = chainon ($1, $3); } | formal_parameter_list C_TK error { yyerror ("Missing formal parameter term"); RECOVER; } ; formal_parameter: type variable_declarator_id { $$ = build_tree_list ($2, $1); } | final type variable_declarator_id /* Added, JDK1.1 final parms */ { $$ = build_tree_list ($3, $2); ARG_FINAL_P ($$) = 1; } | type error { yyerror ("Missing identifier"); RECOVER; $$ = NULL_TREE; } | final type error { yyerror ("Missing identifier"); RECOVER; $$ = NULL_TREE; } ; final: modifiers { check_modifiers ("Illegal modifier `%s'. Only `final' was expected here", $1, ACC_FINAL); if ($1 != ACC_FINAL) MODIFIER_WFL (FINAL_TK) = build_wfl_node (NULL_TREE); } ; throws: { $$ = NULL_TREE; } | THROWS_TK class_type_list { $$ = $2; } | THROWS_TK error {yyerror ("Missing class type term"); RECOVER;} ; class_type_list: class_type { $$ = build_tree_list ($1, $1); } | class_type_list C_TK class_type { $$ = tree_cons ($3, $3, $1); } | class_type_list C_TK error {yyerror ("Missing class type term"); RECOVER;} ; method_body: block | SC_TK { $$ = NULL_TREE; } ; /* 19.8.4 Productions from 8.5: Static Initializers */ static_initializer: static block { TREE_CHAIN ($2) = CPC_STATIC_INITIALIZER_STMT (ctxp); SET_CPC_STATIC_INITIALIZER_STMT (ctxp, $2); current_static_block = NULL_TREE; } ; static: /* Test lval.sub_token here */ modifiers { check_modifiers ("Illegal modifier `%s' for static initializer", $1, ACC_STATIC); /* Can't have a static initializer in an innerclass */ if ($1 | ACC_STATIC && GET_CPC_LIST () && !TOPLEVEL_CLASS_DECL_P (GET_CPC ())) parse_error_context (MODIFIER_WFL (STATIC_TK), "Can't define static initializer in class `%s'. Static initializer can only be defined in top-level classes", IDENTIFIER_POINTER (DECL_NAME (GET_CPC ()))); SOURCE_FRONTEND_DEBUG (("Modifiers: %d", $1)); } ; /* 19.8.5 Productions from 8.6: Constructor Declarations */ constructor_declaration: constructor_header { current_function_decl = $1; source_start_java_method (current_function_decl); } constructor_body { finish_method_declaration ($3); } ; constructor_header: constructor_declarator throws { $$ = method_header (0, NULL_TREE, $1, $2); } | modifiers constructor_declarator throws { $$ = method_header ($1, NULL_TREE, $2, $3); } ; constructor_declarator: simple_name OP_TK CP_TK { ctxp->formal_parameter_number = 0; $$ = method_declarator ($1, NULL_TREE); } | simple_name OP_TK formal_parameter_list CP_TK { $$ = method_declarator ($1, $3); } ; constructor_body: /* Unlike regular method, we always need a complete (empty) body so we can safely perform all the required code addition (super invocation and field initialization) */ block_begin constructor_block_end { BLOCK_EXPR_BODY ($2) = empty_stmt_node; $$ = $2; } | block_begin explicit_constructor_invocation constructor_block_end { $$ = $3; } | block_begin block_statements constructor_block_end { $$ = $3; } | block_begin explicit_constructor_invocation block_statements constructor_block_end { $$ = $4; } ; constructor_block_end: block_end ; /* Error recovery for that rule moved down expression_statement: rule. */ explicit_constructor_invocation: this_or_super OP_TK CP_TK SC_TK { $$ = build_method_invocation ($1, NULL_TREE); $$ = build_debugable_stmt (EXPR_WFL_LINECOL ($1), $$); $$ = java_method_add_stmt (current_function_decl, $$); } | this_or_super OP_TK argument_list CP_TK SC_TK { $$ = build_method_invocation ($1, $3); $$ = build_debugable_stmt (EXPR_WFL_LINECOL ($1), $$); $$ = java_method_add_stmt (current_function_decl, $$); } /* Added, JDK1.1 inner classes. Modified because the rule 'primary' couldn't work. */ | name DOT_TK SUPER_TK OP_TK argument_list CP_TK SC_TK {$$ = parse_jdk1_1_error ("explicit constructor invocation"); } | name DOT_TK SUPER_TK OP_TK CP_TK SC_TK {$$ = parse_jdk1_1_error ("explicit constructor invocation"); } ; this_or_super: /* Added, simplifies error diagnostics */ THIS_TK { tree wfl = build_wfl_node (this_identifier_node); EXPR_WFL_LINECOL (wfl) = $1.location; $$ = wfl; } | SUPER_TK { tree wfl = build_wfl_node (super_identifier_node); EXPR_WFL_LINECOL (wfl) = $1.location; $$ = wfl; } ; /* 19.9 Productions from 9: Interfaces */ /* 19.9.1 Productions from 9.1: Interfaces Declarations */ interface_declaration: INTERFACE_TK identifier { create_interface (0, $2, NULL_TREE); } interface_body | modifiers INTERFACE_TK identifier { create_interface ($1, $3, NULL_TREE); } interface_body | INTERFACE_TK identifier extends_interfaces { create_interface (0, $2, $3); } interface_body | modifiers INTERFACE_TK identifier extends_interfaces { create_interface ($1, $3, $4); } interface_body | INTERFACE_TK identifier error {yyerror ("'{' expected"); RECOVER;} | modifiers INTERFACE_TK identifier error {yyerror ("'{' expected"); RECOVER;} ; extends_interfaces: EXTENDS_TK interface_type { ctxp->interface_number = 1; $$ = build_tree_list ($2, NULL_TREE); } | extends_interfaces C_TK interface_type { ctxp->interface_number++; $$ = chainon ($1, build_tree_list ($3, NULL_TREE)); } | EXTENDS_TK error {yyerror ("Invalid interface type"); RECOVER;} | extends_interfaces C_TK error {yyerror ("Missing term"); RECOVER;} ; interface_body: OCB_TK CCB_TK { $$ = NULL_TREE; } | OCB_TK interface_member_declarations CCB_TK { $$ = NULL_TREE; } ; interface_member_declarations: interface_member_declaration | interface_member_declarations interface_member_declaration ; interface_member_declaration: constant_declaration | abstract_method_declaration | class_declaration /* Added, JDK1.1 inner classes */ { end_class_declaration (1); } | interface_declaration /* Added, JDK1.1 inner interfaces */ { end_class_declaration (1); } ; constant_declaration: field_declaration ; abstract_method_declaration: method_header SC_TK { check_abstract_method_header ($1); current_function_decl = NULL_TREE; /* FIXME ? */ } | method_header error {yyerror ("';' expected"); RECOVER;} ; /* 19.10 Productions from 10: Arrays */ array_initializer: OCB_TK CCB_TK { $$ = build_new_array_init ($1.location, NULL_TREE); } | OCB_TK C_TK CCB_TK { $$ = build_new_array_init ($1.location, NULL_TREE); } | OCB_TK variable_initializers CCB_TK { $$ = build_new_array_init ($1.location, $2); } | OCB_TK variable_initializers C_TK CCB_TK { $$ = build_new_array_init ($1.location, $2); } ; variable_initializers: variable_initializer { $$ = tree_cons (maybe_build_array_element_wfl ($1), $1, NULL_TREE); } | variable_initializers C_TK variable_initializer { $$ = tree_cons (maybe_build_array_element_wfl ($3), $3, $1); } | variable_initializers C_TK error {yyerror ("Missing term"); RECOVER;} ; /* 19.11 Production from 14: Blocks and Statements */ block: OCB_TK CCB_TK { /* Store the location of the `}' when doing xrefs */ if (current_function_decl && flag_emit_xref) DECL_END_SOURCE_LINE (current_function_decl) = EXPR_WFL_ADD_COL ($2.location, 1); $$ = empty_stmt_node; } | block_begin block_statements block_end { $$ = $3; } ; block_begin: OCB_TK { enter_block (); } ; block_end: CCB_TK { maybe_absorb_scoping_blocks (); /* Store the location of the `}' when doing xrefs */ if (current_function_decl && flag_emit_xref) DECL_END_SOURCE_LINE (current_function_decl) = EXPR_WFL_ADD_COL ($1.location, 1); $$ = exit_block (); if (!BLOCK_SUBBLOCKS ($$)) BLOCK_SUBBLOCKS ($$) = empty_stmt_node; } ; block_statements: block_statement | block_statements block_statement ; block_statement: local_variable_declaration_statement | statement { java_method_add_stmt (current_function_decl, $1); } | class_declaration /* Added, JDK1.1 local classes */ { LOCAL_CLASS_P (TREE_TYPE (GET_CPC ())) = 1; end_class_declaration (1); } ; local_variable_declaration_statement: local_variable_declaration SC_TK /* Can't catch missing ';' here */ ; local_variable_declaration: type variable_declarators { declare_local_variables (0, $1, $2); } | final type variable_declarators /* Added, JDK1.1 final locals */ { declare_local_variables ($1, $2, $3); } ; statement: statement_without_trailing_substatement | labeled_statement | if_then_statement | if_then_else_statement | while_statement | for_statement { $$ = exit_block (); } ; statement_nsi: statement_without_trailing_substatement | labeled_statement_nsi | if_then_else_statement_nsi | while_statement_nsi | for_statement_nsi { $$ = exit_block (); } ; statement_without_trailing_substatement: block | empty_statement | expression_statement | switch_statement | do_statement | break_statement | continue_statement | return_statement | synchronized_statement | throw_statement | try_statement ; empty_statement: SC_TK { if (flag_extraneous_semicolon && ! current_static_block && (! current_function_decl || /* Verify we're not in a inner class declaration */ (GET_CPC () != TYPE_NAME (DECL_CONTEXT (current_function_decl))))) { EXPR_WFL_SET_LINECOL (wfl_operator, lineno, -1); parse_warning_context (wfl_operator, "An empty declaration is a deprecated feature that should not be used"); } $$ = empty_stmt_node; } ; label_decl: identifier REL_CL_TK { $$ = build_labeled_block (EXPR_WFL_LINECOL ($1), EXPR_WFL_NODE ($1)); pushlevel (2); push_labeled_block ($$); PUSH_LABELED_BLOCK ($$); } ; labeled_statement: label_decl statement { $$ = finish_labeled_statement ($1, $2); } | identifier error {yyerror ("':' expected"); RECOVER;} ; labeled_statement_nsi: label_decl statement_nsi { $$ = finish_labeled_statement ($1, $2); } ; /* We concentrate here a bunch of error handling rules that we couldn't write earlier, because expression_statement catches a missing ';'. */ expression_statement: statement_expression SC_TK { /* We have a statement. Generate a WFL around it so we can debug it */ $$ = build_expr_wfl ($1, input_filename, lineno, 0); /* We know we have a statement, so set the debug info to be eventually generate here. */ $$ = JAVA_MAYBE_GENERATE_DEBUG_INFO ($$); } | error SC_TK { YYNOT_TWICE yyerror ("Invalid expression statement"); DRECOVER (expr_stmt); } | error OCB_TK { YYNOT_TWICE yyerror ("Invalid expression statement"); DRECOVER (expr_stmt); } | error CCB_TK { YYNOT_TWICE yyerror ("Invalid expression statement"); DRECOVER (expr_stmt); } | this_or_super OP_TK error {yyerror ("')' expected"); RECOVER;} | this_or_super OP_TK CP_TK error { parse_ctor_invocation_error (); RECOVER; } | this_or_super OP_TK argument_list error {yyerror ("')' expected"); RECOVER;} | this_or_super OP_TK argument_list CP_TK error { parse_ctor_invocation_error (); RECOVER; } | name DOT_TK SUPER_TK error {yyerror ("'(' expected"); RECOVER;} | name DOT_TK SUPER_TK OP_TK error {yyerror ("')' expected"); RECOVER;} | name DOT_TK SUPER_TK OP_TK argument_list error {yyerror ("')' expected"); RECOVER;} | name DOT_TK SUPER_TK OP_TK argument_list CP_TK error {yyerror ("';' expected"); RECOVER;} | name DOT_TK SUPER_TK OP_TK CP_TK error {yyerror ("';' expected"); RECOVER;} ; statement_expression: assignment | pre_increment_expression | pre_decrement_expression | post_increment_expression | post_decrement_expression | method_invocation | class_instance_creation_expression ; if_then_statement: IF_TK OP_TK expression CP_TK statement { $$ = build_if_else_statement ($2.location, $3, $5, NULL_TREE); } | IF_TK error {yyerror ("'(' expected"); RECOVER;} | IF_TK OP_TK error {yyerror ("Missing term"); RECOVER;} | IF_TK OP_TK expression error {yyerror ("')' expected"); RECOVER;} ; if_then_else_statement: IF_TK OP_TK expression CP_TK statement_nsi ELSE_TK statement { $$ = build_if_else_statement ($2.location, $3, $5, $7); } ; if_then_else_statement_nsi: IF_TK OP_TK expression CP_TK statement_nsi ELSE_TK statement_nsi { $$ = build_if_else_statement ($2.location, $3, $5, $7); } ; switch_statement: switch_expression { enter_block (); } switch_block { /* Make into "proper list" of COMPOUND_EXPRs. I.e. make the last statement also have its own COMPOUND_EXPR. */ maybe_absorb_scoping_blocks (); TREE_OPERAND ($1, 1) = exit_block (); $$ = build_debugable_stmt (EXPR_WFL_LINECOL ($1), $1); } ; switch_expression: SWITCH_TK OP_TK expression CP_TK { $$ = build (SWITCH_EXPR, NULL_TREE, $3, NULL_TREE); EXPR_WFL_LINECOL ($$) = $2.location; } | SWITCH_TK error {yyerror ("'(' expected"); RECOVER;} | SWITCH_TK OP_TK error {yyerror ("Missing term or ')'"); DRECOVER(switch_statement);} | SWITCH_TK OP_TK expression CP_TK error {yyerror ("'{' expected"); RECOVER;} ; /* Default assignment is there to avoid type node on switch_block node. */ switch_block: OCB_TK CCB_TK { $$ = NULL_TREE; } | OCB_TK switch_labels CCB_TK { $$ = NULL_TREE; } | OCB_TK switch_block_statement_groups CCB_TK { $$ = NULL_TREE; } | OCB_TK switch_block_statement_groups switch_labels CCB_TK { $$ = NULL_TREE; } ; switch_block_statement_groups: switch_block_statement_group | switch_block_statement_groups switch_block_statement_group ; switch_block_statement_group: switch_labels block_statements ; switch_labels: switch_label | switch_labels switch_label ; switch_label: CASE_TK constant_expression REL_CL_TK { tree lab = build1 (CASE_EXPR, NULL_TREE, $2); EXPR_WFL_LINECOL (lab) = $1.location; java_method_add_stmt (current_function_decl, lab); } | DEFAULT_TK REL_CL_TK { tree lab = build (DEFAULT_EXPR, NULL_TREE, NULL_TREE); EXPR_WFL_LINECOL (lab) = $1.location; java_method_add_stmt (current_function_decl, lab); } | CASE_TK error {yyerror ("Missing or invalid constant expression"); RECOVER;} | CASE_TK constant_expression error {yyerror ("':' expected"); RECOVER;} | DEFAULT_TK error {yyerror ("':' expected"); RECOVER;} ; while_expression: WHILE_TK OP_TK expression CP_TK { tree body = build_loop_body ($2.location, $3, 0); $$ = build_new_loop (body); } ; while_statement: while_expression statement { $$ = finish_loop_body (0, NULL_TREE, $2, 0); } | WHILE_TK error {YYERROR_NOW; yyerror ("'(' expected"); RECOVER;} | WHILE_TK OP_TK error {yyerror ("Missing term and ')' expected"); RECOVER;} | WHILE_TK OP_TK expression error {yyerror ("')' expected"); RECOVER;} ; while_statement_nsi: while_expression statement_nsi { $$ = finish_loop_body (0, NULL_TREE, $2, 0); } ; do_statement_begin: DO_TK { tree body = build_loop_body (0, NULL_TREE, 1); $$ = build_new_loop (body); } /* Need error handing here. FIXME */ ; do_statement: do_statement_begin statement WHILE_TK OP_TK expression CP_TK SC_TK { $$ = finish_loop_body ($4.location, $5, $2, 1); } ; for_statement: for_begin SC_TK expression SC_TK for_update CP_TK statement { if (TREE_CODE_CLASS (TREE_CODE ($3)) == 'c') $3 = build_wfl_node ($3); $$ = finish_for_loop (EXPR_WFL_LINECOL ($3), $3, $5, $7); } | for_begin SC_TK SC_TK for_update CP_TK statement { $$ = finish_for_loop (0, NULL_TREE, $4, $6); /* We have not condition, so we get rid of the EXIT_EXPR */ LOOP_EXPR_BODY_CONDITION_EXPR (LOOP_EXPR_BODY ($$), 0) = empty_stmt_node; } | for_begin SC_TK error {yyerror ("Invalid control expression"); RECOVER;} | for_begin SC_TK expression SC_TK error {yyerror ("Invalid update expression"); RECOVER;} | for_begin SC_TK SC_TK error {yyerror ("Invalid update expression"); RECOVER;} ; for_statement_nsi: for_begin SC_TK expression SC_TK for_update CP_TK statement_nsi { $$ = finish_for_loop (EXPR_WFL_LINECOL ($3), $3, $5, $7);} | for_begin SC_TK SC_TK for_update CP_TK statement_nsi { $$ = finish_for_loop (0, NULL_TREE, $4, $6); /* We have not condition, so we get rid of the EXIT_EXPR */ LOOP_EXPR_BODY_CONDITION_EXPR (LOOP_EXPR_BODY ($$), 0) = empty_stmt_node; } ; for_header: FOR_TK OP_TK { /* This scope defined for local variable that may be defined within the scope of the for loop */ enter_block (); } | FOR_TK error {yyerror ("'(' expected"); DRECOVER(for_1);} | FOR_TK OP_TK error {yyerror ("Invalid init statement"); RECOVER;} ; for_begin: for_header for_init { /* We now declare the loop body. The loop is declared as a for loop. */ tree body = build_loop_body (0, NULL_TREE, 0); $$ = build_new_loop (body); FOR_LOOP_P ($$) = 1; /* The loop is added to the current block the for statement is defined within */ java_method_add_stmt (current_function_decl, $$); } ; for_init: /* Can be empty */ { $$ = empty_stmt_node; } | statement_expression_list { /* Init statement recorded within the previously defined block scope */ $$ = java_method_add_stmt (current_function_decl, $1); } | local_variable_declaration { /* Local variable are recorded within the previously defined block scope */ $$ = NULL_TREE; } | statement_expression_list error {yyerror ("';' expected"); DRECOVER(for_init_1);} ; for_update: /* Can be empty */ {$$ = empty_stmt_node;} | statement_expression_list { $$ = build_debugable_stmt (BUILD_LOCATION (), $1); } ; statement_expression_list: statement_expression { $$ = add_stmt_to_compound (NULL_TREE, NULL_TREE, $1); } | statement_expression_list C_TK statement_expression { $$ = add_stmt_to_compound ($1, NULL_TREE, $3); } | statement_expression_list C_TK error {yyerror ("Missing term"); RECOVER;} ; break_statement: BREAK_TK SC_TK { $$ = build_bc_statement ($1.location, 1, NULL_TREE); } | BREAK_TK identifier SC_TK { $$ = build_bc_statement ($1.location, 1, $2); } | BREAK_TK error {yyerror ("Missing term"); RECOVER;} | BREAK_TK identifier error {yyerror ("';' expected"); RECOVER;} ; continue_statement: CONTINUE_TK SC_TK { $$ = build_bc_statement ($1.location, 0, NULL_TREE); } | CONTINUE_TK identifier SC_TK { $$ = build_bc_statement ($1.location, 0, $2); } | CONTINUE_TK error {yyerror ("Missing term"); RECOVER;} | CONTINUE_TK identifier error {yyerror ("';' expected"); RECOVER;} ; return_statement: RETURN_TK SC_TK { $$ = build_return ($1.location, NULL_TREE); } | RETURN_TK expression SC_TK { $$ = build_return ($1.location, $2); } | RETURN_TK error {yyerror ("Missing term"); RECOVER;} | RETURN_TK expression error {yyerror ("';' expected"); RECOVER;} ; throw_statement: THROW_TK expression SC_TK { $$ = build1 (THROW_EXPR, NULL_TREE, $2); EXPR_WFL_LINECOL ($$) = $1.location; } | THROW_TK error {yyerror ("Missing term"); RECOVER;} | THROW_TK expression error {yyerror ("';' expected"); RECOVER;} ; synchronized_statement: synchronized OP_TK expression CP_TK block { $$ = build (SYNCHRONIZED_EXPR, NULL_TREE, $3, $5); EXPR_WFL_LINECOL ($$) = EXPR_WFL_LINECOL (MODIFIER_WFL (SYNCHRONIZED_TK)); } | synchronized OP_TK expression CP_TK error {yyerror ("'{' expected"); RECOVER;} | synchronized error {yyerror ("'(' expected"); RECOVER;} | synchronized OP_TK error CP_TK {yyerror ("Missing term"); RECOVER;} | synchronized OP_TK error {yyerror ("Missing term"); RECOVER;} ; synchronized: modifiers { check_modifiers ( "Illegal modifier `%s'. Only `synchronized' was expected here", $1, ACC_SYNCHRONIZED); if ($1 != ACC_SYNCHRONIZED) MODIFIER_WFL (SYNCHRONIZED_TK) = build_wfl_node (NULL_TREE); } ; try_statement: TRY_TK block catches { $$ = build_try_statement ($1.location, $2, $3); } | TRY_TK block finally { $$ = build_try_finally_statement ($1.location, $2, $3); } | TRY_TK block catches finally { $$ = build_try_finally_statement ($1.location, build_try_statement ($1.location, $2, $3), $4); } | TRY_TK error {yyerror ("'{' expected"); DRECOVER (try_statement);} ; catches: catch_clause | catches catch_clause { TREE_CHAIN ($2) = $1; $$ = $2; } ; catch_clause: catch_clause_parameter block { java_method_add_stmt (current_function_decl, $2); exit_block (); $$ = $1; } catch_clause_parameter: CATCH_TK OP_TK formal_parameter CP_TK { /* We add a block to define a scope for formal_parameter (CCBP). The formal parameter is declared initialized by the appropriate function call */ tree ccpb = enter_block (); tree init = build_assignment (ASSIGN_TK, $2.location, TREE_PURPOSE ($3), build (JAVA_EXC_OBJ_EXPR, ptr_type_node)); declare_local_variables (0, TREE_VALUE ($3), build_tree_list (TREE_PURPOSE ($3), init)); $$ = build1 (CATCH_EXPR, NULL_TREE, ccpb); EXPR_WFL_LINECOL ($$) = $1.location; } | CATCH_TK error {yyerror ("'(' expected"); RECOVER; $$ = NULL_TREE;} | CATCH_TK OP_TK error { yyerror ("Missing term or ')' expected"); RECOVER; $$ = NULL_TREE; } | CATCH_TK OP_TK error CP_TK /* That's for () */ {yyerror ("Missing term"); RECOVER; $$ = NULL_TREE;} ; finally: FINALLY_TK block { $$ = $2; } | FINALLY_TK error {yyerror ("'{' expected"); RECOVER; } ; /* 19.12 Production from 15: Expressions */ primary: primary_no_new_array | array_creation_expression ; primary_no_new_array: literal | THIS_TK { $$ = build_this ($1.location); } | OP_TK expression CP_TK {$$ = $2;} | class_instance_creation_expression | field_access | method_invocation | array_access | type_literals /* Added, JDK1.1 inner classes. Documentation is wrong refering to a 'ClassName' (class_name) rule that doesn't exist. Used name: instead. */ | name DOT_TK THIS_TK { tree wfl = build_wfl_node (this_identifier_node); $$ = make_qualified_primary ($1, wfl, EXPR_WFL_LINECOL ($1)); } | OP_TK expression error {yyerror ("')' expected"); RECOVER;} | name DOT_TK error {yyerror ("'class' or 'this' expected" ); RECOVER;} | primitive_type DOT_TK error {yyerror ("'class' expected" ); RECOVER;} | VOID_TK DOT_TK error {yyerror ("'class' expected" ); RECOVER;} ; type_literals: name DOT_TK CLASS_TK { $$ = build_incomplete_class_ref ($2.location, $1); } | array_type DOT_TK CLASS_TK { $$ = build_incomplete_class_ref ($2.location, $1); } | primitive_type DOT_TK CLASS_TK { $$ = build_incomplete_class_ref ($2.location, $1); } | VOID_TK DOT_TK CLASS_TK { $$ = build_incomplete_class_ref ($2.location, void_type_node); } ; class_instance_creation_expression: NEW_TK class_type OP_TK argument_list CP_TK { $$ = build_new_invocation ($2, $4); } | NEW_TK class_type OP_TK CP_TK { $$ = build_new_invocation ($2, NULL_TREE); } | anonymous_class_creation /* Added, JDK1.1 inner classes, modified to use name or primary instead of primary solely which couldn't work in all situations. */ | something_dot_new identifier OP_TK CP_TK { tree ctor = build_new_invocation ($2, NULL_TREE); $$ = make_qualified_primary ($1, ctor, EXPR_WFL_LINECOL ($1)); } | something_dot_new identifier OP_TK CP_TK class_body | something_dot_new identifier OP_TK argument_list CP_TK { tree ctor = build_new_invocation ($2, $4); $$ = make_qualified_primary ($1, ctor, EXPR_WFL_LINECOL ($1)); } | something_dot_new identifier OP_TK argument_list CP_TK class_body | NEW_TK error SC_TK {yyerror ("'(' expected"); DRECOVER(new_1);} | NEW_TK class_type error {yyerror ("'(' expected"); RECOVER;} | NEW_TK class_type OP_TK error {yyerror ("')' or term expected"); RECOVER;} | NEW_TK class_type OP_TK argument_list error {yyerror ("')' expected"); RECOVER;} | something_dot_new error {YYERROR_NOW; yyerror ("Identifier expected"); RECOVER;} | something_dot_new identifier error {yyerror ("'(' expected"); RECOVER;} ; /* Created after JDK1.1 rules originally added to class_instance_creation_expression, but modified to use 'class_type' instead of 'TypeName' (type_name) which is mentionned in the documentation but doesn't exist. */ anonymous_class_creation: NEW_TK class_type OP_TK argument_list CP_TK { create_anonymous_class ($1.location, $2); } class_body { tree id = build_wfl_node (DECL_NAME (GET_CPC ())); EXPR_WFL_LINECOL (id) = EXPR_WFL_LINECOL ($2); end_class_declaration (1); /* Now we can craft the new expression */ $$ = build_new_invocation (id, $4); /* Note that we can't possibly be here if `class_type' is an interface (in which case the anonymous class extends Object and implements `class_type', hence its constructor can't have arguments.) */ /* Otherwise, the innerclass must feature a constructor matching `argument_list'. Anonymous classes are a bit special: it's impossible to define constructor for them, hence constructors must be generated following the hints provided by the `new' expression. Whether a super constructor of that nature exists or not is to be verified later on in verify_constructor_super. It's during the expansion of a `new' statement refering to an anonymous class that a ctor will be generated for the anonymous class, with the right arguments. */ } | NEW_TK class_type OP_TK CP_TK { create_anonymous_class ($1.location, $2); } class_body { tree id = build_wfl_node (DECL_NAME (GET_CPC ())); EXPR_WFL_LINECOL (id) = EXPR_WFL_LINECOL ($2); end_class_declaration (1); /* Now we can craft the new expression. The statement doesn't need to be remember so that a constructor can be generated, since its signature is already known. */ $$ = build_new_invocation (id, NULL_TREE); } ; something_dot_new: /* Added, not part of the specs. */ name DOT_TK NEW_TK { $$ = $1; } | primary DOT_TK NEW_TK { $$ = $1; } ; argument_list: expression { $$ = tree_cons (NULL_TREE, $1, NULL_TREE); ctxp->formal_parameter_number = 1; } | argument_list C_TK expression { ctxp->formal_parameter_number += 1; $$ = tree_cons (NULL_TREE, $3, $1); } | argument_list C_TK error {yyerror ("Missing term"); RECOVER;} ; array_creation_expression: NEW_TK primitive_type dim_exprs { $$ = build_newarray_node ($2, $3, 0); } | NEW_TK class_or_interface_type dim_exprs { $$ = build_newarray_node ($2, $3, 0); } | NEW_TK primitive_type dim_exprs dims { $$ = build_newarray_node ($2, $3, pop_current_osb (ctxp));} | NEW_TK class_or_interface_type dim_exprs dims { $$ = build_newarray_node ($2, $3, pop_current_osb (ctxp));} /* Added, JDK1.1 anonymous array. Initial documentation rule modified */ | NEW_TK class_or_interface_type dims array_initializer { char *sig; int osb = pop_current_osb (ctxp); while (osb--) obstack_grow (&temporary_obstack, "[]", 2); obstack_1grow (&temporary_obstack, '\0'); sig = obstack_finish (&temporary_obstack); $$ = build (NEW_ANONYMOUS_ARRAY_EXPR, NULL_TREE, $2, get_identifier (sig), $4); } | NEW_TK primitive_type dims array_initializer { int osb = pop_current_osb (ctxp); tree type = $2; while (osb--) type = build_java_array_type (type, -1); $$ = build (NEW_ANONYMOUS_ARRAY_EXPR, NULL_TREE, build_pointer_type (type), NULL_TREE, $4); } | NEW_TK error CSB_TK {yyerror ("'[' expected"); DRECOVER ("]");} | NEW_TK error OSB_TK {yyerror ("']' expected"); RECOVER;} ; dim_exprs: dim_expr { $$ = build_tree_list (NULL_TREE, $1); } | dim_exprs dim_expr { $$ = tree_cons (NULL_TREE, $2, $$); } ; dim_expr: OSB_TK expression CSB_TK { if (JNUMERIC_TYPE_P (TREE_TYPE ($2))) { $2 = build_wfl_node ($2); TREE_TYPE ($2) = NULL_TREE; } EXPR_WFL_LINECOL ($2) = $1.location; $$ = $2; } | OSB_TK expression error {yyerror ("']' expected"); RECOVER;} | OSB_TK error { yyerror ("Missing term"); yyerror ("']' expected"); RECOVER; } ; dims: OSB_TK CSB_TK { int allocate = 0; /* If not initialized, allocate memory for the osb numbers stack */ if (!ctxp->osb_limit) { allocate = ctxp->osb_limit = 32; ctxp->osb_depth = -1; } /* If capacity overflown, reallocate a bigger chunk */ else if (ctxp->osb_depth+1 == ctxp->osb_limit) allocate = ctxp->osb_limit << 1; if (allocate) { allocate *= sizeof (int); if (ctxp->osb_number) ctxp->osb_number = (int *)xrealloc (ctxp->osb_number, allocate); else ctxp->osb_number = (int *)xmalloc (allocate); } ctxp->osb_depth++; CURRENT_OSB (ctxp) = 1; } | dims OSB_TK CSB_TK { CURRENT_OSB (ctxp)++; } | dims OSB_TK error { yyerror ("']' expected"); RECOVER;} ; field_access: primary DOT_TK identifier { $$ = make_qualified_primary ($1, $3, $2.location); } /* FIXME - REWRITE TO: { $$ = build_binop (COMPONENT_REF, $2.location, $1, $3); } */ | SUPER_TK DOT_TK identifier { tree super_wfl = build_wfl_node (super_identifier_node); EXPR_WFL_LINECOL (super_wfl) = $1.location; $$ = make_qualified_name (super_wfl, $3, $2.location); } | SUPER_TK error {yyerror ("Field expected"); DRECOVER (super_field_acces);} ; method_invocation: name OP_TK CP_TK { $$ = build_method_invocation ($1, NULL_TREE); } | name OP_TK argument_list CP_TK { $$ = build_method_invocation ($1, $3); } | primary DOT_TK identifier OP_TK CP_TK { if (TREE_CODE ($1) == THIS_EXPR) $$ = build_this_super_qualified_invocation (1, $3, NULL_TREE, 0, $2.location); else { tree invok = build_method_invocation ($3, NULL_TREE); $$ = make_qualified_primary ($1, invok, $2.location); } } | primary DOT_TK identifier OP_TK argument_list CP_TK { if (TREE_CODE ($1) == THIS_EXPR) $$ = build_this_super_qualified_invocation (1, $3, $5, 0, $2.location); else { tree invok = build_method_invocation ($3, $5); $$ = make_qualified_primary ($1, invok, $2.location); } } | SUPER_TK DOT_TK identifier OP_TK CP_TK { $$ = build_this_super_qualified_invocation (0, $3, NULL_TREE, $1.location, $2.location); } | SUPER_TK DOT_TK identifier OP_TK argument_list CP_TK { $$ = build_this_super_qualified_invocation (0, $3, $5, $1.location, $2.location); } /* Screws up thing. I let it here until I'm convinced it can be removed. FIXME | primary DOT_TK error {yyerror ("'(' expected"); DRECOVER(bad);} */ | SUPER_TK DOT_TK error CP_TK { yyerror ("'(' expected"); DRECOVER (method_invocation); } | SUPER_TK DOT_TK error DOT_TK { yyerror ("'(' expected"); DRECOVER (method_invocation); } ; array_access: name OSB_TK expression CSB_TK { $$ = build_array_ref ($2.location, $1, $3); } | primary_no_new_array OSB_TK expression CSB_TK { $$ = build_array_ref ($2.location, $1, $3); } | name OSB_TK error { yyerror ("Missing term and ']' expected"); DRECOVER(array_access); } | name OSB_TK expression error { yyerror ("']' expected"); DRECOVER(array_access); } | primary_no_new_array OSB_TK error { yyerror ("Missing term and ']' expected"); DRECOVER(array_access); } | primary_no_new_array OSB_TK expression error { yyerror ("']' expected"); DRECOVER(array_access); } ; postfix_expression: primary | name | post_increment_expression | post_decrement_expression ; post_increment_expression: postfix_expression INCR_TK { $$ = build_incdec ($2.token, $2.location, $1, 1); } ; post_decrement_expression: postfix_expression DECR_TK { $$ = build_incdec ($2.token, $2.location, $1, 1); } ; trap_overflow_corner_case: pre_increment_expression | pre_decrement_expression | PLUS_TK unary_expression {$$ = build_unaryop ($1.token, $1.location, $2); } | unary_expression_not_plus_minus | PLUS_TK error {yyerror ("Missing term"); RECOVER} ; unary_expression: trap_overflow_corner_case { error_if_numeric_overflow ($1); $$ = $1; } | MINUS_TK trap_overflow_corner_case {$$ = build_unaryop ($1.token, $1.location, $2); } | MINUS_TK error {yyerror ("Missing term"); RECOVER} ; pre_increment_expression: INCR_TK unary_expression {$$ = build_incdec ($1.token, $1.location, $2, 0); } | INCR_TK error {yyerror ("Missing term"); RECOVER} ; pre_decrement_expression: DECR_TK unary_expression {$$ = build_incdec ($1.token, $1.location, $2, 0); } | DECR_TK error {yyerror ("Missing term"); RECOVER} ; unary_expression_not_plus_minus: postfix_expression | NOT_TK unary_expression {$$ = build_unaryop ($1.token, $1.location, $2); } | NEG_TK unary_expression {$$ = build_unaryop ($1.token, $1.location, $2); } | cast_expression | NOT_TK error {yyerror ("Missing term"); RECOVER} | NEG_TK error {yyerror ("Missing term"); RECOVER} ; cast_expression: /* Error handling here is potentially weak */ OP_TK primitive_type dims CP_TK unary_expression { tree type = $2; int osb = pop_current_osb (ctxp); while (osb--) type = build_java_array_type (type, -1); $$ = build_cast ($1.location, type, $5); } | OP_TK primitive_type CP_TK unary_expression { $$ = build_cast ($1.location, $2, $4); } | OP_TK expression CP_TK unary_expression_not_plus_minus { $$ = build_cast ($1.location, $2, $4); } | OP_TK name dims CP_TK unary_expression_not_plus_minus { const char *ptr; int osb = pop_current_osb (ctxp); obstack_grow (&temporary_obstack, IDENTIFIER_POINTER (EXPR_WFL_NODE ($2)), IDENTIFIER_LENGTH (EXPR_WFL_NODE ($2))); while (osb--) obstack_grow (&temporary_obstack, "[]", 2); obstack_1grow (&temporary_obstack, '\0'); ptr = obstack_finish (&temporary_obstack); EXPR_WFL_NODE ($2) = get_identifier (ptr); $$ = build_cast ($1.location, $2, $5); } | OP_TK primitive_type OSB_TK error {yyerror ("']' expected, invalid type expression");} | OP_TK error { YYNOT_TWICE yyerror ("Invalid type expression"); RECOVER; RECOVER; } | OP_TK primitive_type dims CP_TK error {yyerror ("Missing term"); RECOVER;} | OP_TK primitive_type CP_TK error {yyerror ("Missing term"); RECOVER;} | OP_TK name dims CP_TK error {yyerror ("Missing term"); RECOVER;} ; multiplicative_expression: unary_expression | multiplicative_expression MULT_TK unary_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | multiplicative_expression DIV_TK unary_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | multiplicative_expression REM_TK unary_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | multiplicative_expression MULT_TK error {yyerror ("Missing term"); RECOVER;} | multiplicative_expression DIV_TK error {yyerror ("Missing term"); RECOVER;} | multiplicative_expression REM_TK error {yyerror ("Missing term"); RECOVER;} ; additive_expression: multiplicative_expression | additive_expression PLUS_TK multiplicative_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | additive_expression MINUS_TK multiplicative_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | additive_expression PLUS_TK error {yyerror ("Missing term"); RECOVER;} | additive_expression MINUS_TK error {yyerror ("Missing term"); RECOVER;} ; shift_expression: additive_expression | shift_expression LS_TK additive_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | shift_expression SRS_TK additive_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | shift_expression ZRS_TK additive_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | shift_expression LS_TK error {yyerror ("Missing term"); RECOVER;} | shift_expression SRS_TK error {yyerror ("Missing term"); RECOVER;} | shift_expression ZRS_TK error {yyerror ("Missing term"); RECOVER;} ; relational_expression: shift_expression | relational_expression LT_TK shift_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | relational_expression GT_TK shift_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | relational_expression LTE_TK shift_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | relational_expression GTE_TK shift_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | relational_expression INSTANCEOF_TK reference_type { $$ = build_binop (INSTANCEOF_EXPR, $2.location, $1, $3); } | relational_expression LT_TK error {yyerror ("Missing term"); RECOVER;} | relational_expression GT_TK error {yyerror ("Missing term"); RECOVER;} | relational_expression LTE_TK error {yyerror ("Missing term"); RECOVER;} | relational_expression GTE_TK error {yyerror ("Missing term"); RECOVER;} | relational_expression INSTANCEOF_TK error {yyerror ("Invalid reference type"); RECOVER;} ; equality_expression: relational_expression | equality_expression EQ_TK relational_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | equality_expression NEQ_TK relational_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | equality_expression EQ_TK error {yyerror ("Missing term"); RECOVER;} | equality_expression NEQ_TK error {yyerror ("Missing term"); RECOVER;} ; and_expression: equality_expression | and_expression AND_TK equality_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | and_expression AND_TK error {yyerror ("Missing term"); RECOVER;} ; exclusive_or_expression: and_expression | exclusive_or_expression XOR_TK and_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | exclusive_or_expression XOR_TK error {yyerror ("Missing term"); RECOVER;} ; inclusive_or_expression: exclusive_or_expression | inclusive_or_expression OR_TK exclusive_or_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | inclusive_or_expression OR_TK error {yyerror ("Missing term"); RECOVER;} ; conditional_and_expression: inclusive_or_expression | conditional_and_expression BOOL_AND_TK inclusive_or_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | conditional_and_expression BOOL_AND_TK error {yyerror ("Missing term"); RECOVER;} ; conditional_or_expression: conditional_and_expression | conditional_or_expression BOOL_OR_TK conditional_and_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | conditional_or_expression BOOL_OR_TK error {yyerror ("Missing term"); RECOVER;} ; conditional_expression: /* Error handling here is weak */ conditional_or_expression | conditional_or_expression REL_QM_TK expression REL_CL_TK conditional_expression { $$ = build (CONDITIONAL_EXPR, NULL_TREE, $1, $3, $5); EXPR_WFL_LINECOL ($$) = $2.location; } | conditional_or_expression REL_QM_TK REL_CL_TK error { YYERROR_NOW; yyerror ("Missing term"); DRECOVER (1); } | conditional_or_expression REL_QM_TK error {yyerror ("Missing term"); DRECOVER (2);} | conditional_or_expression REL_QM_TK expression REL_CL_TK error {yyerror ("Missing term"); DRECOVER (3);} ; assignment_expression: conditional_expression | assignment ; assignment: left_hand_side assignment_operator assignment_expression { $$ = build_assignment ($2.token, $2.location, $1, $3); } | left_hand_side assignment_operator error { YYNOT_TWICE yyerror ("Missing term"); DRECOVER (assign); } ; left_hand_side: name | field_access | array_access ; assignment_operator: ASSIGN_ANY_TK | ASSIGN_TK ; expression: assignment_expression ; constant_expression: expression ; %% /* Helper function to retrieve an OSB count. Should be used when the `dims:' rule is being used. */ static int pop_current_osb (ctxp) struct parser_ctxt *ctxp; { int to_return; if (ctxp->osb_depth < 0) abort (); to_return = CURRENT_OSB (ctxp); ctxp->osb_depth--; return to_return; } /* This section of the code deal with save/restoring parser contexts. Add mode documentation here. FIXME */ /* Helper function. Create a new parser context. With COPY_FROM_PREVIOUS set to a non zero value, content of the previous context is copied, otherwise, the new context is zeroed. The newly created context becomes the current one. */ static void create_new_parser_context (copy_from_previous) int copy_from_previous; { struct parser_ctxt *new; new = (struct parser_ctxt *)xmalloc(sizeof (struct parser_ctxt)); if (copy_from_previous) { memcpy ((PTR)new, (PTR)ctxp, sizeof (struct parser_ctxt)); new->saved_data_ctx = 1; } else memset ((PTR) new, 0, sizeof (struct parser_ctxt)); new->next = ctxp; ctxp = new; } /* Create a new parser context and make it the current one. */ void java_push_parser_context () { create_new_parser_context (0); } void java_pop_parser_context (generate) int generate; { tree current; struct parser_ctxt *toFree, *next; if (!ctxp) return; toFree = ctxp; next = ctxp->next; if (next) { lineno = ctxp->lineno; current_class = ctxp->class_type; } /* If the old and new lexers differ, then free the old one. */ if (ctxp->lexer && next && ctxp->lexer != next->lexer) java_destroy_lexer (ctxp->lexer); /* Set the single import class file flag to 0 for the current list of imported things */ for (current = ctxp->import_list; current; current = TREE_CHAIN (current)) IS_A_SINGLE_IMPORT_CLASSFILE_NAME_P (TREE_VALUE (current)) = 0; /* And restore those of the previous context */ if ((ctxp = next)) /* Assignment is really meant here */ for (current = ctxp->import_list; current; current = TREE_CHAIN (current)) IS_A_SINGLE_IMPORT_CLASSFILE_NAME_P (TREE_VALUE (current)) = 1; /* If we pushed a context to parse a class intended to be generated, we keep it so we can remember the class. What we could actually do is to just update a list of class names. */ if (generate) { toFree->next = ctxp_for_generation; ctxp_for_generation = toFree; } else free (toFree); } /* Create a parser context for the use of saving some global variables. */ void java_parser_context_save_global () { if (!ctxp) { java_push_parser_context (); ctxp->saved_data_ctx = 1; } /* If this context already stores data, create a new one suitable for data storage. */ else if (ctxp->saved_data) create_new_parser_context (1); ctxp->lineno = lineno; ctxp->class_type = current_class; ctxp->filename = input_filename; ctxp->function_decl = current_function_decl; ctxp->saved_data = 1; } /* Restore some global variables from the previous context. Make the previous context the current one. */ void java_parser_context_restore_global () { lineno = ctxp->lineno; current_class = ctxp->class_type; input_filename = ctxp->filename; if (wfl_operator) { tree s; BUILD_FILENAME_IDENTIFIER_NODE (s, input_filename); EXPR_WFL_FILENAME_NODE (wfl_operator) = s; } current_function_decl = ctxp->function_decl; ctxp->saved_data = 0; if (ctxp->saved_data_ctx) java_pop_parser_context (0); } /* Suspend vital data for the current class/function being parsed so that an other class can be parsed. Used to let local/anonymous classes be parsed. */ static void java_parser_context_suspend () { /* This makes debugging through java_debug_context easier */ static const char *const name = ""; /* Duplicate the previous context, use it to save the globals we're interested in */ create_new_parser_context (1); ctxp->function_decl = current_function_decl; ctxp->class_type = current_class; /* Then create a new context which inherits all data from the previous one. This will be the new current context */ create_new_parser_context (1); /* Help debugging */ ctxp->next->filename = name; } /* Resume vital data for the current class/function being parsed so that an other class can be parsed. Used to let local/anonymous classes be parsed. The trick is the data storing file position informations must be restored to their current value, so parsing can resume as if no context was ever saved. */ static void java_parser_context_resume () { struct parser_ctxt *old = ctxp; /* This one is to be discarded */ struct parser_ctxt *saver = old->next; /* This one contain saved info */ struct parser_ctxt *restored = saver->next; /* This one is the old current */ /* We need to inherit the list of classes to complete/generate */ restored->classd_list = old->classd_list; restored->class_list = old->class_list; /* Restore the current class and function from the saver */ current_class = saver->class_type; current_function_decl = saver->function_decl; /* Retrive the restored context */ ctxp = restored; /* Re-installed the data for the parsing to carry on */ memcpy (&ctxp->marker_begining, &old->marker_begining, (size_t)(&ctxp->marker_end - &ctxp->marker_begining)); /* Buffer context can now be discarded */ free (saver); free (old); } /* Add a new anchor node to which all statement(s) initializing static and non static initialized upon declaration field(s) will be linked. */ static void java_parser_context_push_initialized_field () { tree node; node = build_tree_list (NULL_TREE, NULL_TREE); TREE_CHAIN (node) = CPC_STATIC_INITIALIZER_LIST (ctxp); CPC_STATIC_INITIALIZER_LIST (ctxp) = node; node = build_tree_list (NULL_TREE, NULL_TREE); TREE_CHAIN (node) = CPC_INITIALIZER_LIST (ctxp); CPC_INITIALIZER_LIST (ctxp) = node; node = build_tree_list (NULL_TREE, NULL_TREE); TREE_CHAIN (node) = CPC_INSTANCE_INITIALIZER_LIST (ctxp); CPC_INSTANCE_INITIALIZER_LIST (ctxp) = node; } /* Pop the lists of initialized field. If this lists aren't empty, remember them so we can use it to create and populate the finit$ or functions. */ static void java_parser_context_pop_initialized_field () { tree stmts; tree class_type = TREE_TYPE (GET_CPC ()); if (CPC_INITIALIZER_LIST (ctxp)) { stmts = CPC_INITIALIZER_STMT (ctxp); CPC_INITIALIZER_LIST (ctxp) = TREE_CHAIN (CPC_INITIALIZER_LIST (ctxp)); if (stmts && !java_error_count) TYPE_FINIT_STMT_LIST (class_type) = reorder_static_initialized (stmts); } if (CPC_STATIC_INITIALIZER_LIST (ctxp)) { stmts = CPC_STATIC_INITIALIZER_STMT (ctxp); CPC_STATIC_INITIALIZER_LIST (ctxp) = TREE_CHAIN (CPC_STATIC_INITIALIZER_LIST (ctxp)); /* Keep initialization in order to enforce 8.5 */ if (stmts && !java_error_count) TYPE_CLINIT_STMT_LIST (class_type) = nreverse (stmts); } /* JDK 1.1 instance initializers */ if (CPC_INSTANCE_INITIALIZER_LIST (ctxp)) { stmts = CPC_INSTANCE_INITIALIZER_STMT (ctxp); CPC_INSTANCE_INITIALIZER_LIST (ctxp) = TREE_CHAIN (CPC_INSTANCE_INITIALIZER_LIST (ctxp)); if (stmts && !java_error_count) TYPE_II_STMT_LIST (class_type) = nreverse (stmts); } } static tree reorder_static_initialized (list) tree list; { /* We have to keep things in order. The alias initializer have to come first, then the initialized regular field, in reverse to keep them in lexical order. */ tree marker, previous = NULL_TREE; for (marker = list; marker; previous = marker, marker = TREE_CHAIN (marker)) if (TREE_CODE (marker) == TREE_LIST && !TREE_VALUE (marker) && !TREE_PURPOSE (marker)) break; /* No static initialized, the list is fine as is */ if (!previous) list = TREE_CHAIN (marker); /* No marker? reverse the whole list */ else if (!marker) list = nreverse (list); /* Otherwise, reverse what's after the marker and the new reordered sublist will replace the marker. */ else { TREE_CHAIN (previous) = NULL_TREE; list = nreverse (list); list = chainon (TREE_CHAIN (marker), list); } return list; } /* Helper functions to dump the parser context stack. */ #define TAB_CONTEXT(C) \ {int i; for (i = 0; i < (C); i++) fputc (' ', stderr);} static void java_debug_context_do (tab) int tab; { struct parser_ctxt *copy = ctxp; while (copy) { TAB_CONTEXT (tab); fprintf (stderr, "ctxt: 0x%0lX\n", (unsigned long)copy); TAB_CONTEXT (tab); fprintf (stderr, "filename: %s\n", copy->filename); TAB_CONTEXT (tab); fprintf (stderr, "lineno: %d\n", copy->lineno); TAB_CONTEXT (tab); fprintf (stderr, "package: %s\n", (copy->package ? IDENTIFIER_POINTER (copy->package) : "")); TAB_CONTEXT (tab); fprintf (stderr, "context for saving: %d\n", copy->saved_data_ctx); TAB_CONTEXT (tab); fprintf (stderr, "saved data: %d\n", copy->saved_data); copy = copy->next; tab += 2; } } /* Dump the stacked up parser contexts. Intended to be called from a debugger. */ void java_debug_context () { java_debug_context_do (0); } /* Flag for the error report routine to issue the error the first time it's called (overriding the default behavior which is to drop the first invocation and honor the second one, taking advantage of a richer context. */ static int force_error = 0; /* Reporting an constructor invocation error. */ static void parse_ctor_invocation_error () { if (DECL_CONSTRUCTOR_P (current_function_decl)) yyerror ("Constructor invocation must be first thing in a constructor"); else yyerror ("Only constructors can invoke constructors"); } /* Reporting JDK1.1 features not implemented. */ static tree parse_jdk1_1_error (msg) const char *msg; { sorry (": `%s' JDK1.1(TM) feature", msg); java_error_count++; return empty_stmt_node; } static int do_warning = 0; void yyerror (msg) const char *msg; { static java_lc elc; static int prev_lineno; static const char *prev_msg; int save_lineno; char *remainder, *code_from_source; if (!force_error && prev_lineno == lineno) return; /* Save current error location but report latter, when the context is richer. */ if (ctxp->java_error_flag == 0) { ctxp->java_error_flag = 1; elc = ctxp->elc; /* Do something to use the previous line if we're reaching the end of the file... */ #ifdef VERBOSE_SKELETON printf ("* Error detected (%s)\n", (msg ? msg : "(null)")); #endif return; } /* Ignore duplicate message on the same line. BTW, this is dubious. FIXME */ if (!force_error && msg == prev_msg && prev_lineno == elc.line) return; ctxp->java_error_flag = 0; if (do_warning) java_warning_count++; else java_error_count++; if (elc.col == 0 && msg && msg[1] == ';') { elc.col = ctxp->p_line->char_col-1; elc.line = ctxp->p_line->lineno; } save_lineno = lineno; prev_lineno = lineno = elc.line; prev_msg = msg; code_from_source = java_get_line_col (ctxp->filename, elc.line, elc.col); obstack_grow0 (&temporary_obstack, code_from_source, strlen (code_from_source)); remainder = obstack_finish (&temporary_obstack); if (do_warning) warning ("%s.\n%s", msg, remainder); else error ("%s.\n%s", msg, remainder); /* This allow us to cheaply avoid an extra 'Invalid expression statement' error report when errors have been already reported on the same line. This occurs when we report an error but don't have a synchronization point other than ';', which expression_statement is the only one to take care of. */ ctxp->prevent_ese = lineno = save_lineno; } static void issue_warning_error_from_context (cl, msg, ap) tree cl; const char *msg; va_list ap; { const char *saved, *saved_input_filename; char buffer [4096]; vsprintf (buffer, msg, ap); force_error = 1; ctxp->elc.line = EXPR_WFL_LINENO (cl); ctxp->elc.col = (EXPR_WFL_COLNO (cl) == 0xfff ? -1 : (EXPR_WFL_COLNO (cl) == 0xffe ? -2 : EXPR_WFL_COLNO (cl))); /* We have a CL, that's a good reason for using it if it contains data */ saved = ctxp->filename; if (TREE_CODE (cl) == EXPR_WITH_FILE_LOCATION && EXPR_WFL_FILENAME_NODE (cl)) ctxp->filename = EXPR_WFL_FILENAME (cl); saved_input_filename = input_filename; input_filename = ctxp->filename; java_error (NULL); java_error (buffer); ctxp->filename = saved; input_filename = saved_input_filename; force_error = 0; } /* Issue an error message at a current source line CL */ void parse_error_context VPARAMS ((tree cl, const char *msg, ...)) { VA_OPEN (ap, msg); VA_FIXEDARG (ap, tree, cl); VA_FIXEDARG (ap, const char *, msg); issue_warning_error_from_context (cl, msg, ap); VA_CLOSE (ap); } /* Issue a warning at a current source line CL */ static void parse_warning_context VPARAMS ((tree cl, const char *msg, ...)) { VA_OPEN (ap, msg); VA_FIXEDARG (ap, tree, cl); VA_FIXEDARG (ap, const char *, msg); force_error = do_warning = 1; issue_warning_error_from_context (cl, msg, ap); do_warning = force_error = 0; VA_CLOSE (ap); } static tree find_expr_with_wfl (node) tree node; { while (node) { char code; tree to_return; switch (TREE_CODE (node)) { case BLOCK: node = BLOCK_EXPR_BODY (node); continue; case COMPOUND_EXPR: to_return = find_expr_with_wfl (TREE_OPERAND (node, 0)); if (to_return) return to_return; node = TREE_OPERAND (node, 1); continue; case LOOP_EXPR: node = TREE_OPERAND (node, 0); continue; case LABELED_BLOCK_EXPR: node = TREE_OPERAND (node, 1); continue; default: code = TREE_CODE_CLASS (TREE_CODE (node)); if (((code == '1') || (code == '2') || (code == 'e')) && EXPR_WFL_LINECOL (node)) return node; return NULL_TREE; } } return NULL_TREE; } /* Issue a missing return statement error. Uses METHOD to figure the last line of the method the error occurs in. */ static void missing_return_error (method) tree method; { EXPR_WFL_SET_LINECOL (wfl_operator, DECL_SOURCE_LINE_LAST (method), -2); parse_error_context (wfl_operator, "Missing return statement"); } /* Issue an unreachable statement error. From NODE, find the next statement to report appropriately. */ static void unreachable_stmt_error (node) tree node; { /* Browse node to find the next expression node that has a WFL. Use the location to report the error */ if (TREE_CODE (node) == COMPOUND_EXPR) node = find_expr_with_wfl (TREE_OPERAND (node, 1)); else node = find_expr_with_wfl (node); if (node) { EXPR_WFL_SET_LINECOL (wfl_operator, EXPR_WFL_LINENO (node), -2); parse_error_context (wfl_operator, "Unreachable statement"); } else abort (); } int java_report_errors () { if (java_error_count) fprintf (stderr, "%d error%s", java_error_count, (java_error_count == 1 ? "" : "s")); if (java_warning_count) fprintf (stderr, "%s%d warning%s", (java_error_count ? ", " : ""), java_warning_count, (java_warning_count == 1 ? "" : "s")); if (java_error_count || java_warning_count) putc ('\n', stderr); return java_error_count; } static char * java_accstring_lookup (flags) int flags; { static char buffer [80]; #define COPY_RETURN(S) {strcpy (buffer, S); return buffer;} /* Access modifier looked-up first for easier report on forbidden access. */ if (flags & ACC_PUBLIC) COPY_RETURN ("public"); if (flags & ACC_PRIVATE) COPY_RETURN ("private"); if (flags & ACC_PROTECTED) COPY_RETURN ("protected"); if (flags & ACC_STATIC) COPY_RETURN ("static"); if (flags & ACC_FINAL) COPY_RETURN ("final"); if (flags & ACC_SYNCHRONIZED) COPY_RETURN ("synchronized"); if (flags & ACC_VOLATILE) COPY_RETURN ("volatile"); if (flags & ACC_TRANSIENT) COPY_RETURN ("transient"); if (flags & ACC_NATIVE) COPY_RETURN ("native"); if (flags & ACC_INTERFACE) COPY_RETURN ("interface"); if (flags & ACC_ABSTRACT) COPY_RETURN ("abstract"); buffer [0] = '\0'; return buffer; #undef COPY_RETURN } /* Issuing error messages upon redefinition of classes, interfaces or variables. */ static void classitf_redefinition_error (context, id, decl, cl) const char *context; tree id, decl, cl; { parse_error_context (cl, "%s `%s' already defined in %s:%d", context, IDENTIFIER_POINTER (id), DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl)); /* Here we should point out where its redefined. It's a unicode. FIXME */ } static void variable_redefinition_error (context, name, type, line) tree context, name, type; int line; { const char *type_name; /* Figure a proper name for type. We might haven't resolved it */ if (TREE_CODE (type) == POINTER_TYPE && !TREE_TYPE (type)) type_name = IDENTIFIER_POINTER (TYPE_NAME (type)); else type_name = lang_printable_name (type, 0); parse_error_context (context, "Variable `%s' is already defined in this method and was declared `%s %s' at line %d", IDENTIFIER_POINTER (name), type_name, IDENTIFIER_POINTER (name), line); } /* If ANAME is terminated with `[]', it indicates an array. This function returns the number of `[]' found and if this number is greater than zero, it extracts the array type name and places it in the node pointed to by TRIMMED unless TRIMMED is null. */ static int build_type_name_from_array_name (aname, trimmed) tree aname; tree *trimmed; { const char *name = IDENTIFIER_POINTER (aname); int len = IDENTIFIER_LENGTH (aname); int array_dims; STRING_STRIP_BRACKETS (name, len, array_dims); if (array_dims && trimmed) *trimmed = get_identifier_with_length (name, len); return array_dims; } static tree build_array_from_name (type, type_wfl, name, ret_name) tree type, type_wfl, name, *ret_name; { int more_dims = 0; /* Eventually get more dims */ more_dims = build_type_name_from_array_name (name, &name); /* If we have, then craft a new type for this variable */ if (more_dims) { tree save = type; /* If we have a pointer, use its type */ if (TREE_CODE (type) == POINTER_TYPE) type = TREE_TYPE (type); /* Building the first dimension of a primitive type uses this function */ if (JPRIMITIVE_TYPE_P (type)) { type = build_java_array_type (type, -1); more_dims--; } /* Otherwise, if we have a WFL for this type, use it (the type is already an array on an unresolved type, and we just keep on adding dimensions) */ else if (type_wfl) { type = type_wfl; more_dims += build_type_name_from_array_name (TYPE_NAME (save), NULL); } /* Add all the dimensions */ while (more_dims--) type = build_unresolved_array_type (type); /* The type may have been incomplete in the first place */ if (type_wfl) type = obtain_incomplete_type (type); } if (ret_name) *ret_name = name; return type; } /* Build something that the type identifier resolver will identify as being an array to an unresolved type. TYPE_WFL is a WFL on a identifier. */ static tree build_unresolved_array_type (type_or_wfl) tree type_or_wfl; { const char *ptr; tree wfl; /* TYPE_OR_WFL might be an array on a resolved type. In this case, just create a array type */ if (TREE_CODE (type_or_wfl) == RECORD_TYPE) return build_java_array_type (type_or_wfl, -1); obstack_grow (&temporary_obstack, IDENTIFIER_POINTER (EXPR_WFL_NODE (type_or_wfl)), IDENTIFIER_LENGTH (EXPR_WFL_NODE (type_or_wfl))); obstack_grow0 (&temporary_obstack, "[]", 2); ptr = obstack_finish (&temporary_obstack); wfl = build_expr_wfl (get_identifier (ptr), EXPR_WFL_FILENAME (type_or_wfl), EXPR_WFL_LINENO (type_or_wfl), EXPR_WFL_COLNO (type_or_wfl)); /* Re-install the existing qualifications so that the type can be resolved properly. */ EXPR_WFL_QUALIFICATION (wfl) = EXPR_WFL_QUALIFICATION (type_or_wfl); return wfl; } static void parser_add_interface (class_decl, interface_decl, wfl) tree class_decl, interface_decl, wfl; { if (maybe_add_interface (TREE_TYPE (class_decl), TREE_TYPE (interface_decl))) parse_error_context (wfl, "Interface `%s' repeated", IDENTIFIER_POINTER (DECL_NAME (interface_decl))); } /* Bulk of common class/interface checks. Return 1 if an error was encountered. TAG is 0 for a class, 1 for an interface. */ static int check_class_interface_creation (is_interface, flags, raw_name, qualified_name, decl, cl) int is_interface, flags; tree raw_name, qualified_name, decl, cl; { tree node; int sca = 0; /* Static class allowed */ int icaf = 0; /* Inner class allowed flags */ int uaaf = CLASS_MODIFIERS; /* Usually allowed access flags */ if (!quiet_flag) fprintf (stderr, " %s%s %s", (CPC_INNER_P () ? "inner" : ""), (is_interface ? "interface" : "class"), IDENTIFIER_POINTER (qualified_name)); /* Scope of an interface/class type name: - Can't be imported by a single type import - Can't already exists in the package */ if (IS_A_SINGLE_IMPORT_CLASSFILE_NAME_P (raw_name) && (node = find_name_in_single_imports (raw_name)) && !CPC_INNER_P ()) { parse_error_context (cl, "%s name `%s' clashes with imported type `%s'", (is_interface ? "Interface" : "Class"), IDENTIFIER_POINTER (raw_name), IDENTIFIER_POINTER (node)); return 1; } if (decl && CLASS_COMPLETE_P (decl)) { classitf_redefinition_error ((is_interface ? "Interface" : "Class"), qualified_name, decl, cl); return 1; } if (check_inner_class_redefinition (raw_name, cl)) return 1; /* If public, file name should match class/interface name, except when dealing with an inner class */ if (!CPC_INNER_P () && (flags & ACC_PUBLIC )) { const char *f; /* Contains OS dependent assumption on path separator. FIXME */ for (f = &input_filename [strlen (input_filename)]; f != input_filename && f[0] != '/' && f[0] != DIR_SEPARATOR; f--) ; if (f[0] == '/' || f[0] == DIR_SEPARATOR) f++; if (strncmp (IDENTIFIER_POINTER (raw_name), f , IDENTIFIER_LENGTH (raw_name)) || f [IDENTIFIER_LENGTH (raw_name)] != '.') parse_error_context (cl, "Public %s `%s' must be defined in a file called `%s.java'", (is_interface ? "interface" : "class"), IDENTIFIER_POINTER (qualified_name), IDENTIFIER_POINTER (raw_name)); } /* Static classes can be declared only in top level classes. Note: once static, a inner class is a top level class. */ if (flags & ACC_STATIC) { /* Catch the specific error of declaring an class inner class with no toplevel enclosing class. Prevent check_modifiers from complaining a second time */ if (CPC_INNER_P () && !TOPLEVEL_CLASS_DECL_P (GET_CPC())) { parse_error_context (cl, "Inner class `%s' can't be static. Static classes can only occur in interfaces and top-level classes", IDENTIFIER_POINTER (qualified_name)); sca = ACC_STATIC; } /* Else, in the context of a top-level class declaration, let `check_modifiers' do its job, otherwise, give it a go */ else sca = (GET_CPC_LIST () ? ACC_STATIC : 0); } /* Inner classes can be declared private or protected within their enclosing classes. */ if (CPC_INNER_P ()) { /* A class which is local to a block can't be public, private, protected or static. But it is created final, so allow this one. */ if (current_function_decl) icaf = sca = uaaf = ACC_FINAL; else { check_modifiers_consistency (flags); icaf = ACC_PROTECTED; if (! CLASS_INTERFACE (GET_CPC ())) icaf |= ACC_PRIVATE; } } if (is_interface) { if (CPC_INNER_P ()) uaaf = INTERFACE_INNER_MODIFIERS; else uaaf = INTERFACE_MODIFIERS; check_modifiers ("Illegal modifier `%s' for interface declaration", flags, uaaf); } else check_modifiers ((current_function_decl ? "Illegal modifier `%s' for local class declaration" : "Illegal modifier `%s' for class declaration"), flags, uaaf|sca|icaf); return 0; } /* Construct a nested class name. If the final component starts with a digit, return true. Otherwise return false. */ static int make_nested_class_name (cpc_list) tree cpc_list; { tree name; if (!cpc_list) return 0; make_nested_class_name (TREE_CHAIN (cpc_list)); /* Pick the qualified name when dealing with the first upmost enclosing class */ name = (TREE_CHAIN (cpc_list) ? TREE_PURPOSE (cpc_list) : DECL_NAME (TREE_VALUE (cpc_list))); obstack_grow (&temporary_obstack, IDENTIFIER_POINTER (name), IDENTIFIER_LENGTH (name)); obstack_1grow (&temporary_obstack, '$'); return ISDIGIT (IDENTIFIER_POINTER (name)[0]); } /* Can't redefine a class already defined in an earlier scope. */ static int check_inner_class_redefinition (raw_name, cl) tree raw_name, cl; { tree scope_list; for (scope_list = GET_CPC_LIST (); scope_list; scope_list = GET_NEXT_ENCLOSING_CPC (scope_list)) if (raw_name == GET_CPC_UN_NODE (scope_list)) { parse_error_context (cl, "The class name `%s' is already defined in this scope. An inner class may not have the same simple name as any of its enclosing classes", IDENTIFIER_POINTER (raw_name)); return 1; } return 0; } /* Tries to find a decl for CLASS_TYPE within ENCLOSING. If we fail, we remember ENCLOSING and SUPER. */ static tree resolve_inner_class (circularity_hash, cl, enclosing, super, class_type) htab_t circularity_hash; tree cl, *enclosing, *super, class_type; { tree local_enclosing = *enclosing; tree local_super = NULL_TREE; while (local_enclosing) { tree intermediate, decl; *htab_find_slot (circularity_hash, local_enclosing, INSERT) = local_enclosing; if ((decl = find_as_inner_class (local_enclosing, class_type, cl))) return decl; intermediate = local_enclosing; /* Explore enclosing contexts. */ while (INNER_CLASS_DECL_P (intermediate)) { intermediate = DECL_CONTEXT (intermediate); if ((decl = find_as_inner_class (intermediate, class_type, cl))) return decl; } /* Now go to the upper classes, bail out if necessary. We will analyze the returned SUPER and act accordingly (see do_resolve_class.) */ local_super = CLASSTYPE_SUPER (TREE_TYPE (local_enclosing)); if (!local_super || local_super == object_type_node) break; if (TREE_CODE (local_super) == POINTER_TYPE) local_super = do_resolve_class (NULL, local_super, NULL, NULL); else local_super = TYPE_NAME (local_super); /* We may not have checked for circular inheritance yet, so do so here to prevent an infinite loop. */ if (htab_find (circularity_hash, local_super) != NULL) { if (!cl) cl = lookup_cl (local_enclosing); parse_error_context (cl, "Cyclic inheritance involving %s", IDENTIFIER_POINTER (DECL_NAME (local_enclosing))); local_enclosing = NULL_TREE; } else local_enclosing = local_super; } /* We failed. Return LOCAL_SUPER and LOCAL_ENCLOSING. */ *super = local_super; *enclosing = local_enclosing; return NULL_TREE; } /* Within ENCLOSING, find a decl for NAME and return it. NAME can be qualified. */ static tree find_as_inner_class (enclosing, name, cl) tree enclosing, name, cl; { tree qual, to_return; if (!enclosing) return NULL_TREE; name = TYPE_NAME (name); /* First search: within the scope of `enclosing', search for name */ if (QUALIFIED_P (name) && cl && EXPR_WFL_NODE (cl) == name) qual = EXPR_WFL_QUALIFICATION (cl); else if (cl) qual = build_tree_list (cl, NULL_TREE); else qual = build_tree_list (build_expr_wfl (name, NULL, 0, 0), NULL_TREE); if ((to_return = find_as_inner_class_do (qual, enclosing))) return to_return; /* We're dealing with a qualified name. Try to resolve thing until we get something that is an enclosing class. */ if (QUALIFIED_P (name) && cl && EXPR_WFL_NODE (cl) == name) { tree acc = NULL_TREE, decl = NULL_TREE, ptr; for (qual = EXPR_WFL_QUALIFICATION (cl); qual && !decl; qual = TREE_CHAIN (qual)) { acc = merge_qualified_name (acc, EXPR_WFL_NODE (TREE_PURPOSE (qual))); BUILD_PTR_FROM_NAME (ptr, acc); decl = do_resolve_class (NULL_TREE, ptr, NULL_TREE, cl); } /* A NULL qual and a decl means that the search ended successfully?!? We have to do something then. FIXME */ if (decl) enclosing = decl; else qual = EXPR_WFL_QUALIFICATION (cl); } /* Otherwise, create a qual for the other part of the resolution. */ else qual = build_tree_list (build_expr_wfl (name, NULL, 0, 0), NULL_TREE); return find_as_inner_class_do (qual, enclosing); } /* We go inside the list of sub classes and try to find a way through. */ static tree find_as_inner_class_do (qual, enclosing) tree qual, enclosing; { if (!qual) return NULL_TREE; for (; qual && enclosing; qual = TREE_CHAIN (qual)) { tree name_to_match = EXPR_WFL_NODE (TREE_PURPOSE (qual)); tree next_enclosing = NULL_TREE; tree inner_list; for (inner_list = DECL_INNER_CLASS_LIST (enclosing); inner_list; inner_list = TREE_CHAIN (inner_list)) { if (TREE_VALUE (inner_list) == name_to_match) { next_enclosing = TREE_PURPOSE (inner_list); break; } } enclosing = next_enclosing; } return (!qual && enclosing ? enclosing : NULL_TREE); } /* Reach all inner classes and tie their unqualified name to a DECL. */ static void set_nested_class_simple_name_value (outer, set) tree outer; int set; { tree l; for (l = DECL_INNER_CLASS_LIST (outer); l; l = TREE_CHAIN (l)) IDENTIFIER_GLOBAL_VALUE (TREE_VALUE (l)) = (set ? TREE_PURPOSE (l) : NULL_TREE); } static void link_nested_class_to_enclosing () { if (GET_ENCLOSING_CPC ()) { tree enclosing = GET_ENCLOSING_CPC_CONTEXT (); DECL_INNER_CLASS_LIST (enclosing) = tree_cons (GET_CPC (), GET_CPC_UN (), DECL_INNER_CLASS_LIST (enclosing)); } } static tree maybe_make_nested_class_name (name) tree name; { tree id = NULL_TREE; if (CPC_INNER_P ()) { /* If we're in a function, we must append a number to create the nested class name. However, we don't do this if the class we are constructing is anonymous, because in that case we'll already have a number as the class name. */ if (! make_nested_class_name (GET_CPC_LIST ()) && current_function_decl != NULL_TREE && ! ISDIGIT (IDENTIFIER_POINTER (name)[0])) { char buf[10]; sprintf (buf, "%d", anonymous_class_counter); ++anonymous_class_counter; obstack_grow (&temporary_obstack, buf, strlen (buf)); obstack_1grow (&temporary_obstack, '$'); } obstack_grow0 (&temporary_obstack, IDENTIFIER_POINTER (name), IDENTIFIER_LENGTH (name)); id = get_identifier (obstack_finish (&temporary_obstack)); if (ctxp->package) QUALIFIED_P (id) = 1; } return id; } /* If DECL is NULL, create and push a new DECL, record the current line CL and do other maintenance things. */ static tree maybe_create_class_interface_decl (decl, raw_name, qualified_name, cl) tree decl, raw_name, qualified_name, cl; { if (!decl) decl = push_class (make_class (), qualified_name); /* Take care of the file and line business */ DECL_SOURCE_FILE (decl) = EXPR_WFL_FILENAME (cl); /* If we're emiting xrefs, store the line/col number information */ if (flag_emit_xref) DECL_SOURCE_LINE (decl) = EXPR_WFL_LINECOL (cl); else DECL_SOURCE_LINE (decl) = EXPR_WFL_LINENO (cl); CLASS_FROM_SOURCE_P (TREE_TYPE (decl)) = 1; CLASS_PARSED_P (TREE_TYPE (decl)) = 1; CLASS_FROM_CURRENTLY_COMPILED_P (TREE_TYPE (decl)) = IS_A_COMMAND_LINE_FILENAME_P (EXPR_WFL_FILENAME_NODE (cl)); PUSH_CPC (decl, raw_name); DECL_CONTEXT (decl) = GET_ENCLOSING_CPC_CONTEXT (); /* Link the declaration to the already seen ones */ TREE_CHAIN (decl) = ctxp->class_list; ctxp->class_list = decl; /* Create a new nodes in the global lists */ gclass_list = tree_cons (NULL_TREE, decl, gclass_list); all_class_list = tree_cons (NULL_TREE, decl, all_class_list); /* Install a new dependency list element */ create_jdep_list (ctxp); SOURCE_FRONTEND_DEBUG (("Defining class/interface %s", IDENTIFIER_POINTER (qualified_name))); return decl; } static void add_superinterfaces (decl, interface_list) tree decl, interface_list; { tree node; /* Superinterface(s): if present and defined, parser_check_super_interface () takes care of ensuring that: - This is an accessible interface type, - Circularity detection. parser_add_interface is then called. If present but not defined, the check operation is delayed until the super interface gets defined. */ for (node = interface_list; node; node = TREE_CHAIN (node)) { tree current = TREE_PURPOSE (node); tree idecl = IDENTIFIER_CLASS_VALUE (EXPR_WFL_NODE (current)); if (idecl && CLASS_LOADED_P (TREE_TYPE (idecl))) { if (!parser_check_super_interface (idecl, decl, current)) parser_add_interface (decl, idecl, current); } else register_incomplete_type (JDEP_INTERFACE, current, decl, NULL_TREE); } } /* Create an interface in pass1 and return its decl. Return the interface's decl in pass 2. */ static tree create_interface (flags, id, super) int flags; tree id, super; { tree raw_name = EXPR_WFL_NODE (id); tree q_name = parser_qualified_classname (raw_name); tree decl = IDENTIFIER_CLASS_VALUE (q_name); /* Certain syntax errors are making SUPER be like ID. Avoid this case. */ if (ctxp->class_err && id == super) super = NULL; EXPR_WFL_NODE (id) = q_name; /* Keep source location, even if refined. */ /* Basic checks: scope, redefinition, modifiers */ if (check_class_interface_creation (1, flags, raw_name, q_name, decl, id)) { PUSH_ERROR (); return NULL_TREE; } /* Suspend the current parsing context if we're parsing an inner interface */ if (CPC_INNER_P ()) { java_parser_context_suspend (); /* Interface members are public. */ if (CLASS_INTERFACE (GET_CPC ())) flags |= ACC_PUBLIC; } /* Push a new context for (static) initialized upon declaration fields */ java_parser_context_push_initialized_field (); /* Interface modifiers check - public/abstract allowed (already done at that point) - abstract is obsolete (comes first, it's a warning, or should be) - Can't use twice the same (checked in the modifier rule) */ if ((flags & ACC_ABSTRACT) && flag_redundant) parse_warning_context (MODIFIER_WFL (ABSTRACT_TK), "Redundant use of `abstract' modifier. Interface `%s' is implicitly abstract", IDENTIFIER_POINTER (raw_name)); /* Create a new decl if DECL is NULL, otherwise fix it */ decl = maybe_create_class_interface_decl (decl, raw_name, q_name, id); /* Set super info and mark the class a complete */ set_super_info (ACC_INTERFACE | flags, TREE_TYPE (decl), object_type_node, ctxp->interface_number); ctxp->interface_number = 0; CLASS_COMPLETE_P (decl) = 1; add_superinterfaces (decl, super); return decl; } /* Patch anonymous class CLASS, by either extending or implementing DEP. */ static void patch_anonymous_class (type_decl, class_decl, wfl) tree type_decl, class_decl, wfl; { tree class = TREE_TYPE (class_decl); tree type = TREE_TYPE (type_decl); tree binfo = TYPE_BINFO (class); /* If it's an interface, implement it */ if (CLASS_INTERFACE (type_decl)) { tree s_binfo; int length; if (parser_check_super_interface (type_decl, class_decl, wfl)) return; s_binfo = TREE_VEC_ELT (BINFO_BASETYPES (TYPE_BINFO (class)), 0); length = TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (class))+1; TYPE_BINFO_BASETYPES (class) = make_tree_vec (length); TREE_VEC_ELT (BINFO_BASETYPES (TYPE_BINFO (class)), 0) = s_binfo; /* And add the interface */ parser_add_interface (class_decl, type_decl, wfl); } /* Otherwise, it's a type we want to extend */ else { if (parser_check_super (type_decl, class_decl, wfl)) return; BINFO_TYPE (TREE_VEC_ELT (BINFO_BASETYPES (binfo), 0)) = type; } } static tree create_anonymous_class (location, type_name) int location; tree type_name; { char buffer [80]; tree super = NULL_TREE, itf = NULL_TREE; tree id, type_decl, class; /* The unqualified name of the anonymous class. It's just a number. */ sprintf (buffer, "%d", anonymous_class_counter++); id = build_wfl_node (get_identifier (buffer)); EXPR_WFL_LINECOL (id) = location; /* We know about the type to extend/implement. We go ahead */ if ((type_decl = IDENTIFIER_CLASS_VALUE (EXPR_WFL_NODE (type_name)))) { /* Create a class which either implements on extends the designated class. The class bears an innacessible name. */ if (CLASS_INTERFACE (type_decl)) { /* It's OK to modify it here. It's been already used and shouldn't be reused */ ctxp->interface_number = 1; /* Interfaces should presented as a list of WFLs */ itf = build_tree_list (type_name, NULL_TREE); } else super = type_name; } class = create_class (ACC_FINAL, id, super, itf); /* We didn't know anything about the stuff. We register a dependence. */ if (!type_decl) register_incomplete_type (JDEP_ANONYMOUS, type_name, class, NULL_TREE); ANONYMOUS_CLASS_P (TREE_TYPE (class)) = 1; return class; } /* Create a class in pass1 and return its decl. Return class interface's decl in pass 2. */ static tree create_class (flags, id, super, interfaces) int flags; tree id, super, interfaces; { tree raw_name = EXPR_WFL_NODE (id); tree class_id, decl; tree super_decl_type; /* Certain syntax errors are making SUPER be like ID. Avoid this case. */ if (ctxp->class_err && id == super) super = NULL; class_id = parser_qualified_classname (raw_name); decl = IDENTIFIER_CLASS_VALUE (class_id); EXPR_WFL_NODE (id) = class_id; /* Basic check: scope, redefinition, modifiers */ if (check_class_interface_creation (0, flags, raw_name, class_id, decl, id)) { PUSH_ERROR (); return NULL_TREE; } /* Suspend the current parsing context if we're parsing an inner class or an anonymous class. */ if (CPC_INNER_P ()) { java_parser_context_suspend (); /* Interface members are public. */ if (CLASS_INTERFACE (GET_CPC ())) flags |= ACC_PUBLIC; } /* Push a new context for (static) initialized upon declaration fields */ java_parser_context_push_initialized_field (); /* Class modifier check: - Allowed modifier (already done at that point) - abstract AND final forbidden - Public classes defined in the correct file */ if ((flags & ACC_ABSTRACT) && (flags & ACC_FINAL)) parse_error_context (id, "Class `%s' can't be declared both abstract and final", IDENTIFIER_POINTER (raw_name)); /* Create a new decl if DECL is NULL, otherwise fix it */ decl = maybe_create_class_interface_decl (decl, raw_name, class_id, id); /* If SUPER exists, use it, otherwise use Object */ if (super) { /* Can't extend java.lang.Object */ if (TREE_TYPE (IDENTIFIER_CLASS_VALUE (class_id)) == object_type_node) { parse_error_context (id, "Can't extend `java.lang.Object'"); return NULL_TREE; } super_decl_type = register_incomplete_type (JDEP_SUPER, super, decl, NULL_TREE); } else if (TREE_TYPE (decl) != object_type_node) super_decl_type = object_type_node; /* We're defining java.lang.Object */ else super_decl_type = NULL_TREE; /* A class nested in an interface is implicitly static. */ if (INNER_CLASS_DECL_P (decl) && CLASS_INTERFACE (TYPE_NAME (TREE_TYPE (DECL_CONTEXT (decl))))) { flags |= ACC_STATIC; } /* Set super info and mark the class as complete. */ set_super_info (flags, TREE_TYPE (decl), super_decl_type, ctxp->interface_number); ctxp->interface_number = 0; CLASS_COMPLETE_P (decl) = 1; add_superinterfaces (decl, interfaces); /* Add the private this$ field, Replicate final locals still in scope as private final fields mangled like val$. This doesn't not occur for top level (static) inner classes. */ if (PURE_INNER_CLASS_DECL_P (decl)) add_inner_class_fields (decl, current_function_decl); /* If doing xref, store the location at which the inherited class (if any) was seen. */ if (flag_emit_xref && super) DECL_INHERITED_SOURCE_LINE (decl) = EXPR_WFL_LINECOL (super); /* Eventually sets the @deprecated tag flag */ CHECK_DEPRECATED (decl); /* Reset the anonymous class counter when declaring non inner classes */ if (!INNER_CLASS_DECL_P (decl)) anonymous_class_counter = 1; return decl; } /* End a class declaration: register the statements used to create finit$ and , pop the current class and resume the prior parser context if necessary. */ static void end_class_declaration (resume) int resume; { /* If an error occurred, context weren't pushed and won't need to be popped by a resume. */ int no_error_occurred = ctxp->next && GET_CPC () != error_mark_node; if (GET_CPC () != error_mark_node) dump_java_tree (TDI_class, GET_CPC ()); java_parser_context_pop_initialized_field (); POP_CPC (); if (resume && no_error_occurred) java_parser_context_resume (); /* We're ending a class declaration, this is a good time to reset the interface cout. Note that might have been already done in create_interface, but if at that time an inner class was being dealt with, the interface count was reset in a context created for the sake of handling inner classes declaration. */ ctxp->interface_number = 0; } static void add_inner_class_fields (class_decl, fct_decl) tree class_decl; tree fct_decl; { tree block, marker, f; f = add_field (TREE_TYPE (class_decl), build_current_thisn (TREE_TYPE (class_decl)), build_pointer_type (TREE_TYPE (DECL_CONTEXT (class_decl))), ACC_PRIVATE); FIELD_THISN (f) = 1; if (!fct_decl) return; for (block = GET_CURRENT_BLOCK (fct_decl); block && TREE_CODE (block) == BLOCK; block = BLOCK_SUPERCONTEXT (block)) { tree decl; for (decl = BLOCK_EXPR_DECLS (block); decl; decl = TREE_CHAIN (decl)) { tree name, pname; tree wfl, init, list; /* Avoid non final arguments. */ if (!LOCAL_FINAL_P (decl)) continue; MANGLE_OUTER_LOCAL_VARIABLE_NAME (name, DECL_NAME (decl)); MANGLE_ALIAS_INITIALIZER_PARAMETER_NAME_ID (pname, DECL_NAME (decl)); wfl = build_wfl_node (name); init = build_wfl_node (pname); /* Build an initialization for the field: it will be initialized by a parameter added to finit$, bearing a mangled name of the field itself (param$.) The parameter is provided to finit$ by the constructor invoking it (hence the constructor will also feature a hidden parameter, set to the value of the outer context local at the time the inner class is created.) Note: we take into account all possible locals that can be accessed by the inner class. It's actually not trivial to minimize these aliases down to the ones really used. One way to do that would be to expand all regular methods first, then finit$ to get a picture of what's used. It works with the exception that we would have to go back on all constructor invoked in regular methods to have their invokation reworked (to include the right amount of alias initializer parameters.) The only real way around, I think, is a first pass to identify locals really used in the inner class. We leave the flag FIELD_LOCAL_ALIAS_USED around for that future use. On the other hand, it only affect local inner classes, whose constructors (and finit$ call) will be featuring unecessary arguments. It's easy for a developper to keep this number of parameter down by using the `final' keyword only when necessary. For the time being, we can issue a warning on unecessary finals. FIXME */ init = build_assignment (ASSIGN_TK, EXPR_WFL_LINECOL (wfl), wfl, init); /* Register the field. The TREE_LIST holding the part initialized/initializer will be marked ARG_FINAL_P so that the created field can be marked FIELD_LOCAL_ALIAS. */ list = build_tree_list (wfl, init); ARG_FINAL_P (list) = 1; register_fields (ACC_PRIVATE | ACC_FINAL, TREE_TYPE (decl), list); } } if (!CPC_INITIALIZER_STMT (ctxp)) return; /* If we ever registered an alias field, insert and marker to remeber where the list ends. The second part of the list (the one featuring initialized fields) so it can be later reversed to enforce 8.5. The marker will be removed during that operation. */ marker = build_tree_list (NULL_TREE, NULL_TREE); TREE_CHAIN (marker) = CPC_INITIALIZER_STMT (ctxp); SET_CPC_INITIALIZER_STMT (ctxp, marker); } /* Can't use lookup_field () since we don't want to load the class and can't set the CLASS_LOADED_P flag */ static tree find_field (class, name) tree class; tree name; { tree decl; for (decl = TYPE_FIELDS (class); decl; decl = TREE_CHAIN (decl)) { if (DECL_NAME (decl) == name) return decl; } return NULL_TREE; } /* Wrap around lookup_field that doesn't potentially upset the value of CLASS */ static tree lookup_field_wrapper (class, name) tree class, name; { tree type = class; tree decl = NULL_TREE; java_parser_context_save_global (); /* Last chance: if we're within the context of an inner class, we might be trying to access a local variable defined in an outer context. We try to look for it now. */ if (INNER_CLASS_TYPE_P (class) && TREE_CODE (name) == IDENTIFIER_NODE) { tree new_name; MANGLE_OUTER_LOCAL_VARIABLE_NAME (new_name, name); decl = lookup_field (&type, new_name); if (decl && decl != error_mark_node) FIELD_LOCAL_ALIAS_USED (decl) = 1; } if (!decl || decl == error_mark_node) { type = class; decl = lookup_field (&type, name); } /* If the field still hasn't been found, try the next enclosing context. */ if (!decl && INNER_CLASS_TYPE_P (class)) { tree outer_type = TREE_TYPE (DECL_CONTEXT (TYPE_NAME (class))); decl = lookup_field_wrapper (outer_type, name); } java_parser_context_restore_global (); return decl == error_mark_node ? NULL : decl; } /* Find duplicate field within the same class declarations and report the error. Returns 1 if a duplicated field was found, 0 otherwise. */ static int duplicate_declaration_error_p (new_field_name, new_type, cl) tree new_field_name, new_type, cl; { /* This might be modified to work with method decl as well */ tree decl = find_field (TREE_TYPE (GET_CPC ()), new_field_name); if (decl) { char *t1 = xstrdup (purify_type_name ((TREE_CODE (new_type) == POINTER_TYPE && TREE_TYPE (new_type) == NULL_TREE) ? IDENTIFIER_POINTER (TYPE_NAME (new_type)) : lang_printable_name (new_type, 1))); /* The type may not have been completed by the time we report the error */ char *t2 = xstrdup (purify_type_name ((TREE_CODE (TREE_TYPE (decl)) == POINTER_TYPE && TREE_TYPE (TREE_TYPE (decl)) == NULL_TREE) ? IDENTIFIER_POINTER (TYPE_NAME (TREE_TYPE (decl))) : lang_printable_name (TREE_TYPE (decl), 1))); parse_error_context (cl , "Duplicate variable declaration: `%s %s' was `%s %s' (%s:%d)", t1, IDENTIFIER_POINTER (new_field_name), t2, IDENTIFIER_POINTER (DECL_NAME (decl)), DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl)); free (t1); free (t2); return 1; } return 0; } /* Field registration routine. If TYPE doesn't exist, field declarations are linked to the undefined TYPE dependency list, to be later resolved in java_complete_class () */ static void register_fields (flags, type, variable_list) int flags; tree type, variable_list; { tree current, saved_type; tree class_type = NULL_TREE; int saved_lineno = lineno; int must_chain = 0; tree wfl = NULL_TREE; if (GET_CPC ()) class_type = TREE_TYPE (GET_CPC ()); if (!class_type || class_type == error_mark_node) return; /* If we're adding fields to interfaces, those fields are public, static, final */ if (CLASS_INTERFACE (TYPE_NAME (class_type))) { OBSOLETE_MODIFIER_WARNING (MODIFIER_WFL (PUBLIC_TK), flags, ACC_PUBLIC, "interface field(s)"); OBSOLETE_MODIFIER_WARNING (MODIFIER_WFL (STATIC_TK), flags, ACC_STATIC, "interface field(s)"); OBSOLETE_MODIFIER_WARNING (MODIFIER_WFL (FINAL_TK), flags, ACC_FINAL, "interface field(s)"); check_modifiers ("Illegal interface member modifier `%s'", flags, INTERFACE_FIELD_MODIFIERS); flags |= (ACC_PUBLIC | ACC_STATIC | ACC_FINAL); } /* Obtain a suitable type for resolution, if necessary */ SET_TYPE_FOR_RESOLUTION (type, wfl, must_chain); /* If TYPE is fully resolved and we don't have a reference, make one */ PROMOTE_RECORD_IF_COMPLETE (type, must_chain); for (current = variable_list, saved_type = type; current; current = TREE_CHAIN (current), type = saved_type) { tree real_type; tree field_decl; tree cl = TREE_PURPOSE (current); tree init = TREE_VALUE (current); tree current_name = EXPR_WFL_NODE (cl); /* Can't declare non-final static fields in inner classes */ if ((flags & ACC_STATIC) && !TOPLEVEL_CLASS_TYPE_P (class_type) && !(flags & ACC_FINAL)) parse_error_context (cl, "Field `%s' can't be static in inner class `%s' unless it is final", IDENTIFIER_POINTER (EXPR_WFL_NODE (cl)), lang_printable_name (class_type, 0)); /* Process NAME, as it may specify extra dimension(s) for it */ type = build_array_from_name (type, wfl, current_name, ¤t_name); /* Type adjustment. We may have just readjusted TYPE because the variable specified more dimensions. Make sure we have a reference if we can and don't have one already. Also change the name if we have an init. */ if (type != saved_type) { PROMOTE_RECORD_IF_COMPLETE (type, must_chain); if (init) EXPR_WFL_NODE (TREE_OPERAND (init, 0)) = current_name; } real_type = GET_REAL_TYPE (type); /* Check for redeclarations */ if (duplicate_declaration_error_p (current_name, real_type, cl)) continue; /* Set lineno to the line the field was found and create a declaration for it. Eventually sets the @deprecated tag flag. */ if (flag_emit_xref) lineno = EXPR_WFL_LINECOL (cl); else lineno = EXPR_WFL_LINENO (cl); field_decl = add_field (class_type, current_name, real_type, flags); CHECK_DEPRECATED (field_decl); /* If the field denotes a final instance variable, then we allocate a LANG_DECL_SPECIFIC part to keep track of its initialization. We also mark whether the field was initialized upon its declaration. We don't do that if the created field is an alias to a final local. */ if (!ARG_FINAL_P (current) && (flags & ACC_FINAL)) { MAYBE_CREATE_VAR_LANG_DECL_SPECIFIC (field_decl); DECL_FIELD_FINAL_WFL (field_decl) = cl; } /* If the couple initializer/initialized is marked ARG_FINAL_P, we mark the created field FIELD_LOCAL_ALIAS, so that we can hide parameters to this inner class finit$ and constructors. It also means that the field isn't final per say. */ if (ARG_FINAL_P (current)) { FIELD_LOCAL_ALIAS (field_decl) = 1; FIELD_FINAL (field_decl) = 0; } /* Check if we must chain. */ if (must_chain) register_incomplete_type (JDEP_FIELD, wfl, field_decl, type); /* If we have an initialization value tied to the field */ if (init) { /* The field is declared static */ if (flags & ACC_STATIC) { /* We include the field and its initialization part into a list used to generate . After is walked, field initializations will be processed and fields initialized with known constants will be taken out of and have their DECL_INITIAL set appropriately. */ TREE_CHAIN (init) = CPC_STATIC_INITIALIZER_STMT (ctxp); SET_CPC_STATIC_INITIALIZER_STMT (ctxp, init); if (TREE_OPERAND (init, 1) && TREE_CODE (TREE_OPERAND (init, 1)) == NEW_ARRAY_INIT) TREE_STATIC (TREE_OPERAND (init, 1)) = 1; } /* A non-static field declared with an immediate initialization is to be initialized in , if any. This field is remembered to be processed at the time of the generation of . */ else { TREE_CHAIN (init) = CPC_INITIALIZER_STMT (ctxp); SET_CPC_INITIALIZER_STMT (ctxp, init); } MODIFY_EXPR_FROM_INITIALIZATION_P (init) = 1; DECL_INITIAL (field_decl) = TREE_OPERAND (init, 1); } } lineno = saved_lineno; } /* Generate finit$, using the list of initialized fields to populate its body. finit$'s parameter(s) list is adjusted to include the one(s) used to initialized the field(s) caching outer context local(s). */ static tree generate_finit (class_type) tree class_type; { int count = 0; tree list = TYPE_FINIT_STMT_LIST (class_type); tree mdecl, current, parms; parms = build_alias_initializer_parameter_list (AIPL_FUNCTION_CREATION, class_type, NULL_TREE, &count); CRAFTED_PARAM_LIST_FIXUP (parms); mdecl = create_artificial_method (class_type, ACC_PRIVATE, void_type_node, finit_identifier_node, parms); fix_method_argument_names (parms, mdecl); layout_class_method (class_type, CLASSTYPE_SUPER (class_type), mdecl, NULL_TREE); DECL_FUNCTION_NAP (mdecl) = count; start_artificial_method_body (mdecl); for (current = list; current; current = TREE_CHAIN (current)) java_method_add_stmt (mdecl, build_debugable_stmt (EXPR_WFL_LINECOL (current), current)); end_artificial_method_body (mdecl); return mdecl; } /* Generate a function to run the instance initialization code. The private method is called `instinit$'. Unless we're dealing with an anonymous class, we determine whether all ctors of CLASS_TYPE declare a checked exception in their `throws' clause in order to see whether it's necessary to encapsulate the instance initializer statements in a try/catch/rethrow sequence. */ static tree generate_instinit (class_type) tree class_type; { tree current; tree compound = NULL_TREE; tree parms = tree_cons (this_identifier_node, build_pointer_type (class_type), end_params_node); tree mdecl = create_artificial_method (class_type, ACC_PRIVATE, void_type_node, instinit_identifier_node, parms); layout_class_method (class_type, CLASSTYPE_SUPER (class_type), mdecl, NULL_TREE); /* Gather all the statements in a compound */ for (current = TYPE_II_STMT_LIST (class_type); current; current = TREE_CHAIN (current)) compound = add_stmt_to_compound (compound, NULL_TREE, current); /* We need to encapsulate COMPOUND by a try/catch statement to rethrow exceptions that might occur in the instance initializer. We do that only if all ctors of CLASS_TYPE are set to catch a checked exception. This doesn't apply to anonymous classes (since they don't have declared ctors.) */ if (!ANONYMOUS_CLASS_P (class_type) && ctors_unchecked_throws_clause_p (class_type)) { compound = encapsulate_with_try_catch (0, exception_type_node, compound, build1 (THROW_EXPR, NULL_TREE, build_wfl_node (wpv_id))); DECL_FUNCTION_THROWS (mdecl) = build_tree_list (NULL_TREE, exception_type_node); } start_artificial_method_body (mdecl); java_method_add_stmt (mdecl, compound); end_artificial_method_body (mdecl); return mdecl; } /* FIXME */ static tree build_instinit_invocation (class_type) tree class_type; { tree to_return = NULL_TREE; if (TYPE_II_STMT_LIST (class_type)) { tree parm = build_tree_list (NULL_TREE, build_wfl_node (this_identifier_node)); to_return = build_method_invocation (build_wfl_node (instinit_identifier_node), parm); } return to_return; } /* Shared accros method_declarator and method_header to remember the patch stage that was reached during the declaration of the method. A method DECL is built differently is there is no patch (JDEP_NO_PATCH) or a patch (JDEP_METHOD or JDEP_METHOD_RETURN) pending on the currently defined method. */ static int patch_stage; /* Check the method declaration and add the method to its current class. If the argument list is known to contain incomplete types, the method is partially added and the registration will be resume once the method arguments resolved. If TYPE is NULL, we're dealing with a constructor. */ static tree method_header (flags, type, mdecl, throws) int flags; tree type, mdecl, throws; { tree type_wfl = NULL_TREE; tree meth_name = NULL_TREE; tree current, orig_arg, this_class = NULL; tree id, meth; int saved_lineno; int constructor_ok = 0, must_chain; int count; if (mdecl == error_mark_node) return error_mark_node; meth = TREE_VALUE (mdecl); id = TREE_PURPOSE (mdecl); check_modifiers_consistency (flags); if (GET_CPC ()) this_class = TREE_TYPE (GET_CPC ()); if (!this_class || this_class == error_mark_node) return NULL_TREE; /* There are some forbidden modifiers for an abstract method and its class must be abstract as well. */ if (type && (flags & ACC_ABSTRACT)) { ABSTRACT_CHECK (flags, ACC_PRIVATE, id, "Private"); ABSTRACT_CHECK (flags, ACC_STATIC, id, "Static"); ABSTRACT_CHECK (flags, ACC_FINAL, id, "Final"); ABSTRACT_CHECK (flags, ACC_NATIVE, id, "Native"); ABSTRACT_CHECK (flags, ACC_SYNCHRONIZED, id, "Synchronized"); ABSTRACT_CHECK (flags, ACC_STRICT, id, "Strictfp"); if (!CLASS_ABSTRACT (TYPE_NAME (this_class)) && !CLASS_INTERFACE (TYPE_NAME (this_class))) parse_error_context (id, "Class `%s' must be declared abstract to define abstract method `%s'", IDENTIFIER_POINTER (DECL_NAME (GET_CPC ())), IDENTIFIER_POINTER (EXPR_WFL_NODE (id))); } /* Things to be checked when declaring a constructor */ if (!type) { int ec = java_error_count; /* 8.6: Constructor declarations: we might be trying to define a method without specifying a return type. */ if (EXPR_WFL_NODE (id) != GET_CPC_UN ()) parse_error_context (id, "Invalid method declaration, return type required"); /* 8.6.3: Constructor modifiers */ else { JCONSTRUCTOR_CHECK (flags, ACC_ABSTRACT, id, "abstract"); JCONSTRUCTOR_CHECK (flags, ACC_STATIC, id, "static"); JCONSTRUCTOR_CHECK (flags, ACC_FINAL, id, "final"); JCONSTRUCTOR_CHECK (flags, ACC_NATIVE, id, "native"); JCONSTRUCTOR_CHECK (flags, ACC_SYNCHRONIZED, id, "synchronized"); JCONSTRUCTOR_CHECK (flags, ACC_STRICT, id, "strictfp"); } /* If we found error here, we don't consider it's OK to tread the method definition as a constructor, for the rest of this function */ if (ec == java_error_count) constructor_ok = 1; } /* Method declared within the scope of an interface are implicitly abstract and public. Conflicts with other erroneously provided modifiers are checked right after. */ if (CLASS_INTERFACE (TYPE_NAME (this_class))) { /* If FLAGS isn't set because of a modifier, turn the corresponding modifier WFL to NULL so we issue a warning on the obsolete use of the modifier */ if (!(flags & ACC_PUBLIC)) MODIFIER_WFL (PUBLIC_TK) = NULL; if (!(flags & ACC_ABSTRACT)) MODIFIER_WFL (ABSTRACT_TK) = NULL; flags |= ACC_PUBLIC; flags |= ACC_ABSTRACT; } /* Inner class can't declare static methods */ if ((flags & ACC_STATIC) && !TOPLEVEL_CLASS_TYPE_P (this_class)) { parse_error_context (id, "Method `%s' can't be static in inner class `%s'. Only members of interfaces and top-level classes can be static", IDENTIFIER_POINTER (EXPR_WFL_NODE (id)), lang_printable_name (this_class, 0)); } /* Modifiers context reset moved up, so abstract method declaration modifiers can be later checked. */ /* Set constructor returned type to void and method name to , unless we found an error identifier the constructor (in which case we retain the original name) */ if (!type) { type = void_type_node; if (constructor_ok) meth_name = init_identifier_node; } else meth_name = EXPR_WFL_NODE (id); /* Do the returned type resolution and registration if necessary */ SET_TYPE_FOR_RESOLUTION (type, type_wfl, must_chain); if (meth_name) type = build_array_from_name (type, type_wfl, meth_name, &meth_name); EXPR_WFL_NODE (id) = meth_name; PROMOTE_RECORD_IF_COMPLETE (type, must_chain); if (must_chain) { patch_stage = JDEP_METHOD_RETURN; register_incomplete_type (patch_stage, type_wfl, id, type); TREE_TYPE (meth) = GET_REAL_TYPE (type); } else TREE_TYPE (meth) = type; saved_lineno = lineno; /* When defining an abstract or interface method, the curly bracket at level 1 doesn't exist because there is no function body */ lineno = (ctxp->first_ccb_indent1 ? ctxp->first_ccb_indent1 : EXPR_WFL_LINENO (id)); /* Remember the original argument list */ orig_arg = TYPE_ARG_TYPES (meth); if (patch_stage) /* includes ret type and/or all args */ { jdep *jdep; meth = add_method_1 (this_class, flags, meth_name, meth); /* Patch for the return type */ if (patch_stage == JDEP_METHOD_RETURN) { jdep = CLASSD_LAST (ctxp->classd_list); JDEP_GET_PATCH (jdep) = &TREE_TYPE (TREE_TYPE (meth)); } /* This is the stop JDEP. METH allows the function's signature to be computed. */ register_incomplete_type (JDEP_METHOD_END, NULL_TREE, meth, NULL_TREE); } else meth = add_method (this_class, flags, meth_name, build_java_signature (meth)); /* Remember final parameters */ MARK_FINAL_PARMS (meth, orig_arg); /* Fix the method argument list so we have the argument name information */ fix_method_argument_names (orig_arg, meth); /* Register the parameter number and re-install the current line number */ DECL_MAX_LOCALS (meth) = ctxp->formal_parameter_number+1; lineno = saved_lineno; /* Register exception specified by the `throws' keyword for resolution and set the method decl appropriate field to the list. Note: the grammar ensures that what we get here are class types. */ if (throws) { throws = nreverse (throws); for (current = throws; current; current = TREE_CHAIN (current)) { register_incomplete_type (JDEP_EXCEPTION, TREE_VALUE (current), NULL_TREE, NULL_TREE); JDEP_GET_PATCH (CLASSD_LAST (ctxp->classd_list)) = &TREE_VALUE (current); } DECL_FUNCTION_THROWS (meth) = throws; } if (TREE_TYPE (GET_CPC ()) != object_type_node) DECL_FUNCTION_WFL (meth) = id; /* Set the flag if we correctly processed a constructor */ if (constructor_ok) { DECL_CONSTRUCTOR_P (meth) = 1; /* Compute and store the number of artificial parameters declared for this constructor */ for (count = 0, current = TYPE_FIELDS (this_class); current; current = TREE_CHAIN (current)) if (FIELD_LOCAL_ALIAS (current)) count++; DECL_FUNCTION_NAP (meth) = count; } /* Eventually set the @deprecated tag flag */ CHECK_DEPRECATED (meth); /* If doing xref, store column and line number information instead of the line number only. */ if (flag_emit_xref) DECL_SOURCE_LINE (meth) = EXPR_WFL_LINECOL (id); return meth; } static void fix_method_argument_names (orig_arg, meth) tree orig_arg, meth; { tree arg = TYPE_ARG_TYPES (TREE_TYPE (meth)); if (TREE_CODE (TREE_TYPE (meth)) == METHOD_TYPE) { TREE_PURPOSE (arg) = this_identifier_node; arg = TREE_CHAIN (arg); } while (orig_arg != end_params_node) { TREE_PURPOSE (arg) = TREE_PURPOSE (orig_arg); orig_arg = TREE_CHAIN (orig_arg); arg = TREE_CHAIN (arg); } } /* Complete the method declaration with METHOD_BODY. */ static void finish_method_declaration (method_body) tree method_body; { int flags; if (!current_function_decl) return; flags = get_access_flags_from_decl (current_function_decl); /* 8.4.5 Method Body */ if ((flags & ACC_ABSTRACT || flags & ACC_NATIVE) && method_body) { tree name = DECL_NAME (current_function_decl); parse_error_context (DECL_FUNCTION_WFL (current_function_decl), "%s method `%s' can't have a body defined", (METHOD_NATIVE (current_function_decl) ? "Native" : "Abstract"), IDENTIFIER_POINTER (name)); method_body = NULL_TREE; } else if (!(flags & ACC_ABSTRACT) && !(flags & ACC_NATIVE) && !method_body) { tree name = DECL_NAME (current_function_decl); parse_error_context (DECL_FUNCTION_WFL (current_function_decl), "Non native and non abstract method `%s' must have a body defined", IDENTIFIER_POINTER (name)); method_body = NULL_TREE; } if (flag_emit_class_files && method_body && TREE_CODE (method_body) == NOP_EXPR && TREE_TYPE (current_function_decl) && TREE_TYPE (TREE_TYPE (current_function_decl)) == void_type_node) method_body = build1 (RETURN_EXPR, void_type_node, NULL); BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (current_function_decl)) = method_body; maybe_absorb_scoping_blocks (); /* Exit function's body */ exit_block (); /* Merge last line of the function with first line, directly in the function decl. It will be used to emit correct debug info. */ if (!flag_emit_xref) DECL_SOURCE_LINE_MERGE (current_function_decl, ctxp->last_ccb_indent1); /* Since function's argument's list are shared, reset the ARG_FINAL_P parameter that might have been set on some of this function parameters. */ UNMARK_FINAL_PARMS (current_function_decl); /* So we don't have an irrelevant function declaration context for the next static block we'll see. */ current_function_decl = NULL_TREE; } /* Build a an error message for constructor circularity errors. */ static char * constructor_circularity_msg (from, to) tree from, to; { static char string [4096]; char *t = xstrdup (lang_printable_name (from, 0)); sprintf (string, "`%s' invokes `%s'", t, lang_printable_name (to, 0)); free (t); return string; } /* Verify a circular call to METH. Return 1 if an error is found, 0 otherwise. */ static GTY(()) tree vcc_list; static int verify_constructor_circularity (meth, current) tree meth, current; { tree c; for (c = DECL_CONSTRUCTOR_CALLS (current); c; c = TREE_CHAIN (c)) { if (TREE_VALUE (c) == meth) { char *t; if (vcc_list) { tree liste; vcc_list = nreverse (vcc_list); for (liste = vcc_list; liste; liste = TREE_CHAIN (liste)) { parse_error_context (TREE_PURPOSE (TREE_PURPOSE (liste)), "%s", constructor_circularity_msg (TREE_VALUE (liste), TREE_VALUE (TREE_PURPOSE (liste)))); java_error_count--; } } t = xstrdup (lang_printable_name (meth, 0)); parse_error_context (TREE_PURPOSE (c), "%s: recursive invocation of constructor `%s'", constructor_circularity_msg (current, meth), t); free (t); vcc_list = NULL_TREE; return 1; } } for (c = DECL_CONSTRUCTOR_CALLS (current); c; c = TREE_CHAIN (c)) { vcc_list = tree_cons (c, current, vcc_list); if (verify_constructor_circularity (meth, TREE_VALUE (c))) return 1; vcc_list = TREE_CHAIN (vcc_list); } return 0; } /* Check modifiers that can be declared but exclusively */ static void check_modifiers_consistency (flags) int flags; { int acc_count = 0; tree cl = NULL_TREE; THIS_MODIFIER_ONLY (flags, ACC_PUBLIC, PUBLIC_TK, acc_count, cl); THIS_MODIFIER_ONLY (flags, ACC_PRIVATE, PRIVATE_TK, acc_count, cl); THIS_MODIFIER_ONLY (flags, ACC_PROTECTED, PROTECTED_TK, acc_count, cl); if (acc_count > 1) parse_error_context (cl, "Inconsistent member declaration. At most one of `public', `private', or `protected' may be specified"); acc_count = 0; cl = NULL_TREE; THIS_MODIFIER_ONLY (flags, ACC_FINAL, FINAL_TK, acc_count, cl); THIS_MODIFIER_ONLY (flags, ACC_VOLATILE, VOLATILE_TK, acc_count, cl); if (acc_count > 1) parse_error_context (cl, "Inconsistent member declaration. At most one of `final' or `volatile' may be specified"); } /* Check the methode header METH for abstract specifics features */ static void check_abstract_method_header (meth) tree meth; { int flags = get_access_flags_from_decl (meth); OBSOLETE_MODIFIER_WARNING2 (MODIFIER_WFL (ABSTRACT_TK), flags, ACC_ABSTRACT, "abstract method", IDENTIFIER_POINTER (DECL_NAME (meth))); OBSOLETE_MODIFIER_WARNING2 (MODIFIER_WFL (PUBLIC_TK), flags, ACC_PUBLIC, "abstract method", IDENTIFIER_POINTER (DECL_NAME (meth))); check_modifiers ("Illegal modifier `%s' for interface method", flags, INTERFACE_METHOD_MODIFIERS); } /* Create a FUNCTION_TYPE node and start augmenting it with the declared function arguments. Arguments type that can't be resolved are left as they are, but the returned node is marked as containing incomplete types. */ static tree method_declarator (id, list) tree id, list; { tree arg_types = NULL_TREE, current, node; tree meth = make_node (FUNCTION_TYPE); jdep *jdep; patch_stage = JDEP_NO_PATCH; if (GET_CPC () == error_mark_node) return error_mark_node; /* If we're dealing with an inner class constructor, we hide the this$ decl in the name field of its parameter declaration. We also might have to hide the outer context local alias initializers. Not done when the class is a toplevel class. */ if (PURE_INNER_CLASS_DECL_P (GET_CPC ()) && EXPR_WFL_NODE (id) == GET_CPC_UN ()) { tree aliases_list, type, thisn; /* First the aliases, linked to the regular parameters */ aliases_list = build_alias_initializer_parameter_list (AIPL_FUNCTION_DECLARATION, TREE_TYPE (GET_CPC ()), NULL_TREE, NULL); list = chainon (nreverse (aliases_list), list); /* Then this$ */ type = TREE_TYPE (DECL_CONTEXT (GET_CPC ())); thisn = build_current_thisn (TREE_TYPE (GET_CPC ())); list = tree_cons (build_wfl_node (thisn), build_pointer_type (type), list); } for (current = list; current; current = TREE_CHAIN (current)) { int must_chain = 0; tree wfl_name = TREE_PURPOSE (current); tree type = TREE_VALUE (current); tree name = EXPR_WFL_NODE (wfl_name); tree already, arg_node; tree type_wfl = NULL_TREE; tree real_type; /* Obtain a suitable type for resolution, if necessary */ SET_TYPE_FOR_RESOLUTION (type, type_wfl, must_chain); /* Process NAME, as it may specify extra dimension(s) for it */ type = build_array_from_name (type, type_wfl, name, &name); EXPR_WFL_NODE (wfl_name) = name; real_type = GET_REAL_TYPE (type); if (TREE_CODE (real_type) == RECORD_TYPE) { real_type = promote_type (real_type); if (TREE_CODE (type) == TREE_LIST) TREE_PURPOSE (type) = real_type; } /* Check redefinition */ for (already = arg_types; already; already = TREE_CHAIN (already)) if (TREE_PURPOSE (already) == name) { parse_error_context (wfl_name, "Variable `%s' is used more than once in the argument list of method `%s'", IDENTIFIER_POINTER (name), IDENTIFIER_POINTER (EXPR_WFL_NODE (id))); break; } /* If we've an incomplete argument type, we know there is a location to patch when the type get resolved, later. */ jdep = NULL; if (must_chain) { patch_stage = JDEP_METHOD; type = register_incomplete_type (patch_stage, type_wfl, wfl_name, type); jdep = CLASSD_LAST (ctxp->classd_list); JDEP_MISC (jdep) = id; } /* The argument node: a name and a (possibly) incomplete type. */ arg_node = build_tree_list (name, real_type); /* Remeber arguments declared final. */ ARG_FINAL_P (arg_node) = ARG_FINAL_P (current); if (jdep) JDEP_GET_PATCH (jdep) = &TREE_VALUE (arg_node); TREE_CHAIN (arg_node) = arg_types; arg_types = arg_node; } TYPE_ARG_TYPES (meth) = chainon (nreverse (arg_types), end_params_node); node = build_tree_list (id, meth); return node; } static int unresolved_type_p (wfl, returned) tree wfl; tree *returned; { if (TREE_CODE (wfl) == EXPR_WITH_FILE_LOCATION) { if (returned) { tree decl = IDENTIFIER_CLASS_VALUE (EXPR_WFL_NODE (wfl)); if (decl && current_class && (decl == TYPE_NAME (current_class))) *returned = TREE_TYPE (decl); else if (GET_CPC_UN () == EXPR_WFL_NODE (wfl)) *returned = TREE_TYPE (GET_CPC ()); else *returned = NULL_TREE; } return 1; } if (returned) *returned = wfl; return 0; } /* From NAME, build a qualified identifier node using the qualification from the current package definition. */ static tree parser_qualified_classname (name) tree name; { tree nested_class_name; if ((nested_class_name = maybe_make_nested_class_name (name))) return nested_class_name; if (ctxp->package) return merge_qualified_name (ctxp->package, name); else return name; } /* Called once the type a interface extends is resolved. Returns 0 if everything is OK. */ static int parser_check_super_interface (super_decl, this_decl, this_wfl) tree super_decl, this_decl, this_wfl; { tree super_type = TREE_TYPE (super_decl); /* Has to be an interface */ if (!CLASS_INTERFACE (super_decl)) { parse_error_context (this_wfl, "%s `%s' can't implement/extend %s `%s'", (CLASS_INTERFACE (TYPE_NAME (TREE_TYPE (this_decl))) ? "Interface" : "Class"), IDENTIFIER_POINTER (DECL_NAME (this_decl)), (TYPE_ARRAY_P (super_type) ? "array" : "class"), IDENTIFIER_POINTER (DECL_NAME (super_decl))); return 1; } /* Check top-level interface access. Inner classes are subject to member access rules (6.6.1). */ if (! INNER_CLASS_P (super_type) && check_pkg_class_access (DECL_NAME (super_decl), lookup_cl (this_decl), true)) return 1; SOURCE_FRONTEND_DEBUG (("Completing interface %s with %s", IDENTIFIER_POINTER (DECL_NAME (this_decl)), IDENTIFIER_POINTER (DECL_NAME (super_decl)))); return 0; } /* Makes sure that SUPER_DECL is suitable to extend THIS_DECL. Returns 0 if everthing is OK. */ static int parser_check_super (super_decl, this_decl, wfl) tree super_decl, this_decl, wfl; { tree super_type = TREE_TYPE (super_decl); /* SUPER should be a CLASS (neither an array nor an interface) */ if (TYPE_ARRAY_P (super_type) || CLASS_INTERFACE (TYPE_NAME (super_type))) { parse_error_context (wfl, "Class `%s' can't subclass %s `%s'", IDENTIFIER_POINTER (DECL_NAME (this_decl)), (CLASS_INTERFACE (TYPE_NAME (super_type)) ? "interface" : "array"), IDENTIFIER_POINTER (DECL_NAME (super_decl))); return 1; } if (CLASS_FINAL (TYPE_NAME (super_type))) { parse_error_context (wfl, "Can't subclass final classes: %s", IDENTIFIER_POINTER (DECL_NAME (super_decl))); return 1; } /* Check top-level class scope. Inner classes are subject to member access rules (6.6.1). */ if (! INNER_CLASS_P (super_type) && (check_pkg_class_access (DECL_NAME (super_decl), wfl, true))) return 1; SOURCE_FRONTEND_DEBUG (("Completing class %s with %s", IDENTIFIER_POINTER (DECL_NAME (this_decl)), IDENTIFIER_POINTER (DECL_NAME (super_decl)))); return 0; } /* Create a new dependency list and link it (in a LIFO manner) to the CTXP list of type dependency list. */ static void create_jdep_list (ctxp) struct parser_ctxt *ctxp; { jdeplist *new = (jdeplist *)xmalloc (sizeof (jdeplist)); new->first = new->last = NULL; new->next = ctxp->classd_list; ctxp->classd_list = new; } static jdeplist * reverse_jdep_list (ctxp) struct parser_ctxt *ctxp; { register jdeplist *prev = NULL, *current, *next; for (current = ctxp->classd_list; current; current = next) { next = current->next; current->next = prev; prev = current; } return prev; } /* Create a fake pointer based on the ID stored in TYPE_NAME. TYPE_NAME can be a WFL or a incomplete type asking to be registered again. */ static tree obtain_incomplete_type (type_name) tree type_name; { tree ptr = NULL_TREE, name; if (TREE_CODE (type_name) == EXPR_WITH_FILE_LOCATION) name = EXPR_WFL_NODE (type_name); else if (INCOMPLETE_TYPE_P (type_name)) name = TYPE_NAME (type_name); else abort (); BUILD_PTR_FROM_NAME (ptr, name); layout_type (ptr); return ptr; } /* Register a incomplete type whose name is WFL. Reuse PTR if PTR is non NULL instead of computing a new fake type based on WFL. The new dependency is inserted in the current type dependency list, in FIFO manner. */ static tree register_incomplete_type (kind, wfl, decl, ptr) int kind; tree wfl, decl, ptr; { jdep *new = (jdep *)xmalloc (sizeof (jdep)); if (!ptr && kind != JDEP_METHOD_END) /* JDEP_METHOD_END is a mere marker */ ptr = obtain_incomplete_type (wfl); JDEP_KIND (new) = kind; JDEP_DECL (new) = decl; JDEP_TO_RESOLVE (new) = ptr; JDEP_WFL (new) = wfl; JDEP_CHAIN (new) = NULL; JDEP_MISC (new) = NULL_TREE; /* For some dependencies, set the enclosing class of the current class to be the enclosing context */ if ((kind == JDEP_INTERFACE || kind == JDEP_ANONYMOUS) && GET_ENCLOSING_CPC ()) JDEP_ENCLOSING (new) = TREE_VALUE (GET_ENCLOSING_CPC ()); else if (kind == JDEP_SUPER) JDEP_ENCLOSING (new) = (GET_ENCLOSING_CPC () ? TREE_VALUE (GET_ENCLOSING_CPC ()) : NULL_TREE); else JDEP_ENCLOSING (new) = GET_CPC (); JDEP_GET_PATCH (new) = (tree *)NULL; JDEP_INSERT (ctxp->classd_list, new); return ptr; } /* This checks for circular references with innerclasses. We start from SOURCE and should never reach TARGET. Extended/implemented types in SOURCE have their enclosing context checked not to reach TARGET. When the last enclosing context of SOURCE is reached, its extended/implemented types are also checked not to reach TARGET. In case of error, WFL of the offending type is returned; NULL_TREE otherwise. */ static tree check_inner_circular_reference (source, target) tree source; tree target; { tree basetype_vec = TYPE_BINFO_BASETYPES (source); tree ctx, cl; int i; if (!basetype_vec) return NULL_TREE; for (i = 0; i < TREE_VEC_LENGTH (basetype_vec); i++) { tree su; /* We can end up with a NULL_TREE or an incomplete type here if we encountered previous type resolution errors. It's safe to simply ignore these cases. */ if (TREE_VEC_ELT (basetype_vec, i) == NULL_TREE) continue; su = BINFO_TYPE (TREE_VEC_ELT (basetype_vec, i)); if (INCOMPLETE_TYPE_P (su)) continue; if (inherits_from_p (su, target)) return lookup_cl (TYPE_NAME (su)); for (ctx = DECL_CONTEXT (TYPE_NAME (su)); ctx; ctx = DECL_CONTEXT (ctx)) { /* An enclosing context shouldn't be TARGET */ if (ctx == TYPE_NAME (target)) return lookup_cl (TYPE_NAME (su)); /* When we reach the enclosing last context, start a check on it, with the same target */ if (! DECL_CONTEXT (ctx) && (cl = check_inner_circular_reference (TREE_TYPE (ctx), target))) return cl; } } return NULL_TREE; } /* Explore TYPE's `extends' clause member(s) and return the WFL of the offending type if a circularity is detected. NULL_TREE is returned otherwise. TYPE can be an interface or a class. */ static tree check_circular_reference (type) tree type; { tree basetype_vec = TYPE_BINFO_BASETYPES (type); int i; if (!basetype_vec) return NULL_TREE; if (! CLASS_INTERFACE (TYPE_NAME (type))) { if (inherits_from_p (CLASSTYPE_SUPER (type), type)) return lookup_cl (TYPE_NAME (type)); return NULL_TREE; } for (i = 0; i < TREE_VEC_LENGTH (basetype_vec); i++) { tree vec_elt = TREE_VEC_ELT (basetype_vec, i); if (vec_elt && BINFO_TYPE (vec_elt) != object_type_node && interface_of_p (type, BINFO_TYPE (vec_elt))) return lookup_cl (TYPE_NAME (BINFO_TYPE (vec_elt))); } return NULL_TREE; } void java_check_circular_reference () { tree current; for (current = ctxp->class_list; current; current = TREE_CHAIN (current)) { tree type = TREE_TYPE (current); tree cl; cl = check_circular_reference (type); if (! cl) cl = check_inner_circular_reference (type, type); if (cl) parse_error_context (cl, "Cyclic class inheritance%s", (cyclic_inheritance_report ? cyclic_inheritance_report : "")); } } /* Augment the parameter list PARM with parameters crafted to initialize outer context locals aliases. Through ARTIFICIAL, a count is kept of the number of crafted parameters. MODE governs what eventually gets created: something suitable for a function creation or a function invocation, either the constructor or finit$. */ static tree build_alias_initializer_parameter_list (mode, class_type, parm, artificial) int mode; tree class_type, parm; int *artificial; { tree field; tree additional_parms = NULL_TREE; for (field = TYPE_FIELDS (class_type); field; field = TREE_CHAIN (field)) if (FIELD_LOCAL_ALIAS (field)) { const char *buffer = IDENTIFIER_POINTER (DECL_NAME (field)); tree purpose = NULL_TREE, value = NULL_TREE, name = NULL_TREE; tree mangled_id; switch (mode) { case AIPL_FUNCTION_DECLARATION: MANGLE_ALIAS_INITIALIZER_PARAMETER_NAME_STR (mangled_id, &buffer [4]); purpose = build_wfl_node (mangled_id); if (TREE_CODE (TREE_TYPE (field)) == POINTER_TYPE) value = build_wfl_node (TYPE_NAME (TREE_TYPE (field))); else value = TREE_TYPE (field); break; case AIPL_FUNCTION_CREATION: MANGLE_ALIAS_INITIALIZER_PARAMETER_NAME_STR (purpose, &buffer [4]); value = TREE_TYPE (field); break; case AIPL_FUNCTION_FINIT_INVOCATION: MANGLE_ALIAS_INITIALIZER_PARAMETER_NAME_STR (mangled_id, &buffer [4]); /* Now, this is wrong. purpose should always be the NAME of something and value its matching value (decl, type, etc...) FIXME -- but there is a lot to fix. */ /* When invoked for this kind of operation, we already know whether a field is used or not. */ purpose = TREE_TYPE (field); value = build_wfl_node (mangled_id); break; case AIPL_FUNCTION_CTOR_INVOCATION: /* There are two case: the constructor invokation happends outside the local inner, in which case, locales from the outer context are directly used. Otherwise, we fold to using the alias directly. */ if (class_type == current_class) value = field; else { name = get_identifier (&buffer[4]); value = IDENTIFIER_LOCAL_VALUE (name); } break; } additional_parms = tree_cons (purpose, value, additional_parms); if (artificial) *artificial +=1; } if (additional_parms) { if (ANONYMOUS_CLASS_P (class_type) && mode == AIPL_FUNCTION_CTOR_INVOCATION) additional_parms = nreverse (additional_parms); parm = chainon (additional_parms, parm); } return parm; } /* Craft a constructor for CLASS_DECL -- what we should do when none where found. ARGS is non NULL when a special signature must be enforced. This is the case for anonymous classes. */ static tree craft_constructor (class_decl, args) tree class_decl, args; { tree class_type = TREE_TYPE (class_decl); tree parm = NULL_TREE; int flags = (get_access_flags_from_decl (class_decl) & ACC_PUBLIC ? ACC_PUBLIC : 0); int i = 0, artificial = 0; tree decl, ctor_name; char buffer [80]; /* The constructor name is unless we're dealing with an anonymous class, in which case the name will be fixed after having be expanded. */ if (ANONYMOUS_CLASS_P (class_type)) ctor_name = DECL_NAME (class_decl); else ctor_name = init_identifier_node; /* If we're dealing with an inner class constructor, we hide the this$ decl in the name field of its parameter declaration. */ if (PURE_INNER_CLASS_TYPE_P (class_type)) { tree type = TREE_TYPE (DECL_CONTEXT (TYPE_NAME (class_type))); parm = tree_cons (build_current_thisn (class_type), build_pointer_type (type), parm); /* Some more arguments to be hidden here. The values of the local variables of the outer context that the inner class needs to see. */ parm = build_alias_initializer_parameter_list (AIPL_FUNCTION_CREATION, class_type, parm, &artificial); } /* Then if there are any args to be enforced, enforce them now */ for (; args && args != end_params_node; args = TREE_CHAIN (args)) { sprintf (buffer, "parm%d", i++); parm = tree_cons (get_identifier (buffer), TREE_VALUE (args), parm); } CRAFTED_PARAM_LIST_FIXUP (parm); decl = create_artificial_method (class_type, flags, void_type_node, ctor_name, parm); fix_method_argument_names (parm, decl); /* Now, mark the artificial parameters. */ DECL_FUNCTION_NAP (decl) = artificial; DECL_FUNCTION_SYNTHETIC_CTOR (decl) = DECL_CONSTRUCTOR_P (decl) = 1; return decl; } /* Fix the constructors. This will be called right after circular references have been checked. It is necessary to fix constructors early even if no code generation will take place for that class: some generated constructor might be required by the class whose compilation triggered this one to be simply loaded. */ void java_fix_constructors () { tree current; for (current = ctxp->class_list; current; current = TREE_CHAIN (current)) { tree class_type = TREE_TYPE (current); int saw_ctor = 0; tree decl; if (CLASS_INTERFACE (TYPE_NAME (class_type))) continue; current_class = class_type; for (decl = TYPE_METHODS (class_type); decl; decl = TREE_CHAIN (decl)) { if (DECL_CONSTRUCTOR_P (decl)) { fix_constructors (decl); saw_ctor = 1; } } /* Anonymous class constructor can't be generated that early. */ if (!saw_ctor && !ANONYMOUS_CLASS_P (class_type)) craft_constructor (current, NULL_TREE); } } /* safe_layout_class just makes sure that we can load a class without disrupting the current_class, input_file, lineno, etc, information about the class processed currently. */ void safe_layout_class (class) tree class; { tree save_current_class = current_class; const char *save_input_filename = input_filename; int save_lineno = lineno; layout_class (class); current_class = save_current_class; input_filename = save_input_filename; lineno = save_lineno; } static tree jdep_resolve_class (dep) jdep *dep; { tree decl; if (JDEP_RESOLVED_P (dep)) decl = JDEP_RESOLVED_DECL (dep); else { decl = resolve_class (JDEP_ENCLOSING (dep), JDEP_TO_RESOLVE (dep), JDEP_DECL (dep), JDEP_WFL (dep)); JDEP_RESOLVED (dep, decl); } if (!decl) complete_class_report_errors (dep); else if (PURE_INNER_CLASS_DECL_P (decl)) { tree inner = TREE_TYPE (decl); if (! CLASS_LOADED_P (inner)) { safe_layout_class (inner); if (TYPE_SIZE (inner) == error_mark_node) TYPE_SIZE (inner) = NULL_TREE; } check_inner_class_access (decl, JDEP_ENCLOSING (dep), JDEP_WFL (dep)); } return decl; } /* Complete unsatisfied class declaration and their dependencies */ void java_complete_class () { tree cclass; jdeplist *cclassd; int error_found; tree type; /* Process imports */ process_imports (); /* Rever things so we have the right order */ ctxp->class_list = nreverse (ctxp->class_list); ctxp->classd_list = reverse_jdep_list (ctxp); for (cclassd = ctxp->classd_list, cclass = ctxp->class_list; cclass && cclassd; cclass = TREE_CHAIN (cclass), cclassd = CLASSD_CHAIN (cclassd)) { jdep *dep; /* We keep the compilation unit imports in the class so that they can be used later to resolve type dependencies that aren't necessary to solve now. */ TYPE_IMPORT_LIST (TREE_TYPE (cclass)) = ctxp->import_list; TYPE_IMPORT_DEMAND_LIST (TREE_TYPE (cclass)) = ctxp->import_demand_list; for (dep = CLASSD_FIRST (cclassd); dep; dep = JDEP_CHAIN (dep)) { tree decl; if (!(decl = jdep_resolve_class (dep))) continue; /* Now it's time to patch */ switch (JDEP_KIND (dep)) { case JDEP_SUPER: /* Simply patch super */ if (parser_check_super (decl, JDEP_DECL (dep), JDEP_WFL (dep))) continue; BINFO_TYPE (TREE_VEC_ELT (BINFO_BASETYPES (TYPE_BINFO (TREE_TYPE (JDEP_DECL (dep)))), 0)) = TREE_TYPE (decl); break; case JDEP_FIELD: { /* We do part of the job done in add_field */ tree field_decl = JDEP_DECL (dep); tree field_type = TREE_TYPE (decl); if (TREE_CODE (field_type) == RECORD_TYPE) field_type = promote_type (field_type); TREE_TYPE (field_decl) = field_type; DECL_ALIGN (field_decl) = 0; DECL_USER_ALIGN (field_decl) = 0; layout_decl (field_decl, 0); SOURCE_FRONTEND_DEBUG (("Completed field/var decl `%s' with `%s'", IDENTIFIER_POINTER (DECL_NAME (field_decl)), IDENTIFIER_POINTER (DECL_NAME (decl)))); break; } case JDEP_METHOD: /* We start patching a method */ case JDEP_METHOD_RETURN: error_found = 0; while (1) { if (decl) { type = TREE_TYPE(decl); if (TREE_CODE (type) == RECORD_TYPE) type = promote_type (type); JDEP_APPLY_PATCH (dep, type); SOURCE_FRONTEND_DEBUG (((JDEP_KIND (dep) == JDEP_METHOD_RETURN ? "Completing fct `%s' with ret type `%s'": "Completing arg `%s' with type `%s'"), IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_DECL_WFL (dep))), IDENTIFIER_POINTER (DECL_NAME (decl)))); } else error_found = 1; dep = JDEP_CHAIN (dep); if (JDEP_KIND (dep) == JDEP_METHOD_END) break; else decl = jdep_resolve_class (dep); } if (!error_found) { tree mdecl = JDEP_DECL (dep), signature; /* Recompute and reset the signature, check first that all types are now defined. If they're not, don't build the signature. */ if (check_method_types_complete (mdecl)) { signature = build_java_signature (TREE_TYPE (mdecl)); set_java_signature (TREE_TYPE (mdecl), signature); } } else continue; break; case JDEP_INTERFACE: if (parser_check_super_interface (decl, JDEP_DECL (dep), JDEP_WFL (dep))) continue; parser_add_interface (JDEP_DECL (dep), decl, JDEP_WFL (dep)); break; case JDEP_PARM: case JDEP_VARIABLE: type = TREE_TYPE(decl); if (TREE_CODE (type) == RECORD_TYPE) type = promote_type (type); JDEP_APPLY_PATCH (dep, type); break; case JDEP_TYPE: JDEP_APPLY_PATCH (dep, TREE_TYPE (decl)); SOURCE_FRONTEND_DEBUG (("Completing a random type dependency on a '%s' node", tree_code_name [TREE_CODE (JDEP_DECL (dep))])); break; case JDEP_EXCEPTION: JDEP_APPLY_PATCH (dep, TREE_TYPE (decl)); SOURCE_FRONTEND_DEBUG (("Completing `%s' `throws' argument node", IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep))))); break; case JDEP_ANONYMOUS: patch_anonymous_class (decl, JDEP_DECL (dep), JDEP_WFL (dep)); break; default: abort (); } } } return; } /* Resolve class CLASS_TYPE. Handle the case of trying to resolve an array. */ static tree resolve_class (enclosing, class_type, decl, cl) tree enclosing, class_type, decl, cl; { tree tname = TYPE_NAME (class_type); tree resolved_type = TREE_TYPE (class_type); int array_dims = 0; tree resolved_type_decl; if (resolved_type != NULL_TREE) { tree resolved_type_decl = TYPE_NAME (resolved_type); if (resolved_type_decl == NULL_TREE || TREE_CODE (resolved_type_decl) == IDENTIFIER_NODE) { resolved_type_decl = build_decl (TYPE_DECL, TYPE_NAME (class_type), resolved_type); } return resolved_type_decl; } /* 1- Check to see if we have an array. If true, find what we really want to resolve */ if ((array_dims = build_type_name_from_array_name (tname, &TYPE_NAME (class_type)))) WFL_STRIP_BRACKET (cl, cl); /* 2- Resolve the bare type */ if (!(resolved_type_decl = do_resolve_class (enclosing, class_type, decl, cl))) return NULL_TREE; resolved_type = TREE_TYPE (resolved_type_decl); /* 3- If we have and array, reconstruct the array down to its nesting */ if (array_dims) { for (; array_dims; array_dims--) resolved_type = build_java_array_type (resolved_type, -1); resolved_type_decl = TYPE_NAME (resolved_type); } TREE_TYPE (class_type) = resolved_type; return resolved_type_decl; } /* Effectively perform the resolution of class CLASS_TYPE. DECL or CL are used to report error messages. Do not try to replace TYPE_NAME (class_type) by a variable, since it is changed by find_in_imports{_on_demand} and (but it doesn't really matter) qualify_and_find. */ tree do_resolve_class (enclosing, class_type, decl, cl) tree enclosing, class_type, decl, cl; { tree new_class_decl = NULL_TREE, super = NULL_TREE; tree saved_enclosing_type = enclosing ? TREE_TYPE (enclosing) : NULL_TREE; tree decl_result; htab_t circularity_hash; /* This hash table is used to register the classes we're going through when searching the current class as an inner class, in order to detect circular references. Remember to free it before returning the section 0- of this function. */ circularity_hash = htab_create (20, htab_hash_pointer, htab_eq_pointer, NULL); /* 0- Search in the current class as an inner class. Maybe some code here should be added to load the class or something, at least if the class isn't an inner class and ended being loaded from class file. FIXME. */ while (enclosing) { new_class_decl = resolve_inner_class (circularity_hash, cl, &enclosing, &super, class_type); if (new_class_decl) break; /* If we haven't found anything because SUPER reached Object and ENCLOSING happens to be an innerclass, try the enclosing context. */ if ((!super || super == object_type_node) && enclosing && INNER_CLASS_DECL_P (enclosing)) enclosing = DECL_CONTEXT (enclosing); else enclosing = NULL_TREE; } htab_delete (circularity_hash); if (new_class_decl) return new_class_decl; /* 1- Check for the type in single imports. This will change TYPE_NAME() if something relevant is found */ find_in_imports (saved_enclosing_type, class_type); /* 2- And check for the type in the current compilation unit */ if ((new_class_decl = IDENTIFIER_CLASS_VALUE (TYPE_NAME (class_type)))) { if (!CLASS_LOADED_P (TREE_TYPE (new_class_decl)) && !CLASS_FROM_SOURCE_P (TREE_TYPE (new_class_decl))) load_class (TYPE_NAME (class_type), 0); return IDENTIFIER_CLASS_VALUE (TYPE_NAME (class_type)); } /* 3- Search according to the current package definition */ if (!QUALIFIED_P (TYPE_NAME (class_type))) { if ((new_class_decl = qualify_and_find (class_type, ctxp->package, TYPE_NAME (class_type)))) return new_class_decl; } /* 4- Check the import on demands. Don't allow bar.baz to be imported from foo.* */ if (!QUALIFIED_P (TYPE_NAME (class_type))) if (find_in_imports_on_demand (saved_enclosing_type, class_type)) return NULL_TREE; /* If found in find_in_imports_on_demant, the type has already been loaded. */ if ((new_class_decl = IDENTIFIER_CLASS_VALUE (TYPE_NAME (class_type)))) return new_class_decl; /* 5- Try with a name qualified with the package name we've seen so far */ if (!QUALIFIED_P (TYPE_NAME (class_type))) { tree package; /* If there is a current package (ctxp->package), it's the first element of package_list and we can skip it. */ for (package = (ctxp->package ? TREE_CHAIN (package_list) : package_list); package; package = TREE_CHAIN (package)) if ((new_class_decl = qualify_and_find (class_type, TREE_PURPOSE (package), TYPE_NAME (class_type)))) return new_class_decl; } /* 5- Check an other compilation unit that bears the name of type */ load_class (TYPE_NAME (class_type), 0); if (!cl) cl = lookup_cl (decl); /* If we don't have a value for CL, then we're being called recursively. We can't check package access just yet, but it will be taken care of by the caller. */ if (cl) { if (check_pkg_class_access (TYPE_NAME (class_type), cl, true)) return NULL_TREE; } /* 6- Last call for a resolution */ decl_result = IDENTIFIER_CLASS_VALUE (TYPE_NAME (class_type)); /* The final lookup might have registered a.b.c into a.b$c If we failed at the first lookup, progressively change the name if applicable and use the matching DECL instead. */ if (!decl_result && QUALIFIED_P (TYPE_NAME (class_type))) { char *separator; tree name = TYPE_NAME (class_type); char *namebuffer = alloca (IDENTIFIER_LENGTH (name) + 1); strcpy (namebuffer, IDENTIFIER_POINTER (name)); do { /* Reach the last '.', and if applicable, replace it by a `$' and see if this exists as a type. */ if ((separator = strrchr (namebuffer, '.'))) { *separator = '$'; name = get_identifier (namebuffer); decl_result = IDENTIFIER_CLASS_VALUE (name); } } while (!decl_result && separator); } return decl_result; } static tree qualify_and_find (class_type, package, name) tree class_type, package, name; { tree new_qualified = merge_qualified_name (package, name); tree new_class_decl; if (!IDENTIFIER_CLASS_VALUE (new_qualified)) load_class (new_qualified, 0); if ((new_class_decl = IDENTIFIER_CLASS_VALUE (new_qualified))) { if (!CLASS_LOADED_P (TREE_TYPE (new_class_decl)) && !CLASS_FROM_SOURCE_P (TREE_TYPE (new_class_decl))) load_class (new_qualified, 0); TYPE_NAME (class_type) = new_qualified; return IDENTIFIER_CLASS_VALUE (new_qualified); } return NULL_TREE; } /* Resolve NAME and lay it out (if not done and if not the current parsed class). Return a decl node. This function is meant to be called when type resolution is necessary during the walk pass. */ static tree resolve_and_layout (something, cl) tree something; tree cl; { tree decl, decl_type; /* Don't do that on the current class */ if (something == current_class) return TYPE_NAME (current_class); /* Don't do anything for void and other primitive types */ if (JPRIMITIVE_TYPE_P (something) || something == void_type_node) return NULL_TREE; /* Pointer types can be reall pointer types or fake pointers. When finding a real pointer, recheck for primitive types */ if (TREE_CODE (something) == POINTER_TYPE) { if (TREE_TYPE (something)) { something = TREE_TYPE (something); if (JPRIMITIVE_TYPE_P (something) || something == void_type_node) return NULL_TREE; } else something = TYPE_NAME (something); } /* Don't do anything for arrays of primitive types */ if (TREE_CODE (something) == RECORD_TYPE && TYPE_ARRAY_P (something) && JPRIMITIVE_TYPE_P (TYPE_ARRAY_ELEMENT (something))) return NULL_TREE; /* Something might be a WFL */ if (TREE_CODE (something) == EXPR_WITH_FILE_LOCATION) something = EXPR_WFL_NODE (something); /* Otherwise, if something is not and IDENTIFIER_NODE, it can be a a TYPE_DECL or a real TYPE */ else if (TREE_CODE (something) != IDENTIFIER_NODE) something = (TREE_CODE (TYPE_NAME (something)) == TYPE_DECL ? DECL_NAME (TYPE_NAME (something)) : TYPE_NAME (something)); if (!(decl = resolve_no_layout (something, cl))) return NULL_TREE; /* Resolve and layout if necessary */ decl_type = TREE_TYPE (decl); layout_class_methods (decl_type); /* Check methods */ if (CLASS_FROM_SOURCE_P (decl_type)) java_check_methods (decl); /* Layout the type if necessary */ if (decl_type != current_class && !CLASS_LOADED_P (decl_type)) safe_layout_class (decl_type); return decl; } /* Resolve a class, returns its decl but doesn't perform any layout. The current parsing context is saved and restored */ static tree resolve_no_layout (name, cl) tree name, cl; { tree ptr, decl; BUILD_PTR_FROM_NAME (ptr, name); java_parser_context_save_global (); decl = resolve_class (TYPE_NAME (current_class), ptr, NULL_TREE, cl); java_parser_context_restore_global (); return decl; } /* Called when reporting errors. Skip the '[]'s in a complex array type description that failed to be resolved. purify_type_name can't use an identifier tree. */ static const char * purify_type_name (name) const char *name; { int len = strlen (name); int bracket_found; STRING_STRIP_BRACKETS (name, len, bracket_found); if (bracket_found) { char *stripped_name = xmemdup (name, len, len+1); stripped_name [len] = '\0'; return stripped_name; } return name; } /* The type CURRENT refers to can't be found. We print error messages. */ static void complete_class_report_errors (dep) jdep *dep; { const char *name; if (!JDEP_WFL (dep)) return; name = IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep))); switch (JDEP_KIND (dep)) { case JDEP_SUPER: parse_error_context (JDEP_WFL (dep), "Superclass `%s' of class `%s' not found", purify_type_name (name), IDENTIFIER_POINTER (DECL_NAME (JDEP_DECL (dep)))); break; case JDEP_FIELD: parse_error_context (JDEP_WFL (dep), "Type `%s' not found in declaration of field `%s'", purify_type_name (name), IDENTIFIER_POINTER (DECL_NAME (JDEP_DECL (dep)))); break; case JDEP_METHOD: /* Covers arguments */ parse_error_context (JDEP_WFL (dep), "Type `%s' not found in the declaration of the argument `%s' of method `%s'", purify_type_name (name), IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_DECL_WFL (dep))), IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_MISC (dep)))); break; case JDEP_METHOD_RETURN: /* Covers return type */ parse_error_context (JDEP_WFL (dep), "Type `%s' not found in the declaration of the return type of method `%s'", purify_type_name (name), IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_DECL_WFL (dep)))); break; case JDEP_INTERFACE: parse_error_context (JDEP_WFL (dep), "Superinterface `%s' of %s `%s' not found", IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep))), (CLASS_OR_INTERFACE (JDEP_DECL (dep), "class", "interface")), IDENTIFIER_POINTER (DECL_NAME (JDEP_DECL (dep)))); break; case JDEP_VARIABLE: parse_error_context (JDEP_WFL (dep), "Type `%s' not found in the declaration of the local variable `%s'", purify_type_name (IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep)))), IDENTIFIER_POINTER (DECL_NAME (JDEP_DECL (dep)))); break; case JDEP_EXCEPTION: /* As specified by `throws' */ parse_error_context (JDEP_WFL (dep), "Class `%s' not found in `throws'", IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep)))); break; default: /* Fix for -Wall. Just break doing nothing. The error will be caught later */ break; } } /* Return a static string containing the DECL prototype string. If DECL is a constructor, use the class name instead of the form */ static const char * get_printable_method_name (decl) tree decl; { const char *to_return; tree name = NULL_TREE; if (DECL_CONSTRUCTOR_P (decl)) { name = DECL_NAME (decl); DECL_NAME (decl) = DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))); } to_return = lang_printable_name (decl, 0); if (DECL_CONSTRUCTOR_P (decl)) DECL_NAME (decl) = name; return to_return; } /* Track method being redefined inside the same class. As a side effect, set DECL_NAME to an IDENTIFIER (prior entering this function it's a FWL, so we can track errors more accurately.) */ static int check_method_redefinition (class, method) tree class, method; { tree redef, sig; /* There's no need to verify and finit$ and instinit$ */ if (DECL_CLINIT_P (method) || DECL_FINIT_P (method) || DECL_INSTINIT_P (method)) return 0; sig = TYPE_ARGUMENT_SIGNATURE (TREE_TYPE (method)); for (redef = TYPE_METHODS (class); redef; redef = TREE_CHAIN (redef)) { if (redef == method) break; if (DECL_NAME (redef) == DECL_NAME (method) && sig == TYPE_ARGUMENT_SIGNATURE (TREE_TYPE (redef)) && !DECL_ARTIFICIAL (method)) { parse_error_context (DECL_FUNCTION_WFL (method), "Duplicate %s declaration `%s'", (DECL_CONSTRUCTOR_P (redef) ? "constructor" : "method"), get_printable_method_name (redef)); return 1; } } return 0; } /* Return 1 if check went ok, 0 otherwise. */ static int check_abstract_method_definitions (do_interface, class_decl, type) int do_interface; tree class_decl, type; { tree class = TREE_TYPE (class_decl); tree method, end_type; int ok = 1; end_type = (do_interface ? object_type_node : type); for (method = TYPE_METHODS (type); method; method = TREE_CHAIN (method)) { tree other_super, other_method, method_sig, method_name; int found = 0; int end_type_reached = 0; if (!METHOD_ABSTRACT (method) || METHOD_FINAL (method)) continue; /* Now verify that somewhere in between TYPE and CLASS, abstract method METHOD gets a non abstract definition that is inherited by CLASS. */ method_sig = build_java_signature (TREE_TYPE (method)); method_name = DECL_NAME (method); if (TREE_CODE (method_name) == EXPR_WITH_FILE_LOCATION) method_name = EXPR_WFL_NODE (method_name); other_super = class; do { if (other_super == end_type) end_type_reached = 1; /* Method search */ for (other_method = TYPE_METHODS (other_super); other_method; other_method = TREE_CHAIN (other_method)) { tree s = build_java_signature (TREE_TYPE (other_method)); tree other_name = DECL_NAME (other_method); if (TREE_CODE (other_name) == EXPR_WITH_FILE_LOCATION) other_name = EXPR_WFL_NODE (other_name); if (!DECL_CLINIT_P (other_method) && !DECL_CONSTRUCTOR_P (other_method) && method_name == other_name && method_sig == s && !METHOD_ABSTRACT (other_method)) { found = 1; break; } } other_super = CLASSTYPE_SUPER (other_super); } while (!end_type_reached); /* Report that abstract METHOD didn't find an implementation that CLASS can use. */ if (!found) { char *t = xstrdup (lang_printable_name (TREE_TYPE (TREE_TYPE (method)), 0)); tree ccn = DECL_NAME (TYPE_NAME (DECL_CONTEXT (method))); parse_error_context (lookup_cl (class_decl), "Class `%s' doesn't define the abstract method `%s %s' from %s `%s'. This method must be defined or %s `%s' must be declared abstract", IDENTIFIER_POINTER (DECL_NAME (class_decl)), t, lang_printable_name (method, 0), (CLASS_INTERFACE (TYPE_NAME (DECL_CONTEXT (method))) ? "interface" : "class"), IDENTIFIER_POINTER (ccn), (CLASS_INTERFACE (class_decl) ? "interface" : "class"), IDENTIFIER_POINTER (DECL_NAME (class_decl))); ok = 0; free (t); } } if (ok && do_interface) { /* Check for implemented interfaces. */ int i; tree vector = TYPE_BINFO_BASETYPES (type); for (i = 1; ok && vector && i < TREE_VEC_LENGTH (vector); i++) { tree super = BINFO_TYPE (TREE_VEC_ELT (vector, i)); ok = check_abstract_method_definitions (1, class_decl, super); } } return ok; } /* Check that CLASS_DECL somehow implements all inherited abstract methods. */ static void java_check_abstract_method_definitions (class_decl) tree class_decl; { tree class = TREE_TYPE (class_decl); tree super, vector; int i; if (CLASS_ABSTRACT (class_decl)) return; /* Check for inherited types */ super = class; do { super = CLASSTYPE_SUPER (super); check_abstract_method_definitions (0, class_decl, super); } while (super != object_type_node); /* Check for implemented interfaces. */ vector = TYPE_BINFO_BASETYPES (class); for (i = 1; i < TREE_VEC_LENGTH (vector); i++) { super = BINFO_TYPE (TREE_VEC_ELT (vector, i)); check_abstract_method_definitions (1, class_decl, super); } } /* Check all the types method DECL uses and return 1 if all of them are now complete, 0 otherwise. This is used to check whether its safe to build a method signature or not. */ static int check_method_types_complete (decl) tree decl; { tree type = TREE_TYPE (decl); tree args; if (!INCOMPLETE_TYPE_P (TREE_TYPE (type))) return 0; args = TYPE_ARG_TYPES (type); if (TREE_CODE (type) == METHOD_TYPE) args = TREE_CHAIN (args); for (; args != end_params_node; args = TREE_CHAIN (args)) if (INCOMPLETE_TYPE_P (TREE_VALUE (args))) return 0; return 1; } /* Visible interface to check methods contained in CLASS_DECL */ void java_check_methods (class_decl) tree class_decl; { if (CLASS_METHOD_CHECKED_P (TREE_TYPE (class_decl))) return; if (CLASS_INTERFACE (class_decl)) java_check_abstract_methods (class_decl); else java_check_regular_methods (class_decl); CLASS_METHOD_CHECKED_P (TREE_TYPE (class_decl)) = 1; } /* Check all the methods of CLASS_DECL. Methods are first completed then checked according to regular method existence rules. If no constructor for CLASS_DECL were encountered, then build its declaration. */ static void java_check_regular_methods (class_decl) tree class_decl; { int saw_constructor = ANONYMOUS_CLASS_P (TREE_TYPE (class_decl)); tree method; tree class = CLASS_TO_HANDLE_TYPE (TREE_TYPE (class_decl)); tree found = NULL_TREE; tree mthrows; /* It is not necessary to check methods defined in java.lang.Object */ if (class == object_type_node) return; if (!TYPE_NVIRTUALS (class)) TYPE_METHODS (class) = nreverse (TYPE_METHODS (class)); /* Should take interfaces into account. FIXME */ for (method = TYPE_METHODS (class); method; method = TREE_CHAIN (method)) { tree sig; tree method_wfl = DECL_FUNCTION_WFL (method); int aflags; /* Check for redefinitions */ if (check_method_redefinition (class, method)) continue; /* If we see one constructor a mark so we don't generate the default one. Also skip other verifications: constructors can't be inherited hence hiden or overriden */ if (DECL_CONSTRUCTOR_P (method)) { saw_constructor = 1; continue; } /* We verify things thrown by the method. They must inherits from java.lang.Throwable */ for (mthrows = DECL_FUNCTION_THROWS (method); mthrows; mthrows = TREE_CHAIN (mthrows)) { if (!inherits_from_p (TREE_VALUE (mthrows), throwable_type_node)) parse_error_context (TREE_PURPOSE (mthrows), "Class `%s' in `throws' clause must be a subclass of class `java.lang.Throwable'", IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (TREE_VALUE (mthrows))))); } sig = build_java_argument_signature (TREE_TYPE (method)); found = lookup_argument_method2 (class, DECL_NAME (method), sig); /* Inner class can't declare static methods */ if (METHOD_STATIC (method) && !TOPLEVEL_CLASS_DECL_P (class_decl)) { char *t = xstrdup (lang_printable_name (class, 0)); parse_error_context (method_wfl, "Method `%s' can't be static in inner class `%s'. Only members of interfaces and top-level classes can be static", lang_printable_name (method, 0), t); free (t); } /* Nothing overrides or it's a private method. */ if (!found) continue; if (METHOD_PRIVATE (found)) { found = NULL_TREE; continue; } /* If `found' is declared in an interface, make sure the modifier matches. */ if (CLASS_INTERFACE (TYPE_NAME (DECL_CONTEXT (found))) && clinit_identifier_node != DECL_NAME (found) && !METHOD_PUBLIC (method)) { tree found_decl = TYPE_NAME (DECL_CONTEXT (found)); parse_error_context (method_wfl, "Class `%s' must override `%s' with a public method in order to implement interface `%s'", IDENTIFIER_POINTER (DECL_NAME (class_decl)), lang_printable_name (method, 0), IDENTIFIER_POINTER (DECL_NAME (found_decl))); } /* Can't override a method with the same name and different return types. */ if (TREE_TYPE (TREE_TYPE (found)) != TREE_TYPE (TREE_TYPE (method))) { char *t = xstrdup (lang_printable_name (TREE_TYPE (TREE_TYPE (found)), 0)); parse_error_context (method_wfl, "Method `%s' was defined with return type `%s' in class `%s'", lang_printable_name (found, 0), t, IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found))))); free (t); } aflags = get_access_flags_from_decl (found); /* Can't override final. Can't override static. */ if (METHOD_FINAL (found) || METHOD_STATIC (found)) { /* Static *can* override static */ if (METHOD_STATIC (found) && METHOD_STATIC (method)) continue; parse_error_context (method_wfl, "%s methods can't be overriden. Method `%s' is %s in class `%s'", (METHOD_FINAL (found) ? "Final" : "Static"), lang_printable_name (found, 0), (METHOD_FINAL (found) ? "final" : "static"), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found))))); continue; } /* Static method can't override instance method. */ if (METHOD_STATIC (method)) { parse_error_context (method_wfl, "Instance methods can't be overriden by a static method. Method `%s' is an instance method in class `%s'", lang_printable_name (found, 0), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found))))); continue; } /* - Overriding/hiding public must be public - Overriding/hiding protected must be protected or public - If the overriden or hidden method has default (package) access, then the overriding or hiding method must not be private; otherwise, a compile-time error occurs. If `found' belongs to an interface, things have been already taken care of. */ if (!CLASS_INTERFACE (TYPE_NAME (DECL_CONTEXT (found))) && ((METHOD_PUBLIC (found) && !METHOD_PUBLIC (method)) || (METHOD_PROTECTED (found) && !(METHOD_PUBLIC (method) || METHOD_PROTECTED (method))) || (!(aflags & (ACC_PUBLIC | ACC_PRIVATE | ACC_STATIC)) && METHOD_PRIVATE (method)))) { parse_error_context (method_wfl, "Methods can't be overridden to be more private. Method `%s' is not %s in class `%s'", lang_printable_name (method, 0), (METHOD_PUBLIC (method) ? "public" : (METHOD_PRIVATE (method) ? "private" : "protected")), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found))))); continue; } /* Overriding methods must have compatible `throws' clauses on checked exceptions, if any */ check_throws_clauses (method, method_wfl, found); /* Inheriting multiple methods with the same signature. FIXME */ } if (!TYPE_NVIRTUALS (class)) TYPE_METHODS (class) = nreverse (TYPE_METHODS (class)); /* Search for inherited abstract method not yet implemented in this class. */ java_check_abstract_method_definitions (class_decl); if (!saw_constructor) abort (); } /* Return a non zero value if the `throws' clause of METHOD (if any) is incompatible with the `throws' clause of FOUND (if any). */ static void check_throws_clauses (method, method_wfl, found) tree method, method_wfl, found; { tree mthrows, fthrows; /* Can't check these things with class loaded from bytecode. FIXME */ if (!CLASS_FROM_SOURCE_P (DECL_CONTEXT (found))) return; for (mthrows = DECL_FUNCTION_THROWS (method); mthrows; mthrows = TREE_CHAIN (mthrows)) { /* We don't verify unchecked expressions */ if (IS_UNCHECKED_EXCEPTION_P (TREE_VALUE (mthrows))) continue; /* Checked expression must be compatible */ for (fthrows = DECL_FUNCTION_THROWS (found); fthrows; fthrows = TREE_CHAIN (fthrows)) if (inherits_from_p (TREE_VALUE (mthrows), TREE_VALUE (fthrows))) break; if (!fthrows) { parse_error_context (method_wfl, "Invalid checked exception class `%s' in `throws' clause. The exception must be a subclass of an exception thrown by `%s' from class `%s'", IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (TREE_VALUE (mthrows)))), lang_printable_name (found, 0), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found))))); } } } /* Check abstract method of interface INTERFACE */ static void java_check_abstract_methods (interface_decl) tree interface_decl; { int i, n; tree method, basetype_vec, found; tree interface = TREE_TYPE (interface_decl); for (method = TYPE_METHODS (interface); method; method = TREE_CHAIN (method)) { /* 2- Check for double definition inside the defining interface */ if (check_method_redefinition (interface, method)) continue; /* 3- Overriding is OK as far as we preserve the return type and the thrown exceptions (FIXME) */ found = lookup_java_interface_method2 (interface, method); if (found) { char *t; t = xstrdup (lang_printable_name (TREE_TYPE (TREE_TYPE (found)), 0)); parse_error_context (DECL_FUNCTION_WFL (found), "Method `%s' was defined with return type `%s' in class `%s'", lang_printable_name (found, 0), t, IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found))))); free (t); continue; } } /* 4- Inherited methods can't differ by their returned types */ if (!(basetype_vec = TYPE_BINFO_BASETYPES (interface))) return; n = TREE_VEC_LENGTH (basetype_vec); for (i = 0; i < n; i++) { tree sub_interface_method, sub_interface; tree vec_elt = TREE_VEC_ELT (basetype_vec, i); if (!vec_elt) continue; sub_interface = BINFO_TYPE (vec_elt); for (sub_interface_method = TYPE_METHODS (sub_interface); sub_interface_method; sub_interface_method = TREE_CHAIN (sub_interface_method)) { found = lookup_java_interface_method2 (interface, sub_interface_method); if (found && (found != sub_interface_method)) { parse_error_context (lookup_cl (sub_interface_method), "Interface `%s' inherits method `%s' from interface `%s'. This method is redefined with a different return type in interface `%s'", IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (interface))), lang_printable_name (found, 0), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (sub_interface_method)))), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found))))); } } } } /* Lookup methods in interfaces using their name and partial signature. Return a matching method only if their types differ. */ static tree lookup_java_interface_method2 (class, method_decl) tree class, method_decl; { int i, n; tree basetype_vec = TYPE_BINFO_BASETYPES (class), to_return; if (!basetype_vec) return NULL_TREE; n = TREE_VEC_LENGTH (basetype_vec); for (i = 0; i < n; i++) { tree vec_elt = TREE_VEC_ELT (basetype_vec, i), to_return; if ((BINFO_TYPE (vec_elt) != object_type_node) && (to_return = lookup_java_method2 (BINFO_TYPE (vec_elt), method_decl, 1))) return to_return; } for (i = 0; i < n; i++) { to_return = lookup_java_interface_method2 (BINFO_TYPE (TREE_VEC_ELT (basetype_vec, i)), method_decl); if (to_return) return to_return; } return NULL_TREE; } /* Lookup method using their name and partial signature. Return a matching method only if their types differ. */ static tree lookup_java_method2 (clas, method_decl, do_interface) tree clas, method_decl; int do_interface; { tree method, method_signature, method_name, method_type, name; method_signature = build_java_argument_signature (TREE_TYPE (method_decl)); name = DECL_NAME (method_decl); method_name = (TREE_CODE (name) == EXPR_WITH_FILE_LOCATION ? EXPR_WFL_NODE (name) : name); method_type = TREE_TYPE (TREE_TYPE (method_decl)); while (clas != NULL_TREE) { for (method = TYPE_METHODS (clas); method != NULL_TREE; method = TREE_CHAIN (method)) { tree method_sig = build_java_argument_signature (TREE_TYPE (method)); tree name = DECL_NAME (method); if ((TREE_CODE (name) == EXPR_WITH_FILE_LOCATION ? EXPR_WFL_NODE (name) : name) == method_name && method_sig == method_signature && TREE_TYPE (TREE_TYPE (method)) != method_type) return method; } clas = (do_interface ? NULL_TREE : CLASSTYPE_SUPER (clas)); } return NULL_TREE; } /* Return the line that matches DECL line number, and try its best to position the column number. Used during error reports. */ static GTY(()) tree cl_v; static tree lookup_cl (decl) tree decl; { char *line, *found; if (!decl) return NULL_TREE; if (cl_v == NULL_TREE) { cl_v = build_expr_wfl (NULL_TREE, NULL, 0, 0); } EXPR_WFL_FILENAME_NODE (cl_v) = get_identifier (DECL_SOURCE_FILE (decl)); EXPR_WFL_SET_LINECOL (cl_v, DECL_SOURCE_LINE_FIRST (decl), -1); line = java_get_line_col (EXPR_WFL_FILENAME (cl_v), EXPR_WFL_LINENO (cl_v), EXPR_WFL_COLNO (cl_v)); found = strstr ((const char *)line, (const char *)IDENTIFIER_POINTER (DECL_NAME (decl))); if (found) EXPR_WFL_SET_LINECOL (cl_v, EXPR_WFL_LINENO (cl_v), found - line); return cl_v; } /* Look for a simple name in the single-type import list */ static tree find_name_in_single_imports (name) tree name; { tree node; for (node = ctxp->import_list; node; node = TREE_CHAIN (node)) if (TREE_VALUE (node) == name) return (EXPR_WFL_NODE (TREE_PURPOSE (node))); return NULL_TREE; } /* Process all single-type import. */ static int process_imports () { tree import; int error_found; for (import = ctxp->import_list; import; import = TREE_CHAIN (import)) { tree to_be_found = EXPR_WFL_NODE (TREE_PURPOSE (import)); char *original_name; obstack_grow0 (&temporary_obstack, IDENTIFIER_POINTER (to_be_found), IDENTIFIER_LENGTH (to_be_found)); original_name = obstack_finish (&temporary_obstack); /* Don't load twice something already defined. */ if (IDENTIFIER_CLASS_VALUE (to_be_found)) continue; while (1) { tree left; QUALIFIED_P (to_be_found) = 1; load_class (to_be_found, 0); error_found = check_pkg_class_access (to_be_found, TREE_PURPOSE (import), true); /* We found it, we can bail out */ if (IDENTIFIER_CLASS_VALUE (to_be_found)) break; /* We haven't found it. Maybe we're trying to access an inner class. The only way for us to know is to try again after having dropped a qualifier. If we can't break it further, we have an error. */ if (breakdown_qualified (&left, NULL, to_be_found)) break; to_be_found = left; } if (!IDENTIFIER_CLASS_VALUE (to_be_found)) { parse_error_context (TREE_PURPOSE (import), "Class or interface `%s' not found in import", original_name); error_found = 1; } obstack_free (&temporary_obstack, original_name); if (error_found) return 1; } return 0; } /* Possibly find and mark a class imported by a single-type import statement. */ static void find_in_imports (enclosing_type, class_type) tree enclosing_type; tree class_type; { tree import = (enclosing_type ? TYPE_IMPORT_LIST (enclosing_type) : ctxp->import_list); while (import) { if (TREE_VALUE (import) == TYPE_NAME (class_type)) { TYPE_NAME (class_type) = EXPR_WFL_NODE (TREE_PURPOSE (import)); QUALIFIED_P (TYPE_NAME (class_type)) = 1; return; } import = TREE_CHAIN (import); } } static int note_possible_classname (name, len) const char *name; int len; { tree node; if (len > 5 && strncmp (&name [len-5], ".java", 5) == 0) len = len - 5; else if (len > 6 && strncmp (&name [len-6], ".class", 6) == 0) len = len - 6; else return 0; node = ident_subst (name, len, "", '/', '.', ""); IS_A_CLASSFILE_NAME (node) = 1; /* Or soon to be */ QUALIFIED_P (node) = strchr (name, '/') ? 1 : 0; return 1; } /* Read a import directory, gathering potential match for further type references. Indifferently reads a filesystem or a ZIP archive directory. */ static void read_import_dir (wfl) tree wfl; { tree package_id = EXPR_WFL_NODE (wfl); const char *package_name = IDENTIFIER_POINTER (package_id); int package_length = IDENTIFIER_LENGTH (package_id); DIR *dirp = NULL; JCF *saved_jcf = current_jcf; int found = 0; int k; void *entry; struct buffer filename[1]; if (IS_AN_IMPORT_ON_DEMAND_P (package_id)) return; IS_AN_IMPORT_ON_DEMAND_P (package_id) = 1; BUFFER_INIT (filename); buffer_grow (filename, package_length + 100); for (entry = jcf_path_start (); entry != NULL; entry = jcf_path_next (entry)) { const char *entry_name = jcf_path_name (entry); int entry_length = strlen (entry_name); if (jcf_path_is_zipfile (entry)) { ZipFile *zipf; buffer_grow (filename, entry_length); memcpy (filename->data, entry_name, entry_length - 1); filename->data[entry_length-1] = '\0'; zipf = opendir_in_zip (filename->data, jcf_path_is_system (entry)); if (zipf == NULL) error ("malformed .zip archive in CLASSPATH: %s", entry_name); else { ZipDirectory *zipd = (ZipDirectory *) zipf->central_directory; BUFFER_RESET (filename); for (k = 0; k < package_length; k++) { char ch = package_name[k]; *filename->ptr++ = ch == '.' ? '/' : ch; } *filename->ptr++ = '/'; for (k = 0; k < zipf->count; k++, zipd = ZIPDIR_NEXT (zipd)) { const char *current_entry = ZIPDIR_FILENAME (zipd); int current_entry_len = zipd->filename_length; if (current_entry_len >= BUFFER_LENGTH (filename) && strncmp (filename->data, current_entry, BUFFER_LENGTH (filename)) != 0) continue; found |= note_possible_classname (current_entry, current_entry_len); } } } else { BUFFER_RESET (filename); buffer_grow (filename, entry_length + package_length + 4); strcpy (filename->data, entry_name); filename->ptr = filename->data + entry_length; for (k = 0; k < package_length; k++) { char ch = package_name[k]; *filename->ptr++ = ch == '.' ? '/' : ch; } *filename->ptr = '\0'; dirp = opendir (filename->data); if (dirp == NULL) continue; *filename->ptr++ = '/'; for (;;) { int len; const char *d_name; struct dirent *direntp = readdir (dirp); if (!direntp) break; d_name = direntp->d_name; len = strlen (direntp->d_name); buffer_grow (filename, len+1); strcpy (filename->ptr, d_name); found |= note_possible_classname (filename->data + entry_length, package_length+len+1); } if (dirp) closedir (dirp); } } free (filename->data); /* Here we should have a unified way of retrieving an entry, to be indexed. */ if (!found) { static int first = 1; if (first) { error ("Can't find default package `%s'. Check the CLASSPATH environment variable and the access to the archives", package_name); java_error_count++; first = 0; } else parse_error_context (wfl, "Package `%s' not found in import", package_name); current_jcf = saved_jcf; return; } current_jcf = saved_jcf; } /* Possibly find a type in the import on demands specified types. Returns 1 if an error occurred, 0 otherwise. Run through the entire list, to detected potential double definitions. */ static int find_in_imports_on_demand (enclosing_type, class_type) tree enclosing_type; tree class_type; { tree class_type_name = TYPE_NAME (class_type); tree import = (enclosing_type ? TYPE_IMPORT_DEMAND_LIST (enclosing_type) : ctxp->import_demand_list); tree cl = NULL_TREE; int seen_once = -1; /* -1 when not set, 1 if seen once, >1 otherwise. */ int to_return = -1; /* -1 when not set, 0 or 1 otherwise */ tree node; for (; import; import = TREE_CHAIN (import)) { int saved_lineno = lineno; int access_check; const char *id_name; tree decl, type_name_copy; obstack_grow (&temporary_obstack, IDENTIFIER_POINTER (EXPR_WFL_NODE (TREE_PURPOSE (import))), IDENTIFIER_LENGTH (EXPR_WFL_NODE (TREE_PURPOSE (import)))); obstack_1grow (&temporary_obstack, '.'); obstack_grow0 (&temporary_obstack, IDENTIFIER_POINTER (class_type_name), IDENTIFIER_LENGTH (class_type_name)); id_name = obstack_finish (&temporary_obstack); if (! (node = maybe_get_identifier (id_name))) continue; /* Setup lineno so that it refers to the line of the import (in case we parse a class file and encounter errors */ lineno = EXPR_WFL_LINENO (TREE_PURPOSE (import)); type_name_copy = TYPE_NAME (class_type); TYPE_NAME (class_type) = node; QUALIFIED_P (node) = 1; decl = IDENTIFIER_CLASS_VALUE (node); access_check = -1; /* If there is no DECL set for the class or if the class isn't loaded and not seen in source yet, then load */ if (!decl || (!CLASS_LOADED_P (TREE_TYPE (decl)) && !CLASS_FROM_SOURCE_P (TREE_TYPE (decl)))) { load_class (node, 0); decl = IDENTIFIER_CLASS_VALUE (node); } if (decl && ! INNER_CLASS_P (TREE_TYPE (decl))) access_check = check_pkg_class_access (node, TREE_PURPOSE (import), false); else /* 6.6.1: Inner classes are subject to member access rules. */ access_check = 0; lineno = saved_lineno; /* If the loaded class is not accessible or couldn't be loaded, we restore the original TYPE_NAME and process the next import. */ if (access_check || !decl) { TYPE_NAME (class_type) = type_name_copy; continue; } /* If the loaded class is accessible, we keep a tab on it to detect and report multiple inclusions. */ if (IS_A_CLASSFILE_NAME (node)) { if (seen_once < 0) { cl = TREE_PURPOSE (import); seen_once = 1; } else if (seen_once >= 0) { tree location = (cl ? cl : TREE_PURPOSE (import)); tree package = (cl ? EXPR_WFL_NODE (cl) : EXPR_WFL_NODE (TREE_PURPOSE (import))); seen_once++; parse_error_context (location, "Type `%s' also potentially defined in package `%s'", IDENTIFIER_POINTER (TYPE_NAME (class_type)), IDENTIFIER_POINTER (package)); } } to_return = access_check; } if (seen_once == 1) return to_return; else return (seen_once < 0 ? 0 : seen_once); /* It's ok not to have found */ } /* Add package NAME to the list of package encountered so far. To speed up class lookup in do_resolve_class, we make sure a particular package is added only once. */ static void register_package (name) tree name; { static htab_t pht; PTR *e; if (pht == NULL) pht = htab_create (50, htab_hash_pointer, htab_eq_pointer, NULL); e = htab_find_slot (pht, name, INSERT); if (*e == NULL) { package_list = chainon (package_list, build_tree_list (name, NULL)); *e = name; } } static tree resolve_package (pkg, next, type_name) tree pkg, *next, *type_name; { tree current; tree decl = NULL_TREE; *type_name = NULL_TREE; /* The trick is to determine when the package name stops and were the name of something contained in the package starts. Then we return a fully qualified name of what we want to get. */ *next = EXPR_WFL_QUALIFICATION (pkg); /* Try to progressively construct a type name */ if (TREE_CODE (pkg) == EXPR_WITH_FILE_LOCATION) for (current = EXPR_WFL_QUALIFICATION (pkg); current; current = TREE_CHAIN (current)) { /* If we don't have what we're expecting, exit now. TYPE_NAME will be null and the error caught later. */ if (TREE_CODE (QUAL_WFL (current)) != EXPR_WITH_FILE_LOCATION) break; *type_name = merge_qualified_name (*type_name, EXPR_WFL_NODE (QUAL_WFL (current))); if ((decl = resolve_no_layout (*type_name, NULL_TREE))) { /* resolve_package should be used in a loop, hence we point at this one to naturally process the next one at the next iteration. */ *next = current; break; } } return decl; } /* Check accessibility of inner classes according to member access rules. DECL is the inner class, ENCLOSING_DECL is the class from which the access is being attempted. */ static void check_inner_class_access (decl, enclosing_decl, cl) tree decl, enclosing_decl, cl; { const char *access; tree enclosing_decl_type; /* We don't issue an error message when CL is null. CL can be null as a result of processing a JDEP crafted by source_start_java_method for the purpose of patching its parm decl. But the error would have been already trapped when fixing the method's signature. DECL can also be NULL in case of earlier errors. */ if (!decl || !cl) return; enclosing_decl_type = TREE_TYPE (enclosing_decl); if (CLASS_PRIVATE (decl)) { /* Access is permitted only within the body of the top-level class in which DECL is declared. */ tree top_level = decl; while (DECL_CONTEXT (top_level)) top_level = DECL_CONTEXT (top_level); while (DECL_CONTEXT (enclosing_decl)) enclosing_decl = DECL_CONTEXT (enclosing_decl); if (top_level == enclosing_decl) return; access = "private"; } else if (CLASS_PROTECTED (decl)) { tree decl_context; /* Access is permitted from within the same package... */ if (in_same_package (decl, enclosing_decl)) return; /* ... or from within the body of a subtype of the context in which DECL is declared. */ decl_context = DECL_CONTEXT (decl); while (enclosing_decl) { if (CLASS_INTERFACE (decl)) { if (interface_of_p (TREE_TYPE (decl_context), enclosing_decl_type)) return; } else { /* Eww. The order of the arguments is different!! */ if (inherits_from_p (enclosing_decl_type, TREE_TYPE (decl_context))) return; } enclosing_decl = DECL_CONTEXT (enclosing_decl); } access = "protected"; } else if (! CLASS_PUBLIC (decl)) { /* Access is permitted only from within the same package as DECL. */ if (in_same_package (decl, enclosing_decl)) return; access = "non-public"; } else /* Class is public. */ return; parse_error_context (cl, "Nested %s %s is %s; cannot be accessed from here", (CLASS_INTERFACE (decl) ? "interface" : "class"), lang_printable_name (decl, 0), access); } /* Accessibility check for top-level classes. If CLASS_NAME is in a foreign package, it must be PUBLIC. Return 0 if no access violations were found, 1 otherwise. If VERBOSE is true and an error was found, it is reported and accounted for. */ static int check_pkg_class_access (class_name, cl, verbose) tree class_name; tree cl; bool verbose; { tree type; if (!IDENTIFIER_CLASS_VALUE (class_name)) return 0; if (!(type = TREE_TYPE (IDENTIFIER_CLASS_VALUE (class_name)))) return 0; if (!CLASS_PUBLIC (TYPE_NAME (type))) { /* Access to a private class within the same package is allowed. */ tree l, r; breakdown_qualified (&l, &r, class_name); if (!QUALIFIED_P (class_name) && !ctxp->package) /* Both in the empty package. */ return 0; if (l == ctxp->package) /* Both in the same package. */ return 0; if (verbose) parse_error_context (cl, "Can't access %s `%s'. Only public classes and interfaces in other packages can be accessed", (CLASS_INTERFACE (TYPE_NAME (type)) ? "interface" : "class"), IDENTIFIER_POINTER (class_name)); return 1; } return 0; } /* Local variable declaration. */ static void declare_local_variables (modifier, type, vlist) int modifier; tree type; tree vlist; { tree decl, current, saved_type; tree type_wfl = NULL_TREE; int must_chain = 0; int final_p = 0; /* Push a new block if statements were seen between the last time we pushed a block and now. Keep a count of blocks to close */ if (BLOCK_EXPR_BODY (GET_CURRENT_BLOCK (current_function_decl))) { tree b = enter_block (); BLOCK_IS_IMPLICIT (b) = 1; } if (modifier) { int i; for (i = 0; i <= 10; i++) if (1 << i & modifier) break; if (modifier == ACC_FINAL) final_p = 1; else { parse_error_context (ctxp->modifier_ctx [i], "Only `final' is allowed as a local variables modifier"); return; } } /* Obtain an incomplete type if TYPE is not complete. TYPE_WFL will hold the TYPE value if a new incomplete has to be created (as opposed to being found already existing and reused). */ SET_TYPE_FOR_RESOLUTION (type, type_wfl, must_chain); /* If TYPE is fully resolved and we don't have a reference, make one */ PROMOTE_RECORD_IF_COMPLETE (type, must_chain); /* Go through all the declared variables */ for (current = vlist, saved_type = type; current; current = TREE_CHAIN (current), type = saved_type) { tree other, real_type; tree wfl = TREE_PURPOSE (current); tree name = EXPR_WFL_NODE (wfl); tree init = TREE_VALUE (current); /* Process NAME, as it may specify extra dimension(s) for it */ type = build_array_from_name (type, type_wfl, name, &name); /* Variable redefinition check */ if ((other = lookup_name_in_blocks (name))) { variable_redefinition_error (wfl, name, TREE_TYPE (other), DECL_SOURCE_LINE (other)); continue; } /* Type adjustment. We may have just readjusted TYPE because the variable specified more dimensions. Make sure we have a reference if we can and don't have one already. */ PROMOTE_RECORD_IF_COMPLETE (type, must_chain); real_type = GET_REAL_TYPE (type); /* Never layout this decl. This will be done when its scope will be entered */ decl = build_decl (VAR_DECL, name, real_type); MAYBE_CREATE_VAR_LANG_DECL_SPECIFIC (decl); DECL_FINAL (decl) = final_p; BLOCK_CHAIN_DECL (decl); /* If doing xreferencing, replace the line number with the WFL compound value */ if (flag_emit_xref) DECL_SOURCE_LINE (decl) = EXPR_WFL_LINECOL (wfl); /* Don't try to use an INIT statement when an error was found */ if (init && java_error_count) init = NULL_TREE; /* Add the initialization function to the current function's code */ if (init) { /* Name might have been readjusted */ EXPR_WFL_NODE (TREE_OPERAND (init, 0)) = name; MODIFY_EXPR_FROM_INITIALIZATION_P (init) = 1; java_method_add_stmt (current_function_decl, build_debugable_stmt (EXPR_WFL_LINECOL (init), init)); } /* Setup dependency the type of the decl */ if (must_chain) { jdep *dep; register_incomplete_type (JDEP_VARIABLE, type_wfl, decl, type); dep = CLASSD_LAST (ctxp->classd_list); JDEP_GET_PATCH (dep) = &TREE_TYPE (decl); } } SOURCE_FRONTEND_DEBUG (("Defined locals")); } /* Called during parsing. Build decls from argument list. */ static void source_start_java_method (fndecl) tree fndecl; { tree tem; tree parm_decl; int i; if (!fndecl) return; current_function_decl = fndecl; /* New scope for the function */ enter_block (); for (tem = TYPE_ARG_TYPES (TREE_TYPE (fndecl)), i = 0; tem != end_params_node; tem = TREE_CHAIN (tem), i++) { tree type = TREE_VALUE (tem); tree name = TREE_PURPOSE (tem); /* If type is incomplete. Create an incomplete decl and ask for the decl to be patched later */ if (INCOMPLETE_TYPE_P (type)) { jdep *jdep; tree real_type = GET_REAL_TYPE (type); parm_decl = build_decl (PARM_DECL, name, real_type); type = obtain_incomplete_type (type); register_incomplete_type (JDEP_PARM, NULL_TREE, NULL_TREE, type); jdep = CLASSD_LAST (ctxp->classd_list); JDEP_MISC (jdep) = name; JDEP_GET_PATCH (jdep) = &TREE_TYPE (parm_decl); } else parm_decl = build_decl (PARM_DECL, name, type); /* Remember if a local variable was declared final (via its TREE_LIST of type/name.) Set DECL_FINAL accordingly. */ if (ARG_FINAL_P (tem)) { MAYBE_CREATE_VAR_LANG_DECL_SPECIFIC (parm_decl); DECL_FINAL (parm_decl) = 1; } BLOCK_CHAIN_DECL (parm_decl); } tem = BLOCK_EXPR_DECLS (DECL_FUNCTION_BODY (current_function_decl)); BLOCK_EXPR_DECLS (DECL_FUNCTION_BODY (current_function_decl)) = nreverse (tem); DECL_ARG_SLOT_COUNT (current_function_decl) = i; DECL_MAX_LOCALS (current_function_decl) = i; } /* Called during parsing. Creates an artificial method declaration. */ static tree create_artificial_method (class, flags, type, name, args) tree class; int flags; tree type, name, args; { tree mdecl; java_parser_context_save_global (); lineno = 0; mdecl = make_node (FUNCTION_TYPE); TREE_TYPE (mdecl) = type; TYPE_ARG_TYPES (mdecl) = args; mdecl = add_method (class, flags, name, build_java_signature (mdecl)); java_parser_context_restore_global (); DECL_ARTIFICIAL (mdecl) = 1; return mdecl; } /* Starts the body if an artificial method. */ static void start_artificial_method_body (mdecl) tree mdecl; { DECL_SOURCE_LINE (mdecl) = 1; DECL_SOURCE_LINE_MERGE (mdecl, 1); source_start_java_method (mdecl); enter_block (); } static void end_artificial_method_body (mdecl) tree mdecl; { /* exit_block modifies DECL_FUNCTION_BODY (current_function_decl). It has to be evaluated first. (if mdecl is current_function_decl, we have an undefined behavior if no temporary variable is used.) */ tree b = exit_block (); BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (mdecl)) = b; exit_block (); } /* Dump a tree of some kind. This is a convenience wrapper for the dump_* functions in tree-dump.c. */ static void dump_java_tree (phase, t) enum tree_dump_index phase; tree t; { FILE *stream; int flags; stream = dump_begin (phase, &flags); if (stream) { dump_node (t, flags, stream); dump_end (phase, stream); } } /* Terminate a function and expand its body. */ static void source_end_java_method () { tree fndecl = current_function_decl; if (!fndecl) return; java_parser_context_save_global (); lineno = ctxp->last_ccb_indent1; /* Turn function bodies with only a NOP expr null, so they don't get generated at all and we won't get warnings when using the -W -Wall flags. */ if (BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (fndecl)) == empty_stmt_node) BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (fndecl)) = NULL_TREE; /* We've generated all the trees for this function, and it has been patched. Dump it to a file if the user requested it. */ dump_java_tree (TDI_original, fndecl); /* Generate function's code */ if (BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (fndecl)) && ! flag_emit_class_files && ! flag_emit_xref) expand_expr_stmt (BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (fndecl))); /* pop out of its parameters */ pushdecl_force_head (DECL_ARGUMENTS (fndecl)); poplevel (1, 0, 1); BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl; /* Generate rtl for function exit. */ if (! flag_emit_class_files && ! flag_emit_xref) { lineno = DECL_SOURCE_LINE_LAST (fndecl); expand_function_end (input_filename, lineno, 0); /* Run the optimizers and output assembler code for this function. */ rest_of_compilation (fndecl); } current_function_decl = NULL_TREE; java_parser_context_restore_global (); } /* Record EXPR in the current function block. Complements compound expression second operand if necessary. */ tree java_method_add_stmt (fndecl, expr) tree fndecl, expr; { if (!GET_CURRENT_BLOCK (fndecl)) return NULL_TREE; return add_stmt_to_block (GET_CURRENT_BLOCK (fndecl), NULL_TREE, expr); } static tree add_stmt_to_block (b, type, stmt) tree b, type, stmt; { tree body = BLOCK_EXPR_BODY (b), c; if (java_error_count) return body; if ((c = add_stmt_to_compound (body, type, stmt)) == body) return body; BLOCK_EXPR_BODY (b) = c; TREE_SIDE_EFFECTS (c) = 1; return c; } /* Add STMT to EXISTING if possible, otherwise create a new COMPOUND_EXPR and add STMT to it. */ static tree add_stmt_to_compound (existing, type, stmt) tree existing, type, stmt; { if (existing) return build (COMPOUND_EXPR, type, existing, stmt); else return stmt; } void java_layout_seen_class_methods () { tree previous_list = all_class_list; tree end = NULL_TREE; tree current; while (1) { for (current = previous_list; current != end; current = TREE_CHAIN (current)) layout_class_methods (TREE_TYPE (TREE_VALUE (current))); if (previous_list != all_class_list) { end = previous_list; previous_list = all_class_list; } else break; } } static GTY(()) tree stop_reordering; void java_reorder_fields () { tree current; for (current = gclass_list; current; current = TREE_CHAIN (current)) { current_class = TREE_TYPE (TREE_VALUE (current)); if (current_class == stop_reordering) break; /* Reverse the fields, but leave the dummy field in front. Fields are already ordered for Object and Class */ if (TYPE_FIELDS (current_class) && current_class != object_type_node && current_class != class_type_node) { /* If the dummy field is there, reverse the right fields and just layout the type for proper fields offset */ if (!DECL_NAME (TYPE_FIELDS (current_class))) { tree fields = TYPE_FIELDS (current_class); TREE_CHAIN (fields) = nreverse (TREE_CHAIN (fields)); TYPE_SIZE (current_class) = NULL_TREE; } /* We don't have a dummy field, we need to layout the class, after having reversed the fields */ else { TYPE_FIELDS (current_class) = nreverse (TYPE_FIELDS (current_class)); TYPE_SIZE (current_class) = NULL_TREE; } } } /* There are cases were gclass_list will be empty. */ if (gclass_list) stop_reordering = TREE_TYPE (TREE_VALUE (gclass_list)); } /* Layout the methods of all classes loaded in one way or another. Check methods of source parsed classes. Then reorder the fields and layout the classes or the type of all source parsed classes */ void java_layout_classes () { tree current; int save_error_count = java_error_count; /* Layout the methods of all classes seen so far */ java_layout_seen_class_methods (); java_parse_abort_on_error (); all_class_list = NULL_TREE; /* Then check the methods of all parsed classes */ for (current = gclass_list; current; current = TREE_CHAIN (current)) if (CLASS_FROM_SOURCE_P (TREE_TYPE (TREE_VALUE (current)))) java_check_methods (TREE_VALUE (current)); java_parse_abort_on_error (); for (current = gclass_list; current; current = TREE_CHAIN (current)) { current_class = TREE_TYPE (TREE_VALUE (current)); layout_class (current_class); /* Error reported by the caller */ if (java_error_count) return; } /* We might have reloaded classes durign the process of laying out classes for code generation. We must layout the methods of those late additions, as constructor checks might use them */ java_layout_seen_class_methods (); java_parse_abort_on_error (); } /* Expand methods in the current set of classes rememebered for generation. */ static void java_complete_expand_classes () { tree current; do_not_fold = flag_emit_xref; for (current = ctxp->class_list; current; current = TREE_CHAIN (current)) if (!INNER_CLASS_DECL_P (current)) java_complete_expand_class (current); } /* Expand the methods found in OUTER, starting first by OUTER's inner classes, if any. */ static void java_complete_expand_class (outer) tree outer; { tree inner_list; set_nested_class_simple_name_value (outer, 1); /* Set */ /* We need to go after all inner classes and start expanding them, starting with most nested ones. We have to do that because nested classes might add functions to outer classes */ for (inner_list = DECL_INNER_CLASS_LIST (outer); inner_list; inner_list = TREE_CHAIN (inner_list)) java_complete_expand_class (TREE_PURPOSE (inner_list)); java_complete_expand_methods (outer); set_nested_class_simple_name_value (outer, 0); /* Reset */ } /* Expand methods registered in CLASS_DECL. The general idea is that we expand regular methods first. This allows us get an estimate on how outer context local alias fields are really used so we can add to the constructor just enough code to initialize them properly (it also lets us generate finit$ correctly.) Then we expand the constructors and then . */ static void java_complete_expand_methods (class_decl) tree class_decl; { tree clinit, decl, first_decl; current_class = TREE_TYPE (class_decl); /* Initialize a new constant pool */ init_outgoing_cpool (); /* Pre-expand to figure whether we really need it or not. If we do need it, we pre-expand the static fields so they're ready to be used somewhere else. will be fully expanded after we processed the constructors. */ first_decl = TYPE_METHODS (current_class); clinit = maybe_generate_pre_expand_clinit (current_class); /* Then generate finit$ (if we need to) because constructors will try to use it.*/ if (TYPE_FINIT_STMT_LIST (current_class)) java_complete_expand_method (generate_finit (current_class)); /* Then generate instinit$ (if we need to) because constructors will try to use it. */ if (TYPE_II_STMT_LIST (current_class)) java_complete_expand_method (generate_instinit (current_class)); /* Now do the constructors */ for (decl = first_decl ; !java_error_count && decl; decl = TREE_CHAIN (decl)) { int no_body; if (!DECL_CONSTRUCTOR_P (decl)) continue; no_body = !DECL_FUNCTION_BODY (decl); /* Don't generate debug info on line zero when expanding a generated constructor. */ if (no_body) restore_line_number_status (1); java_complete_expand_method (decl); if (no_body) restore_line_number_status (0); } /* First, do the ordinary methods. */ for (decl = first_decl; decl; decl = TREE_CHAIN (decl)) { /* Ctors aren't part of this batch. */ if (DECL_CONSTRUCTOR_P (decl) || DECL_CLINIT_P (decl)) continue; /* Skip abstract or native methods -- but do handle native methods when generating JNI stubs. */ if (METHOD_ABSTRACT (decl) || (! flag_jni && METHOD_NATIVE (decl))) { DECL_FUNCTION_BODY (decl) = NULL_TREE; continue; } if (METHOD_NATIVE (decl)) { tree body; current_function_decl = decl; body = build_jni_stub (decl); BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (decl)) = body; } java_complete_expand_method (decl); } /* If there is indeed a , fully expand it now */ if (clinit) { /* Prevent the use of `this' inside */ ctxp->explicit_constructor_p = 1; java_complete_expand_method (clinit); ctxp->explicit_constructor_p = 0; } /* We might have generated a class$ that we now want to expand */ if (TYPE_DOT_CLASS (current_class)) java_complete_expand_method (TYPE_DOT_CLASS (current_class)); /* Now verify constructor circularity (stop after the first one we prove wrong.) */ if (!CLASS_INTERFACE (class_decl)) for (decl = TYPE_METHODS (current_class); decl; decl = TREE_CHAIN (decl)) if (DECL_CONSTRUCTOR_P (decl) && verify_constructor_circularity (decl, decl)) break; /* Save the constant pool. We'll need to restore it later. */ TYPE_CPOOL (current_class) = outgoing_cpool; } /* Attempt to create . Pre-expand static fields so they can be safely used in some other methods/constructors. */ static tree maybe_generate_pre_expand_clinit (class_type) tree class_type; { tree current, mdecl; if (!TYPE_CLINIT_STMT_LIST (class_type)) return NULL_TREE; /* Go through all static fields and pre expand them */ for (current = TYPE_FIELDS (class_type); current; current = TREE_CHAIN (current)) if (FIELD_STATIC (current)) build_field_ref (NULL_TREE, class_type, DECL_NAME (current)); /* Then build the method */ mdecl = create_artificial_method (class_type, ACC_STATIC, void_type_node, clinit_identifier_node, end_params_node); layout_class_method (class_type, CLASSTYPE_SUPER (class_type), mdecl, NULL_TREE); start_artificial_method_body (mdecl); /* We process the list of assignment we produced as the result of the declaration of initialized static field and add them as statement to the method. */ for (current = TYPE_CLINIT_STMT_LIST (class_type); current; current = TREE_CHAIN (current)) { tree stmt = current; /* We build the assignment expression that will initialize the field to its value. There are strict rules on static initializers (8.5). FIXME */ if (TREE_CODE (stmt) != BLOCK && stmt != empty_stmt_node) stmt = build_debugable_stmt (EXPR_WFL_LINECOL (stmt), stmt); java_method_add_stmt (mdecl, stmt); } end_artificial_method_body (mdecl); /* Now we want to place as the last method (because we need it at least for interface so that it doesn't interfere with the dispatch table based lookup. */ if (TREE_CHAIN (TYPE_METHODS (class_type))) { current = TREE_CHAIN (TYPE_METHODS (class_type)); TYPE_METHODS (class_type) = current; while (TREE_CHAIN (current)) current = TREE_CHAIN (current); TREE_CHAIN (current) = mdecl; TREE_CHAIN (mdecl) = NULL_TREE; } return mdecl; } /* Analyzes a method body and look for something that isn't a MODIFY_EXPR with a constant value. */ static int analyze_clinit_body (this_class, bbody) tree this_class, bbody; { while (bbody) switch (TREE_CODE (bbody)) { case BLOCK: bbody = BLOCK_EXPR_BODY (bbody); break; case EXPR_WITH_FILE_LOCATION: bbody = EXPR_WFL_NODE (bbody); break; case COMPOUND_EXPR: if (analyze_clinit_body (this_class, TREE_OPERAND (bbody, 0))) return 1; bbody = TREE_OPERAND (bbody, 1); break; case MODIFY_EXPR: /* If we're generating to class file and we're dealing with an array initialization, we return 1 to keep */ if (TREE_CODE (TREE_OPERAND (bbody, 1)) == NEW_ARRAY_INIT && flag_emit_class_files) return 1; /* There are a few cases where we're required to keep : - If this is an assignment whose operand is not constant, - If this is an assignment to a non-initialized field, - If this field is not a member of the current class. */ return (! TREE_CONSTANT (TREE_OPERAND (bbody, 1)) || ! DECL_INITIAL (TREE_OPERAND (bbody, 0)) || DECL_CONTEXT (TREE_OPERAND (bbody, 0)) != this_class); default: return 1; } return 0; } /* See whether we could get rid of . Criteria are: all static final fields have constant initial values and the body of is empty. Return 1 if was discarded, 0 otherwise. */ static int maybe_yank_clinit (mdecl) tree mdecl; { tree type, current; tree fbody, bbody; if (!DECL_CLINIT_P (mdecl)) return 0; /* If the body isn't empty, then we keep . Note that if we're emitting classfiles, this isn't enough not to rule it out. */ fbody = DECL_FUNCTION_BODY (mdecl); bbody = BLOCK_EXPR_BODY (fbody); if (bbody && bbody != error_mark_node) bbody = BLOCK_EXPR_BODY (bbody); else return 0; if (bbody && ! flag_emit_class_files && bbody != empty_stmt_node) return 0; type = DECL_CONTEXT (mdecl); current = TYPE_FIELDS (type); for (current = (current ? TREE_CHAIN (current) : current); current; current = TREE_CHAIN (current)) { tree f_init; /* We're not interested in non-static fields. */ if (!FIELD_STATIC (current)) continue; /* Nor in fields without initializers. */ f_init = DECL_INITIAL (current); if (f_init == NULL_TREE) continue; /* Anything that isn't String or a basic type is ruled out -- or if we know how to deal with it (when doing things natively) we should generated an empty so that SUID are computed correctly. */ if (! JSTRING_TYPE_P (TREE_TYPE (current)) && ! JNUMERIC_TYPE_P (TREE_TYPE (current))) return 0; if (! FIELD_FINAL (current) || ! TREE_CONSTANT (f_init)) return 0; } /* Now we analyze the method body and look for something that isn't a MODIFY_EXPR */ if (bbody != empty_stmt_node && analyze_clinit_body (type, bbody)) return 0; /* Get rid of in the class' list of methods */ if (TYPE_METHODS (type) == mdecl) TYPE_METHODS (type) = TREE_CHAIN (mdecl); else for (current = TYPE_METHODS (type); current; current = TREE_CHAIN (current)) if (TREE_CHAIN (current) == mdecl) { TREE_CHAIN (current) = TREE_CHAIN (mdecl); break; } return 1; } /* Install the argument from MDECL. Suitable to completion and expansion of mdecl's body. */ static void start_complete_expand_method (mdecl) tree mdecl; { tree tem; pushlevel (1); /* Prepare for a parameter push */ tem = BLOCK_EXPR_DECLS (DECL_FUNCTION_BODY (current_function_decl)); DECL_ARGUMENTS (mdecl) = tem; for (; tem; tem = TREE_CHAIN (tem)) { /* TREE_CHAIN (tem) will change after pushdecl. */ tree next = TREE_CHAIN (tem); tree type = TREE_TYPE (tem); if (PROMOTE_PROTOTYPES && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node) && INTEGRAL_TYPE_P (type)) type = integer_type_node; DECL_ARG_TYPE (tem) = type; layout_decl (tem, 0); pushdecl (tem); /* Re-install the next so that the list is kept and the loop advances. */ TREE_CHAIN (tem) = next; } pushdecl_force_head (DECL_ARGUMENTS (mdecl)); lineno = DECL_SOURCE_LINE_FIRST (mdecl); build_result_decl (mdecl); } /* Complete and expand a method. */ static void java_complete_expand_method (mdecl) tree mdecl; { tree fbody, block_body, exception_copy; current_function_decl = mdecl; /* Fix constructors before expanding them */ if (DECL_CONSTRUCTOR_P (mdecl)) fix_constructors (mdecl); /* Expand functions that have a body */ if (!DECL_FUNCTION_BODY (mdecl)) return; fbody = DECL_FUNCTION_BODY (mdecl); block_body = BLOCK_EXPR_BODY (fbody); exception_copy = NULL_TREE; current_function_decl = mdecl; if (! quiet_flag) fprintf (stderr, " [%s.", lang_printable_name (DECL_CONTEXT (mdecl), 0)); announce_function (mdecl); if (! quiet_flag) fprintf (stderr, "]"); /* Prepare the function for tree completion */ start_complete_expand_method (mdecl); /* Install the current this */ current_this = (!METHOD_STATIC (mdecl) ? BLOCK_EXPR_DECLS (DECL_FUNCTION_BODY (mdecl)) : NULL_TREE); /* Purge the `throws' list of unchecked exceptions (we save a copy of the list and re-install it later.) */ exception_copy = copy_list (DECL_FUNCTION_THROWS (mdecl)); purge_unchecked_exceptions (mdecl); /* Install exceptions thrown with `throws' */ PUSH_EXCEPTIONS (DECL_FUNCTION_THROWS (mdecl)); if (block_body != NULL_TREE) { block_body = java_complete_tree (block_body); /* Before we check initialization, attached all class initialization variable to the block_body */ htab_traverse (DECL_FUNCTION_INIT_TEST_TABLE (mdecl), attach_init_test_initialization_flags, block_body); if (! flag_emit_xref && ! METHOD_NATIVE (mdecl)) { check_for_initialization (block_body, mdecl); /* Go through all the flags marking the initialization of static variables and see whether they're definitively assigned, in which case the type is remembered as definitively initialized in MDECL. */ if (STATIC_CLASS_INIT_OPT_P ()) { /* Always register the context as properly initialized in MDECL. This used with caution helps removing extra initialization of self. */ if (METHOD_STATIC (mdecl)) { *(htab_find_slot (DECL_FUNCTION_INITIALIZED_CLASS_TABLE (mdecl), DECL_CONTEXT (mdecl), INSERT)) = DECL_CONTEXT (mdecl); } } } ctxp->explicit_constructor_p = 0; } BLOCK_EXPR_BODY (fbody) = block_body; /* If we saw a return but couldn't evaluate it properly, we'll have an error_mark_node here. */ if (block_body != error_mark_node && (block_body == NULL_TREE || CAN_COMPLETE_NORMALLY (block_body)) && TREE_CODE (TREE_TYPE (TREE_TYPE (mdecl))) != VOID_TYPE && !flag_emit_xref) missing_return_error (current_function_decl); /* See if we can get rid of if MDECL happens to be */ maybe_yank_clinit (mdecl); /* Pop the current level, with special measures if we found errors. */ if (java_error_count) pushdecl_force_head (DECL_ARGUMENTS (mdecl)); poplevel (1, 0, 1); /* Pop the exceptions and sanity check */ POP_EXCEPTIONS(); if (currently_caught_type_list) abort (); /* Restore the copy of the list of exceptions if emitting xrefs. */ DECL_FUNCTION_THROWS (mdecl) = exception_copy; } /* For with each class for which there's code to generate. */ static void java_expand_method_bodies (class) tree class; { tree decl; for (decl = TYPE_METHODS (class); decl; decl = TREE_CHAIN (decl)) { if (!DECL_FUNCTION_BODY (decl)) continue; current_function_decl = decl; /* It's time to assign the variable flagging static class initialization based on which classes invoked static methods are definitely initializing. This should be flagged. */ if (STATIC_CLASS_INIT_OPT_P ()) { tree list = DECL_FUNCTION_STATIC_METHOD_INVOCATION_COMPOUND (decl); for (; list != NULL_TREE; list = TREE_CHAIN (list)) { /* Executed for each statement calling a static function. LIST is a TREE_LIST whose PURPOSE is the called function and VALUE is a compound whose second operand can be patched with static class initialization flag assignments. */ tree called_method = TREE_PURPOSE (list); tree compound = TREE_VALUE (list); tree assignment_compound_list = build_tree_list (called_method, NULL); /* For each class definitely initialized in CALLED_METHOD, fill ASSIGNMENT_COMPOUND with assignment to the class initialization flag. */ htab_traverse (DECL_FUNCTION_INITIALIZED_CLASS_TABLE (called_method), emit_test_initialization, assignment_compound_list); if (TREE_VALUE (assignment_compound_list)) TREE_OPERAND (compound, 1) = TREE_VALUE (assignment_compound_list); } } /* Prepare the function for RTL expansion */ start_complete_expand_method (decl); /* Expand function start, generate initialization flag assignment, and handle synchronized methods. */ complete_start_java_method (decl); /* Expand the rest of the function body and terminate expansion. */ source_end_java_method (); } } /* This section of the code deals with accessing enclosing context fields either directly by using the relevant access to this$ or by invoking an access method crafted for that purpose. */ /* Build the necessary access from an inner class to an outer class. This routine could be optimized to cache previous result (decl, current_class and returned access). When an access method needs to be generated, it always takes the form of a read. It might be later turned into a write by calling outer_field_access_fix. */ static tree build_outer_field_access (id, decl) tree id, decl; { tree access = NULL_TREE; tree ctx = TREE_TYPE (DECL_CONTEXT (TYPE_NAME (current_class))); tree decl_ctx = DECL_CONTEXT (decl); /* If the immediate enclosing context of the current class is the field decl's class or inherits from it; build the access as `this$.'. Note that we will break the `private' barrier if we're not emitting bytecodes. */ if ((ctx == decl_ctx || inherits_from_p (ctx, decl_ctx)) && (!FIELD_PRIVATE (decl) || !flag_emit_class_files )) { tree thisn = build_current_thisn (current_class); access = make_qualified_primary (build_wfl_node (thisn), id, EXPR_WFL_LINECOL (id)); } /* Otherwise, generate access methods to outer this and access the field (either using an access method or by direct access.) */ else { int lc = EXPR_WFL_LINECOL (id); /* Now we chain the required number of calls to the access$0 to get a hold to the enclosing instance we need, and then we build the field access. */ access = build_access_to_thisn (current_class, decl_ctx, lc); /* If the field is private and we're generating bytecode, then we generate an access method */ if (FIELD_PRIVATE (decl) && flag_emit_class_files ) { tree name = build_outer_field_access_methods (decl); access = build_outer_field_access_expr (lc, decl_ctx, name, access, NULL_TREE); } /* Otherwise we use `access$(this$). ... access$(this$).'. Once again we break the `private' access rule from a foreign class. */ else access = make_qualified_primary (access, id, lc); } return resolve_expression_name (access, NULL); } /* Return a non zero value if NODE describes an outer field inner access. */ static int outer_field_access_p (type, decl) tree type, decl; { if (!INNER_CLASS_TYPE_P (type) || TREE_CODE (decl) != FIELD_DECL || DECL_CONTEXT (decl) == type) return 0; /* If the inner class extends the declaration context of the field we're try to acces, then this isn't an outer field access */ if (inherits_from_p (type, DECL_CONTEXT (decl))) return 0; for (type = TREE_TYPE (DECL_CONTEXT (TYPE_NAME (type))); ; type = TREE_TYPE (DECL_CONTEXT (TYPE_NAME (type)))) { if (type == DECL_CONTEXT (decl)) return 1; if (!DECL_CONTEXT (TYPE_NAME (type))) { /* Before we give up, see whether the field is inherited from the enclosing context we're considering. */ if (inherits_from_p (type, DECL_CONTEXT (decl))) return 1; break; } } return 0; } /* Return a non zero value if NODE represents an outer field inner access that was been already expanded. As a side effect, it returns the name of the field being accessed and the argument passed to the access function, suitable for a regeneration of the access method call if necessary. */ static int outer_field_expanded_access_p (node, name, arg_type, arg) tree node, *name, *arg_type, *arg; { int identified = 0; if (TREE_CODE (node) != CALL_EXPR) return 0; /* Well, gcj generates slightly different tree nodes when compiling to native or bytecodes. It's the case for function calls. */ if (flag_emit_class_files && TREE_CODE (node) == CALL_EXPR && OUTER_FIELD_ACCESS_IDENTIFIER_P (DECL_NAME (TREE_OPERAND (node, 0)))) identified = 1; else if (!flag_emit_class_files) { node = TREE_OPERAND (node, 0); if (node && TREE_OPERAND (node, 0) && TREE_CODE (TREE_OPERAND (node, 0)) == ADDR_EXPR) { node = TREE_OPERAND (node, 0); if (TREE_OPERAND (node, 0) && TREE_CODE (TREE_OPERAND (node, 0)) == FUNCTION_DECL && (OUTER_FIELD_ACCESS_IDENTIFIER_P (DECL_NAME (TREE_OPERAND (node, 0))))) identified = 1; } } if (identified && name && arg_type && arg) { tree argument = TREE_OPERAND (node, 1); *name = DECL_NAME (TREE_OPERAND (node, 0)); *arg_type = TREE_TYPE (TREE_TYPE (TREE_VALUE (argument))); *arg = TREE_VALUE (argument); } return identified; } /* Detect in NODE an outer field read access from an inner class and transform it into a write with RHS as an argument. This function is called from the java_complete_lhs when an assignment to a LHS can be identified. */ static tree outer_field_access_fix (wfl, node, rhs) tree wfl, node, rhs; { tree name, arg_type, arg; if (outer_field_expanded_access_p (node, &name, &arg_type, &arg)) { node = build_outer_field_access_expr (EXPR_WFL_LINECOL (wfl), arg_type, name, arg, rhs); return java_complete_tree (node); } return NULL_TREE; } /* Construct the expression that calls an access method: .access$( [, ]); ARG2 can be NULL and will be omitted in that case. It will denote a read access. */ static tree build_outer_field_access_expr (lc, type, access_method_name, arg1, arg2) int lc; tree type, access_method_name, arg1, arg2; { tree args, cn, access; args = arg1 ? arg1 : build_wfl_node (build_current_thisn (current_class)); args = build_tree_list (NULL_TREE, args); if (arg2) args = tree_cons (NULL_TREE, arg2, args); access = build_method_invocation (build_wfl_node (access_method_name), args); cn = build_wfl_node (DECL_NAME (TYPE_NAME (type))); return make_qualified_primary (cn, access, lc); } static tree build_new_access_id () { static int access_n_counter = 1; char buffer [128]; sprintf (buffer, "access$%d", access_n_counter++); return get_identifier (buffer); } /* Create the static access functions for the outer field DECL. We define a read: TREE_TYPE () access$ (DECL_CONTEXT () inst$) { return inst$.field; } and a write access: TREE_TYPE () access$ (DECL_CONTEXT () inst$, TREE_TYPE () value$) { return inst$.field = value$; } We should have a usage flags on the DECL so we can lazily turn the ones we're using for code generation. FIXME. */ static tree build_outer_field_access_methods (decl) tree decl; { tree id, args, stmt, mdecl; if (FIELD_INNER_ACCESS_P (decl)) return FIELD_INNER_ACCESS (decl); MAYBE_CREATE_VAR_LANG_DECL_SPECIFIC (decl); /* Create the identifier and a function named after it. */ id = build_new_access_id (); /* The identifier is marked as bearing the name of a generated write access function for outer field accessed from inner classes. */ OUTER_FIELD_ACCESS_IDENTIFIER_P (id) = 1; /* Create the read access */ args = build_tree_list (inst_id, build_pointer_type (DECL_CONTEXT (decl))); TREE_CHAIN (args) = end_params_node; stmt = make_qualified_primary (build_wfl_node (inst_id), build_wfl_node (DECL_NAME (decl)), 0); stmt = build_return (0, stmt); mdecl = build_outer_field_access_method (DECL_CONTEXT (decl), TREE_TYPE (decl), id, args, stmt); DECL_FUNCTION_ACCESS_DECL (mdecl) = decl; /* Create the write access method. No write access for final variable */ if (!FIELD_FINAL (decl)) { args = build_tree_list (inst_id, build_pointer_type (DECL_CONTEXT (decl))); TREE_CHAIN (args) = build_tree_list (wpv_id, TREE_TYPE (decl)); TREE_CHAIN (TREE_CHAIN (args)) = end_params_node; stmt = make_qualified_primary (build_wfl_node (inst_id), build_wfl_node (DECL_NAME (decl)), 0); stmt = build_return (0, build_assignment (ASSIGN_TK, 0, stmt, build_wfl_node (wpv_id))); mdecl = build_outer_field_access_method (DECL_CONTEXT (decl), TREE_TYPE (decl), id, args, stmt); } DECL_FUNCTION_ACCESS_DECL (mdecl) = decl; /* Return the access name */ return FIELD_INNER_ACCESS (decl) = id; } /* Build an field access method NAME. */ static tree build_outer_field_access_method (class, type, name, args, body) tree class, type, name, args, body; { tree saved_current_function_decl, mdecl; /* Create the method */ mdecl = create_artificial_method (class, ACC_STATIC, type, name, args); fix_method_argument_names (args, mdecl); layout_class_method (class, NULL_TREE, mdecl, NULL_TREE); /* Attach the method body. */ saved_current_function_decl = current_function_decl; start_artificial_method_body (mdecl); java_method_add_stmt (mdecl, body); end_artificial_method_body (mdecl); current_function_decl = saved_current_function_decl; return mdecl; } /* This section deals with building access function necessary for certain kinds of method invocation from inner classes. */ static tree build_outer_method_access_method (decl) tree decl; { tree saved_current_function_decl, mdecl; tree args = NULL_TREE, call_args = NULL_TREE; tree carg, id, body, class; char buffer [80]; int parm_id_count = 0; /* Test this abort with an access to a private field */ if (!strcmp (IDENTIFIER_POINTER (DECL_NAME (decl)), "access$")) abort (); /* Check the cache first */ if (DECL_FUNCTION_INNER_ACCESS (decl)) return DECL_FUNCTION_INNER_ACCESS (decl); class = DECL_CONTEXT (decl); /* Obtain an access identifier and mark it */ id = build_new_access_id (); OUTER_FIELD_ACCESS_IDENTIFIER_P (id) = 1; carg = TYPE_ARG_TYPES (TREE_TYPE (decl)); /* Create the arguments, as much as the original */ for (; carg && carg != end_params_node; carg = TREE_CHAIN (carg)) { sprintf (buffer, "write_parm_value$%d", parm_id_count++); args = chainon (args, build_tree_list (get_identifier (buffer), TREE_VALUE (carg))); } args = chainon (args, end_params_node); /* Create the method */ mdecl = create_artificial_method (class, ACC_STATIC, TREE_TYPE (TREE_TYPE (decl)), id, args); layout_class_method (class, NULL_TREE, mdecl, NULL_TREE); /* There is a potential bug here. We should be able to use fix_method_argument_names, but then arg names get mixed up and eventually a constructor will have its this$0 altered and the outer context won't be assignment properly. The test case is stub.java FIXME */ TYPE_ARG_TYPES (TREE_TYPE (mdecl)) = args; /* Attach the method body. */ saved_current_function_decl = current_function_decl; start_artificial_method_body (mdecl); /* The actual method invocation uses the same args. When invoking a static methods that way, we don't want to skip the first argument. */ carg = args; if (!METHOD_STATIC (decl)) carg = TREE_CHAIN (carg); for (; carg && carg != end_params_node; carg = TREE_CHAIN (carg)) call_args = tree_cons (NULL_TREE, build_wfl_node (TREE_PURPOSE (carg)), call_args); body = build_method_invocation (build_wfl_node (DECL_NAME (decl)), call_args); if (!METHOD_STATIC (decl)) body = make_qualified_primary (build_wfl_node (TREE_PURPOSE (args)), body, 0); if (TREE_TYPE (TREE_TYPE (decl)) != void_type_node) body = build_return (0, body); java_method_add_stmt (mdecl,body); end_artificial_method_body (mdecl); current_function_decl = saved_current_function_decl; /* Back tag the access function so it know what it accesses */ DECL_FUNCTION_ACCESS_DECL (decl) = mdecl; /* Tag the current method so it knows it has an access generated */ return DECL_FUNCTION_INNER_ACCESS (decl) = mdecl; } /* This section of the code deals with building expressions to access the enclosing instance of an inner class. The enclosing instance is kept in a generated field called this$, with being the inner class nesting level (starting from 0.) */ /* Build an access to a given this$, always chaining access call to others. Access methods to this$ are build on the fly if necessary. This CAN'T be used to solely access this$ from this$ (which alway yield to special cases and optimization, see for example build_outer_field_access). */ static tree build_access_to_thisn (from, to, lc) tree from, to; int lc; { tree access = NULL_TREE; while (from != to && PURE_INNER_CLASS_TYPE_P (from)) { if (!access) { access = build_current_thisn (from); access = build_wfl_node (access); } else { tree access0_wfl, cn; maybe_build_thisn_access_method (from); access0_wfl = build_wfl_node (access0_identifier_node); cn = build_wfl_node (DECL_NAME (TYPE_NAME (from))); EXPR_WFL_LINECOL (access0_wfl) = lc; access = build_tree_list (NULL_TREE, access); access = build_method_invocation (access0_wfl, access); access = make_qualified_primary (cn, access, lc); } /* If FROM isn't an inner class, that's fine, we've done enough. What we're looking for can be accessed from there. */ from = DECL_CONTEXT (TYPE_NAME (from)); if (!from) break; from = TREE_TYPE (from); } return access; } /* Build an access function to the this$ local to TYPE. NULL_TREE is returned if nothing needs to be generated. Otherwise, the method generated and a method decl is returned. NOTE: These generated methods should be declared in a class file attribute so that they can't be referred to directly. */ static tree maybe_build_thisn_access_method (type) tree type; { tree mdecl, args, stmt, rtype; tree saved_current_function_decl; /* If TYPE is a top-level class, no access method is required. If there already is such an access method, bail out. */ if (CLASS_ACCESS0_GENERATED_P (type) || !PURE_INNER_CLASS_TYPE_P (type)) return NULL_TREE; /* We generate the method. The method looks like: static access$0 ( inst$) { return inst$.this$; } */ args = build_tree_list (inst_id, build_pointer_type (type)); TREE_CHAIN (args) = end_params_node; rtype = build_pointer_type (TREE_TYPE (DECL_CONTEXT (TYPE_NAME (type)))); mdecl = create_artificial_method (type, ACC_STATIC, rtype, access0_identifier_node, args); fix_method_argument_names (args, mdecl); layout_class_method (type, NULL_TREE, mdecl, NULL_TREE); stmt = build_current_thisn (type); stmt = make_qualified_primary (build_wfl_node (inst_id), build_wfl_node (stmt), 0); stmt = build_return (0, stmt); saved_current_function_decl = current_function_decl; start_artificial_method_body (mdecl); java_method_add_stmt (mdecl, stmt); end_artificial_method_body (mdecl); current_function_decl = saved_current_function_decl; CLASS_ACCESS0_GENERATED_P (type) = 1; return mdecl; } /* Craft an correctly numbered `this$'string. this$0 is used for the first level of innerclassing. this$1 for the next one, etc... This function can be invoked with TYPE to NULL, available and then has to count the parser context. */ static GTY(()) tree saved_thisn; static GTY(()) tree saved_type; static tree build_current_thisn (type) tree type; { static int saved_i = -1; static int saved_type_i = 0; tree decl; char buffer [24]; int i = 0; if (type) { if (type == saved_type) i = saved_type_i; else { for (i = -1, decl = DECL_CONTEXT (TYPE_NAME (type)); decl; decl = DECL_CONTEXT (decl), i++) ; saved_type = type; saved_type_i = i; } } else i = list_length (GET_CPC_LIST ())-2; if (i == saved_i) return saved_thisn; sprintf (buffer, "this$%d", i); saved_i = i; saved_thisn = get_identifier (buffer); return saved_thisn; } /* Return the assignement to the hidden enclosing context `this$' by the second incoming parameter to the innerclass constructor. The form used is `this.this$ = this$;'. */ static tree build_thisn_assign () { if (current_class && PURE_INNER_CLASS_TYPE_P (current_class)) { tree thisn = build_current_thisn (current_class); tree lhs = make_qualified_primary (build_wfl_node (this_identifier_node), build_wfl_node (thisn), 0); tree rhs = build_wfl_node (thisn); EXPR_WFL_SET_LINECOL (lhs, lineno, 0); return build_assignment (ASSIGN_TK, EXPR_WFL_LINECOL (lhs), lhs, rhs); } return NULL_TREE; } /* Building the synthetic `class$' used to implement the `.class' 1.1 extension for non primitive types. This method looks like: static Class class$(String type) throws NoClassDefFoundError { try {return (java.lang.Class.forName (String));} catch (ClassNotFoundException e) { throw new NoClassDefFoundError(e.getMessage());} } */ static GTY(()) tree get_message_wfl; static GTY(()) tree type_parm_wfl; static tree build_dot_class_method (class) tree class; { #define BWF(S) build_wfl_node (get_identifier ((S))) #define MQN(X,Y) make_qualified_name ((X), (Y), 0) tree args, tmp, saved_current_function_decl, mdecl; tree stmt, throw_stmt; if (!get_message_wfl) { get_message_wfl = build_wfl_node (get_identifier ("getMessage")); type_parm_wfl = build_wfl_node (get_identifier ("type$")); } /* Build the arguments */ args = build_tree_list (get_identifier ("type$"), build_pointer_type (string_type_node)); TREE_CHAIN (args) = end_params_node; /* Build the qualified name java.lang.Class.forName */ tmp = MQN (MQN (MQN (BWF ("java"), BWF ("lang")), BWF ("Class")), BWF ("forName")); load_class (class_not_found_type_node, 1); load_class (no_class_def_found_type_node, 1); /* Create the "class$" function */ mdecl = create_artificial_method (class, ACC_STATIC, build_pointer_type (class_type_node), classdollar_identifier_node, args); DECL_FUNCTION_THROWS (mdecl) = build_tree_list (NULL_TREE, no_class_def_found_type_node); /* We start by building the try block. We need to build: return (java.lang.Class.forName (type)); */ stmt = build_method_invocation (tmp, build_tree_list (NULL_TREE, type_parm_wfl)); stmt = build_return (0, stmt); /* Now onto the catch block. We start by building the expression throwing a new exception: throw new NoClassDefFoundError (_.getMessage) */ throw_stmt = make_qualified_name (build_wfl_node (wpv_id), get_message_wfl, 0); throw_stmt = build_method_invocation (throw_stmt, NULL_TREE); /* Build new NoClassDefFoundError (_.getMessage) */ throw_stmt = build_new_invocation (build_wfl_node (get_identifier ("NoClassDefFoundError")), build_tree_list (build_pointer_type (string_type_node), throw_stmt)); /* Build the throw, (it's too early to use BUILD_THROW) */ throw_stmt = build1 (THROW_EXPR, NULL_TREE, throw_stmt); /* Encapsulate STMT in a try block. The catch clause executes THROW_STMT */ stmt = encapsulate_with_try_catch (0, class_not_found_type_node, stmt, throw_stmt); fix_method_argument_names (args, mdecl); layout_class_method (class, NULL_TREE, mdecl, NULL_TREE); saved_current_function_decl = current_function_decl; start_artificial_method_body (mdecl); java_method_add_stmt (mdecl, stmt); end_artificial_method_body (mdecl); current_function_decl = saved_current_function_decl; TYPE_DOT_CLASS (class) = mdecl; return mdecl; } static tree build_dot_class_method_invocation (type) tree type; { tree sig_id, s; if (TYPE_ARRAY_P (type)) sig_id = build_java_signature (type); else sig_id = DECL_NAME (TYPE_NAME (type)); /* Ensure that the proper name separator is used */ sig_id = unmangle_classname (IDENTIFIER_POINTER (sig_id), IDENTIFIER_LENGTH (sig_id)); s = build_string (IDENTIFIER_LENGTH (sig_id), IDENTIFIER_POINTER (sig_id)); return build_method_invocation (build_wfl_node (classdollar_identifier_node), build_tree_list (NULL_TREE, s)); } /* This section of the code deals with constructor. */ /* Craft a body for default constructor. Patch existing constructor bodies with call to super() and field initialization statements if necessary. */ static void fix_constructors (mdecl) tree mdecl; { tree iii; /* Instance Initializer Invocation */ tree body = DECL_FUNCTION_BODY (mdecl); tree thisn_assign, compound = NULL_TREE; tree class_type = DECL_CONTEXT (mdecl); if (DECL_FIXED_CONSTRUCTOR_P (mdecl)) return; DECL_FIXED_CONSTRUCTOR_P (mdecl) = 1; if (!body) { /* It is an error for the compiler to generate a default constructor if the superclass doesn't have a constructor that takes no argument, or the same args for an anonymous class */ if (verify_constructor_super (mdecl)) { tree sclass_decl = TYPE_NAME (CLASSTYPE_SUPER (class_type)); tree save = DECL_NAME (mdecl); const char *n = IDENTIFIER_POINTER (DECL_NAME (sclass_decl)); DECL_NAME (mdecl) = DECL_NAME (sclass_decl); parse_error_context (lookup_cl (TYPE_NAME (class_type)), "No constructor matching `%s' found in class `%s'", lang_printable_name (mdecl, 0), n); DECL_NAME (mdecl) = save; } /* The constructor body must be crafted by hand. It's the constructor we defined when we realize we didn't have the CLASSNAME() constructor */ start_artificial_method_body (mdecl); /* Insert an assignment to the this$ hidden field, if necessary */ if ((thisn_assign = build_thisn_assign ())) java_method_add_stmt (mdecl, thisn_assign); /* We don't generate a super constructor invocation if we're compiling java.lang.Object. build_super_invocation takes care of that. */ java_method_add_stmt (mdecl, build_super_invocation (mdecl)); /* FIXME */ if ((iii = build_instinit_invocation (class_type))) java_method_add_stmt (mdecl, iii); end_artificial_method_body (mdecl); } /* Search for an explicit constructor invocation */ else { int found = 0; int invokes_this = 0; tree found_call = NULL_TREE; tree main_block = BLOCK_EXPR_BODY (body); while (body) switch (TREE_CODE (body)) { case CALL_EXPR: found = CALL_EXPLICIT_CONSTRUCTOR_P (body); if (CALL_THIS_CONSTRUCTOR_P (body)) invokes_this = 1; body = NULL_TREE; break; case COMPOUND_EXPR: case EXPR_WITH_FILE_LOCATION: found_call = body; body = TREE_OPERAND (body, 0); break; case BLOCK: found_call = body; body = BLOCK_EXPR_BODY (body); break; default: found = 0; body = NULL_TREE; } /* Generate the assignment to this$, if necessary */ if ((thisn_assign = build_thisn_assign ())) compound = add_stmt_to_compound (compound, NULL_TREE, thisn_assign); /* The constructor is missing an invocation of super() */ if (!found) compound = add_stmt_to_compound (compound, NULL_TREE, build_super_invocation (mdecl)); /* Explicit super() invokation should take place before the instance initializer blocks. */ else { compound = add_stmt_to_compound (compound, NULL_TREE, TREE_OPERAND (found_call, 0)); TREE_OPERAND (found_call, 0) = empty_stmt_node; } DECL_INIT_CALLS_THIS (mdecl) = invokes_this; /* Insert the instance initializer block right after. */ if (!invokes_this && (iii = build_instinit_invocation (class_type))) compound = add_stmt_to_compound (compound, NULL_TREE, iii); /* Fix the constructor main block if we're adding extra stmts */ if (compound) { compound = add_stmt_to_compound (compound, NULL_TREE, BLOCK_EXPR_BODY (main_block)); BLOCK_EXPR_BODY (main_block) = compound; } } } /* Browse constructors in the super class, searching for a constructor that doesn't take any argument. Return 0 if one is found, 1 otherwise. If the current class is an anonymous inner class, look for something that has the same signature. */ static int verify_constructor_super (mdecl) tree mdecl; { tree class = CLASSTYPE_SUPER (current_class); int super_inner = PURE_INNER_CLASS_TYPE_P (class); tree sdecl; if (!class) return 0; if (ANONYMOUS_CLASS_P (current_class)) { tree mdecl_arg_type; SKIP_THIS_AND_ARTIFICIAL_PARMS (mdecl_arg_type, mdecl); for (sdecl = TYPE_METHODS (class); sdecl; sdecl = TREE_CHAIN (sdecl)) if (DECL_CONSTRUCTOR_P (sdecl)) { tree m_arg_type; tree arg_type = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (sdecl))); if (super_inner) arg_type = TREE_CHAIN (arg_type); for (m_arg_type = mdecl_arg_type; (arg_type != end_params_node && m_arg_type != end_params_node); arg_type = TREE_CHAIN (arg_type), m_arg_type = TREE_CHAIN (m_arg_type)) if (!valid_method_invocation_conversion_p (TREE_VALUE (arg_type), TREE_VALUE (m_arg_type))) break; if (arg_type == end_params_node && m_arg_type == end_params_node) return 0; } } else { for (sdecl = TYPE_METHODS (class); sdecl; sdecl = TREE_CHAIN (sdecl)) { tree arg = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (sdecl))); if (super_inner) arg = TREE_CHAIN (arg); if (DECL_CONSTRUCTOR_P (sdecl) && arg == end_params_node) return 0; } } return 1; } /* Generate code for all context remembered for code generation. */ static GTY(()) tree reversed_class_list; void java_expand_classes () { int save_error_count = 0; static struct parser_ctxt *cur_ctxp = NULL; java_parse_abort_on_error (); if (!(ctxp = ctxp_for_generation)) return; java_layout_classes (); java_parse_abort_on_error (); for (cur_ctxp = ctxp_for_generation; cur_ctxp; cur_ctxp = cur_ctxp->next) { ctxp = cur_ctxp; input_filename = ctxp->filename; lang_init_source (2); /* Error msgs have method prototypes */ java_complete_expand_classes (); /* Complete and expand classes */ java_parse_abort_on_error (); } input_filename = main_input_filename; /* Find anonymous classes and expand their constructor. This extra pass is neccessary because the constructor itself is only generated when the method in which it is defined is expanded. */ for (cur_ctxp = ctxp_for_generation; cur_ctxp; cur_ctxp = cur_ctxp->next) { tree current; ctxp = cur_ctxp; for (current = ctxp->class_list; current; current = TREE_CHAIN (current)) { current_class = TREE_TYPE (current); if (ANONYMOUS_CLASS_P (current_class)) { tree d; for (d = TYPE_METHODS (current_class); d; d = TREE_CHAIN (d)) { if (DECL_CONSTRUCTOR_P (d)) { restore_line_number_status (1); java_complete_expand_method (d); restore_line_number_status (0); break; /* There is only one constructor. */ } } } } } /* If we've found error at that stage, don't try to generate anything, unless we're emitting xrefs or checking the syntax only (but not using -fsyntax-only for the purpose of generating bytecode. */ if (java_error_count && !flag_emit_xref && (!flag_syntax_only && !flag_emit_class_files)) return; /* Now things are stable, go for generation of the class data. */ /* We pessimistically marked all fields external until we knew what set of classes we were planning to compile. Now mark those that will be generated locally as not external. */ for (cur_ctxp = ctxp_for_generation; cur_ctxp; cur_ctxp = cur_ctxp->next) { tree current; ctxp = cur_ctxp; for (current = ctxp->class_list; current; current = TREE_CHAIN (current)) { tree class = TREE_TYPE (current); tree field; for (field = TYPE_FIELDS (class); field ; field = TREE_CHAIN (field)) if (FIELD_STATIC (field)) DECL_EXTERNAL (field) = 0; } } /* Compile the classes. */ for (cur_ctxp = ctxp_for_generation; cur_ctxp; cur_ctxp = cur_ctxp->next) { tree current; reversed_class_list = NULL; ctxp = cur_ctxp; /* We write out the classes in reverse order. This ensures that inner classes are written before their containing classes, which is important for parallel builds. Otherwise, the class file for the outer class may be found, but the class file for the inner class may not be present. In that situation, the compiler cannot fall back to the original source, having already read the outer class, so we must prevent that situation. */ for (current = ctxp->class_list; current; current = TREE_CHAIN (current)) reversed_class_list = tree_cons (NULL_TREE, current, reversed_class_list); for (current = reversed_class_list; current; current = TREE_CHAIN (current)) { current_class = TREE_TYPE (TREE_VALUE (current)); outgoing_cpool = TYPE_CPOOL (current_class); if (flag_emit_class_files) write_classfile (current_class); if (flag_emit_xref) expand_xref (current_class); else if (! flag_syntax_only) { java_expand_method_bodies (current_class); finish_class (); } } } } /* Wrap non WFL PRIMARY around a WFL and set EXPR_WFL_QUALIFICATION to a tree list node containing RIGHT. Fore coming RIGHTs will be chained to this hook. LOCATION contains the location of the separating `.' operator. */ static tree make_qualified_primary (primary, right, location) tree primary, right; int location; { tree wfl; if (TREE_CODE (primary) != EXPR_WITH_FILE_LOCATION) wfl = build_wfl_wrap (primary, location); else { wfl = primary; /* If wfl wasn't qualified, we build a first anchor */ if (!EXPR_WFL_QUALIFICATION (wfl)) EXPR_WFL_QUALIFICATION (wfl) = build_tree_list (wfl, NULL_TREE); } /* And chain them */ EXPR_WFL_LINECOL (right) = location; chainon (EXPR_WFL_QUALIFICATION (wfl), build_tree_list (right, NULL_TREE)); PRIMARY_P (wfl) = 1; return wfl; } /* Simple merge of two name separated by a `.' */ static tree merge_qualified_name (left, right) tree left, right; { tree node; if (!left && !right) return NULL_TREE; if (!left) return right; if (!right) return left; obstack_grow (&temporary_obstack, IDENTIFIER_POINTER (left), IDENTIFIER_LENGTH (left)); obstack_1grow (&temporary_obstack, '.'); obstack_grow0 (&temporary_obstack, IDENTIFIER_POINTER (right), IDENTIFIER_LENGTH (right)); node = get_identifier (obstack_base (&temporary_obstack)); obstack_free (&temporary_obstack, obstack_base (&temporary_obstack)); QUALIFIED_P (node) = 1; return node; } /* Merge the two parts of a qualified name into LEFT. Set the location information of the resulting node to LOCATION, usually inherited from the location information of the `.' operator. */ static tree make_qualified_name (left, right, location) tree left, right; int location; { #ifdef USE_COMPONENT_REF tree node = build (COMPONENT_REF, NULL_TREE, left, right); EXPR_WFL_LINECOL (node) = location; return node; #else tree left_id = EXPR_WFL_NODE (left); tree right_id = EXPR_WFL_NODE (right); tree wfl, merge; merge = merge_qualified_name (left_id, right_id); /* Left wasn't qualified and is now qualified */ if (!QUALIFIED_P (left_id)) { tree wfl = build_expr_wfl (left_id, ctxp->filename, 0, 0); EXPR_WFL_LINECOL (wfl) = EXPR_WFL_LINECOL (left); EXPR_WFL_QUALIFICATION (left) = build_tree_list (wfl, NULL_TREE); } wfl = build_expr_wfl (right_id, ctxp->filename, 0, 0); EXPR_WFL_LINECOL (wfl) = location; chainon (EXPR_WFL_QUALIFICATION (left), build_tree_list (wfl, NULL_TREE)); EXPR_WFL_NODE (left) = merge; return left; #endif } /* Extract the last identifier component of the qualified in WFL. The last identifier is removed from the linked list */ static tree cut_identifier_in_qualified (wfl) tree wfl; { tree q; tree previous = NULL_TREE; for (q = EXPR_WFL_QUALIFICATION (wfl); ; previous = q, q = TREE_CHAIN (q)) if (!TREE_CHAIN (q)) { if (!previous) /* Operating on a non qualified qualified WFL. */ abort (); TREE_CHAIN (previous) = NULL_TREE; return TREE_PURPOSE (q); } } /* Resolve the expression name NAME. Return its decl. */ static tree resolve_expression_name (id, orig) tree id; tree *orig; { tree name = EXPR_WFL_NODE (id); tree decl; /* 6.5.5.1: Simple expression names */ if (!PRIMARY_P (id) && !QUALIFIED_P (name)) { /* 15.13.1: NAME can appear within the scope of a local variable declaration */ if ((decl = IDENTIFIER_LOCAL_VALUE (name))) return decl; /* 15.13.1: NAME can appear within a class declaration */ else { decl = lookup_field_wrapper (current_class, name); if (decl) { tree access = NULL_TREE; int fs = FIELD_STATIC (decl); /* If we're accessing an outer scope local alias, make sure we change the name of the field we're going to build access to. */ if (FIELD_LOCAL_ALIAS_USED (decl)) name = DECL_NAME (decl); /* Instance variable (8.3.1.1) can't appear within static method, static initializer or initializer for a static variable. */ if (!fs && METHOD_STATIC (current_function_decl)) { static_ref_err (id, name, current_class); return error_mark_node; } /* Instance variables can't appear as an argument of an explicit constructor invocation */ if (!fs && ctxp->explicit_constructor_p && !enclosing_context_p (DECL_CONTEXT (decl), current_class)) { parse_error_context (id, "Can't reference `%s' before the superclass constructor has been called", IDENTIFIER_POINTER (name)); return error_mark_node; } /* If we're processing an inner class and we're trying to access a field belonging to an outer class, build the access to the field */ if (!fs && outer_field_access_p (current_class, decl)) { if (CLASS_STATIC (TYPE_NAME (current_class))) { static_ref_err (id, DECL_NAME (decl), current_class); return error_mark_node; } access = build_outer_field_access (id, decl); if (orig) *orig = access; return access; } /* Otherwise build what it takes to access the field */ access = build_field_ref ((fs ? NULL_TREE : current_this), DECL_CONTEXT (decl), name); if (fs) access = maybe_build_class_init_for_field (decl, access); /* We may be asked to save the real field access node */ if (orig) *orig = access; /* And we return what we got */ return access; } /* Fall down to error report on undefined variable */ } } /* 6.5.5.2 Qualified Expression Names */ else { if (orig) *orig = NULL_TREE; qualify_ambiguous_name (id); /* 15.10.1 Field Access Using a Primary and/or Expression Name */ /* 15.10.2: Accessing Superclass Members using super */ return resolve_field_access (id, orig, NULL); } /* We've got an error here */ if (INNER_CLASS_TYPE_P (current_class)) parse_error_context (id, "Local variable `%s' can't be accessed from within the inner class `%s' unless it is declared final", IDENTIFIER_POINTER (name), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (current_class)))); else parse_error_context (id, "Undefined variable `%s'", IDENTIFIER_POINTER (name)); return error_mark_node; } static void static_ref_err (wfl, field_id, class_type) tree wfl, field_id, class_type; { parse_error_context (wfl, "Can't make a static reference to nonstatic variable `%s' in class `%s'", IDENTIFIER_POINTER (field_id), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (class_type)))); } /* 15.10.1 Field Access Using a Primary and/or Expression Name. We return something suitable to generate the field access. We also return the field decl in FIELD_DECL and its type in FIELD_TYPE. If recipient's address can be null. */ static tree resolve_field_access (qual_wfl, field_decl, field_type) tree qual_wfl; tree *field_decl, *field_type; { int is_static = 0; tree field_ref; tree decl, where_found, type_found; if (resolve_qualified_expression_name (qual_wfl, &decl, &where_found, &type_found)) return error_mark_node; /* Resolve the LENGTH field of an array here */ if (DECL_P (decl) && DECL_NAME (decl) == length_identifier_node && type_found && TYPE_ARRAY_P (type_found) && ! flag_emit_class_files && ! flag_emit_xref) { tree length = build_java_array_length_access (where_found); field_ref = length; /* In case we're dealing with a static array, we need to initialize its class before the array length can be fetched. It's also a good time to create a DECL_RTL for the field if none already exists, otherwise if the field was declared in a class found in an external file and hasn't been (and won't be) accessed for its value, none will be created. */ if (TREE_CODE (where_found) == VAR_DECL && FIELD_STATIC (where_found)) { build_static_field_ref (where_found); field_ref = build_class_init (DECL_CONTEXT (where_found), field_ref); } } /* We might have been trying to resolve field.method(). In which case, the resolution is over and decl is the answer */ else if (JDECL_P (decl) && IDENTIFIER_LOCAL_VALUE (DECL_NAME (decl)) == decl) field_ref = decl; else if (JDECL_P (decl)) { if (!type_found) type_found = DECL_CONTEXT (decl); is_static = FIELD_STATIC (decl); field_ref = build_field_ref ((is_static && !flag_emit_xref? NULL_TREE : where_found), type_found, DECL_NAME (decl)); if (field_ref == error_mark_node) return error_mark_node; if (is_static) field_ref = maybe_build_class_init_for_field (decl, field_ref); } else field_ref = decl; if (field_decl) *field_decl = decl; if (field_type) *field_type = (QUAL_DECL_TYPE (decl) ? QUAL_DECL_TYPE (decl) : TREE_TYPE (decl)); return field_ref; } /* If NODE is an access to f static field, strip out the class initialization part and return the field decl, otherwise, return NODE. */ static tree strip_out_static_field_access_decl (node) tree node; { if (TREE_CODE (node) == COMPOUND_EXPR) { tree op1 = TREE_OPERAND (node, 1); if (TREE_CODE (op1) == COMPOUND_EXPR) { tree call = TREE_OPERAND (op1, 0); if (TREE_CODE (call) == CALL_EXPR && TREE_CODE (TREE_OPERAND (call, 0)) == ADDR_EXPR && TREE_OPERAND (TREE_OPERAND (call, 0), 0) == soft_initclass_node) return TREE_OPERAND (op1, 1); } else if (JDECL_P (op1)) return op1; } return node; } /* 6.5.5.2: Qualified Expression Names */ static int resolve_qualified_expression_name (wfl, found_decl, where_found, type_found) tree wfl; tree *found_decl, *type_found, *where_found; { int from_type = 0; /* Field search initiated from a type */ int from_super = 0, from_cast = 0, from_qualified_this = 0; int previous_call_static = 0; int is_static; tree decl = NULL_TREE, type = NULL_TREE, q; /* For certain for of inner class instantiation */ tree saved_current, saved_this; #define RESTORE_THIS_AND_CURRENT_CLASS \ { current_class = saved_current; current_this = saved_this;} *type_found = *where_found = NULL_TREE; for (q = EXPR_WFL_QUALIFICATION (wfl); q; q = TREE_CHAIN (q)) { tree qual_wfl = QUAL_WFL (q); tree ret_decl; /* for EH checking */ int location; /* for EH checking */ /* 15.10.1 Field Access Using a Primary */ switch (TREE_CODE (qual_wfl)) { case CALL_EXPR: case NEW_CLASS_EXPR: /* If the access to the function call is a non static field, build the code to access it. */ if (JDECL_P (decl) && !FIELD_STATIC (decl)) { decl = maybe_access_field (decl, *where_found, DECL_CONTEXT (decl)); if (decl == error_mark_node) return 1; } /* And code for the function call */ if (complete_function_arguments (qual_wfl)) return 1; /* We might have to setup a new current class and a new this for the search of an inner class, relative to the type of a expression resolved as `decl'. The current values are saved and restored shortly after */ saved_current = current_class; saved_this = current_this; if (decl && (TREE_CODE (qual_wfl) == NEW_CLASS_EXPR || from_qualified_this)) { /* If we still have `from_qualified_this', we have the form .this.f() and we need to build .this */ if (from_qualified_this) { decl = build_access_to_thisn (current_class, type, 0); decl = java_complete_tree (decl); type = TREE_TYPE (TREE_TYPE (decl)); } current_class = type; current_this = decl; from_qualified_this = 0; } if (from_super && TREE_CODE (qual_wfl) == CALL_EXPR) CALL_USING_SUPER (qual_wfl) = 1; location = (TREE_CODE (qual_wfl) == CALL_EXPR ? EXPR_WFL_LINECOL (TREE_OPERAND (qual_wfl, 0)) : 0); *where_found = patch_method_invocation (qual_wfl, decl, type, from_super, &is_static, &ret_decl); from_super = 0; if (*where_found == error_mark_node) { RESTORE_THIS_AND_CURRENT_CLASS; return 1; } *type_found = type = QUAL_DECL_TYPE (*where_found); /* If we're creating an inner class instance, check for that an enclosing instance is in scope */ if (TREE_CODE (qual_wfl) == NEW_CLASS_EXPR && INNER_ENCLOSING_SCOPE_CHECK (type)) { parse_error_context (qual_wfl, "No enclosing instance for inner class `%s' is in scope%s", lang_printable_name (type, 0), (!current_this ? "" : "; an explicit one must be provided when creating this inner class")); RESTORE_THIS_AND_CURRENT_CLASS; return 1; } /* In case we had to change then to resolve a inner class instantiation using a primary qualified by a `new' */ RESTORE_THIS_AND_CURRENT_CLASS; /* EH check. No check on access$ functions */ if (location && !OUTER_FIELD_ACCESS_IDENTIFIER_P (DECL_NAME (current_function_decl))) check_thrown_exceptions (location, ret_decl); /* If the previous call was static and this one is too, build a compound expression to hold the two (because in that case, previous function calls aren't transported as forcoming function's argument. */ if (previous_call_static && is_static) { decl = build (COMPOUND_EXPR, TREE_TYPE (*where_found), decl, *where_found); TREE_SIDE_EFFECTS (decl) = 1; } else { previous_call_static = is_static; decl = *where_found; } from_type = 0; continue; case NEW_ARRAY_EXPR: case NEW_ANONYMOUS_ARRAY_EXPR: *where_found = decl = java_complete_tree (qual_wfl); if (decl == error_mark_node) return 1; *type_found = type = QUAL_DECL_TYPE (decl); continue; case CONVERT_EXPR: *where_found = decl = java_complete_tree (qual_wfl); if (decl == error_mark_node) return 1; *type_found = type = QUAL_DECL_TYPE (decl); from_cast = 1; continue; case CONDITIONAL_EXPR: case STRING_CST: case MODIFY_EXPR: *where_found = decl = java_complete_tree (qual_wfl); if (decl == error_mark_node) return 1; *type_found = type = QUAL_DECL_TYPE (decl); continue; case ARRAY_REF: /* If the access to the function call is a non static field, build the code to access it. */ if (JDECL_P (decl) && !FIELD_STATIC (decl)) { decl = maybe_access_field (decl, *where_found, type); if (decl == error_mark_node) return 1; } /* And code for the array reference expression */ decl = java_complete_tree (qual_wfl); if (decl == error_mark_node) return 1; type = QUAL_DECL_TYPE (decl); continue; case PLUS_EXPR: if ((decl = java_complete_tree (qual_wfl)) == error_mark_node) return 1; if ((type = patch_string (decl))) decl = type; *where_found = QUAL_RESOLUTION (q) = decl; *type_found = type = TREE_TYPE (decl); break; case CLASS_LITERAL: if ((decl = java_complete_tree (qual_wfl)) == error_mark_node) return 1; *where_found = QUAL_RESOLUTION (q) = decl; *type_found = type = TREE_TYPE (decl); break; default: /* Fix for -Wall Just go to the next statement. Don't continue */ break; } /* If we fall here, we weren't processing a (static) function call. */ previous_call_static = 0; /* It can be the keyword THIS */ if (TREE_CODE (qual_wfl) == EXPR_WITH_FILE_LOCATION && EXPR_WFL_NODE (qual_wfl) == this_identifier_node) { if (!current_this) { parse_error_context (wfl, "Keyword `this' used outside allowed context"); return 1; } if (ctxp->explicit_constructor_p && type == current_class) { parse_error_context (wfl, "Can't reference `this' before the superclass constructor has been called"); return 1; } /* We have to generate code for intermediate access */ if (!from_type || TREE_TYPE (TREE_TYPE (current_this)) == type) { *where_found = decl = current_this; *type_found = type = QUAL_DECL_TYPE (decl); } /* We're trying to access the this from somewhere else. Make sure it's allowed before doing so. */ else { if (!enclosing_context_p (type, current_class)) { char *p = xstrdup (lang_printable_name (type, 0)); parse_error_context (qual_wfl, "Can't use variable `%s.this': type `%s' isn't an outer type of type `%s'", p, p, lang_printable_name (current_class, 0)); free (p); return 1; } from_qualified_this = 1; /* If there's nothing else after that, we need to produce something now, otherwise, the section of the code that needs to produce .this will generate what is necessary. */ if (!TREE_CHAIN (q)) { decl = build_access_to_thisn (current_class, type, 0); *where_found = decl = java_complete_tree (decl); *type_found = type = TREE_TYPE (decl); } } from_type = 0; continue; } /* 15.10.2 Accessing Superclass Members using SUPER */ if (TREE_CODE (qual_wfl) == EXPR_WITH_FILE_LOCATION && EXPR_WFL_NODE (qual_wfl) == super_identifier_node) { tree node; /* Check on the restricted use of SUPER */ if (METHOD_STATIC (current_function_decl) || current_class == object_type_node) { parse_error_context (wfl, "Keyword `super' used outside allowed context"); return 1; } /* Otherwise, treat SUPER as (SUPER_CLASS)THIS */ node = build_cast (EXPR_WFL_LINECOL (qual_wfl), CLASSTYPE_SUPER (current_class), build_this (EXPR_WFL_LINECOL (qual_wfl))); *where_found = decl = java_complete_tree (node); if (decl == error_mark_node) return 1; *type_found = type = QUAL_DECL_TYPE (decl); from_super = from_type = 1; continue; } /* 15.13.1: Can't search for field name in packages, so we assume a variable/class name was meant. */ if (RESOLVE_PACKAGE_NAME_P (qual_wfl)) { tree name; if ((decl = resolve_package (wfl, &q, &name))) { tree list; *where_found = decl; /* We want to be absolutely sure that the class is laid out. We're going to search something inside it. */ *type_found = type = TREE_TYPE (decl); layout_class (type); from_type = 1; /* Fix them all the way down, if any are left. */ if (q) { list = TREE_CHAIN (q); while (list) { RESOLVE_EXPRESSION_NAME_P (QUAL_WFL (list)) = 1; RESOLVE_PACKAGE_NAME_P (QUAL_WFL (list)) = 0; list = TREE_CHAIN (list); } } } else { if (from_super || from_cast) parse_error_context ((from_cast ? qual_wfl : wfl), "No variable `%s' defined in class `%s'", IDENTIFIER_POINTER (EXPR_WFL_NODE (qual_wfl)), lang_printable_name (type, 0)); else parse_error_context (qual_wfl, "Undefined variable or class name: `%s'", IDENTIFIER_POINTER (name)); return 1; } } /* We have a type name. It's been already resolved when the expression was qualified. */ else if (RESOLVE_TYPE_NAME_P (qual_wfl) && QUAL_RESOLUTION (q)) { decl = QUAL_RESOLUTION (q); /* Sneak preview. If next we see a `new', we're facing a qualification with resulted in a type being selected instead of a field. Report the error */ if(TREE_CHAIN (q) && TREE_CODE (TREE_PURPOSE (TREE_CHAIN (q))) == NEW_CLASS_EXPR) { parse_error_context (qual_wfl, "Undefined variable `%s'", IDENTIFIER_POINTER (EXPR_WFL_NODE (wfl))); return 1; } if (not_accessible_p (TREE_TYPE (decl), decl, type, 0)) { parse_error_context (qual_wfl, "Can't access %s field `%s.%s' from `%s'", java_accstring_lookup (get_access_flags_from_decl (decl)), GET_TYPE_NAME (type), IDENTIFIER_POINTER (DECL_NAME (decl)), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (current_class)))); return 1; } check_deprecation (qual_wfl, decl); type = TREE_TYPE (decl); from_type = 1; } /* We resolve an expression name */ else { tree field_decl = NULL_TREE; /* If there exists an early resolution, use it. That occurs only once and we know that there are more things to come. Don't do that when processing something after SUPER (we need more thing to be put in place below */ if (!from_super && QUAL_RESOLUTION (q)) { decl = QUAL_RESOLUTION (q); if (!type) { if (TREE_CODE (decl) == FIELD_DECL && !FIELD_STATIC (decl)) { if (current_this) *where_found = current_this; else { static_ref_err (qual_wfl, DECL_NAME (decl), current_class); return 1; } if (outer_field_access_p (current_class, decl)) decl = build_outer_field_access (qual_wfl, decl); } else { *where_found = TREE_TYPE (decl); if (TREE_CODE (*where_found) == POINTER_TYPE) *where_found = TREE_TYPE (*where_found); } } } /* Report and error if we're using a numerical litteral as a qualifier. It can only be an INTEGER_CST. */ else if (TREE_CODE (qual_wfl) == INTEGER_CST) { parse_error_context (wfl, "Can't use type `%s' as a qualifier", lang_printable_name (TREE_TYPE (qual_wfl), 0)); return 1; } /* We have to search for a field, knowing the type of its container. The flag FROM_TYPE indicates that we resolved the last member of the expression as a type name, which means that for the resolution of this field, we'll look for other errors than if it was resolved as a member of an other field. */ else { int is_static; tree field_decl_type; /* For layout */ if (!from_type && !JREFERENCE_TYPE_P (type)) { parse_error_context (qual_wfl, "Attempt to reference field `%s' in `%s %s'", IDENTIFIER_POINTER (EXPR_WFL_NODE (qual_wfl)), lang_printable_name (type, 0), IDENTIFIER_POINTER (DECL_NAME (decl))); return 1; } field_decl = lookup_field_wrapper (type, EXPR_WFL_NODE (qual_wfl)); /* Maybe what we're trying to access to is an inner class, only if decl is a TYPE_DECL. */ if (!field_decl && TREE_CODE (decl) == TYPE_DECL) { tree ptr, inner_decl; BUILD_PTR_FROM_NAME (ptr, EXPR_WFL_NODE (qual_wfl)); inner_decl = resolve_class (decl, ptr, NULL_TREE, qual_wfl); if (inner_decl) { check_inner_class_access (inner_decl, decl, qual_wfl); type = TREE_TYPE (inner_decl); decl = inner_decl; from_type = 1; continue; } } if (field_decl == NULL_TREE) { parse_error_context (qual_wfl, "No variable `%s' defined in type `%s'", IDENTIFIER_POINTER (EXPR_WFL_NODE (qual_wfl)), GET_TYPE_NAME (type)); return 1; } if (field_decl == error_mark_node) return 1; /* Layout the type of field_decl, since we may need it. Don't do primitive types or loaded classes. The situation of non primitive arrays may not handled properly here. FIXME */ if (TREE_CODE (TREE_TYPE (field_decl)) == POINTER_TYPE) field_decl_type = TREE_TYPE (TREE_TYPE (field_decl)); else field_decl_type = TREE_TYPE (field_decl); if (!JPRIMITIVE_TYPE_P (field_decl_type) && !CLASS_LOADED_P (field_decl_type) && !TYPE_ARRAY_P (field_decl_type)) resolve_and_layout (field_decl_type, NULL_TREE); /* Check on accessibility here */ if (not_accessible_p (current_class, field_decl, DECL_CONTEXT (field_decl), from_super)) { parse_error_context (qual_wfl, "Can't access %s field `%s.%s' from `%s'", java_accstring_lookup (get_access_flags_from_decl (field_decl)), GET_TYPE_NAME (type), IDENTIFIER_POINTER (DECL_NAME (field_decl)), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (current_class)))); return 1; } check_deprecation (qual_wfl, field_decl); /* There are things to check when fields are accessed from type. There are no restrictions on a static declaration of the field when it is accessed from an interface */ is_static = FIELD_STATIC (field_decl); if (!from_super && from_type && !TYPE_INTERFACE_P (type) && !is_static && (current_function_decl && METHOD_STATIC (current_function_decl))) { static_ref_err (qual_wfl, EXPR_WFL_NODE (qual_wfl), type); return 1; } from_cast = from_super = 0; /* It's an access from a type but it isn't static, we make it relative to `this'. */ if (!is_static && from_type) decl = current_this; /* If we need to generate something to get a proper handle on what this field is accessed from, do it now. */ if (!is_static) { decl = maybe_access_field (decl, *where_found, *type_found); if (decl == error_mark_node) return 1; } /* We want to keep the location were found it, and the type we found. */ *where_found = decl; *type_found = type; /* Generate the correct expression for field access from qualified this */ if (from_qualified_this) { field_decl = build_outer_field_access (qual_wfl, field_decl); from_qualified_this = 0; } /* This is the decl found and eventually the next one to search from */ decl = field_decl; } from_type = 0; type = QUAL_DECL_TYPE (decl); /* Sneak preview. If decl is qualified by a `new', report the error here to be accurate on the peculiar construct */ if (TREE_CHAIN (q) && TREE_CODE (TREE_PURPOSE (TREE_CHAIN (q))) == NEW_CLASS_EXPR && !JREFERENCE_TYPE_P (type)) { parse_error_context (qual_wfl, "Attempt to reference field `new' in a `%s'", lang_printable_name (type, 0)); return 1; } } /* `q' might have changed due to a after package resolution re-qualification */ if (!q) break; } *found_decl = decl; return 0; } /* 6.6 Qualified name and access control. Returns 1 if MEMBER (a decl) can't be accessed from REFERENCE (a record type). If MEMBER features a protected access, we then use WHERE which, if non null, holds the type of MEMBER's access that is checked against 6.6.2.1. This function should be used when decl is a field or a method. */ static int not_accessible_p (reference, member, where, from_super) tree reference, member; tree where; int from_super; { int access_flag = get_access_flags_from_decl (member); /* Inner classes are processed by check_inner_class_access */ if (INNER_CLASS_TYPE_P (reference)) return 0; /* Access always granted for members declared public */ if (access_flag & ACC_PUBLIC) return 0; /* Check access on protected members */ if (access_flag & ACC_PROTECTED) { /* Access granted if it occurs from within the package containing the class in which the protected member is declared */ if (class_in_current_package (DECL_CONTEXT (member))) return 0; /* If accessed with the form `super.member', then access is granted */ if (from_super) return 0; /* If where is active, access was made through a qualifier. Access is granted if the type of the qualifier is or is a sublass of the type the access made from (6.6.2.1.) */ if (where && !inherits_from_p (reference, where)) return 1; /* Otherwise, access is granted if occurring from the class where member is declared or a subclass of it. Find the right context to perform the check */ if (PURE_INNER_CLASS_TYPE_P (reference)) { while (INNER_CLASS_TYPE_P (reference)) { if (inherits_from_p (reference, DECL_CONTEXT (member))) return 0; reference = TREE_TYPE (DECL_CONTEXT (TYPE_NAME (reference))); } } if (inherits_from_p (reference, DECL_CONTEXT (member))) return 0; return 1; } /* Check access on private members. Access is granted only if it occurs from within the class in which it is declared -- that does it for innerclasses too. */ if (access_flag & ACC_PRIVATE) { if (reference == DECL_CONTEXT (member)) return 0; if (enclosing_context_p (reference, DECL_CONTEXT (member))) return 0; return 1; } /* Default access are permitted only when occurring within the package in which the type (REFERENCE) is declared. In other words, REFERENCE is defined in the current package */ if (ctxp->package) return !class_in_current_package (reference); /* Otherwise, access is granted */ return 0; } /* Test deprecated decl access. */ static void check_deprecation (wfl, decl) tree wfl, decl; { const char *file = DECL_SOURCE_FILE (decl); /* Complain if the field is deprecated and the file it was defined in isn't compiled at the same time the file which contains its use is */ if (DECL_DEPRECATED (decl) && !IS_A_COMMAND_LINE_FILENAME_P (get_identifier (file))) { char the [20]; switch (TREE_CODE (decl)) { case FUNCTION_DECL: strcpy (the, "method"); break; case FIELD_DECL: case VAR_DECL: strcpy (the, "field"); break; case TYPE_DECL: parse_warning_context (wfl, "The class `%s' has been deprecated", IDENTIFIER_POINTER (DECL_NAME (decl))); return; default: abort (); } /* Don't issue a message if the context as been deprecated as a whole. */ if (! CLASS_DEPRECATED (TYPE_NAME (DECL_CONTEXT (decl)))) parse_warning_context (wfl, "The %s `%s' in class `%s' has been deprecated", the, lang_printable_name (decl, 0), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))); } } /* Returns 1 if class was declared in the current package, 0 otherwise */ static GTY(()) tree cicp_cache; static int class_in_current_package (class) tree class; { int qualified_flag; tree left; if (cicp_cache == class) return 1; qualified_flag = QUALIFIED_P (DECL_NAME (TYPE_NAME (class))); /* If the current package is empty and the name of CLASS is qualified, class isn't in the current package. If there is a current package and the name of the CLASS is not qualified, class isn't in the current package */ if ((!ctxp->package && qualified_flag) || (ctxp->package && !qualified_flag)) return 0; /* If there is not package and the name of CLASS isn't qualified, they belong to the same unnamed package */ if (!ctxp->package && !qualified_flag) return 1; /* Compare the left part of the name of CLASS with the package name */ breakdown_qualified (&left, NULL, DECL_NAME (TYPE_NAME (class))); if (ctxp->package == left) { cicp_cache = class; return 1; } return 0; } /* This function may generate code to access DECL from WHERE. This is done only if certain conditions meet. */ static tree maybe_access_field (decl, where, type) tree decl, where, type; { if (TREE_CODE (decl) == FIELD_DECL && decl != current_this && !FIELD_STATIC (decl)) decl = build_field_ref (where ? where : current_this, (type ? type : DECL_CONTEXT (decl)), DECL_NAME (decl)); return decl; } /* Build a method invocation, by patching PATCH. If non NULL and according to the situation, PRIMARY and WHERE may be used. IS_STATIC is set to 1 if the invoked function is static. */ static tree patch_method_invocation (patch, primary, where, from_super, is_static, ret_decl) tree patch, primary, where; int from_super; int *is_static; tree *ret_decl; { tree wfl = TREE_OPERAND (patch, 0); tree args = TREE_OPERAND (patch, 1); tree name = EXPR_WFL_NODE (wfl); tree list; int is_static_flag = 0; int is_super_init = 0; tree this_arg = NULL_TREE; int is_array_clone_call = 0; /* Should be overriden if everything goes well. Otherwise, if something fails, it should keep this value. It stop the evaluation of a bogus assignment. See java_complete_tree, MODIFY_EXPR: for the reasons why we sometimes want to keep on evaluating an assignment */ TREE_TYPE (patch) = error_mark_node; /* Since lookup functions are messing with line numbers, save the context now. */ java_parser_context_save_global (); /* 15.11.1: Compile-Time Step 1: Determine Class or Interface to Search */ /* Resolution of qualified name, excluding constructors */ if (QUALIFIED_P (name) && !CALL_CONSTRUCTOR_P (patch)) { tree identifier, identifier_wfl, type, resolved; /* Extract the last IDENTIFIER of the qualified expression. This is a wfl and we will use it's location data during error report. */ identifier_wfl = cut_identifier_in_qualified (wfl); identifier = EXPR_WFL_NODE (identifier_wfl); /* Given the context, IDENTIFIER is syntactically qualified as a MethodName. We need to qualify what's before */ qualify_ambiguous_name (wfl); resolved = resolve_field_access (wfl, NULL, NULL); if (TREE_CODE (resolved) == VAR_DECL && FIELD_STATIC (resolved) && FIELD_FINAL (resolved) && !inherits_from_p (DECL_CONTEXT (resolved), current_class) && !flag_emit_class_files && !flag_emit_xref) resolved = build_class_init (DECL_CONTEXT (resolved), resolved); if (resolved == error_mark_node) PATCH_METHOD_RETURN_ERROR (); type = GET_SKIP_TYPE (resolved); resolve_and_layout (type, NULL_TREE); if (JPRIMITIVE_TYPE_P (type)) { parse_error_context (identifier_wfl, "Can't invoke a method on primitive type `%s'", IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)))); PATCH_METHOD_RETURN_ERROR (); } list = lookup_method_invoke (0, identifier_wfl, type, identifier, args); args = nreverse (args); /* We're resolving a call from a type */ if (TREE_CODE (resolved) == TYPE_DECL) { if (CLASS_INTERFACE (resolved)) { parse_error_context (identifier_wfl, "Can't make static reference to method `%s' in interface `%s'", IDENTIFIER_POINTER (identifier), IDENTIFIER_POINTER (name)); PATCH_METHOD_RETURN_ERROR (); } if (list && !METHOD_STATIC (list)) { char *fct_name = xstrdup (lang_printable_name (list, 0)); parse_error_context (identifier_wfl, "Can't make static reference to method `%s %s' in class `%s'", lang_printable_name (TREE_TYPE (TREE_TYPE (list)), 0), fct_name, IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)))); free (fct_name); PATCH_METHOD_RETURN_ERROR (); } } else this_arg = primary = resolved; if (TYPE_ARRAY_P (type) && identifier == get_identifier ("clone")) is_array_clone_call = 1; /* IDENTIFIER_WFL will be used to report any problem further */ wfl = identifier_wfl; } /* Resolution of simple names, names generated after a primary: or constructors */ else { tree class_to_search = NULL_TREE; int lc; /* Looking for Constructor */ /* We search constructor in their target class */ if (CALL_CONSTRUCTOR_P (patch)) { if (TREE_CODE (patch) == NEW_CLASS_EXPR) class_to_search = EXPR_WFL_NODE (wfl); else if (EXPR_WFL_NODE (TREE_OPERAND (patch, 0)) == this_identifier_node) class_to_search = NULL_TREE; else if (EXPR_WFL_NODE (TREE_OPERAND (patch, 0)) == super_identifier_node) { is_super_init = 1; if (CLASSTYPE_SUPER (current_class)) class_to_search = DECL_NAME (TYPE_NAME (CLASSTYPE_SUPER (current_class))); else { parse_error_context (wfl, "Can't invoke super constructor on java.lang.Object"); PATCH_METHOD_RETURN_ERROR (); } } /* Class to search is NULL if we're searching the current one */ if (class_to_search) { class_to_search = resolve_and_layout (class_to_search, wfl); if (!class_to_search) { parse_error_context (wfl, "Class `%s' not found in type declaration", IDENTIFIER_POINTER (EXPR_WFL_NODE (wfl))); PATCH_METHOD_RETURN_ERROR (); } /* Can't instantiate an abstract class, but we can invoke it's constructor. It's use within the `new' context is denied here. */ if (CLASS_ABSTRACT (class_to_search) && TREE_CODE (patch) == NEW_CLASS_EXPR) { parse_error_context (wfl, "Class `%s' is an abstract class. It can't be instantiated", IDENTIFIER_POINTER (EXPR_WFL_NODE (wfl))); PATCH_METHOD_RETURN_ERROR (); } class_to_search = TREE_TYPE (class_to_search); } else class_to_search = current_class; lc = 1; } /* This is a regular search in the local class, unless an alternate class is specified. */ else { if (where != NULL_TREE) class_to_search = where; else if (QUALIFIED_P (name)) class_to_search = current_class; else { class_to_search = current_class; for (;;) { if (has_method (class_to_search, name)) break; if (! INNER_CLASS_TYPE_P (class_to_search)) { parse_error_context (wfl, "No method named `%s' in scope", IDENTIFIER_POINTER (name)); PATCH_METHOD_RETURN_ERROR (); } class_to_search = TREE_TYPE (DECL_CONTEXT (TYPE_NAME (class_to_search))); } } lc = 0; } /* NAME is a simple identifier or comes from a primary. Search in the class whose declaration contain the method being invoked. */ resolve_and_layout (class_to_search, NULL_TREE); list = lookup_method_invoke (lc, wfl, class_to_search, name, args); /* Don't continue if no method were found, as the next statement can't be executed then. */ if (!list) PATCH_METHOD_RETURN_ERROR (); if (TYPE_ARRAY_P (class_to_search) && DECL_NAME (list) == get_identifier ("clone")) is_array_clone_call = 1; /* Check for static reference if non static methods */ if (check_for_static_method_reference (wfl, patch, list, class_to_search, primary)) PATCH_METHOD_RETURN_ERROR (); /* Check for inner classes creation from illegal contexts */ if (lc && (INNER_CLASS_TYPE_P (class_to_search) && !CLASS_STATIC (TYPE_NAME (class_to_search))) && INNER_ENCLOSING_SCOPE_CHECK (class_to_search) && !DECL_INIT_P (current_function_decl)) { parse_error_context (wfl, "No enclosing instance for inner class `%s' is in scope%s", lang_printable_name (class_to_search, 0), (!current_this ? "" : "; an explicit one must be provided when creating this inner class")); PATCH_METHOD_RETURN_ERROR (); } /* Non static methods are called with the current object extra argument. If patch a `new TYPE()', the argument is the value returned by the object allocator. If method is resolved as a primary, use the primary otherwise use the current THIS. */ args = nreverse (args); if (TREE_CODE (patch) != NEW_CLASS_EXPR) { this_arg = primary ? primary : current_this; /* If we're using an access method, things are different. There are two familly of cases: 1) We're not generating bytecodes: - LIST is non static. It's invocation is transformed from x(a1,...,an) into this$.x(a1,....an). - LIST is static. It's invocation is transformed from x(a1,...,an) into TYPE_OF(this$).x(a1,....an) 2) We're generating bytecodes: - LIST is non static. It's invocation is transformed from x(a1,....,an) into access$(this$,a1,...,an). - LIST is static. It's invocation is transformed from x(a1,....,an) into TYPE_OF(this$).x(a1,....an). Of course, this$ can be abitrary complex, ranging from this$0 (the immediate outer context) to access$0(access$0(...(this$0))). maybe_use_access_method returns a non zero value if the this_arg has to be moved into the (then generated) stub argument list. In the meantime, the selected function might have be replaced by a generated stub. */ if (!primary && maybe_use_access_method (is_super_init, &list, &this_arg)) { args = tree_cons (NULL_TREE, this_arg, args); this_arg = NULL_TREE; /* So it doesn't get chained twice */ } } } /* Merge point of all resolution schemes. If we have nothing, this is an error, already signaled */ if (!list) PATCH_METHOD_RETURN_ERROR (); /* Check accessibility, position the is_static flag, build and return the call */ if (not_accessible_p (DECL_CONTEXT (current_function_decl), list, (primary ? TREE_TYPE (TREE_TYPE (primary)) : NULL_TREE), from_super) /* Calls to clone() on array types are permitted as a special-case. */ && !is_array_clone_call) { const char *const fct_name = IDENTIFIER_POINTER (DECL_NAME (list)); const char *const access = java_accstring_lookup (get_access_flags_from_decl (list)); const char *const klass = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (list)))); const char *const refklass = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (current_class))); const char *const what = (DECL_CONSTRUCTOR_P (list) ? "constructor" : "method"); /* FIXME: WFL yields the wrong message here but I don't know what else to use. */ parse_error_context (wfl, "Can't access %s %s `%s.%s' from `%s'", access, what, klass, fct_name, refklass); PATCH_METHOD_RETURN_ERROR (); } /* Deprecation check: check whether the method being invoked or the instance-being-created's type are deprecated. */ if (TREE_CODE (patch) == NEW_CLASS_EXPR) check_deprecation (wfl, TYPE_NAME (DECL_CONTEXT (list))); else check_deprecation (wfl, list); /* If invoking a innerclass constructor, there are hidden parameters to pass */ if (TREE_CODE (patch) == NEW_CLASS_EXPR && PURE_INNER_CLASS_TYPE_P (DECL_CONTEXT (list))) { /* And make sure we add the accessed local variables to be saved in field aliases. */ args = build_alias_initializer_parameter_list (AIPL_FUNCTION_CTOR_INVOCATION, DECL_CONTEXT (list), args, NULL); /* Secretly pass the current_this/primary as a second argument */ if (primary || current_this) { tree extra_arg; tree this_type = (current_this ? TREE_TYPE (TREE_TYPE (current_this)) : NULL_TREE); /* Method's (list) enclosing context */ tree mec = DECL_CONTEXT (TYPE_NAME (DECL_CONTEXT (list))); /* If we have a primary, use it. */ if (primary) extra_arg = primary; /* The current `this' is an inner class but isn't a direct enclosing context for the inner class we're trying to create. Build an access to the proper enclosing context and use it. */ else if (current_this && PURE_INNER_CLASS_TYPE_P (this_type) && this_type != TREE_TYPE (mec)) { extra_arg = build_access_to_thisn (current_class, TREE_TYPE (mec), 0); extra_arg = java_complete_tree (extra_arg); } /* Otherwise, just use the current `this' as an enclosing context. */ else extra_arg = current_this; args = tree_cons (NULL_TREE, extra_arg, args); } else args = tree_cons (NULL_TREE, integer_zero_node, args); } /* This handles the situation where a constructor invocation needs to have an enclosing context passed as a second parameter (the constructor is one of an inner class). */ if ((is_super_init || (TREE_CODE (patch) == CALL_EXPR && name == this_identifier_node)) && PURE_INNER_CLASS_TYPE_P (DECL_CONTEXT (list))) { tree dest = TYPE_NAME (DECL_CONTEXT (list)); tree extra_arg = build_access_to_thisn (current_class, DECL_CONTEXT (dest), 0); extra_arg = java_complete_tree (extra_arg); args = tree_cons (NULL_TREE, extra_arg, args); } is_static_flag = METHOD_STATIC (list); if (! is_static_flag && this_arg != NULL_TREE) args = tree_cons (NULL_TREE, this_arg, args); /* In the context of an explicit constructor invocation, we can't invoke any method relying on `this'. Exceptions are: we're invoking a static function, primary exists and is not the current this, we're creating a new object. */ if (ctxp->explicit_constructor_p && !is_static_flag && (!primary || primary == current_this) && (TREE_CODE (patch) != NEW_CLASS_EXPR)) { parse_error_context (wfl, "Can't reference `this' before the superclass constructor has been called"); PATCH_METHOD_RETURN_ERROR (); } java_parser_context_restore_global (); if (is_static) *is_static = is_static_flag; /* Sometimes, we want the decl of the selected method. Such as for EH checking */ if (ret_decl) *ret_decl = list; patch = patch_invoke (patch, list, args); /* Now is a good time to insert the call to finit$ */ if (is_super_init && CLASS_HAS_FINIT_P (current_class)) { tree finit_parms, finit_call; /* Prepare to pass hidden parameters to finit$, if any. */ finit_parms = build_alias_initializer_parameter_list (AIPL_FUNCTION_FINIT_INVOCATION, current_class, NULL_TREE, NULL); finit_call = build_method_invocation (build_wfl_node (finit_identifier_node), finit_parms); /* Generate the code used to initialize fields declared with an initialization statement and build a compound statement along with the super constructor invocation. */ CAN_COMPLETE_NORMALLY (patch) = 1; patch = build (COMPOUND_EXPR, void_type_node, patch, java_complete_tree (finit_call)); } return patch; } /* Check that we're not trying to do a static reference to a method in non static method. Return 1 if it's the case, 0 otherwise. */ static int check_for_static_method_reference (wfl, node, method, where, primary) tree wfl, node, method, where, primary; { if (METHOD_STATIC (current_function_decl) && !METHOD_STATIC (method) && !primary && !CALL_CONSTRUCTOR_P (node)) { char *fct_name = xstrdup (lang_printable_name (method, 0)); parse_error_context (wfl, "Can't make static reference to method `%s %s' in class `%s'", lang_printable_name (TREE_TYPE (TREE_TYPE (method)), 0), fct_name, IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (where)))); free (fct_name); return 1; } return 0; } /* Fix the invocation of *MDECL if necessary in the case of a invocation from an inner class. *THIS_ARG might be modified appropriately and an alternative access to *MDECL might be returned. */ static int maybe_use_access_method (is_super_init, mdecl, this_arg) int is_super_init; tree *mdecl, *this_arg; { tree ctx; tree md = *mdecl, ta = *this_arg; int to_return = 0; int non_static_context = !METHOD_STATIC (md); if (is_super_init || DECL_CONTEXT (md) == current_class || !PURE_INNER_CLASS_TYPE_P (current_class) || DECL_FINIT_P (md) || DECL_INSTINIT_P (md)) return 0; /* If we're calling a method found in an enclosing class, generate what it takes to retrieve the right this. Don't do that if we're invoking a static method. Note that if MD's type is unrelated to CURRENT_CLASS, then the current this can be used. */ if (non_static_context && DECL_CONTEXT (md) != object_type_node) { ctx = TREE_TYPE (DECL_CONTEXT (TYPE_NAME (current_class))); if (inherits_from_p (ctx, DECL_CONTEXT (md))) { ta = build_current_thisn (current_class); ta = build_wfl_node (ta); } else { tree type = ctx; while (type) { maybe_build_thisn_access_method (type); if (inherits_from_p (type, DECL_CONTEXT (md))) { ta = build_access_to_thisn (ctx, type, 0); break; } type = (DECL_CONTEXT (TYPE_NAME (type)) ? TREE_TYPE (DECL_CONTEXT (TYPE_NAME (type))) : NULL_TREE); } } ta = java_complete_tree (ta); } /* We might have to use an access method to get to MD. We can break the method access rule as far as we're not generating bytecode */ if (METHOD_PRIVATE (md) && flag_emit_class_files) { md = build_outer_method_access_method (md); to_return = 1; } *mdecl = md; *this_arg = ta; /* Returnin a non zero value indicates we were doing a non static method invokation that is now a static invocation. It will have callee displace `this' to insert it in the regular argument list. */ return (non_static_context && to_return); } /* Patch an invoke expression METHOD and ARGS, based on its invocation mode. */ static tree patch_invoke (patch, method, args) tree patch, method, args; { tree dtable, func; tree original_call, t, ta; tree check = NULL_TREE; /* Last step for args: convert build-in types. If we're dealing with a new TYPE() type call, the first argument to the constructor isn't found in the incoming argument list, but delivered by `new' */ t = TYPE_ARG_TYPES (TREE_TYPE (method)); if (TREE_CODE (patch) == NEW_CLASS_EXPR) t = TREE_CHAIN (t); for (ta = args; t != end_params_node && ta; t = TREE_CHAIN (t), ta = TREE_CHAIN (ta)) if (JPRIMITIVE_TYPE_P (TREE_TYPE (TREE_VALUE (ta))) && TREE_TYPE (TREE_VALUE (ta)) != TREE_VALUE (t)) TREE_VALUE (ta) = convert (TREE_VALUE (t), TREE_VALUE (ta)); /* Resolve unresolved returned type isses */ t = TREE_TYPE (TREE_TYPE (method)); if (TREE_CODE (t) == POINTER_TYPE && !CLASS_LOADED_P (TREE_TYPE (t))) resolve_and_layout (TREE_TYPE (t), NULL); if (flag_emit_class_files || flag_emit_xref) func = method; else { switch (invocation_mode (method, CALL_USING_SUPER (patch))) { case INVOKE_VIRTUAL: dtable = invoke_build_dtable (0, args); func = build_invokevirtual (dtable, method); break; case INVOKE_NONVIRTUAL: /* If the object for the method call is null, we throw an exception. We don't do this if the object is the current method's `this'. In other cases we just rely on an optimization pass to eliminate redundant checks. */ if (TREE_VALUE (args) != current_this) { /* We use a save_expr here to make sure we only evaluate the new `self' expression once. */ tree save_arg = save_expr (TREE_VALUE (args)); TREE_VALUE (args) = save_arg; check = java_check_reference (save_arg, 1); } /* Fall through. */ case INVOKE_SUPER: case INVOKE_STATIC: { tree signature = build_java_signature (TREE_TYPE (method)); func = build_known_method_ref (method, TREE_TYPE (method), DECL_CONTEXT (method), signature, args); } break; case INVOKE_INTERFACE: dtable = invoke_build_dtable (1, args); func = build_invokeinterface (dtable, method); break; default: abort (); } /* Ensure self_type is initialized, (invokestatic). FIXME */ func = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (method)), func); } TREE_TYPE (patch) = TREE_TYPE (TREE_TYPE (method)); TREE_OPERAND (patch, 0) = func; TREE_OPERAND (patch, 1) = args; patch = check_for_builtin (method, patch); original_call = patch; /* We're processing a `new TYPE ()' form. New is called and its returned value is the first argument to the constructor. We build a COMPOUND_EXPR and use saved expression so that the overall NEW expression value is a pointer to a newly created and initialized class. */ if (TREE_CODE (original_call) == NEW_CLASS_EXPR) { tree class = DECL_CONTEXT (method); tree c1, saved_new, size, new; tree alloc_node; if (flag_emit_class_files || flag_emit_xref) { TREE_TYPE (patch) = build_pointer_type (class); return patch; } if (!TYPE_SIZE (class)) safe_layout_class (class); size = size_in_bytes (class); alloc_node = (class_has_finalize_method (class) ? alloc_object_node : alloc_no_finalizer_node); new = build (CALL_EXPR, promote_type (class), build_address_of (alloc_node), tree_cons (NULL_TREE, build_class_ref (class), build_tree_list (NULL_TREE, size_in_bytes (class))), NULL_TREE); saved_new = save_expr (new); c1 = build_tree_list (NULL_TREE, saved_new); TREE_CHAIN (c1) = TREE_OPERAND (original_call, 1); TREE_OPERAND (original_call, 1) = c1; TREE_SET_CODE (original_call, CALL_EXPR); patch = build (COMPOUND_EXPR, TREE_TYPE (new), patch, saved_new); } /* If CHECK is set, then we are building a check to see if the object is NULL. */ if (check != NULL_TREE) { patch = build (COMPOUND_EXPR, TREE_TYPE (patch), check, patch); TREE_SIDE_EFFECTS (patch) = 1; } /* In order to be able to modify PATCH later, we SAVE_EXPR it and put it as the first expression of a COMPOUND_EXPR. The second expression being an empty statement to be later patched if necessary. We remember a TREE_LIST (the PURPOSE is the method, the VALUE is the compound) in a hashtable and return a COMPOUND_EXPR built so that the result of the evaluation of the original PATCH node is returned. */ if (STATIC_CLASS_INIT_OPT_P () && current_function_decl && METHOD_STATIC (method)) { tree list; tree fndecl = current_function_decl; tree save = save_expr (patch); tree type = TREE_TYPE (patch); patch = build (COMPOUND_EXPR, type, save, empty_stmt_node); list = tree_cons (method, patch, DECL_FUNCTION_STATIC_METHOD_INVOCATION_COMPOUND (fndecl)); DECL_FUNCTION_STATIC_METHOD_INVOCATION_COMPOUND (fndecl) = list; patch = build (COMPOUND_EXPR, type, patch, save); } return patch; } static int invocation_mode (method, super) tree method; int super; { int access = get_access_flags_from_decl (method); if (super) return INVOKE_SUPER; if (access & ACC_STATIC) return INVOKE_STATIC; /* We have to look for a constructor before we handle nonvirtual calls; otherwise the constructor will look nonvirtual. */ if (DECL_CONSTRUCTOR_P (method)) return INVOKE_STATIC; if (access & ACC_FINAL || access & ACC_PRIVATE) return INVOKE_NONVIRTUAL; if (CLASS_FINAL (TYPE_NAME (DECL_CONTEXT (method)))) return INVOKE_NONVIRTUAL; if (CLASS_INTERFACE (TYPE_NAME (DECL_CONTEXT (method)))) return INVOKE_INTERFACE; return INVOKE_VIRTUAL; } /* Retrieve a refined list of matching methods. It covers the step 15.11.2 (Compile-Time Step 2) */ static tree lookup_method_invoke (lc, cl, class, name, arg_list) int lc; tree cl; tree class, name, arg_list; { tree atl = end_params_node; /* Arg Type List */ tree method, signature, list, node; const char *candidates; /* Used for error report */ char *dup; /* Fix the arguments */ for (node = arg_list; node; node = TREE_CHAIN (node)) { tree current_arg = TREE_TYPE (TREE_VALUE (node)); /* Non primitive type may have to be resolved */ if (!JPRIMITIVE_TYPE_P (current_arg)) resolve_and_layout (current_arg, NULL_TREE); /* And promoted */ if (TREE_CODE (current_arg) == RECORD_TYPE) current_arg = promote_type (current_arg); atl = tree_cons (NULL_TREE, current_arg, atl); } /* Presto. If we're dealing with an anonymous class and a constructor call, generate the right constructor now, since we know the arguments' types. */ if (lc && ANONYMOUS_CLASS_P (class)) { tree saved_current_class; tree mdecl = craft_constructor (TYPE_NAME (class), atl); saved_current_class = current_class; current_class = class; fix_constructors (mdecl); current_class = saved_current_class; } /* Find all candidates and then refine the list, searching for the most specific method. */ list = find_applicable_accessible_methods_list (lc, class, name, atl); list = find_most_specific_methods_list (list); if (list && !TREE_CHAIN (list)) return TREE_VALUE (list); /* Issue an error. List candidates if any. Candidates are listed only if accessible (non accessible methods may end-up here for the sake of a better error report). */ candidates = NULL; if (list) { tree current; obstack_grow (&temporary_obstack, ". Candidates are:\n", 18); for (current = list; current; current = TREE_CHAIN (current)) { tree cm = TREE_VALUE (current); char string [4096]; if (!cm || not_accessible_p (class, cm, NULL_TREE, 0)) continue; sprintf (string, " `%s' in `%s'%s", get_printable_method_name (cm), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (cm)))), (TREE_CHAIN (current) ? "\n" : "")); obstack_grow (&temporary_obstack, string, strlen (string)); } obstack_1grow (&temporary_obstack, '\0'); candidates = obstack_finish (&temporary_obstack); } /* Issue the error message */ method = make_node (FUNCTION_TYPE); TYPE_ARG_TYPES (method) = atl; signature = build_java_argument_signature (method); dup = xstrdup (lang_printable_name (class, 0)); parse_error_context (cl, "Can't find %s `%s(%s)' in type `%s'%s", (lc ? "constructor" : "method"), (lc ? dup : IDENTIFIER_POINTER (name)), IDENTIFIER_POINTER (signature), dup, (candidates ? candidates : "")); free (dup); return NULL_TREE; } /* 15.11.2.1: Find Methods that are Applicable and Accessible. LC is 1 when we're looking for a constructor. */ static tree find_applicable_accessible_methods_list (lc, class, name, arglist) int lc; tree class, name, arglist; { static htab_t searched_classes; static int search_not_done = 0; tree list = NULL_TREE, all_list = NULL_TREE; /* Check the hash table to determine if this class has been searched already. */ if (searched_classes) { if (htab_find (searched_classes, class) != NULL) return NULL; } else { searched_classes = htab_create (10, htab_hash_pointer, htab_eq_pointer, NULL); } search_not_done++; *htab_find_slot (searched_classes, class, INSERT) = class; if (!CLASS_LOADED_P (class) && !CLASS_FROM_SOURCE_P (class)) { load_class (class, 1); safe_layout_class (class); } /* Search interfaces */ if (TREE_CODE (TYPE_NAME (class)) == TYPE_DECL && CLASS_INTERFACE (TYPE_NAME (class))) { int i, n; tree basetype_vec = TYPE_BINFO_BASETYPES (class); search_applicable_methods_list (lc, TYPE_METHODS (class), name, arglist, &list, &all_list); n = TREE_VEC_LENGTH (basetype_vec); for (i = 1; i < n; i++) { tree t = BINFO_TYPE (TREE_VEC_ELT (basetype_vec, i)); tree rlist; rlist = find_applicable_accessible_methods_list (lc, t, name, arglist); list = chainon (rlist, list); } } /* Search classes */ else { search_applicable_methods_list (lc, TYPE_METHODS (class), name, arglist, &list, &all_list); /* When looking finit$, class$ or instinit$, we turn LC to 1 so that we only search in class. Note that we should have found something at this point. */ if (ID_FINIT_P (name) || ID_CLASSDOLLAR_P (name) || ID_INSTINIT_P (name)) { lc = 1; if (!list) abort (); } /* We must search all interfaces of this class */ if (!lc) { tree basetype_vec = TYPE_BINFO_BASETYPES (class); int n = TREE_VEC_LENGTH (basetype_vec), i; for (i = 1; i < n; i++) { tree t = BINFO_TYPE (TREE_VEC_ELT (basetype_vec, i)); if (t != object_type_node) { tree rlist = find_applicable_accessible_methods_list (lc, t, name, arglist); list = chainon (rlist, list); } } } /* Search superclass */ if (!lc && CLASSTYPE_SUPER (class) != NULL_TREE) { tree rlist; class = CLASSTYPE_SUPER (class); rlist = find_applicable_accessible_methods_list (lc, class, name, arglist); list = chainon (rlist, list); } } search_not_done--; /* We're done. Reset the searched classes list and finally search java.lang.Object if it wasn't searched already. */ if (!search_not_done) { if (!lc && TYPE_METHODS (object_type_node) && htab_find (searched_classes, object_type_node) == NULL) { search_applicable_methods_list (lc, TYPE_METHODS (object_type_node), name, arglist, &list, &all_list); } htab_delete (searched_classes); searched_classes = NULL; } /* Either return the list obtained or all selected (but inaccessible) methods for better error report. */ return (!list ? all_list : list); } /* Effectively search for the appropriate method in method */ static void search_applicable_methods_list (lc, method, name, arglist, list, all_list) int lc; tree method, name, arglist; tree *list, *all_list; { for (; method; method = TREE_CHAIN (method)) { /* When dealing with constructor, stop here, otherwise search other classes */ if (lc && !DECL_CONSTRUCTOR_P (method)) continue; else if (!lc && (DECL_CONSTRUCTOR_P (method) || (DECL_NAME (method) != name))) continue; if (argument_types_convertible (method, arglist)) { /* Retain accessible methods only */ if (!not_accessible_p (DECL_CONTEXT (current_function_decl), method, NULL_TREE, 0)) *list = tree_cons (NULL_TREE, method, *list); else /* Also retain all selected method here */ *all_list = tree_cons (NULL_TREE, method, *list); } } } /* 15.11.2.2 Choose the Most Specific Method */ static tree find_most_specific_methods_list (list) tree list; { int max = 0; int abstract, candidates; tree current, new_list = NULL_TREE; for (current = list; current; current = TREE_CHAIN (current)) { tree method; DECL_SPECIFIC_COUNT (TREE_VALUE (current)) = 0; for (method = list; method; method = TREE_CHAIN (method)) { tree method_v, current_v; /* Don't test a method against itself */ if (method == current) continue; method_v = TREE_VALUE (method); current_v = TREE_VALUE (current); /* Compare arguments and location where methods where declared */ if (argument_types_convertible (method_v, current_v)) { if (valid_method_invocation_conversion_p (DECL_CONTEXT (method_v), DECL_CONTEXT (current_v)) || (INNER_CLASS_TYPE_P (DECL_CONTEXT (current_v)) && enclosing_context_p (DECL_CONTEXT (method_v), DECL_CONTEXT (current_v)))) { int v = (DECL_SPECIFIC_COUNT (current_v) += (INNER_CLASS_TYPE_P (DECL_CONTEXT (current_v)) ? 2 : 1)); max = (v > max ? v : max); } } } } /* Review the list and select the maximally specific methods */ for (current = list, abstract = -1, candidates = -1; current; current = TREE_CHAIN (current)) if (DECL_SPECIFIC_COUNT (TREE_VALUE (current)) == max) { new_list = tree_cons (NULL_TREE, TREE_VALUE (current), new_list); abstract += (METHOD_ABSTRACT (TREE_VALUE (current)) ? 1 : 0); candidates++; } /* If we have several and they're all abstract, just pick the closest one. */ if (candidates > 0 && (candidates == abstract)) { new_list = nreverse (new_list); TREE_CHAIN (new_list) = NULL_TREE; } /* We have several (we couldn't find a most specific), all but one are abstract, we pick the only non abstract one. */ if (candidates > 0 && (candidates == abstract+1)) { for (current = new_list; current; current = TREE_CHAIN (current)) if (!METHOD_ABSTRACT (TREE_VALUE (current))) { TREE_CHAIN (current) = NULL_TREE; new_list = current; } } /* If we can't find one, lower expectations and try to gather multiple maximally specific methods */ while (!new_list && max) { while (--max > 0) { if (DECL_SPECIFIC_COUNT (TREE_VALUE (current)) == max) new_list = tree_cons (NULL_TREE, TREE_VALUE (current), new_list); } } return new_list; } /* Make sure that the type of each M2_OR_ARGLIST arguments can be converted by method invocation conversion (5.3) to the type of the corresponding parameter of M1. Implementation expects M2_OR_ARGLIST to change less often than M1. */ static GTY(()) tree m2_arg_value; static GTY(()) tree m2_arg_cache; static int argument_types_convertible (m1, m2_or_arglist) tree m1, m2_or_arglist; { register tree m1_arg, m2_arg; SKIP_THIS_AND_ARTIFICIAL_PARMS (m1_arg, m1) if (m2_arg_value == m2_or_arglist) m2_arg = m2_arg_cache; else { /* M2_OR_ARGLIST can be a function DECL or a raw list of argument types */ if (m2_or_arglist && TREE_CODE (m2_or_arglist) == FUNCTION_DECL) { m2_arg = TYPE_ARG_TYPES (TREE_TYPE (m2_or_arglist)); if (!METHOD_STATIC (m2_or_arglist)) m2_arg = TREE_CHAIN (m2_arg); } else m2_arg = m2_or_arglist; m2_arg_value = m2_or_arglist; m2_arg_cache = m2_arg; } while (m1_arg != end_params_node && m2_arg != end_params_node) { resolve_and_layout (TREE_VALUE (m1_arg), NULL_TREE); if (!valid_method_invocation_conversion_p (TREE_VALUE (m1_arg), TREE_VALUE (m2_arg))) break; m1_arg = TREE_CHAIN (m1_arg); m2_arg = TREE_CHAIN (m2_arg); } return m1_arg == end_params_node && m2_arg == end_params_node; } /* Qualification routines */ static void qualify_ambiguous_name (id) tree id; { tree qual, qual_wfl, name = NULL_TREE, decl, ptr_type = NULL_TREE, saved_current_class; int again, super_found = 0, this_found = 0, new_array_found = 0; int code; /* We first qualify the first element, then derive qualification of others based on the first one. If the first element is qualified by a resolution (field or type), this resolution is stored in the QUAL_RESOLUTION of the qual element being examined. We need to save the current_class since the use of SUPER might change the its value. */ saved_current_class = current_class; qual = EXPR_WFL_QUALIFICATION (id); do { /* Simple qualified expression feature a qual_wfl that is a WFL. Expression derived from a primary feature more complicated things like a CALL_EXPR. Expression from primary need to be worked out to extract the part on which the qualification will take place. */ qual_wfl = QUAL_WFL (qual); switch (TREE_CODE (qual_wfl)) { case CALL_EXPR: qual_wfl = TREE_OPERAND (qual_wfl, 0); if (TREE_CODE (qual_wfl) != EXPR_WITH_FILE_LOCATION || (EXPR_WFL_QUALIFICATION (qual_wfl) && TREE_CODE (EXPR_WFL_QUALIFICATION (qual_wfl)) == TREE_LIST)) { qual = EXPR_WFL_QUALIFICATION (qual_wfl); qual_wfl = QUAL_WFL (qual); } break; case NEW_ARRAY_EXPR: case NEW_ANONYMOUS_ARRAY_EXPR: qual = TREE_CHAIN (qual); again = new_array_found = 1; continue; case CONVERT_EXPR: break; case NEW_CLASS_EXPR: qual_wfl = TREE_OPERAND (qual_wfl, 0); break; case ARRAY_REF: while (TREE_CODE (qual_wfl) == ARRAY_REF) qual_wfl = TREE_OPERAND (qual_wfl, 0); break; case STRING_CST: qual = TREE_CHAIN (qual); qual_wfl = QUAL_WFL (qual); break; case CLASS_LITERAL: qual = TREE_CHAIN (qual); qual_wfl = QUAL_WFL (qual); break; default: /* Fix for -Wall. Just break doing nothing */ break; } ptr_type = current_class; again = 0; code = TREE_CODE (qual_wfl); /* Pos evaluation: non WFL leading expression nodes */ if (code == CONVERT_EXPR && TREE_CODE (TREE_TYPE (qual_wfl)) == EXPR_WITH_FILE_LOCATION) name = EXPR_WFL_NODE (TREE_TYPE (qual_wfl)); else if (code == INTEGER_CST) name = qual_wfl; else if (code == CONVERT_EXPR && TREE_CODE (TREE_OPERAND (qual_wfl, 0)) == EXPR_WITH_FILE_LOCATION) name = TREE_OPERAND (qual_wfl, 0); else if (code == CONVERT_EXPR && TREE_CODE (TREE_OPERAND (qual_wfl, 0)) == CALL_EXPR && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (qual_wfl, 0), 0)) == EXPR_WITH_FILE_LOCATION)) name = TREE_OPERAND (TREE_OPERAND (qual_wfl, 0), 0); else if ((code == ARRAY_REF || code == CALL_EXPR || code == MODIFY_EXPR) && TREE_CODE (TREE_OPERAND (qual_wfl, 0)) == EXPR_WITH_FILE_LOCATION) name = EXPR_WFL_NODE (TREE_OPERAND (qual_wfl, 0)); else if (code == TREE_LIST) name = EXPR_WFL_NODE (TREE_PURPOSE (qual_wfl)); else if (code == STRING_CST || code == CONDITIONAL_EXPR || code == PLUS_EXPR) { qual = TREE_CHAIN (qual); qual_wfl = QUAL_WFL (qual); again = 1; } else { name = EXPR_WFL_NODE (qual_wfl); if (!name) { qual = EXPR_WFL_QUALIFICATION (qual_wfl); again = 1; } } /* If we have a THIS (from a primary), we set the context accordingly */ if (name == this_identifier_node) { /* This isn't really elegant. One more added irregularity before I start using COMPONENT_REF (hopefully very soon.) */ if (TREE_CODE (TREE_PURPOSE (qual)) == ARRAY_REF && TREE_CODE (TREE_OPERAND (TREE_PURPOSE (qual), 0)) == EXPR_WITH_FILE_LOCATION && EXPR_WFL_NODE (TREE_OPERAND (TREE_PURPOSE (qual), 0)) == this_identifier_node) { qual = TREE_OPERAND (TREE_PURPOSE (qual), 0); qual = EXPR_WFL_QUALIFICATION (qual); } qual = TREE_CHAIN (qual); qual_wfl = QUAL_WFL (qual); if (TREE_CODE (qual_wfl) == CALL_EXPR) again = 1; else if (TREE_CODE (qual_wfl) == EXPR_WITH_FILE_LOCATION) name = EXPR_WFL_NODE (qual_wfl); else if (TREE_CODE (qual_wfl) == NEW_CLASS_EXPR) name = TREE_OPERAND (qual_wfl, 0); this_found = 1; } /* If we have a SUPER, we set the context accordingly */ if (name == super_identifier_node) { current_class = CLASSTYPE_SUPER (ptr_type); /* Check that there is such a thing as a super class. If not, return. The error will be caught later on, during the resolution */ if (!current_class) { current_class = saved_current_class; return; } qual = TREE_CHAIN (qual); /* Do one more interation to set things up */ super_found = again = 1; } } while (again); /* If name appears within the scope of a local variable declaration or parameter declaration, then it is an expression name. We don't carry this test out if we're in the context of the use of SUPER or THIS */ if (!this_found && !super_found && TREE_CODE (name) != STRING_CST && TREE_CODE (name) != INTEGER_CST && (decl = IDENTIFIER_LOCAL_VALUE (name))) { RESOLVE_EXPRESSION_NAME_P (qual_wfl) = 1; QUAL_RESOLUTION (qual) = decl; } /* If within the class/interface NAME was found to be used there exists a (possibly inherited) field named NAME, then this is an expression name. If we saw a NEW_ARRAY_EXPR before and want to address length, it is OK. */ else if ((decl = lookup_field_wrapper (ptr_type, name)) || name == length_identifier_node) { RESOLVE_EXPRESSION_NAME_P (qual_wfl) = 1; QUAL_RESOLUTION (qual) = (new_array_found ? NULL_TREE : decl); } /* We reclassify NAME as yielding to a type name resolution if: - NAME is a class/interface declared within the compilation unit containing NAME, - NAME is imported via a single-type-import declaration, - NAME is declared in an another compilation unit of the package of the compilation unit containing NAME, - NAME is declared by exactly on type-import-on-demand declaration of the compilation unit containing NAME. - NAME is actually a STRING_CST. This can't happen if the expression was qualified by `this.' */ else if (! this_found && (TREE_CODE (name) == STRING_CST || TREE_CODE (name) == INTEGER_CST || (decl = resolve_and_layout (name, NULL_TREE)))) { RESOLVE_TYPE_NAME_P (qual_wfl) = 1; QUAL_RESOLUTION (qual) = decl; } /* Method call, array references and cast are expression name */ else if (TREE_CODE (QUAL_WFL (qual)) == CALL_EXPR || TREE_CODE (QUAL_WFL (qual)) == ARRAY_REF || TREE_CODE (QUAL_WFL (qual)) == CONVERT_EXPR || TREE_CODE (QUAL_WFL (qual)) == MODIFY_EXPR) RESOLVE_EXPRESSION_NAME_P (qual_wfl) = 1; /* Check here that NAME isn't declared by more than one type-import-on-demand declaration of the compilation unit containing NAME. FIXME */ /* Otherwise, NAME is reclassified as a package name */ else RESOLVE_PACKAGE_NAME_P (qual_wfl) = 1; /* Propagate the qualification accross other components of the qualified name */ for (qual = TREE_CHAIN (qual); qual; qual_wfl = QUAL_WFL (qual), qual = TREE_CHAIN (qual)) { if (RESOLVE_PACKAGE_NAME_P (qual_wfl)) RESOLVE_PACKAGE_NAME_P (QUAL_WFL (qual)) = 1; else RESOLVE_EXPRESSION_NAME_P (QUAL_WFL (qual)) = 1; } /* Store the global qualification for the ambiguous part of ID back into ID fields */ if (RESOLVE_EXPRESSION_NAME_P (qual_wfl)) RESOLVE_EXPRESSION_NAME_P (id) = 1; else if (RESOLVE_TYPE_NAME_P (qual_wfl)) RESOLVE_TYPE_NAME_P (id) = 1; else if (RESOLVE_PACKAGE_NAME_P (qual_wfl)) RESOLVE_PACKAGE_NAME_P (id) = 1; /* Restore the current class */ current_class = saved_current_class; } static int breakdown_qualified (left, right, source) tree *left, *right, source; { char *p, *base; int l = IDENTIFIER_LENGTH (source); base = alloca (l + 1); memcpy (base, IDENTIFIER_POINTER (source), l + 1); /* Breakdown NAME into REMAINDER . IDENTIFIER */ p = base + l - 1; while (*p != '.' && p != base) p--; /* We didn't find a '.'. Return an error */ if (p == base) return 1; *p = '\0'; if (right) *right = get_identifier (p+1); *left = get_identifier (base); return 0; } /* Return TRUE if two classes are from the same package. */ static int in_same_package (name1, name2) tree name1, name2; { tree tmp; tree pkg1; tree pkg2; if (TREE_CODE (name1) == TYPE_DECL) name1 = DECL_NAME (name1); if (TREE_CODE (name2) == TYPE_DECL) name2 = DECL_NAME (name2); if (QUALIFIED_P (name1) != QUALIFIED_P (name2)) /* One in empty package. */ return 0; if (QUALIFIED_P (name1) == 0 && QUALIFIED_P (name2) == 0) /* Both in empty package. */ return 1; breakdown_qualified (&pkg1, &tmp, name1); breakdown_qualified (&pkg2, &tmp, name2); return (pkg1 == pkg2); } /* Patch tree nodes in a function body. When a BLOCK is found, push local variable decls if present. Same as java_complete_lhs, but does resolve static finals to values. */ static tree java_complete_tree (node) tree node; { node = java_complete_lhs (node); if (JDECL_P (node) && CLASS_FINAL_VARIABLE_P (node) && DECL_INITIAL (node) != NULL_TREE && !flag_emit_xref) { tree value = DECL_INITIAL (node); DECL_INITIAL (node) = NULL_TREE; value = fold_constant_for_init (value, node); DECL_INITIAL (node) = value; if (value != NULL_TREE) { /* fold_constant_for_init sometimes widens the original type of the constant (i.e. byte to int). It's not desirable, especially if NODE is a function argument. */ if ((TREE_CODE (value) == INTEGER_CST || TREE_CODE (value) == REAL_CST) && TREE_TYPE (node) != TREE_TYPE (value)) return convert (TREE_TYPE (node), value); else return value; } } return node; } static tree java_stabilize_reference (node) tree node; { if (TREE_CODE (node) == COMPOUND_EXPR) { tree op0 = TREE_OPERAND (node, 0); tree op1 = TREE_OPERAND (node, 1); TREE_OPERAND (node, 0) = save_expr (op0); TREE_OPERAND (node, 1) = java_stabilize_reference (op1); return node; } return stabilize_reference (node); } /* Patch tree nodes in a function body. When a BLOCK is found, push local variable decls if present. Same as java_complete_tree, but does not resolve static finals to values. */ static tree java_complete_lhs (node) tree node; { tree nn, cn, wfl_op1, wfl_op2, wfl_op3; int flag; /* CONVERT_EXPR always has its type set, even though it needs to be worked out. */ if (TREE_TYPE (node) && TREE_CODE (node) != CONVERT_EXPR) return node; /* The switch block implements cases processing container nodes first. Contained nodes are always written back. Leaves come next and return a value. */ switch (TREE_CODE (node)) { case BLOCK: /* 1- Block section. Set the local values on decl names so we can identify them faster when they're referenced. At that stage, identifiers are legal so we don't check for declaration errors. */ for (cn = BLOCK_EXPR_DECLS (node); cn; cn = TREE_CHAIN (cn)) { DECL_CONTEXT (cn) = current_function_decl; IDENTIFIER_LOCAL_VALUE (DECL_NAME (cn)) = cn; } if (BLOCK_EXPR_BODY (node) == NULL_TREE) CAN_COMPLETE_NORMALLY (node) = 1; else { tree stmt = BLOCK_EXPR_BODY (node); tree *ptr; int error_seen = 0; if (TREE_CODE (stmt) == COMPOUND_EXPR) { /* Re-order from (((A; B); C); ...; Z) to (A; (B; (C ; (...; Z)))). This makes it easier to scan the statements left-to-right without using recursion (which might overflow the stack if the block has many statements. */ for (;;) { tree left = TREE_OPERAND (stmt, 0); if (TREE_CODE (left) != COMPOUND_EXPR) break; TREE_OPERAND (stmt, 0) = TREE_OPERAND (left, 1); TREE_OPERAND (left, 1) = stmt; stmt = left; } BLOCK_EXPR_BODY (node) = stmt; } /* Now do the actual complete, without deep recursion for long blocks. */ ptr = &BLOCK_EXPR_BODY (node); while (TREE_CODE (*ptr) == COMPOUND_EXPR && TREE_OPERAND (*ptr, 1) != empty_stmt_node) { tree cur = java_complete_tree (TREE_OPERAND (*ptr, 0)); tree *next = &TREE_OPERAND (*ptr, 1); TREE_OPERAND (*ptr, 0) = cur; if (cur == empty_stmt_node) { /* Optimization; makes it easier to detect empty bodies. Most useful for with all-constant initializer. */ *ptr = *next; continue; } if (TREE_CODE (cur) == ERROR_MARK) error_seen++; else if (! CAN_COMPLETE_NORMALLY (cur)) { wfl_op2 = *next; for (;;) { if (TREE_CODE (wfl_op2) == BLOCK) wfl_op2 = BLOCK_EXPR_BODY (wfl_op2); else if (TREE_CODE (wfl_op2) == COMPOUND_EXPR) wfl_op2 = TREE_OPERAND (wfl_op2, 0); else break; } if (TREE_CODE (wfl_op2) != CASE_EXPR && TREE_CODE (wfl_op2) != DEFAULT_EXPR) unreachable_stmt_error (*ptr); } ptr = next; } *ptr = java_complete_tree (*ptr); if (TREE_CODE (*ptr) == ERROR_MARK || error_seen > 0) return error_mark_node; CAN_COMPLETE_NORMALLY (node) = CAN_COMPLETE_NORMALLY (*ptr); } /* Turn local bindings to null */ for (cn = BLOCK_EXPR_DECLS (node); cn; cn = TREE_CHAIN (cn)) IDENTIFIER_LOCAL_VALUE (DECL_NAME (cn)) = NULL_TREE; TREE_TYPE (node) = void_type_node; break; /* 2- They are expressions but ultimately deal with statements */ case THROW_EXPR: wfl_op1 = TREE_OPERAND (node, 0); COMPLETE_CHECK_OP_0 (node); /* 14.19 A throw statement cannot complete normally. */ CAN_COMPLETE_NORMALLY (node) = 0; return patch_throw_statement (node, wfl_op1); case SYNCHRONIZED_EXPR: wfl_op1 = TREE_OPERAND (node, 0); return patch_synchronized_statement (node, wfl_op1); case TRY_EXPR: return patch_try_statement (node); case TRY_FINALLY_EXPR: COMPLETE_CHECK_OP_0 (node); COMPLETE_CHECK_OP_1 (node); if (TREE_OPERAND (node, 0) == empty_stmt_node) return TREE_OPERAND (node, 1); if (TREE_OPERAND (node, 1) == empty_stmt_node) return TREE_OPERAND (node, 0); CAN_COMPLETE_NORMALLY (node) = (CAN_COMPLETE_NORMALLY (TREE_OPERAND (node, 0)) && CAN_COMPLETE_NORMALLY (TREE_OPERAND (node, 1))); TREE_TYPE (node) = TREE_TYPE (TREE_OPERAND (node, 0)); return node; case LABELED_BLOCK_EXPR: PUSH_LABELED_BLOCK (node); if (LABELED_BLOCK_BODY (node)) COMPLETE_CHECK_OP_1 (node); TREE_TYPE (node) = void_type_node; POP_LABELED_BLOCK (); if (LABELED_BLOCK_BODY (node) == empty_stmt_node) { LABELED_BLOCK_BODY (node) = NULL_TREE; CAN_COMPLETE_NORMALLY (node) = 1; } else if (CAN_COMPLETE_NORMALLY (LABELED_BLOCK_BODY (node))) CAN_COMPLETE_NORMALLY (node) = 1; return node; case EXIT_BLOCK_EXPR: /* We don't complete operand 1, because it's the return value of the EXIT_BLOCK_EXPR which doesn't exist it Java */ return patch_bc_statement (node); case CASE_EXPR: cn = java_complete_tree (TREE_OPERAND (node, 0)); if (cn == error_mark_node) return cn; /* First, the case expression must be constant. Values of final fields are accepted. */ cn = fold (cn); if ((TREE_CODE (cn) == COMPOUND_EXPR || TREE_CODE (cn) == COMPONENT_REF) && JDECL_P (TREE_OPERAND (cn, 1)) && FIELD_FINAL (TREE_OPERAND (cn, 1)) && DECL_INITIAL (TREE_OPERAND (cn, 1))) { cn = fold_constant_for_init (DECL_INITIAL (TREE_OPERAND (cn, 1)), TREE_OPERAND (cn, 1)); } /* Accept final locals too. */ else if (TREE_CODE (cn) == VAR_DECL && DECL_FINAL (cn)) cn = fold_constant_for_init (DECL_INITIAL (cn), cn); if (!TREE_CONSTANT (cn) && !flag_emit_xref) { EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); parse_error_context (node, "Constant expression required"); return error_mark_node; } nn = ctxp->current_loop; /* It must be assignable to the type of the switch expression. */ if (!try_builtin_assignconv (NULL_TREE, TREE_TYPE (TREE_OPERAND (nn, 0)), cn)) { EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); parse_error_context (wfl_operator, "Incompatible type for case. Can't convert `%s' to `int'", lang_printable_name (TREE_TYPE (cn), 0)); return error_mark_node; } cn = fold (convert (int_type_node, cn)); TREE_CONSTANT_OVERFLOW (cn) = 0; CAN_COMPLETE_NORMALLY (cn) = 1; /* Save the label on a list so that we can later check for duplicates. */ case_label_list = tree_cons (node, cn, case_label_list); /* Multiple instance of a case label bearing the same value is checked later. The case expression is all right so far. */ if (TREE_CODE (cn) == VAR_DECL) cn = DECL_INITIAL (cn); TREE_OPERAND (node, 0) = cn; TREE_TYPE (node) = void_type_node; CAN_COMPLETE_NORMALLY (node) = 1; TREE_SIDE_EFFECTS (node) = 1; break; case DEFAULT_EXPR: nn = ctxp->current_loop; /* Only one default label is allowed per switch statement */ if (SWITCH_HAS_DEFAULT (nn)) { EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); parse_error_context (wfl_operator, "Duplicate case label: `default'"); return error_mark_node; } else SWITCH_HAS_DEFAULT (nn) = 1; TREE_TYPE (node) = void_type_node; TREE_SIDE_EFFECTS (node) = 1; CAN_COMPLETE_NORMALLY (node) = 1; break; case SWITCH_EXPR: case LOOP_EXPR: PUSH_LOOP (node); /* Check whether the loop was enclosed in a labeled statement. If not, create one, insert the loop in it and return the node */ nn = patch_loop_statement (node); /* Anyways, walk the body of the loop */ if (TREE_CODE (node) == LOOP_EXPR) TREE_OPERAND (node, 0) = java_complete_tree (TREE_OPERAND (node, 0)); /* Switch statement: walk the switch expression and the cases */ else node = patch_switch_statement (node); if (node == error_mark_node || TREE_OPERAND (node, 0) == error_mark_node) nn = error_mark_node; else { TREE_TYPE (nn) = TREE_TYPE (node) = void_type_node; /* If we returned something different, that's because we inserted a label. Pop the label too. */ if (nn != node) { if (CAN_COMPLETE_NORMALLY (node)) CAN_COMPLETE_NORMALLY (nn) = 1; POP_LABELED_BLOCK (); } } POP_LOOP (); return nn; case EXIT_EXPR: TREE_OPERAND (node, 0) = java_complete_tree (TREE_OPERAND (node, 0)); return patch_exit_expr (node); case COND_EXPR: /* Condition */ TREE_OPERAND (node, 0) = java_complete_tree (TREE_OPERAND (node, 0)); if (TREE_OPERAND (node, 0) == error_mark_node) return error_mark_node; /* then-else branches */ TREE_OPERAND (node, 1) = java_complete_tree (TREE_OPERAND (node, 1)); if (TREE_OPERAND (node, 1) == error_mark_node) return error_mark_node; TREE_OPERAND (node, 2) = java_complete_tree (TREE_OPERAND (node, 2)); if (TREE_OPERAND (node, 2) == error_mark_node) return error_mark_node; return patch_if_else_statement (node); break; case CONDITIONAL_EXPR: /* Condition */ wfl_op1 = TREE_OPERAND (node, 0); COMPLETE_CHECK_OP_0 (node); wfl_op2 = TREE_OPERAND (node, 1); COMPLETE_CHECK_OP_1 (node); wfl_op3 = TREE_OPERAND (node, 2); COMPLETE_CHECK_OP_2 (node); return patch_conditional_expr (node, wfl_op1, wfl_op2); /* 3- Expression section */ case COMPOUND_EXPR: wfl_op2 = TREE_OPERAND (node, 1); TREE_OPERAND (node, 0) = nn = java_complete_tree (TREE_OPERAND (node, 0)); if (wfl_op2 == empty_stmt_node) CAN_COMPLETE_NORMALLY (node) = CAN_COMPLETE_NORMALLY (nn); else { if (! CAN_COMPLETE_NORMALLY (nn) && TREE_CODE (nn) != ERROR_MARK) { /* An unreachable condition in a do-while statement is *not* (technically) an unreachable statement. */ nn = wfl_op2; if (TREE_CODE (nn) == EXPR_WITH_FILE_LOCATION) nn = EXPR_WFL_NODE (nn); if (TREE_CODE (nn) != EXIT_EXPR) { SET_WFL_OPERATOR (wfl_operator, node, wfl_op2); if (SUPPRESS_UNREACHABLE_ERROR (nn)) { /* Perhaps this warning should have an associated flag. The code being compiled is pedantically correct, but useless. */ parse_warning_context (wfl_operator, "Unreachable statement"); } else parse_error_context (wfl_operator, "Unreachable statement"); } } TREE_OPERAND (node, 1) = java_complete_tree (TREE_OPERAND (node, 1)); if (TREE_OPERAND (node, 1) == error_mark_node) return error_mark_node; /* Even though we might allow the case where the first operand doesn't return normally, we still should compute CAN_COMPLETE_NORMALLY correctly. */ CAN_COMPLETE_NORMALLY (node) = (CAN_COMPLETE_NORMALLY (TREE_OPERAND (node, 0)) && CAN_COMPLETE_NORMALLY (TREE_OPERAND (node, 1))); } TREE_TYPE (node) = TREE_TYPE (TREE_OPERAND (node, 1)); break; case RETURN_EXPR: /* CAN_COMPLETE_NORMALLY (node) = 0; */ return patch_return (node); case EXPR_WITH_FILE_LOCATION: if (!EXPR_WFL_NODE (node) /* Or a PRIMARY flag ? */ || TREE_CODE (EXPR_WFL_NODE (node)) == IDENTIFIER_NODE) { tree wfl = node; node = resolve_expression_name (node, NULL); if (node == error_mark_node) return node; /* Keep line number information somewhere were it doesn't disrupt the completion process. */ if (flag_emit_xref && TREE_CODE (node) != CALL_EXPR) { EXPR_WFL_NODE (wfl) = TREE_OPERAND (node, 1); TREE_OPERAND (node, 1) = wfl; } CAN_COMPLETE_NORMALLY (node) = 1; } else { tree body; int save_lineno = lineno; lineno = EXPR_WFL_LINENO (node); body = java_complete_tree (EXPR_WFL_NODE (node)); lineno = save_lineno; EXPR_WFL_NODE (node) = body; TREE_SIDE_EFFECTS (node) = TREE_SIDE_EFFECTS (body); CAN_COMPLETE_NORMALLY (node) = CAN_COMPLETE_NORMALLY (body); if (body == empty_stmt_node || TREE_CONSTANT (body)) { /* Makes it easier to constant fold, detect empty bodies. */ return body; } if (body == error_mark_node) { /* Its important for the evaluation of assignment that this mark on the TREE_TYPE is propagated. */ TREE_TYPE (node) = error_mark_node; return error_mark_node; } else TREE_TYPE (node) = TREE_TYPE (EXPR_WFL_NODE (node)); } break; case NEW_ARRAY_EXPR: /* Patch all the dimensions */ flag = 0; for (cn = TREE_OPERAND (node, 1); cn; cn = TREE_CHAIN (cn)) { int location = EXPR_WFL_LINECOL (TREE_VALUE (cn)); tree dim = convert (int_type_node, java_complete_tree (TREE_VALUE (cn))); if (dim == error_mark_node) { flag = 1; continue; } else { TREE_VALUE (cn) = dim; /* Setup the location of the current dimension, for later error report. */ TREE_PURPOSE (cn) = build_expr_wfl (NULL_TREE, input_filename, 0, 0); EXPR_WFL_LINECOL (TREE_PURPOSE (cn)) = location; } } /* They complete the array creation expression, if no errors were found. */ CAN_COMPLETE_NORMALLY (node) = 1; return (flag ? error_mark_node : force_evaluation_order (patch_newarray (node))); case NEW_ANONYMOUS_ARRAY_EXPR: /* Create the array type if necessary. */ if (ANONYMOUS_ARRAY_DIMS_SIG (node)) { tree type = ANONYMOUS_ARRAY_BASE_TYPE (node); if (!(type = resolve_type_during_patch (type))) return error_mark_node; type = build_array_from_name (type, NULL_TREE, ANONYMOUS_ARRAY_DIMS_SIG (node), NULL); ANONYMOUS_ARRAY_BASE_TYPE (node) = build_pointer_type (type); } node = patch_new_array_init (ANONYMOUS_ARRAY_BASE_TYPE (node), ANONYMOUS_ARRAY_INITIALIZER (node)); if (node == error_mark_node) return error_mark_node; CAN_COMPLETE_NORMALLY (node) = 1; return node; case NEW_CLASS_EXPR: case CALL_EXPR: /* Complete function's argument(s) first */ if (complete_function_arguments (node)) return error_mark_node; else { tree decl, wfl = TREE_OPERAND (node, 0); int in_this = CALL_THIS_CONSTRUCTOR_P (node); int from_super = (EXPR_WFL_NODE (TREE_OPERAND (node, 0)) == super_identifier_node); node = patch_method_invocation (node, NULL_TREE, NULL_TREE, from_super, 0, &decl); if (node == error_mark_node) return error_mark_node; check_thrown_exceptions (EXPR_WFL_LINECOL (node), decl); /* If we call this(...), register signature and positions */ if (in_this) DECL_CONSTRUCTOR_CALLS (current_function_decl) = tree_cons (wfl, decl, DECL_CONSTRUCTOR_CALLS (current_function_decl)); CAN_COMPLETE_NORMALLY (node) = 1; return force_evaluation_order (node); } case MODIFY_EXPR: /* Save potential wfls */ wfl_op1 = TREE_OPERAND (node, 0); TREE_OPERAND (node, 0) = nn = java_complete_lhs (wfl_op1); if (MODIFY_EXPR_FROM_INITIALIZATION_P (node) && TREE_CODE (nn) == VAR_DECL && TREE_STATIC (nn) && DECL_INITIAL (nn) != NULL_TREE) { tree value; value = fold_constant_for_init (nn, nn); /* When we have a primitype type, or a string and we're not emitting a class file, we actually don't want to generate anything for the assignment. */ if (value != NULL_TREE && (JPRIMITIVE_TYPE_P (TREE_TYPE (value)) || (TREE_TYPE (value) == string_ptr_type_node && ! flag_emit_class_files))) { /* Prepare node for patch_assignment */ TREE_OPERAND (node, 1) = value; /* Call patch assignment to verify the assignment */ if (patch_assignment (node, wfl_op1) == error_mark_node) return error_mark_node; /* Set DECL_INITIAL properly (a conversion might have been decided by patch_assignment) and return the empty statement. */ else { tree patched = patch_string (TREE_OPERAND (node, 1)); if (patched) DECL_INITIAL (nn) = patched; else DECL_INITIAL (nn) = TREE_OPERAND (node, 1); DECL_FIELD_FINAL_IUD (nn) = 1; return empty_stmt_node; } } if (! flag_emit_class_files) DECL_INITIAL (nn) = NULL_TREE; } wfl_op2 = TREE_OPERAND (node, 1); if (TREE_OPERAND (node, 0) == error_mark_node) return error_mark_node; flag = COMPOUND_ASSIGN_P (wfl_op2); if (flag) { /* This might break when accessing outer field from inner class. TESTME, FIXME */ tree lvalue = java_stabilize_reference (TREE_OPERAND (node, 0)); /* Hand stabilize the lhs on both places */ TREE_OPERAND (node, 0) = lvalue; TREE_OPERAND (TREE_OPERAND (node, 1), 0) = (flag_emit_class_files ? lvalue : save_expr (lvalue)); /* 15.25.2.a: Left hand is not an array access. FIXME */ /* Now complete the RHS. We write it back later on. */ nn = java_complete_tree (TREE_OPERAND (node, 1)); if ((cn = patch_string (nn))) nn = cn; /* The last part of the rewrite for E1 op= E2 is to have E1 = (T)(E1 op E2), with T being the type of E1. */ nn = java_complete_tree (build_cast (EXPR_WFL_LINECOL (wfl_op2), TREE_TYPE (lvalue), nn)); /* If the assignment is compound and has reference type, then ensure the LHS has type String and nothing else. */ if (JREFERENCE_TYPE_P (TREE_TYPE (lvalue)) && ! JSTRING_TYPE_P (TREE_TYPE (lvalue))) parse_error_context (wfl_op2, "Incompatible type for `+='. Can't convert `%s' to `java.lang.String'", lang_printable_name (TREE_TYPE (lvalue), 0)); /* 15.25.2.b: Left hand is an array access. FIXME */ } /* If we're about to patch a NEW_ARRAY_INIT, we call a special function to complete this RHS. Note that a NEW_ARRAY_INIT might have been already fully expanded if created as a result of processing an anonymous array initializer. We avoid doing the operation twice by testing whether the node already bears a type. */ else if (TREE_CODE (wfl_op2) == NEW_ARRAY_INIT && !TREE_TYPE (wfl_op2)) nn = patch_new_array_init (TREE_TYPE (TREE_OPERAND (node, 0)), TREE_OPERAND (node, 1)); /* Otherwise we simply complete the RHS */ else nn = java_complete_tree (TREE_OPERAND (node, 1)); if (nn == error_mark_node) return error_mark_node; /* Write back the RHS as we evaluated it. */ TREE_OPERAND (node, 1) = nn; /* In case we're handling = with a String as a RHS, we need to produce a String out of the RHS (it might still be a STRING_CST or a StringBuffer at this stage */ if ((nn = patch_string (TREE_OPERAND (node, 1)))) TREE_OPERAND (node, 1) = nn; if ((nn = outer_field_access_fix (wfl_op1, TREE_OPERAND (node, 0), TREE_OPERAND (node, 1)))) { /* We return error_mark_node if outer_field_access_fix detects we write into a final. */ if (nn == error_mark_node) return error_mark_node; node = nn; } else { node = patch_assignment (node, wfl_op1); if (node == error_mark_node) return error_mark_node; /* Reorganize the tree if necessary. */ if (flag && (!JREFERENCE_TYPE_P (TREE_TYPE (node)) || JSTRING_P (TREE_TYPE (node)))) node = java_refold (node); } /* Seek to set DECL_INITIAL to a proper value, since it might have undergone a conversion in patch_assignment. We do that only when it's necessary to have DECL_INITIAL properly set. */ nn = TREE_OPERAND (node, 0); if (TREE_CODE (nn) == VAR_DECL && DECL_INITIAL (nn) && CONSTANT_VALUE_P (DECL_INITIAL (nn)) && FIELD_STATIC (nn) && FIELD_FINAL (nn) && (JPRIMITIVE_TYPE_P (TREE_TYPE (nn)) || TREE_TYPE (nn) == string_ptr_type_node)) DECL_INITIAL (nn) = TREE_OPERAND (node, 1); CAN_COMPLETE_NORMALLY (node) = 1; return node; case MULT_EXPR: case PLUS_EXPR: case MINUS_EXPR: case LSHIFT_EXPR: case RSHIFT_EXPR: case URSHIFT_EXPR: case BIT_AND_EXPR: case BIT_XOR_EXPR: case BIT_IOR_EXPR: case TRUNC_MOD_EXPR: case TRUNC_DIV_EXPR: case RDIV_EXPR: case TRUTH_ANDIF_EXPR: case TRUTH_ORIF_EXPR: case EQ_EXPR: case NE_EXPR: case GT_EXPR: case GE_EXPR: case LT_EXPR: case LE_EXPR: /* Operands 0 and 1 are WFL in certain cases only. patch_binop knows how to handle those cases. */ wfl_op1 = TREE_OPERAND (node, 0); wfl_op2 = TREE_OPERAND (node, 1); CAN_COMPLETE_NORMALLY (node) = 1; /* Don't complete string nodes if dealing with the PLUS operand. */ if (TREE_CODE (node) != PLUS_EXPR || !JSTRING_P (wfl_op1)) { nn = java_complete_tree (wfl_op1); if (nn == error_mark_node) return error_mark_node; TREE_OPERAND (node, 0) = nn; } if (TREE_CODE (node) != PLUS_EXPR || !JSTRING_P (wfl_op2)) { nn = java_complete_tree (wfl_op2); if (nn == error_mark_node) return error_mark_node; TREE_OPERAND (node, 1) = nn; } return force_evaluation_order (patch_binop (node, wfl_op1, wfl_op2)); case INSTANCEOF_EXPR: wfl_op1 = TREE_OPERAND (node, 0); COMPLETE_CHECK_OP_0 (node); if (flag_emit_xref) { TREE_TYPE (node) = boolean_type_node; return node; } return patch_binop (node, wfl_op1, TREE_OPERAND (node, 1)); case UNARY_PLUS_EXPR: case NEGATE_EXPR: case TRUTH_NOT_EXPR: case BIT_NOT_EXPR: case PREDECREMENT_EXPR: case PREINCREMENT_EXPR: case POSTDECREMENT_EXPR: case POSTINCREMENT_EXPR: case CONVERT_EXPR: /* There are cases were wfl_op1 is a WFL. patch_unaryop knows how to handle those cases. */ wfl_op1 = TREE_OPERAND (node, 0); CAN_COMPLETE_NORMALLY (node) = 1; TREE_OPERAND (node, 0) = java_complete_tree (wfl_op1); if (TREE_OPERAND (node, 0) == error_mark_node) return error_mark_node; node = patch_unaryop (node, wfl_op1); CAN_COMPLETE_NORMALLY (node) = 1; break; case ARRAY_REF: /* There are cases were wfl_op1 is a WFL. patch_array_ref knows how to handle those cases. */ wfl_op1 = TREE_OPERAND (node, 0); TREE_OPERAND (node, 0) = java_complete_tree (wfl_op1); if (TREE_OPERAND (node, 0) == error_mark_node) return error_mark_node; if (!flag_emit_class_files && !flag_emit_xref) TREE_OPERAND (node, 0) = save_expr (TREE_OPERAND (node, 0)); /* The same applies to wfl_op2 */ wfl_op2 = TREE_OPERAND (node, 1); TREE_OPERAND (node, 1) = java_complete_tree (wfl_op2); if (TREE_OPERAND (node, 1) == error_mark_node) return error_mark_node; if (!flag_emit_class_files && !flag_emit_xref) TREE_OPERAND (node, 1) = save_expr (TREE_OPERAND (node, 1)); return patch_array_ref (node); case RECORD_TYPE: return node;; case COMPONENT_REF: /* The first step in the re-write of qualified name handling. FIXME. So far, this is only to support PRIMTYPE.class -> PRIMCLASS.TYPE. */ TREE_OPERAND (node, 0) = java_complete_tree (TREE_OPERAND (node, 0)); if (TREE_CODE (TREE_OPERAND (node, 0)) == RECORD_TYPE) { tree name = TREE_OPERAND (node, 1); tree field = lookup_field_wrapper (TREE_OPERAND (node, 0), name); if (field == NULL_TREE) { error ("missing static field `%s'", IDENTIFIER_POINTER (name)); return error_mark_node; } if (! FIELD_STATIC (field)) { error ("not a static field `%s'", IDENTIFIER_POINTER (name)); return error_mark_node; } return field; } else abort (); break; case THIS_EXPR: /* Can't use THIS in a static environment */ if (!current_this) { EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); parse_error_context (wfl_operator, "Keyword `this' used outside allowed context"); TREE_TYPE (node) = error_mark_node; return error_mark_node; } if (ctxp->explicit_constructor_p) { EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); parse_error_context (wfl_operator, "Can't reference `this' or `super' before the superclass constructor has been called"); TREE_TYPE (node) = error_mark_node; return error_mark_node; } return current_this; case CLASS_LITERAL: CAN_COMPLETE_NORMALLY (node) = 1; node = patch_incomplete_class_ref (node); if (node == error_mark_node) return error_mark_node; break; default: CAN_COMPLETE_NORMALLY (node) = 1; /* Ok: may be we have a STRING_CST or a crafted `StringBuffer' and it's time to turn it into the appropriate String object */ if ((nn = patch_string (node))) node = nn; else internal_error ("No case for %s", tree_code_name [TREE_CODE (node)]); } return node; } /* Complete function call's argument. Return a non zero value is an error was found. */ static int complete_function_arguments (node) tree node; { int flag = 0; tree cn; ctxp->explicit_constructor_p += (CALL_EXPLICIT_CONSTRUCTOR_P (node) ? 1 : 0); for (cn = TREE_OPERAND (node, 1); cn; cn = TREE_CHAIN (cn)) { tree wfl = TREE_VALUE (cn), parm, temp; parm = java_complete_tree (wfl); if (parm == error_mark_node) { flag = 1; continue; } /* If have a string literal that we haven't transformed yet or a crafted string buffer, as a result of use of the the String `+' operator. Build `parm.toString()' and expand it. */ if ((temp = patch_string (parm))) parm = temp; TREE_VALUE (cn) = parm; } ctxp->explicit_constructor_p -= (CALL_EXPLICIT_CONSTRUCTOR_P (node) ? 1 : 0); return flag; } /* Sometimes (for loops and variable initialized during their declaration), we want to wrap a statement around a WFL and turn it debugable. */ static tree build_debugable_stmt (location, stmt) int location; tree stmt; { if (TREE_CODE (stmt) != EXPR_WITH_FILE_LOCATION) { stmt = build_expr_wfl (stmt, input_filename, 0, 0); EXPR_WFL_LINECOL (stmt) = location; } JAVA_MAYBE_GENERATE_DEBUG_INFO (stmt); return stmt; } static tree build_expr_block (body, decls) tree body, decls; { tree node = make_node (BLOCK); BLOCK_EXPR_DECLS (node) = decls; BLOCK_EXPR_BODY (node) = body; if (body) TREE_TYPE (node) = TREE_TYPE (body); TREE_SIDE_EFFECTS (node) = 1; return node; } /* Create a new function block and link it appropriately to current function block chain */ static tree enter_block () { tree b = build_expr_block (NULL_TREE, NULL_TREE); /* Link block B supercontext to the previous block. The current function DECL is used as supercontext when enter_a_block is called for the first time for a given function. The current function body (DECL_FUNCTION_BODY) is set to be block B. */ tree fndecl = current_function_decl; if (!fndecl) { BLOCK_SUPERCONTEXT (b) = current_static_block; current_static_block = b; } else if (!DECL_FUNCTION_BODY (fndecl)) { BLOCK_SUPERCONTEXT (b) = fndecl; DECL_FUNCTION_BODY (fndecl) = b; } else { BLOCK_SUPERCONTEXT (b) = DECL_FUNCTION_BODY (fndecl); DECL_FUNCTION_BODY (fndecl) = b; } return b; } /* Exit a block by changing the current function body (DECL_FUNCTION_BODY) to the current block super context, only if the block being exited isn't the method's top level one. */ static tree exit_block () { tree b; if (current_function_decl) { b = DECL_FUNCTION_BODY (current_function_decl); if (BLOCK_SUPERCONTEXT (b) != current_function_decl) DECL_FUNCTION_BODY (current_function_decl) = BLOCK_SUPERCONTEXT (b); } else { b = current_static_block; if (BLOCK_SUPERCONTEXT (b)) current_static_block = BLOCK_SUPERCONTEXT (b); } return b; } /* Lookup for NAME in the nested function's blocks, all the way up to the current toplevel one. It complies with Java's local variable scoping rules. */ static tree lookup_name_in_blocks (name) tree name; { tree b = GET_CURRENT_BLOCK (current_function_decl); while (b != current_function_decl) { tree current; /* Paranoid sanity check. To be removed */ if (TREE_CODE (b) != BLOCK) abort (); for (current = BLOCK_EXPR_DECLS (b); current; current = TREE_CHAIN (current)) if (DECL_NAME (current) == name) return current; b = BLOCK_SUPERCONTEXT (b); } return NULL_TREE; } static void maybe_absorb_scoping_blocks () { while (BLOCK_IS_IMPLICIT (GET_CURRENT_BLOCK (current_function_decl))) { tree b = exit_block (); java_method_add_stmt (current_function_decl, b); SOURCE_FRONTEND_DEBUG (("Absorbing scoping block at line %d", lineno)); } } /* This section of the source is reserved to build_* functions that are building incomplete tree nodes and the patch_* functions that are completing them. */ /* Wrap a non WFL node around a WFL. */ static tree build_wfl_wrap (node, location) tree node; int location; { tree wfl, node_to_insert = node; /* We want to process THIS . xxx symbolicaly, to keep it consistent with the way we're processing SUPER. A THIS from a primary as a different form than a SUPER. Turn THIS into something symbolic */ if (TREE_CODE (node) == THIS_EXPR) node_to_insert = wfl = build_wfl_node (this_identifier_node); else wfl = build_expr_wfl (NULL_TREE, ctxp->filename, 0, 0); EXPR_WFL_LINECOL (wfl) = location; EXPR_WFL_QUALIFICATION (wfl) = build_tree_list (node_to_insert, NULL_TREE); return wfl; } /* Build a super() constructor invocation. Returns empty_stmt_node if we're currently dealing with the class java.lang.Object. */ static tree build_super_invocation (mdecl) tree mdecl; { if (DECL_CONTEXT (mdecl) == object_type_node) return empty_stmt_node; else { tree super_wfl = build_wfl_node (super_identifier_node); tree a = NULL_TREE, t; /* If we're dealing with an anonymous class, pass the arguments of the crafted constructor along. */ if (ANONYMOUS_CLASS_P (DECL_CONTEXT (mdecl))) { SKIP_THIS_AND_ARTIFICIAL_PARMS (t, mdecl); for (; t != end_params_node; t = TREE_CHAIN (t)) a = tree_cons (NULL_TREE, build_wfl_node (TREE_PURPOSE (t)), a); } return build_method_invocation (super_wfl, a); } } /* Build a SUPER/THIS qualified method invocation. */ static tree build_this_super_qualified_invocation (use_this, name, args, lloc, rloc) int use_this; tree name, args; int lloc, rloc; { tree invok; tree wfl = build_wfl_node (use_this ? this_identifier_node : super_identifier_node); EXPR_WFL_LINECOL (wfl) = lloc; invok = build_method_invocation (name, args); return make_qualified_primary (wfl, invok, rloc); } /* Build an incomplete CALL_EXPR node. */ static tree build_method_invocation (name, args) tree name; tree args; { tree call = build (CALL_EXPR, NULL_TREE, name, args, NULL_TREE); TREE_SIDE_EFFECTS (call) = 1; EXPR_WFL_LINECOL (call) = EXPR_WFL_LINECOL (name); return call; } /* Build an incomplete new xxx(...) node. */ static tree build_new_invocation (name, args) tree name, args; { tree call = build (NEW_CLASS_EXPR, NULL_TREE, name, args, NULL_TREE); TREE_SIDE_EFFECTS (call) = 1; EXPR_WFL_LINECOL (call) = EXPR_WFL_LINECOL (name); return call; } /* Build an incomplete assignment expression. */ static tree build_assignment (op, op_location, lhs, rhs) int op, op_location; tree lhs, rhs; { tree assignment; /* Build the corresponding binop if we deal with a Compound Assignment operator. Mark the binop sub-tree as part of a Compound Assignment expression */ if (op != ASSIGN_TK) { rhs = build_binop (BINOP_LOOKUP (op), op_location, lhs, rhs); COMPOUND_ASSIGN_P (rhs) = 1; } assignment = build (MODIFY_EXPR, NULL_TREE, lhs, rhs); TREE_SIDE_EFFECTS (assignment) = 1; EXPR_WFL_LINECOL (assignment) = op_location; return assignment; } /* Print an INTEGER_CST node as decimal in a static buffer, and return the buffer. This is used only for string conversion. */ static char * string_convert_int_cst (node) tree node; { static char buffer[80]; unsigned HOST_WIDE_INT lo = TREE_INT_CST_LOW (node); unsigned HOST_WIDE_INT hi = TREE_INT_CST_HIGH (node); char *p = buffer + sizeof (buffer) - 1; int neg = 0; unsigned HOST_WIDE_INT hibit = (((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1)); *p-- = '\0'; /* If negative, note the fact and negate the value. */ if ((hi & hibit)) { lo = ~lo; hi = ~hi; if (++lo == 0) ++hi; neg = 1; } /* Divide by 10 until there are no bits left. */ while (hi || lo) { unsigned HOST_WIDE_INT acc = 0; unsigned HOST_WIDE_INT outhi = 0, outlo = 0; unsigned int i; /* Use long division to compute the result and the remainder. */ for (i = 0; i < 2 * HOST_BITS_PER_WIDE_INT; ++i) { /* Shift a bit into accumulator. */ acc <<= 1; if ((hi & hibit)) acc |= 1; /* Shift the value. */ hi <<= 1; if ((lo & hibit)) hi |= 1; lo <<= 1; /* Shift the correct bit into the result. */ outhi <<= 1; if ((outlo & hibit)) outhi |= 1; outlo <<= 1; if (acc >= 10) { acc -= 10; outlo |= 1; } } /* FIXME: ASCII assumption. */ *p-- = '0' + acc; hi = outhi; lo = outlo; } if (neg) *p-- = '-'; return p + 1; } /* Print an INTEGER_CST node in a static buffer, and return the buffer. This is used only for error handling. */ char * print_int_node (node) tree node; { static char buffer [80]; if (TREE_CONSTANT_OVERFLOW (node)) sprintf (buffer, ""); if (TREE_INT_CST_HIGH (node) == 0) sprintf (buffer, HOST_WIDE_INT_PRINT_UNSIGNED, TREE_INT_CST_LOW (node)); else if (TREE_INT_CST_HIGH (node) == -1 && TREE_INT_CST_LOW (node) != 0) { buffer [0] = '-'; sprintf (&buffer [1], HOST_WIDE_INT_PRINT_UNSIGNED, -TREE_INT_CST_LOW (node)); } else sprintf (buffer, HOST_WIDE_INT_PRINT_DOUBLE_HEX, TREE_INT_CST_HIGH (node), TREE_INT_CST_LOW (node)); return buffer; } /* Return 1 if an assignment to a FINAL is attempted in a non suitable context. */ /* 15.25 Assignment operators. */ static tree patch_assignment (node, wfl_op1) tree node; tree wfl_op1; { tree rhs = TREE_OPERAND (node, 1); tree lvalue = TREE_OPERAND (node, 0), llvalue; tree lhs_type = NULL_TREE, rhs_type, new_rhs = NULL_TREE; int error_found = 0; int lvalue_from_array = 0; int is_return = 0; EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); /* Lhs can be a named variable */ if (JDECL_P (lvalue)) { lhs_type = TREE_TYPE (lvalue); } /* Or Lhs can be an array access. */ else if (TREE_CODE (lvalue) == ARRAY_REF) { lhs_type = TREE_TYPE (lvalue); lvalue_from_array = 1; } /* Or a field access */ else if (TREE_CODE (lvalue) == COMPONENT_REF) lhs_type = TREE_TYPE (lvalue); /* Or a function return slot */ else if (TREE_CODE (lvalue) == RESULT_DECL) { /* If the return type is an integral type, then we create the RESULT_DECL with a promoted type, but we need to do these checks against the unpromoted type to ensure type safety. So here we look at the real type, not the type of the decl we are modifying. */ lhs_type = TREE_TYPE (TREE_TYPE (current_function_decl)); is_return = 1; } /* Otherwise, we might want to try to write into an optimized static final, this is an of a different nature, reported further on. */ else if (TREE_CODE (wfl_op1) == EXPR_WITH_FILE_LOCATION && resolve_expression_name (wfl_op1, &llvalue)) { lhs_type = TREE_TYPE (lvalue); } else { parse_error_context (wfl_op1, "Invalid left hand side of assignment"); error_found = 1; } rhs_type = TREE_TYPE (rhs); /* 5.1 Try the assignment conversion for builtin type. */ new_rhs = try_builtin_assignconv (wfl_op1, lhs_type, rhs); /* 5.2 If it failed, try a reference conversion */ if (!new_rhs && (new_rhs = try_reference_assignconv (lhs_type, rhs))) lhs_type = promote_type (rhs_type); /* 15.25.2 If we have a compound assignment, convert RHS into the type of the LHS */ else if (COMPOUND_ASSIGN_P (TREE_OPERAND (node, 1))) new_rhs = convert (lhs_type, rhs); /* Explicit cast required. This is an error */ if (!new_rhs) { char *t1 = xstrdup (lang_printable_name (TREE_TYPE (rhs), 0)); char *t2 = xstrdup (lang_printable_name (lhs_type, 0)); tree wfl; char operation [32]; /* Max size known */ /* If the assignment is part of a declaration, we use the WFL of the declared variable to point out the error and call it a declaration problem. If the assignment is a genuine = operator, we call is a operator `=' problem, otherwise we call it an assignment problem. In both of these last cases, we use the WFL of the operator to indicate the error. */ if (MODIFY_EXPR_FROM_INITIALIZATION_P (node)) { wfl = wfl_op1; strcpy (operation, "declaration"); } else { wfl = wfl_operator; if (COMPOUND_ASSIGN_P (TREE_OPERAND (node, 1))) strcpy (operation, "assignment"); else if (is_return) strcpy (operation, "`return'"); else strcpy (operation, "`='"); } if (!valid_cast_to_p (rhs_type, lhs_type)) parse_error_context (wfl, "Incompatible type for %s. Can't convert `%s' to `%s'", operation, t1, t2); else parse_error_context (wfl, "Incompatible type for %s. Explicit cast needed to convert `%s' to `%s'", operation, t1, t2); free (t1); free (t2); error_found = 1; } if (error_found) return error_mark_node; /* If we're processing a `return' statement, promote the actual type to the promoted type. */ if (is_return) new_rhs = convert (TREE_TYPE (lvalue), new_rhs); /* 10.10: Array Store Exception runtime check */ if (!flag_emit_class_files && !flag_emit_xref && lvalue_from_array && JREFERENCE_TYPE_P (TYPE_ARRAY_ELEMENT (lhs_type))) { tree array, store_check, base, index_expr; /* Save RHS so that it doesn't get re-evaluated by the store check. */ new_rhs = save_expr (new_rhs); /* Get the INDIRECT_REF. */ array = TREE_OPERAND (TREE_OPERAND (lvalue, 0), 0); /* Get the array pointer expr. */ array = TREE_OPERAND (array, 0); store_check = build_java_arraystore_check (array, new_rhs); index_expr = TREE_OPERAND (lvalue, 1); if (TREE_CODE (index_expr) == COMPOUND_EXPR) { /* A COMPOUND_EXPR here is a bounds check. The bounds check must happen before the store check, so prepare to insert the store check within the second operand of the existing COMPOUND_EXPR. */ base = index_expr; } else base = lvalue; index_expr = TREE_OPERAND (base, 1); TREE_OPERAND (base, 1) = build (COMPOUND_EXPR, TREE_TYPE (index_expr), store_check, index_expr); } /* Final locals can be used as case values in switch statement. Prepare them for this eventuality. */ if (TREE_CODE (lvalue) == VAR_DECL && DECL_FINAL (lvalue) && TREE_CONSTANT (new_rhs) && IDENTIFIER_LOCAL_VALUE (DECL_NAME (lvalue)) && JINTEGRAL_TYPE_P (TREE_TYPE (lvalue)) ) { TREE_CONSTANT (lvalue) = 1; DECL_INITIAL (lvalue) = new_rhs; } TREE_OPERAND (node, 0) = lvalue; TREE_OPERAND (node, 1) = new_rhs; TREE_TYPE (node) = lhs_type; return node; } /* Check that type SOURCE can be cast into type DEST. If the cast can't occur at all, return NULL; otherwise, return a possibly modified rhs. */ static tree try_reference_assignconv (lhs_type, rhs) tree lhs_type, rhs; { tree new_rhs = NULL_TREE; tree rhs_type = TREE_TYPE (rhs); if (!JPRIMITIVE_TYPE_P (rhs_type) && JREFERENCE_TYPE_P (lhs_type)) { /* `null' may be assigned to any reference type */ if (rhs == null_pointer_node) new_rhs = null_pointer_node; /* Try the reference assignment conversion */ else if (valid_ref_assignconv_cast_p (rhs_type, lhs_type, 0)) new_rhs = rhs; /* This is a magic assignment that we process differently */ else if (TREE_CODE (rhs) == JAVA_EXC_OBJ_EXPR) new_rhs = rhs; } return new_rhs; } /* Check that RHS can be converted into LHS_TYPE by the assignment conversion (5.2), for the cases of RHS being a builtin type. Return NULL_TREE if the conversion fails or if because RHS isn't of a builtin type. Return a converted RHS if the conversion is possible. */ static tree try_builtin_assignconv (wfl_op1, lhs_type, rhs) tree wfl_op1, lhs_type, rhs; { tree new_rhs = NULL_TREE; tree rhs_type = TREE_TYPE (rhs); /* Handle boolean specially. */ if (TREE_CODE (rhs_type) == BOOLEAN_TYPE || TREE_CODE (lhs_type) == BOOLEAN_TYPE) { if (TREE_CODE (rhs_type) == BOOLEAN_TYPE && TREE_CODE (lhs_type) == BOOLEAN_TYPE) new_rhs = rhs; } /* 5.1.1 Try Identity Conversion, 5.1.2 Try Widening Primitive Conversion */ else if (valid_builtin_assignconv_identity_widening_p (lhs_type, rhs_type)) new_rhs = convert (lhs_type, rhs); /* Try a narrowing primitive conversion (5.1.3): - expression is a constant expression of type int AND - variable is byte, short or char AND - The value of the expression is representable in the type of the variable */ else if (rhs_type == int_type_node && TREE_CONSTANT (rhs) && (lhs_type == byte_type_node || lhs_type == char_type_node || lhs_type == short_type_node)) { if (int_fits_type_p (rhs, lhs_type)) new_rhs = convert (lhs_type, rhs); else if (wfl_op1) /* Might be called with a NULL */ parse_warning_context (wfl_op1, "Constant expression `%s' too wide for narrowing primitive conversion to `%s'", print_int_node (rhs), lang_printable_name (lhs_type, 0)); /* Reported a warning that will turn into an error further down, so we don't return */ } return new_rhs; } /* Return 1 if RHS_TYPE can be converted to LHS_TYPE by identity conversion (5.1.1) or widening primitive conversion (5.1.2). Return 0 is the conversion test fails. This implements parts the method invocation convertion (5.3). */ static int valid_builtin_assignconv_identity_widening_p (lhs_type, rhs_type) tree lhs_type, rhs_type; { /* 5.1.1: This is the identity conversion part. */ if (lhs_type == rhs_type) return 1; /* Reject non primitive types and boolean conversions. */ if (!JNUMERIC_TYPE_P (lhs_type) || !JNUMERIC_TYPE_P (rhs_type)) return 0; /* 5.1.2: widening primitive conversion. byte, even if it's smaller than a char can't be converted into a char. Short can't too, but the < test below takes care of that */ if (lhs_type == char_type_node && rhs_type == byte_type_node) return 0; /* Accept all promoted type here. Note, we can't use <= in the test below, because we still need to bounce out assignments of short to char and the likes */ if (lhs_type == int_type_node && (rhs_type == promoted_byte_type_node || rhs_type == promoted_short_type_node || rhs_type == promoted_char_type_node || rhs_type == promoted_boolean_type_node)) return 1; /* From here, an integral is widened if its precision is smaller than the precision of the LHS or if the LHS is a floating point type, or the RHS is a float and the RHS a double. */ if ((JINTEGRAL_TYPE_P (rhs_type) && JINTEGRAL_TYPE_P (lhs_type) && (TYPE_PRECISION (rhs_type) < TYPE_PRECISION (lhs_type))) || (JINTEGRAL_TYPE_P (rhs_type) && JFLOAT_TYPE_P (lhs_type)) || (rhs_type == float_type_node && lhs_type == double_type_node)) return 1; return 0; } /* Check that something of SOURCE type can be assigned or cast to something of DEST type at runtime. Return 1 if the operation is valid, 0 otherwise. If CAST is set to 1, we're treating the case were SOURCE is cast into DEST, which borrows a lot of the assignment check. */ static int valid_ref_assignconv_cast_p (source, dest, cast) tree source; tree dest; int cast; { /* SOURCE or DEST might be null if not from a declared entity. */ if (!source || !dest) return 0; if (JNULLP_TYPE_P (source)) return 1; if (TREE_CODE (source) == POINTER_TYPE) source = TREE_TYPE (source); if (TREE_CODE (dest) == POINTER_TYPE) dest = TREE_TYPE (dest); /* If source and dest are being compiled from bytecode, they may need to be loaded. */ if (CLASS_P (source) && !CLASS_LOADED_P (source)) { load_class (source, 1); safe_layout_class (source); } if (CLASS_P (dest) && !CLASS_LOADED_P (dest)) { load_class (dest, 1); safe_layout_class (dest); } /* Case where SOURCE is a class type */ if (TYPE_CLASS_P (source)) { if (TYPE_CLASS_P (dest)) return (source == dest || inherits_from_p (source, dest) || (cast && inherits_from_p (dest, source))); if (TYPE_INTERFACE_P (dest)) { /* If doing a cast and SOURCE is final, the operation is always correct a compile time (because even if SOURCE does not implement DEST, a subclass of SOURCE might). */ if (cast && !CLASS_FINAL (TYPE_NAME (source))) return 1; /* Otherwise, SOURCE must implement DEST */ return interface_of_p (dest, source); } /* DEST is an array, cast permited if SOURCE is of Object type */ return (cast && source == object_type_node ? 1 : 0); } if (TYPE_INTERFACE_P (source)) { if (TYPE_CLASS_P (dest)) { /* If not casting, DEST must be the Object type */ if (!cast) return dest == object_type_node; /* We're doing a cast. The cast is always valid is class DEST is not final, otherwise, DEST must implement SOURCE */ else if (!CLASS_FINAL (TYPE_NAME (dest))) return 1; else return interface_of_p (source, dest); } if (TYPE_INTERFACE_P (dest)) { /* If doing a cast, then if SOURCE and DEST contain method with the same signature but different return type, then this is a (compile time) error */ if (cast) { tree method_source, method_dest; tree source_type; tree source_sig; tree source_name; for (method_source = TYPE_METHODS (source); method_source; method_source = TREE_CHAIN (method_source)) { source_sig = build_java_argument_signature (TREE_TYPE (method_source)); source_type = TREE_TYPE (TREE_TYPE (method_source)); source_name = DECL_NAME (method_source); for (method_dest = TYPE_METHODS (dest); method_dest; method_dest = TREE_CHAIN (method_dest)) if (source_sig == build_java_argument_signature (TREE_TYPE (method_dest)) && source_name == DECL_NAME (method_dest) && source_type != TREE_TYPE (TREE_TYPE (method_dest))) return 0; } return 1; } else return source == dest || interface_of_p (dest, source); } else { /* Array */ return (cast && (DECL_NAME (TYPE_NAME (source)) == java_lang_cloneable || (DECL_NAME (TYPE_NAME (source)) == java_io_serializable))); } } if (TYPE_ARRAY_P (source)) { if (TYPE_CLASS_P (dest)) return dest == object_type_node; /* Can't cast an array to an interface unless the interface is java.lang.Cloneable or java.io.Serializable. */ if (TYPE_INTERFACE_P (dest)) return (DECL_NAME (TYPE_NAME (dest)) == java_lang_cloneable || DECL_NAME (TYPE_NAME (dest)) == java_io_serializable); else /* Arrays */ { tree source_element_type = TYPE_ARRAY_ELEMENT (source); tree dest_element_type = TYPE_ARRAY_ELEMENT (dest); /* In case of severe errors, they turn out null */ if (!dest_element_type || !source_element_type) return 0; if (source_element_type == dest_element_type) return 1; return valid_ref_assignconv_cast_p (source_element_type, dest_element_type, cast); } return 0; } return 0; } static int valid_cast_to_p (source, dest) tree source; tree dest; { if (TREE_CODE (source) == POINTER_TYPE) source = TREE_TYPE (source); if (TREE_CODE (dest) == POINTER_TYPE) dest = TREE_TYPE (dest); if (TREE_CODE (source) == RECORD_TYPE && TREE_CODE (dest) == RECORD_TYPE) return valid_ref_assignconv_cast_p (source, dest, 1); else if (JNUMERIC_TYPE_P (source) && JNUMERIC_TYPE_P (dest)) return 1; else if (TREE_CODE (source) == BOOLEAN_TYPE && TREE_CODE (dest) == BOOLEAN_TYPE) return 1; return 0; } static tree do_unary_numeric_promotion (arg) tree arg; { tree type = TREE_TYPE (arg); if ((TREE_CODE (type) == INTEGER_TYPE && TYPE_PRECISION (type) < 32) || TREE_CODE (type) == CHAR_TYPE) arg = convert (int_type_node, arg); return arg; } /* Return a non zero value if SOURCE can be converted into DEST using the method invocation conversion rule (5.3). */ static int valid_method_invocation_conversion_p (dest, source) tree dest, source; { return ((JPRIMITIVE_TYPE_P (source) && JPRIMITIVE_TYPE_P (dest) && valid_builtin_assignconv_identity_widening_p (dest, source)) || ((JREFERENCE_TYPE_P (source) || JNULLP_TYPE_P (source)) && (JREFERENCE_TYPE_P (dest) || JNULLP_TYPE_P (dest)) && valid_ref_assignconv_cast_p (source, dest, 0))); } /* Build an incomplete binop expression. */ static tree build_binop (op, op_location, op1, op2) enum tree_code op; int op_location; tree op1, op2; { tree binop = build (op, NULL_TREE, op1, op2); TREE_SIDE_EFFECTS (binop) = 1; /* Store the location of the operator, for better error report. The string of the operator will be rebuild based on the OP value. */ EXPR_WFL_LINECOL (binop) = op_location; return binop; } /* Build the string of the operator retained by NODE. If NODE is part of a compound expression, add an '=' at the end of the string. This function is called when an error needs to be reported on an operator. The string is returned as a pointer to a static character buffer. */ static char * operator_string (node) tree node; { #define BUILD_OPERATOR_STRING(S) \ { \ sprintf (buffer, "%s%s", S, (COMPOUND_ASSIGN_P (node) ? "=" : "")); \ return buffer; \ } static char buffer [10]; switch (TREE_CODE (node)) { case MULT_EXPR: BUILD_OPERATOR_STRING ("*"); case RDIV_EXPR: BUILD_OPERATOR_STRING ("/"); case TRUNC_MOD_EXPR: BUILD_OPERATOR_STRING ("%"); case PLUS_EXPR: BUILD_OPERATOR_STRING ("+"); case MINUS_EXPR: BUILD_OPERATOR_STRING ("-"); case LSHIFT_EXPR: BUILD_OPERATOR_STRING ("<<"); case RSHIFT_EXPR: BUILD_OPERATOR_STRING (">>"); case URSHIFT_EXPR: BUILD_OPERATOR_STRING (">>>"); case BIT_AND_EXPR: BUILD_OPERATOR_STRING ("&"); case BIT_XOR_EXPR: BUILD_OPERATOR_STRING ("^"); case BIT_IOR_EXPR: BUILD_OPERATOR_STRING ("|"); case TRUTH_ANDIF_EXPR: BUILD_OPERATOR_STRING ("&&"); case TRUTH_ORIF_EXPR: BUILD_OPERATOR_STRING ("||"); case EQ_EXPR: BUILD_OPERATOR_STRING ("=="); case NE_EXPR: BUILD_OPERATOR_STRING ("!="); case GT_EXPR: BUILD_OPERATOR_STRING (">"); case GE_EXPR: BUILD_OPERATOR_STRING (">="); case LT_EXPR: BUILD_OPERATOR_STRING ("<"); case LE_EXPR: BUILD_OPERATOR_STRING ("<="); case UNARY_PLUS_EXPR: BUILD_OPERATOR_STRING ("+"); case NEGATE_EXPR: BUILD_OPERATOR_STRING ("-"); case TRUTH_NOT_EXPR: BUILD_OPERATOR_STRING ("!"); case BIT_NOT_EXPR: BUILD_OPERATOR_STRING ("~"); case PREINCREMENT_EXPR: /* Fall through */ case POSTINCREMENT_EXPR: BUILD_OPERATOR_STRING ("++"); case PREDECREMENT_EXPR: /* Fall through */ case POSTDECREMENT_EXPR: BUILD_OPERATOR_STRING ("--"); default: internal_error ("unregistered operator %s", tree_code_name [TREE_CODE (node)]); } return NULL; #undef BUILD_OPERATOR_STRING } /* Return 1 if VAR_ACCESS1 is equivalent to VAR_ACCESS2. */ static int java_decl_equiv (var_acc1, var_acc2) tree var_acc1, var_acc2; { if (JDECL_P (var_acc1)) return (var_acc1 == var_acc2); return (TREE_CODE (var_acc1) == COMPONENT_REF && TREE_CODE (var_acc2) == COMPONENT_REF && TREE_OPERAND (TREE_OPERAND (var_acc1, 0), 0) == TREE_OPERAND (TREE_OPERAND (var_acc2, 0), 0) && TREE_OPERAND (var_acc1, 1) == TREE_OPERAND (var_acc2, 1)); } /* Return a non zero value if CODE is one of the operators that can be used in conjunction with the `=' operator in a compound assignment. */ static int binop_compound_p (code) enum tree_code code; { int i; for (i = 0; i < BINOP_COMPOUND_CANDIDATES; i++) if (binop_lookup [i] == code) break; return i < BINOP_COMPOUND_CANDIDATES; } /* Reorganize after a fold to get SAVE_EXPR to generate what we want. */ static tree java_refold (t) tree t; { tree c, b, ns, decl; if (TREE_CODE (t) != MODIFY_EXPR) return t; c = TREE_OPERAND (t, 1); if (! (c && TREE_CODE (c) == COMPOUND_EXPR && TREE_CODE (TREE_OPERAND (c, 0)) == MODIFY_EXPR && binop_compound_p (TREE_CODE (TREE_OPERAND (c, 1))))) return t; /* Now the left branch of the binary operator. */ b = TREE_OPERAND (TREE_OPERAND (c, 1), 0); if (! (b && TREE_CODE (b) == NOP_EXPR && TREE_CODE (TREE_OPERAND (b, 0)) == SAVE_EXPR)) return t; ns = TREE_OPERAND (TREE_OPERAND (b, 0), 0); if (! (ns && TREE_CODE (ns) == NOP_EXPR && TREE_CODE (TREE_OPERAND (ns, 0)) == SAVE_EXPR)) return t; decl = TREE_OPERAND (TREE_OPERAND (ns, 0), 0); if ((JDECL_P (decl) || TREE_CODE (decl) == COMPONENT_REF) /* It's got to be the an equivalent decl */ && java_decl_equiv (decl, TREE_OPERAND (TREE_OPERAND (c, 0), 0))) { /* Shorten the NOP_EXPR/SAVE_EXPR path. */ TREE_OPERAND (TREE_OPERAND (c, 1), 0) = TREE_OPERAND (ns, 0); /* Substitute the COMPOUND_EXPR by the BINOP_EXPR */ TREE_OPERAND (t, 1) = TREE_OPERAND (c, 1); /* Change the right part of the BINOP_EXPR */ TREE_OPERAND (TREE_OPERAND (t, 1), 1) = TREE_OPERAND (c, 0); } return t; } /* Binary operators (15.16 up to 15.18). We return error_mark_node on errors but we modify NODE so that it contains the type computed according to the expression, when it's fixed. Otherwise, we write error_mark_node as the type. It allows us to further the analysis of remaining nodes and detects more errors in certain cases. */ static tree patch_binop (node, wfl_op1, wfl_op2) tree node; tree wfl_op1; tree wfl_op2; { tree op1 = TREE_OPERAND (node, 0); tree op2 = TREE_OPERAND (node, 1); tree op1_type = TREE_TYPE (op1); tree op2_type = TREE_TYPE (op2); tree prom_type = NULL_TREE, cn; enum tree_code code = TREE_CODE (node); /* If 1, tell the routine that we have to return error_mark_node after checking for the initialization of the RHS */ int error_found = 0; EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); /* If either op_type are NULL, this might be early signs of an error situation, unless it's too early to tell (in case we're handling a `+', `==', `!=' or `instanceof'.) We want to set op_type correctly so the error can be later on reported accurately. */ if (! (code == PLUS_EXPR || code == NE_EXPR || code == EQ_EXPR || code == INSTANCEOF_EXPR)) { tree n; if (! op1_type) { n = java_complete_tree (op1); op1_type = TREE_TYPE (n); } if (! op2_type) { n = java_complete_tree (op2); op2_type = TREE_TYPE (n); } } switch (code) { /* 15.16 Multiplicative operators */ case MULT_EXPR: /* 15.16.1 Multiplication Operator * */ case RDIV_EXPR: /* 15.16.2 Division Operator / */ case TRUNC_DIV_EXPR: /* 15.16.2 Integral type Division Operator / */ case TRUNC_MOD_EXPR: /* 15.16.3 Remainder operator % */ if (!JNUMERIC_TYPE_P (op1_type) || !JNUMERIC_TYPE_P (op2_type)) { if (!JNUMERIC_TYPE_P (op1_type)) ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op1_type); if (!JNUMERIC_TYPE_P (op2_type) && (op1_type != op2_type)) ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op2_type); TREE_TYPE (node) = error_mark_node; error_found = 1; break; } prom_type = binary_numeric_promotion (op1_type, op2_type, &op1, &op2); /* Detect integral division by zero */ if ((code == RDIV_EXPR || code == TRUNC_MOD_EXPR) && TREE_CODE (prom_type) == INTEGER_TYPE && (op2 == integer_zero_node || op2 == long_zero_node || (TREE_CODE (op2) == INTEGER_CST && ! TREE_INT_CST_LOW (op2) && ! TREE_INT_CST_HIGH (op2)))) { parse_warning_context (wfl_operator, "Evaluating this expression will result in an arithmetic exception being thrown"); TREE_CONSTANT (node) = 0; } /* Change the division operator if necessary */ if (code == RDIV_EXPR && TREE_CODE (prom_type) == INTEGER_TYPE) TREE_SET_CODE (node, TRUNC_DIV_EXPR); /* Before divisions as is disapear, try to simplify and bail if applicable, otherwise we won't perform even simple simplifications like (1-1)/3. We can't do that with floating point number, folds can't handle them at this stage. */ if (code == RDIV_EXPR && TREE_CONSTANT (op1) && TREE_CONSTANT (op2) && JINTEGRAL_TYPE_P (op1) && JINTEGRAL_TYPE_P (op2)) { TREE_TYPE (node) = prom_type; node = fold (node); if (TREE_CODE (node) != code) return node; } if (TREE_CODE (prom_type) == INTEGER_TYPE && flag_use_divide_subroutine && ! flag_emit_class_files && (code == RDIV_EXPR || code == TRUNC_MOD_EXPR)) return build_java_soft_divmod (TREE_CODE (node), prom_type, op1, op2); /* This one is more complicated. FLOATs are processed by a function call to soft_fmod. Duplicate the value of the COMPOUND_ASSIGN_P flag. */ if (code == TRUNC_MOD_EXPR) { tree mod = build_java_binop (TRUNC_MOD_EXPR, prom_type, op1, op2); COMPOUND_ASSIGN_P (mod) = COMPOUND_ASSIGN_P (node); TREE_SIDE_EFFECTS (mod) = TREE_SIDE_EFFECTS (op1) | TREE_SIDE_EFFECTS (op2); return mod; } break; /* 15.17 Additive Operators */ case PLUS_EXPR: /* 15.17.1 String Concatenation Operator + */ /* Operation is valid if either one argument is a string constant, a String object or a StringBuffer crafted for the purpose of the a previous usage of the String concatenation operator */ if (TREE_CODE (op1) == STRING_CST || TREE_CODE (op2) == STRING_CST || JSTRING_TYPE_P (op1_type) || JSTRING_TYPE_P (op2_type) || IS_CRAFTED_STRING_BUFFER_P (op1) || IS_CRAFTED_STRING_BUFFER_P (op2)) return build_string_concatenation (op1, op2); case MINUS_EXPR: /* 15.17.2 Additive Operators (+ and -) for Numeric Types */ if (!JNUMERIC_TYPE_P (op1_type) || !JNUMERIC_TYPE_P (op2_type)) { if (!JNUMERIC_TYPE_P (op1_type)) ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op1_type); if (!JNUMERIC_TYPE_P (op2_type) && (op1_type != op2_type)) ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op2_type); TREE_TYPE (node) = error_mark_node; error_found = 1; break; } prom_type = binary_numeric_promotion (op1_type, op2_type, &op1, &op2); break; /* 15.18 Shift Operators */ case LSHIFT_EXPR: case RSHIFT_EXPR: case URSHIFT_EXPR: if (!JINTEGRAL_TYPE_P (op1_type) || !JINTEGRAL_TYPE_P (op2_type)) { if (!JINTEGRAL_TYPE_P (op1_type)) ERROR_CAST_NEEDED_TO_INTEGRAL (wfl_operator, node, op1_type); else { if (JNUMERIC_TYPE_P (op2_type)) parse_error_context (wfl_operator, "Incompatible type for `%s'. Explicit cast needed to convert shift distance from `%s' to integral", operator_string (node), lang_printable_name (op2_type, 0)); else parse_error_context (wfl_operator, "Incompatible type for `%s'. Can't convert shift distance from `%s' to integral", operator_string (node), lang_printable_name (op2_type, 0)); } TREE_TYPE (node) = error_mark_node; error_found = 1; break; } /* Unary numeric promotion (5.6.1) is performed on each operand separately */ op1 = do_unary_numeric_promotion (op1); op2 = do_unary_numeric_promotion (op2); /* The type of the shift expression is the type of the promoted type of the left-hand operand */ prom_type = TREE_TYPE (op1); /* Shift int only up to 0x1f and long up to 0x3f */ if (prom_type == int_type_node) op2 = fold (build (BIT_AND_EXPR, int_type_node, op2, build_int_2 (0x1f, 0))); else op2 = fold (build (BIT_AND_EXPR, int_type_node, op2, build_int_2 (0x3f, 0))); /* The >>> operator is a >> operating on unsigned quantities */ if (code == URSHIFT_EXPR && ! flag_emit_class_files) { tree to_return; tree utype = java_unsigned_type (prom_type); op1 = convert (utype, op1); TREE_SET_CODE (node, RSHIFT_EXPR); TREE_OPERAND (node, 0) = op1; TREE_OPERAND (node, 1) = op2; TREE_TYPE (node) = utype; to_return = convert (prom_type, node); /* Copy the original value of the COMPOUND_ASSIGN_P flag */ COMPOUND_ASSIGN_P (to_return) = COMPOUND_ASSIGN_P (node); TREE_SIDE_EFFECTS (to_return) = TREE_SIDE_EFFECTS (op1) | TREE_SIDE_EFFECTS (op2); return to_return; } break; /* 15.19.1 Type Comparison Operator instaceof */ case INSTANCEOF_EXPR: TREE_TYPE (node) = boolean_type_node; /* OP1_TYPE might be NULL when OP1 is a string constant. */ if ((cn = patch_string (op1))) { op1 = cn; op1_type = TREE_TYPE (op1); } if (op1_type == NULL_TREE) abort (); if (!(op2_type = resolve_type_during_patch (op2))) return error_mark_node; /* The first operand must be a reference type or the null type */ if (!JREFERENCE_TYPE_P (op1_type) && op1 != null_pointer_node) error_found = 1; /* Error reported further below */ /* The second operand must be a reference type */ if (!JREFERENCE_TYPE_P (op2_type)) { SET_WFL_OPERATOR (wfl_operator, node, wfl_op2); parse_error_context (wfl_operator, "Invalid argument `%s' for `instanceof'", lang_printable_name (op2_type, 0)); error_found = 1; } if (!error_found && valid_ref_assignconv_cast_p (op1_type, op2_type, 1)) { /* If the first operand is null, the result is always false */ if (op1 == null_pointer_node) return boolean_false_node; else if (flag_emit_class_files) { TREE_OPERAND (node, 1) = op2_type; TREE_SIDE_EFFECTS (node) = TREE_SIDE_EFFECTS (op1); return node; } /* Otherwise we have to invoke instance of to figure it out */ else return build_instanceof (op1, op2_type); } /* There is no way the expression operand can be an instance of the type operand. This is a compile time error. */ else { char *t1 = xstrdup (lang_printable_name (op1_type, 0)); SET_WFL_OPERATOR (wfl_operator, node, wfl_op1); parse_error_context (wfl_operator, "Impossible for `%s' to be instance of `%s'", t1, lang_printable_name (op2_type, 0)); free (t1); error_found = 1; } break; /* 15.21 Bitwise and Logical Operators */ case BIT_AND_EXPR: case BIT_XOR_EXPR: case BIT_IOR_EXPR: if (JINTEGRAL_TYPE_P (op1_type) && JINTEGRAL_TYPE_P (op2_type)) /* Binary numeric promotion is performed on both operand and the expression retain that type */ prom_type = binary_numeric_promotion (op1_type, op2_type, &op1, &op2); else if (TREE_CODE (op1_type) == BOOLEAN_TYPE && TREE_CODE (op1_type) == BOOLEAN_TYPE) /* The type of the bitwise operator expression is BOOLEAN */ prom_type = boolean_type_node; else { if (!JINTEGRAL_TYPE_P (op1_type)) ERROR_CAST_NEEDED_TO_INTEGRAL (wfl_operator, node, op1_type); if (!JINTEGRAL_TYPE_P (op2_type) && (op1_type != op2_type)) ERROR_CAST_NEEDED_TO_INTEGRAL (wfl_operator, node, op2_type); TREE_TYPE (node) = error_mark_node; error_found = 1; /* Insert a break here if adding thing before the switch's break for this case */ } break; /* 15.22 Conditional-And Operator */ case TRUTH_ANDIF_EXPR: /* 15.23 Conditional-Or Operator */ case TRUTH_ORIF_EXPR: /* Operands must be of BOOLEAN type */ if (TREE_CODE (op1_type) != BOOLEAN_TYPE || TREE_CODE (op2_type) != BOOLEAN_TYPE) { if (TREE_CODE (op1_type) != BOOLEAN_TYPE) ERROR_CANT_CONVERT_TO_BOOLEAN (wfl_operator, node, op1_type); if (TREE_CODE (op2_type) != BOOLEAN_TYPE && (op1_type != op2_type)) ERROR_CANT_CONVERT_TO_BOOLEAN (wfl_operator, node, op2_type); TREE_TYPE (node) = boolean_type_node; error_found = 1; break; } else if (integer_zerop (op1)) { return code == TRUTH_ANDIF_EXPR ? op1 : op2; } else if (integer_onep (op1)) { return code == TRUTH_ANDIF_EXPR ? op2 : op1; } /* The type of the conditional operators is BOOLEAN */ prom_type = boolean_type_node; break; /* 15.19.1 Numerical Comparison Operators <, <=, >, >= */ case LT_EXPR: case GT_EXPR: case LE_EXPR: case GE_EXPR: /* The type of each of the operands must be a primitive numeric type */ if (!JNUMERIC_TYPE_P (op1_type) || ! JNUMERIC_TYPE_P (op2_type)) { if (!JNUMERIC_TYPE_P (op1_type)) ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op1_type); if (!JNUMERIC_TYPE_P (op2_type) && (op1_type != op2_type)) ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op2_type); TREE_TYPE (node) = boolean_type_node; error_found = 1; break; } /* Binary numeric promotion is performed on the operands */ binary_numeric_promotion (op1_type, op2_type, &op1, &op2); /* The type of the relation expression is always BOOLEAN */ prom_type = boolean_type_node; break; /* 15.20 Equality Operator */ case EQ_EXPR: case NE_EXPR: /* It's time for us to patch the strings. */ if ((cn = patch_string (op1))) { op1 = cn; op1_type = TREE_TYPE (op1); } if ((cn = patch_string (op2))) { op2 = cn; op2_type = TREE_TYPE (op2); } /* 15.20.1 Numerical Equality Operators == and != */ /* Binary numeric promotion is performed on the operands */ if (JNUMERIC_TYPE_P (op1_type) && JNUMERIC_TYPE_P (op2_type)) binary_numeric_promotion (op1_type, op2_type, &op1, &op2); /* 15.20.2 Boolean Equality Operators == and != */ else if (TREE_CODE (op1_type) == BOOLEAN_TYPE && TREE_CODE (op2_type) == BOOLEAN_TYPE) ; /* Nothing to do here */ /* 15.20.3 Reference Equality Operators == and != */ /* Types have to be either references or the null type. If they're references, it must be possible to convert either type to the other by casting conversion. */ else if (op1 == null_pointer_node || op2 == null_pointer_node || (JREFERENCE_TYPE_P (op1_type) && JREFERENCE_TYPE_P (op2_type) && (valid_ref_assignconv_cast_p (op1_type, op2_type, 1) || valid_ref_assignconv_cast_p (op2_type, op1_type, 1)))) ; /* Nothing to do here */ /* Else we have an error figure what can't be converted into what and report the error */ else { char *t1; t1 = xstrdup (lang_printable_name (op1_type, 0)); parse_error_context (wfl_operator, "Incompatible type for `%s'. Can't convert `%s' to `%s'", operator_string (node), t1, lang_printable_name (op2_type, 0)); free (t1); TREE_TYPE (node) = boolean_type_node; error_found = 1; break; } prom_type = boolean_type_node; break; default: abort (); } if (error_found) return error_mark_node; TREE_OPERAND (node, 0) = op1; TREE_OPERAND (node, 1) = op2; TREE_TYPE (node) = prom_type; TREE_SIDE_EFFECTS (node) = TREE_SIDE_EFFECTS (op1) | TREE_SIDE_EFFECTS (op2); if (flag_emit_xref) return node; /* fold does not respect side-effect order as required for Java but not C. * Also, it sometimes create SAVE_EXPRs which are bad when emitting * bytecode. */ if (flag_emit_class_files ? (TREE_CONSTANT (op1) && TREE_CONSTANT (op2)) : ! TREE_SIDE_EFFECTS (node)) node = fold (node); return node; } /* Concatenate the STRING_CST CSTE and STRING. When AFTER is a non zero value, the value of CSTE comes after the valude of STRING */ static tree do_merge_string_cste (cste, string, string_len, after) tree cste; const char *string; int string_len, after; { const char *old = TREE_STRING_POINTER (cste); int old_len = TREE_STRING_LENGTH (cste); int len = old_len + string_len; char *new = alloca (len+1); if (after) { memcpy (new, string, string_len); memcpy (&new [string_len], old, old_len); } else { memcpy (new, old, old_len); memcpy (&new [old_len], string, string_len); } new [len] = '\0'; return build_string (len, new); } /* Tries to merge OP1 (a STRING_CST) and OP2 (if suitable). Return a new STRING_CST on success, NULL_TREE on failure */ static tree merge_string_cste (op1, op2, after) tree op1, op2; int after; { /* Handle two string constants right away */ if (TREE_CODE (op2) == STRING_CST) return do_merge_string_cste (op1, TREE_STRING_POINTER (op2), TREE_STRING_LENGTH (op2), after); /* Reasonable integer constant can be treated right away */ if (TREE_CODE (op2) == INTEGER_CST && !TREE_CONSTANT_OVERFLOW (op2)) { static const char *const boolean_true = "true"; static const char *const boolean_false = "false"; static const char *const null_pointer = "null"; char ch[3]; const char *string; if (op2 == boolean_true_node) string = boolean_true; else if (op2 == boolean_false_node) string = boolean_false; else if (op2 == null_pointer_node) string = null_pointer; else if (TREE_TYPE (op2) == char_type_node) { ch[0] = (char )TREE_INT_CST_LOW (op2); ch[1] = '\0'; string = ch; } else string = string_convert_int_cst (op2); return do_merge_string_cste (op1, string, strlen (string), after); } return NULL_TREE; } /* Tries to statically concatenate OP1 and OP2 if possible. Either one has to be a STRING_CST and the other part must be a STRING_CST or a INTEGRAL constant. Return a new STRING_CST if the operation succeed, NULL_TREE otherwise. If the case we want to optimize for space, we might want to return NULL_TREE for each invocation of this routine. FIXME */ static tree string_constant_concatenation (op1, op2) tree op1, op2; { if (TREE_CODE (op1) == STRING_CST || (TREE_CODE (op2) == STRING_CST)) { tree string, rest; int invert; string = (TREE_CODE (op1) == STRING_CST ? op1 : op2); rest = (string == op1 ? op2 : op1); invert = (string == op1 ? 0 : 1 ); /* Walk REST, only if it looks reasonable */ if (TREE_CODE (rest) != STRING_CST && !IS_CRAFTED_STRING_BUFFER_P (rest) && !JSTRING_TYPE_P (TREE_TYPE (rest)) && TREE_CODE (rest) == EXPR_WITH_FILE_LOCATION) { rest = java_complete_tree (rest); if (rest == error_mark_node) return error_mark_node; rest = fold (rest); } return merge_string_cste (string, rest, invert); } return NULL_TREE; } /* Implement the `+' operator. Does static optimization if possible, otherwise create (if necessary) and append elements to a StringBuffer. The StringBuffer will be carried around until it is used for a function call or an assignment. Then toString() will be called on it to turn it into a String object. */ static tree build_string_concatenation (op1, op2) tree op1, op2; { tree result; int side_effects = TREE_SIDE_EFFECTS (op1) | TREE_SIDE_EFFECTS (op2); if (flag_emit_xref) return build (PLUS_EXPR, string_type_node, op1, op2); /* Try to do some static optimization */ if ((result = string_constant_concatenation (op1, op2))) return result; /* Discard empty strings on either side of the expression */ if (TREE_CODE (op1) == STRING_CST && TREE_STRING_LENGTH (op1) == 0) { op1 = op2; op2 = NULL_TREE; } else if (TREE_CODE (op2) == STRING_CST && TREE_STRING_LENGTH (op2) == 0) op2 = NULL_TREE; /* If operands are string constant, turn then into object references */ if (TREE_CODE (op1) == STRING_CST) op1 = patch_string_cst (op1); if (op2 && TREE_CODE (op2) == STRING_CST) op2 = patch_string_cst (op2); /* If either one of the constant is null and the other non null operand is a String constant, return it. */ if ((TREE_CODE (op1) == STRING_CST) && !op2) return op1; /* If OP1 isn't already a StringBuffer, create and initialize a new one */ if (!IS_CRAFTED_STRING_BUFFER_P (op1)) { /* Two solutions here: 1) OP1 is a constant string reference, we call new StringBuffer(OP1) 2) OP1 is something else, we call new StringBuffer().append(OP1). */ if (TREE_CONSTANT (op1) && JSTRING_TYPE_P (TREE_TYPE (op1))) op1 = BUILD_STRING_BUFFER (op1); else { tree aNew = BUILD_STRING_BUFFER (NULL_TREE); op1 = make_qualified_primary (aNew, BUILD_APPEND (op1), 0); } } if (op2) { /* OP1 is no longer the last node holding a crafted StringBuffer */ IS_CRAFTED_STRING_BUFFER_P (op1) = 0; /* Create a node for `{new...,xxx}.append (op2)' */ if (op2) op1 = make_qualified_primary (op1, BUILD_APPEND (op2), 0); } /* Mark the last node holding a crafted StringBuffer */ IS_CRAFTED_STRING_BUFFER_P (op1) = 1; TREE_SIDE_EFFECTS (op1) = side_effects; return op1; } /* Patch the string node NODE. NODE can be a STRING_CST of a crafted StringBuffer. If no string were found to be patched, return NULL. */ static tree patch_string (node) tree node; { if (node == error_mark_node) return error_mark_node; if (TREE_CODE (node) == STRING_CST) return patch_string_cst (node); else if (IS_CRAFTED_STRING_BUFFER_P (node)) { int saved = ctxp->explicit_constructor_p; tree invoke = build_method_invocation (wfl_to_string, NULL_TREE); tree ret; /* Temporary disable forbid the use of `this'. */ ctxp->explicit_constructor_p = 0; ret = java_complete_tree (make_qualified_primary (node, invoke, 0)); /* String concatenation arguments must be evaluated in order too. */ ret = force_evaluation_order (ret); /* Restore it at its previous value */ ctxp->explicit_constructor_p = saved; return ret; } return NULL_TREE; } /* Build the internal representation of a string constant. */ static tree patch_string_cst (node) tree node; { int location; if (! flag_emit_class_files) { node = get_identifier (TREE_STRING_POINTER (node)); location = alloc_name_constant (CONSTANT_String, node); node = build_ref_from_constant_pool (location); } TREE_TYPE (node) = string_ptr_type_node; TREE_CONSTANT (node) = 1; return node; } /* Build an incomplete unary operator expression. */ static tree build_unaryop (op_token, op_location, op1) int op_token, op_location; tree op1; { enum tree_code op; tree unaryop; switch (op_token) { case PLUS_TK: op = UNARY_PLUS_EXPR; break; case MINUS_TK: op = NEGATE_EXPR; break; case NEG_TK: op = TRUTH_NOT_EXPR; break; case NOT_TK: op = BIT_NOT_EXPR; break; default: abort (); } unaryop = build1 (op, NULL_TREE, op1); TREE_SIDE_EFFECTS (unaryop) = 1; /* Store the location of the operator, for better error report. The string of the operator will be rebuild based on the OP value. */ EXPR_WFL_LINECOL (unaryop) = op_location; return unaryop; } /* Special case for the ++/-- operators, since they require an extra argument to build, which is set to NULL and patched later. IS_POST_P is 1 if the operator, 0 otherwise. */ static tree build_incdec (op_token, op_location, op1, is_post_p) int op_token, op_location; tree op1; int is_post_p; { static const enum tree_code lookup [2][2] = { { PREDECREMENT_EXPR, PREINCREMENT_EXPR, }, { POSTDECREMENT_EXPR, POSTINCREMENT_EXPR, }, }; tree node = build (lookup [is_post_p][(op_token - DECR_TK)], NULL_TREE, op1, NULL_TREE); TREE_SIDE_EFFECTS (node) = 1; /* Store the location of the operator, for better error report. The string of the operator will be rebuild based on the OP value. */ EXPR_WFL_LINECOL (node) = op_location; return node; } /* Build an incomplete cast operator, based on the use of the CONVERT_EXPR. Note that TREE_TYPE of the constructed node is set. java_complete_tree is trained to walk a CONVERT_EXPR even though its type is already set. */ static tree build_cast (location, type, exp) int location; tree type, exp; { tree node = build1 (CONVERT_EXPR, type, exp); EXPR_WFL_LINECOL (node) = location; return node; } /* Build an incomplete class reference operator. */ static tree build_incomplete_class_ref (location, class_name) int location; tree class_name; { tree node = build1 (CLASS_LITERAL, NULL_TREE, class_name); EXPR_WFL_LINECOL (node) = location; return node; } /* Complete an incomplete class reference operator. */ static tree patch_incomplete_class_ref (node) tree node; { tree type = TREE_OPERAND (node, 0); tree ref_type; if (!(ref_type = resolve_type_during_patch (type))) return error_mark_node; if (!flag_emit_class_files || JPRIMITIVE_TYPE_P (ref_type)) { tree dot = build_class_ref (ref_type); /* A class referenced by `foo.class' is initialized. */ if (!flag_emit_class_files) dot = build_class_init (ref_type, dot); return java_complete_tree (dot); } /* If we're emitting class files and we have to deal with non primitive types, we invoke (and consider generating) the synthetic static method `class$'. */ if (!TYPE_DOT_CLASS (current_class)) build_dot_class_method (current_class); ref_type = build_dot_class_method_invocation (ref_type); return java_complete_tree (ref_type); } /* 15.14 Unary operators. We return error_mark_node in case of error, but preserve the type of NODE if the type is fixed. */ static tree patch_unaryop (node, wfl_op) tree node; tree wfl_op; { tree op = TREE_OPERAND (node, 0); tree op_type = TREE_TYPE (op); tree prom_type = NULL_TREE, value, decl; int outer_field_flag = 0; int code = TREE_CODE (node); int error_found = 0; EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); switch (code) { /* 15.13.2 Postfix Increment Operator ++ */ case POSTINCREMENT_EXPR: /* 15.13.3 Postfix Increment Operator -- */ case POSTDECREMENT_EXPR: /* 15.14.1 Prefix Increment Operator ++ */ case PREINCREMENT_EXPR: /* 15.14.2 Prefix Decrement Operator -- */ case PREDECREMENT_EXPR: op = decl = strip_out_static_field_access_decl (op); outer_field_flag = outer_field_expanded_access_p (op, NULL, NULL, NULL); /* We might be trying to change an outer field accessed using access method. */ if (outer_field_flag) { /* Retrieve the decl of the field we're trying to access. We do that by first retrieving the function we would call to access the field. It has been already verified that this field isn't final */ if (flag_emit_class_files) decl = TREE_OPERAND (op, 0); else decl = TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (op, 0), 0), 0); decl = DECL_FUNCTION_ACCESS_DECL (decl); } /* We really should have a JAVA_ARRAY_EXPR to avoid this */ else if (!JDECL_P (decl) && TREE_CODE (decl) != COMPONENT_REF && !(flag_emit_class_files && TREE_CODE (decl) == ARRAY_REF) && TREE_CODE (decl) != INDIRECT_REF && !(TREE_CODE (decl) == COMPOUND_EXPR && TREE_OPERAND (decl, 1) && (TREE_CODE (TREE_OPERAND (decl, 1)) == INDIRECT_REF))) { TREE_TYPE (node) = error_mark_node; error_found = 1; } /* From now on, we know that op if a variable and that it has a valid wfl. We use wfl_op to locate errors related to the ++/-- operand. */ if (!JNUMERIC_TYPE_P (op_type)) { parse_error_context (wfl_op, "Invalid argument type `%s' to `%s'", lang_printable_name (op_type, 0), operator_string (node)); TREE_TYPE (node) = error_mark_node; error_found = 1; } else { /* Before the addition, binary numeric promotion is performed on both operands, if really necessary */ if (JINTEGRAL_TYPE_P (op_type)) { value = build_int_2 (1, 0); TREE_TYPE (value) = TREE_TYPE (node) = op_type; } else { value = build_int_2 (1, 0); TREE_TYPE (node) = binary_numeric_promotion (op_type, TREE_TYPE (value), &op, &value); } /* We remember we might be accessing an outer field */ if (outer_field_flag) { /* We re-generate an access to the field */ value = build (PLUS_EXPR, TREE_TYPE (op), build_outer_field_access (wfl_op, decl), value); /* And we patch the original access$() into a write with plus_op as a rhs */ return outer_field_access_fix (node, op, value); } /* And write back into the node. */ TREE_OPERAND (node, 0) = op; TREE_OPERAND (node, 1) = value; /* Convert the overall back into its original type, if necessary, and return */ if (JINTEGRAL_TYPE_P (op_type)) return fold (node); else return fold (convert (op_type, node)); } break; /* 15.14.3 Unary Plus Operator + */ case UNARY_PLUS_EXPR: /* 15.14.4 Unary Minus Operator - */ case NEGATE_EXPR: if (!JNUMERIC_TYPE_P (op_type)) { ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op_type); TREE_TYPE (node) = error_mark_node; error_found = 1; } /* Unary numeric promotion is performed on operand */ else { op = do_unary_numeric_promotion (op); prom_type = TREE_TYPE (op); if (code == UNARY_PLUS_EXPR) return fold (op); } break; /* 15.14.5 Bitwise Complement Operator ~ */ case BIT_NOT_EXPR: if (!JINTEGRAL_TYPE_P (op_type)) { ERROR_CAST_NEEDED_TO_INTEGRAL (wfl_operator, node, op_type); TREE_TYPE (node) = error_mark_node; error_found = 1; } else { op = do_unary_numeric_promotion (op); prom_type = TREE_TYPE (op); } break; /* 15.14.6 Logical Complement Operator ! */ case TRUTH_NOT_EXPR: if (TREE_CODE (op_type) != BOOLEAN_TYPE) { ERROR_CANT_CONVERT_TO_BOOLEAN (wfl_operator, node, op_type); /* But the type is known. We will report an error if further attempt of a assignment is made with this rhs */ TREE_TYPE (node) = boolean_type_node; error_found = 1; } else prom_type = boolean_type_node; break; /* 15.15 Cast Expression */ case CONVERT_EXPR: value = patch_cast (node, wfl_operator); if (value == error_mark_node) { /* If this cast is part of an assignment, we tell the code that deals with it not to complain about a mismatch, because things have been cast, anyways */ TREE_TYPE (node) = error_mark_node; error_found = 1; } else { value = fold (value); TREE_SIDE_EFFECTS (value) = TREE_SIDE_EFFECTS (op); return value; } break; } if (error_found) return error_mark_node; /* There are cases where node has been replaced by something else and we don't end up returning here: UNARY_PLUS_EXPR, CONVERT_EXPR, {POST,PRE}{INCR,DECR}EMENT_EXPR. */ TREE_OPERAND (node, 0) = fold (op); TREE_TYPE (node) = prom_type; TREE_SIDE_EFFECTS (node) = TREE_SIDE_EFFECTS (op); return fold (node); } /* Generic type resolution that sometimes takes place during node patching. Returned the resolved type or generate an error message. Return the resolved type or NULL_TREE. */ static tree resolve_type_during_patch (type) tree type; { if (unresolved_type_p (type, NULL)) { tree type_decl = resolve_and_layout (EXPR_WFL_NODE (type), type); if (!type_decl) { parse_error_context (type, "Class `%s' not found in type declaration", IDENTIFIER_POINTER (EXPR_WFL_NODE (type))); return NULL_TREE; } return TREE_TYPE (type_decl); } return type; } /* 5.5 Casting Conversion. error_mark_node is returned if an error is found. Otherwise NODE or something meant to replace it is returned. */ static tree patch_cast (node, wfl_op) tree node; tree wfl_op; { tree op = TREE_OPERAND (node, 0); tree cast_type = TREE_TYPE (node); tree patched, op_type; char *t1; /* Some string patching might be necessary at this stage */ if ((patched = patch_string (op))) TREE_OPERAND (node, 0) = op = patched; op_type = TREE_TYPE (op); /* First resolve OP_TYPE if unresolved */ if (!(cast_type = resolve_type_during_patch (cast_type))) return error_mark_node; /* Check on cast that are proven correct at compile time */ if (JNUMERIC_TYPE_P (cast_type) && JNUMERIC_TYPE_P (op_type)) { /* Same type */ if (cast_type == op_type) return node; /* float and double type are converted to the original type main variant and then to the target type. */ if (JFLOAT_TYPE_P (op_type) && TREE_CODE (cast_type) == CHAR_TYPE) op = convert (integer_type_node, op); /* Try widening/narowwing convertion. Potentially, things need to be worked out in gcc so we implement the extreme cases correctly. fold_convert() needs to be fixed. */ return convert (cast_type, op); } /* It's also valid to cast a boolean into a boolean */ if (op_type == boolean_type_node && cast_type == boolean_type_node) return node; /* null can be casted to references */ if (op == null_pointer_node && JREFERENCE_TYPE_P (cast_type)) return build_null_of_type (cast_type); /* The remaining legal casts involve conversion between reference types. Check for their compile time correctness. */ if (JREFERENCE_TYPE_P (op_type) && JREFERENCE_TYPE_P (cast_type) && valid_ref_assignconv_cast_p (op_type, cast_type, 1)) { TREE_TYPE (node) = promote_type (cast_type); /* Now, the case can be determined correct at compile time if OP_TYPE can be converted into CAST_TYPE by assignment conversion (5.2) */ if (valid_ref_assignconv_cast_p (op_type, cast_type, 0)) { TREE_SET_CODE (node, NOP_EXPR); return node; } if (flag_emit_class_files) { TREE_SET_CODE (node, CONVERT_EXPR); return node; } /* The cast requires a run-time check */ return build (CALL_EXPR, promote_type (cast_type), build_address_of (soft_checkcast_node), tree_cons (NULL_TREE, build_class_ref (cast_type), build_tree_list (NULL_TREE, op)), NULL_TREE); } /* Any other casts are proven incorrect at compile time */ t1 = xstrdup (lang_printable_name (op_type, 0)); parse_error_context (wfl_op, "Invalid cast from `%s' to `%s'", t1, lang_printable_name (cast_type, 0)); free (t1); return error_mark_node; } /* Build a null constant and give it the type TYPE. */ static tree build_null_of_type (type) tree type; { tree node = build_int_2 (0, 0); TREE_TYPE (node) = promote_type (type); return node; } /* Build an ARRAY_REF incomplete tree node. Note that operand 1 isn't a list of indices. */ static tree build_array_ref (location, array, index) int location; tree array, index; { tree node = build (ARRAY_REF, NULL_TREE, array, index); EXPR_WFL_LINECOL (node) = location; return node; } /* 15.12 Array Access Expression */ static tree patch_array_ref (node) tree node; { tree array = TREE_OPERAND (node, 0); tree array_type = TREE_TYPE (array); tree index = TREE_OPERAND (node, 1); tree index_type = TREE_TYPE (index); int error_found = 0; EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); if (TREE_CODE (array_type) == POINTER_TYPE) array_type = TREE_TYPE (array_type); /* The array reference must be an array */ if (!TYPE_ARRAY_P (array_type)) { parse_error_context (wfl_operator, "`[]' can only be applied to arrays. It can't be applied to `%s'", lang_printable_name (array_type, 0)); TREE_TYPE (node) = error_mark_node; error_found = 1; } /* The array index undergoes unary numeric promotion. The promoted type must be int */ index = do_unary_numeric_promotion (index); if (TREE_TYPE (index) != int_type_node) { if (valid_cast_to_p (index_type, int_type_node)) parse_error_context (wfl_operator, "Incompatible type for `[]'. Explicit cast needed to convert `%s' to `int'", lang_printable_name (index_type, 0)); else parse_error_context (wfl_operator, "Incompatible type for `[]'. Can't convert `%s' to `int'", lang_printable_name (index_type, 0)); TREE_TYPE (node) = error_mark_node; error_found = 1; } if (error_found) return error_mark_node; array_type = TYPE_ARRAY_ELEMENT (array_type); if (flag_emit_class_files || flag_emit_xref) { TREE_OPERAND (node, 0) = array; TREE_OPERAND (node, 1) = index; } else node = build_java_arrayaccess (array, array_type, index); TREE_TYPE (node) = array_type; return node; } /* 15.9 Array Creation Expressions */ static tree build_newarray_node (type, dims, extra_dims) tree type; tree dims; int extra_dims; { tree node = build (NEW_ARRAY_EXPR, NULL_TREE, type, nreverse (dims), build_int_2 (extra_dims, 0)); return node; } static tree patch_newarray (node) tree node; { tree type = TREE_OPERAND (node, 0); tree dims = TREE_OPERAND (node, 1); tree cdim, array_type; int error_found = 0; int ndims = 0; int xdims = TREE_INT_CST_LOW (TREE_OPERAND (node, 2)); /* Dimension types are verified. It's better for the types to be verified in order. */ for (cdim = dims, ndims = 0; cdim; cdim = TREE_CHAIN (cdim), ndims++ ) { int dim_error = 0; tree dim = TREE_VALUE (cdim); /* Dim might have been saved during its evaluation */ dim = (TREE_CODE (dim) == SAVE_EXPR ? TREE_OPERAND (dim, 0) : dim); /* The type of each specified dimension must be an integral type. */ if (!JINTEGRAL_TYPE_P (TREE_TYPE (dim))) dim_error = 1; /* Each expression undergoes an unary numeric promotion (5.6.1) and the promoted type must be int. */ else { dim = do_unary_numeric_promotion (dim); if (TREE_TYPE (dim) != int_type_node) dim_error = 1; } /* Report errors on types here */ if (dim_error) { parse_error_context (TREE_PURPOSE (cdim), "Incompatible type for dimension in array creation expression. %s convert `%s' to `int'", (valid_cast_to_p (TREE_TYPE (dim), int_type_node) ? "Explicit cast needed to" : "Can't"), lang_printable_name (TREE_TYPE (dim), 0)); error_found = 1; } TREE_PURPOSE (cdim) = NULL_TREE; } /* Resolve array base type if unresolved */ if (!(type = resolve_type_during_patch (type))) error_found = 1; if (error_found) { /* We don't want further evaluation of this bogus array creation operation */ TREE_TYPE (node) = error_mark_node; return error_mark_node; } /* Set array_type to the actual (promoted) array type of the result. */ if (TREE_CODE (type) == RECORD_TYPE) type = build_pointer_type (type); while (--xdims >= 0) { type = promote_type (build_java_array_type (type, -1)); } dims = nreverse (dims); array_type = type; for (cdim = dims; cdim; cdim = TREE_CHAIN (cdim)) { type = array_type; array_type = build_java_array_type (type, TREE_CODE (cdim) == INTEGER_CST ? (HOST_WIDE_INT) TREE_INT_CST_LOW (cdim) : -1); array_type = promote_type (array_type); } dims = nreverse (dims); /* The node is transformed into a function call. Things are done differently according to the number of dimensions. If the number of dimension is equal to 1, then the nature of the base type (primitive or not) matters. */ if (ndims == 1) return build_new_array (type, TREE_VALUE (dims)); /* Can't reuse what's already written in expr.c because it uses the JVM stack representation. Provide a build_multianewarray. FIXME */ return build (CALL_EXPR, array_type, build_address_of (soft_multianewarray_node), tree_cons (NULL_TREE, build_class_ref (TREE_TYPE (array_type)), tree_cons (NULL_TREE, build_int_2 (ndims, 0), dims )), NULL_TREE); } /* 10.6 Array initializer. */ /* Build a wfl for array element that don't have one, so we can pin-point errors. */ static tree maybe_build_array_element_wfl (node) tree node; { if (TREE_CODE (node) != EXPR_WITH_FILE_LOCATION) return build_expr_wfl (NULL_TREE, ctxp->filename, ctxp->elc.line, ctxp->elc.prev_col); else return NULL_TREE; } /* Build a NEW_ARRAY_INIT that features a CONSTRUCTOR node. This makes identification of initialized arrays easier to detect during walk and expansion. */ static tree build_new_array_init (location, values) int location; tree values; { tree constructor = build (CONSTRUCTOR, NULL_TREE, NULL_TREE, values); tree to_return = build1 (NEW_ARRAY_INIT, NULL_TREE, constructor); EXPR_WFL_LINECOL (to_return) = location; return to_return; } /* Expand a NEW_ARRAY_INIT node. Return error_mark_node if an error occurred. Otherwise return NODE after having set its type appropriately. */ static tree patch_new_array_init (type, node) tree type, node; { int error_seen = 0; tree current, element_type; HOST_WIDE_INT length; int all_constant = 1; tree init = TREE_OPERAND (node, 0); if (TREE_CODE (type) != POINTER_TYPE || ! TYPE_ARRAY_P (TREE_TYPE (type))) { parse_error_context (node, "Invalid array initializer for non-array type `%s'", lang_printable_name (type, 1)); return error_mark_node; } type = TREE_TYPE (type); element_type = TYPE_ARRAY_ELEMENT (type); CONSTRUCTOR_ELTS (init) = nreverse (CONSTRUCTOR_ELTS (init)); for (length = 0, current = CONSTRUCTOR_ELTS (init); current; length++, current = TREE_CHAIN (current)) { tree elt = TREE_VALUE (current); if (elt == NULL_TREE || TREE_CODE (elt) != NEW_ARRAY_INIT) { error_seen |= array_constructor_check_entry (element_type, current); elt = TREE_VALUE (current); /* When compiling to native code, STRING_CST is converted to INDIRECT_REF, but still with a TREE_CONSTANT flag. */ if (! TREE_CONSTANT (elt) || TREE_CODE (elt) == INDIRECT_REF) all_constant = 0; } else { TREE_VALUE (current) = patch_new_array_init (element_type, elt); TREE_PURPOSE (current) = NULL_TREE; all_constant = 0; } if (elt && TREE_CODE (elt) == TREE_LIST && TREE_VALUE (elt) == error_mark_node) error_seen = 1; } if (error_seen) return error_mark_node; /* Create a new type. We can't reuse the one we have here by patching its dimension because it originally is of dimension -1 hence reused by gcc. This would prevent triangular arrays. */ type = build_java_array_type (element_type, length); TREE_TYPE (init) = TREE_TYPE (TREE_CHAIN (TREE_CHAIN (TYPE_FIELDS (type)))); TREE_TYPE (node) = promote_type (type); TREE_CONSTANT (init) = all_constant; TREE_CONSTANT (node) = all_constant; return node; } /* Verify that one entry of the initializer element list can be assigned to the array base type. Report 1 if an error occurred, 0 otherwise. */ static int array_constructor_check_entry (type, entry) tree type, entry; { char *array_type_string = NULL; /* For error reports */ tree value, type_value, new_value, wfl_value, patched; int error_seen = 0; new_value = NULL_TREE; wfl_value = TREE_VALUE (entry); value = java_complete_tree (TREE_VALUE (entry)); /* patch_string return error_mark_node if arg is error_mark_node */ if ((patched = patch_string (value))) value = patched; if (value == error_mark_node) return 1; type_value = TREE_TYPE (value); /* At anytime, try_builtin_assignconv can report a warning on constant overflow during narrowing. */ SET_WFL_OPERATOR (wfl_operator, TREE_PURPOSE (entry), wfl_value); new_value = try_builtin_assignconv (wfl_operator, type, value); if (!new_value && (new_value = try_reference_assignconv (type, value))) type_value = promote_type (type); /* Check and report errors */ if (!new_value) { const char *const msg = (!valid_cast_to_p (type_value, type) ? "Can't" : "Explicit cast needed to"); if (!array_type_string) array_type_string = xstrdup (lang_printable_name (type, 1)); parse_error_context (wfl_operator, "Incompatible type for array. %s convert `%s' to `%s'", msg, lang_printable_name (type_value, 1), array_type_string); error_seen = 1; } if (new_value) TREE_VALUE (entry) = new_value; if (array_type_string) free (array_type_string); TREE_PURPOSE (entry) = NULL_TREE; return error_seen; } static tree build_this (location) int location; { tree node = build_wfl_node (this_identifier_node); TREE_SET_CODE (node, THIS_EXPR); EXPR_WFL_LINECOL (node) = location; return node; } /* 14.15 The return statement. It builds a modify expression that assigns the returned value to the RESULT_DECL that hold the value to be returned. */ static tree build_return (location, op) int location; tree op; { tree node = build1 (RETURN_EXPR, NULL_TREE, op); EXPR_WFL_LINECOL (node) = location; node = build_debugable_stmt (location, node); return node; } static tree patch_return (node) tree node; { tree return_exp = TREE_OPERAND (node, 0); tree meth = current_function_decl; tree mtype = TREE_TYPE (TREE_TYPE (current_function_decl)); int error_found = 0; TREE_TYPE (node) = error_mark_node; EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); /* It's invalid to have a return value within a function that is declared with the keyword void or that is a constructor */ if (return_exp && (mtype == void_type_node || DECL_CONSTRUCTOR_P (meth))) error_found = 1; /* It's invalid to use a return statement in a static block */ if (DECL_CLINIT_P (current_function_decl)) error_found = 1; /* It's invalid to have a no return value within a function that isn't declared with the keyword `void' */ if (!return_exp && (mtype != void_type_node && !DECL_CONSTRUCTOR_P (meth))) error_found = 2; if (DECL_INSTINIT_P (current_function_decl)) error_found = 1; if (error_found) { if (DECL_INSTINIT_P (current_function_decl)) parse_error_context (wfl_operator, "`return' inside instance initializer"); else if (DECL_CLINIT_P (current_function_decl)) parse_error_context (wfl_operator, "`return' inside static initializer"); else if (!DECL_CONSTRUCTOR_P (meth)) { char *t = xstrdup (lang_printable_name (mtype, 0)); parse_error_context (wfl_operator, "`return' with%s value from `%s %s'", (error_found == 1 ? "" : "out"), t, lang_printable_name (meth, 0)); free (t); } else parse_error_context (wfl_operator, "`return' with value from constructor `%s'", lang_printable_name (meth, 0)); return error_mark_node; } /* If we have a return_exp, build a modify expression and expand it. Note: at that point, the assignment is declared valid, but we may want to carry some more hacks */ if (return_exp) { tree exp = java_complete_tree (return_exp); tree modify, patched; if ((patched = patch_string (exp))) exp = patched; modify = build (MODIFY_EXPR, NULL_TREE, DECL_RESULT (meth), exp); EXPR_WFL_LINECOL (modify) = EXPR_WFL_LINECOL (node); modify = java_complete_tree (modify); if (modify != error_mark_node) { TREE_SIDE_EFFECTS (modify) = 1; TREE_OPERAND (node, 0) = modify; } else return error_mark_node; } TREE_TYPE (node) = void_type_node; TREE_SIDE_EFFECTS (node) = 1; return node; } /* 14.8 The if Statement */ static tree build_if_else_statement (location, expression, if_body, else_body) int location; tree expression, if_body, else_body; { tree node; if (!else_body) else_body = empty_stmt_node; node = build (COND_EXPR, NULL_TREE, expression, if_body, else_body); EXPR_WFL_LINECOL (node) = location; node = build_debugable_stmt (location, node); return node; } static tree patch_if_else_statement (node) tree node; { tree expression = TREE_OPERAND (node, 0); int can_complete_normally = (CAN_COMPLETE_NORMALLY (TREE_OPERAND (node, 1)) | CAN_COMPLETE_NORMALLY (TREE_OPERAND (node, 2))); TREE_TYPE (node) = error_mark_node; EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); /* The type of expression must be boolean */ if (TREE_TYPE (expression) != boolean_type_node && TREE_TYPE (expression) != promoted_boolean_type_node) { parse_error_context (wfl_operator, "Incompatible type for `if'. Can't convert `%s' to `boolean'", lang_printable_name (TREE_TYPE (expression), 0)); return error_mark_node; } if (TREE_CODE (expression) == INTEGER_CST) { if (integer_zerop (expression)) node = TREE_OPERAND (node, 2); else node = TREE_OPERAND (node, 1); if (CAN_COMPLETE_NORMALLY (node) != can_complete_normally) { node = build (COMPOUND_EXPR, void_type_node, node, empty_stmt_node); CAN_COMPLETE_NORMALLY (node) = can_complete_normally; } return node; } TREE_TYPE (node) = void_type_node; TREE_SIDE_EFFECTS (node) = 1; CAN_COMPLETE_NORMALLY (node) = can_complete_normally; return node; } /* 14.6 Labeled Statements */ /* Action taken when a lableled statement is parsed. a new LABELED_BLOCK_EXPR is created. No statement is attached to the label, yet. LABEL can be NULL_TREE for artificially-generated blocks. */ static tree build_labeled_block (location, label) int location; tree label; { tree label_name ; tree label_decl, node; if (label == NULL_TREE || label == continue_identifier_node) label_name = label; else { label_name = merge_qualified_name (label_id, label); /* Issue an error if we try to reuse a label that was previously declared */ if (IDENTIFIER_LOCAL_VALUE (label_name)) { EXPR_WFL_LINECOL (wfl_operator) = location; parse_error_context (wfl_operator, "Declaration of `%s' shadows a previous label declaration", IDENTIFIER_POINTER (label)); EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (IDENTIFIER_LOCAL_VALUE (label_name)); parse_error_context (wfl_operator, "This is the location of the previous declaration of label `%s'", IDENTIFIER_POINTER (label)); java_error_count--; } } label_decl = create_label_decl (label_name); node = build (LABELED_BLOCK_EXPR, NULL_TREE, label_decl, NULL_TREE); EXPR_WFL_LINECOL (node) = location; TREE_SIDE_EFFECTS (node) = 1; return node; } /* A labeled statement LBE is attached a statement. */ static tree finish_labeled_statement (lbe, statement) tree lbe; /* Labeled block expr */ tree statement; { /* In anyways, tie the loop to its statement */ LABELED_BLOCK_BODY (lbe) = statement; pop_labeled_block (); POP_LABELED_BLOCK (); return lbe; } /* 14.10, 14.11, 14.12 Loop Statements */ /* Create an empty LOOP_EXPR and make it the last in the nested loop list. */ static tree build_new_loop (loop_body) tree loop_body; { tree loop = build (LOOP_EXPR, NULL_TREE, loop_body); TREE_SIDE_EFFECTS (loop) = 1; PUSH_LOOP (loop); return loop; } /* Create a loop body according to the following structure: COMPOUND_EXPR COMPOUND_EXPR (loop main body) EXIT_EXPR (this order is for while/for loops. LABELED_BLOCK_EXPR the order is reversed for do loops) LABEL_DECL (a continue occurring here branches at the BODY end of this labeled block) INCREMENT (if any) REVERSED, if non zero, tells that the loop condition expr comes after the body, like in the do-while loop. To obtain a loop, the loop body structure described above is encapsulated within a LOOP_EXPR surrounded by a LABELED_BLOCK_EXPR: LABELED_BLOCK_EXPR LABEL_DECL (use this label to exit the loop) LOOP_EXPR */ static tree build_loop_body (location, condition, reversed) int location; tree condition; int reversed; { tree first, second, body; condition = build (EXIT_EXPR, NULL_TREE, condition); /* Force walk */ EXPR_WFL_LINECOL (condition) = location; /* For accurate error report */ condition = build_debugable_stmt (location, condition); TREE_SIDE_EFFECTS (condition) = 1; body = build_labeled_block (0, continue_identifier_node); first = (reversed ? body : condition); second = (reversed ? condition : body); return build (COMPOUND_EXPR, NULL_TREE, build (COMPOUND_EXPR, NULL_TREE, first, second), empty_stmt_node); } /* Install CONDITION (if any) and loop BODY (using REVERSED to tell their order) on the current loop. Unlink the current loop from the loop list. */ static tree finish_loop_body (location, condition, body, reversed) int location; tree condition, body; int reversed; { tree to_return = ctxp->current_loop; tree loop_body = LOOP_EXPR_BODY (to_return); if (condition) { tree cnode = LOOP_EXPR_BODY_CONDITION_EXPR (loop_body, reversed); /* We wrapped the EXIT_EXPR around a WFL so we can debug it. The real EXIT_EXPR is one operand further. */ EXPR_WFL_LINECOL (cnode) = location; /* This one is for accurate error reports */ EXPR_WFL_LINECOL (TREE_OPERAND (cnode, 0)) = location; TREE_OPERAND (TREE_OPERAND (cnode, 0), 0) = condition; } LOOP_EXPR_BODY_BODY_EXPR (loop_body, reversed) = body; POP_LOOP (); return to_return; } /* Tailored version of finish_loop_body for FOR loops, when FOR loops feature the condition part */ static tree finish_for_loop (location, condition, update, body) int location; tree condition, update, body; { /* Put the condition and the loop body in place */ tree loop = finish_loop_body (location, condition, body, 0); /* LOOP is the current loop which has been now popped of the loop stack. Mark the update block as reachable and install it. We do this because the (current interpretation of the) JLS requires that the update expression be considered reachable even if the for loop's body doesn't complete normally. */ if (update != NULL_TREE && update != empty_stmt_node) { tree up2 = update; if (TREE_CODE (up2) == EXPR_WITH_FILE_LOCATION) up2 = EXPR_WFL_NODE (up2); /* Try to detect constraint violations. These would be programming errors somewhere. */ if (! IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (up2))) || TREE_CODE (up2) == LOOP_EXPR) abort (); SUPPRESS_UNREACHABLE_ERROR (up2) = 1; } LOOP_EXPR_BODY_UPDATE_BLOCK (LOOP_EXPR_BODY (loop)) = update; return loop; } /* Try to find the loop a block might be related to. This comprises the case where the LOOP_EXPR is found as the second operand of a COMPOUND_EXPR, because the loop happens to have an initialization part, then expressed as the first operand of the COMPOUND_EXPR. If the search finds something, 1 is returned. Otherwise, 0 is returned. The search is assumed to start from a LABELED_BLOCK_EXPR's block. */ static tree search_loop (statement) tree statement; { if (TREE_CODE (statement) == LOOP_EXPR) return statement; if (TREE_CODE (statement) == BLOCK) statement = BLOCK_SUBBLOCKS (statement); else return NULL_TREE; if (statement && TREE_CODE (statement) == COMPOUND_EXPR) while (statement && TREE_CODE (statement) == COMPOUND_EXPR) statement = TREE_OPERAND (statement, 1); return (TREE_CODE (statement) == LOOP_EXPR && FOR_LOOP_P (statement) ? statement : NULL_TREE); } /* Return 1 if LOOP can be found in the labeled block BLOCK. 0 is returned otherwise. */ static int labeled_block_contains_loop_p (block, loop) tree block, loop; { if (!block) return 0; if (LABELED_BLOCK_BODY (block) == loop) return 1; if (FOR_LOOP_P (loop) && search_loop (LABELED_BLOCK_BODY (block)) == loop) return 1; return 0; } /* If the loop isn't surrounded by a labeled statement, create one and insert LOOP as its body. */ static tree patch_loop_statement (loop) tree loop; { tree loop_label; TREE_TYPE (loop) = void_type_node; if (labeled_block_contains_loop_p (ctxp->current_labeled_block, loop)) return loop; loop_label = build_labeled_block (0, NULL_TREE); /* LOOP is an EXPR node, so it should have a valid EXPR_WFL_LINECOL that LOOP_LABEL could enquire about, for a better accuracy. FIXME */ LABELED_BLOCK_BODY (loop_label) = loop; PUSH_LABELED_BLOCK (loop_label); return loop_label; } /* 14.13, 14.14: break and continue Statements */ /* Build a break or a continue statement. a null NAME indicates an unlabeled break/continue statement. */ static tree build_bc_statement (location, is_break, name) int location, is_break; tree name; { tree break_continue, label_block_expr = NULL_TREE; if (name) { if (!(label_block_expr = IDENTIFIER_LOCAL_VALUE (merge_qualified_name (label_id, EXPR_WFL_NODE (name))))) /* Null means that we don't have a target for this named break/continue. In this case, we make the target to be the label name, so that the error can be reported accuratly in patch_bc_statement. */ label_block_expr = EXPR_WFL_NODE (name); } /* Unlabeled break/continue will be handled during the break/continue patch operation */ break_continue = build (EXIT_BLOCK_EXPR, NULL_TREE, label_block_expr, NULL_TREE); IS_BREAK_STMT_P (break_continue) = is_break; TREE_SIDE_EFFECTS (break_continue) = 1; EXPR_WFL_LINECOL (break_continue) = location; break_continue = build_debugable_stmt (location, break_continue); return break_continue; } /* Verification of a break/continue statement. */ static tree patch_bc_statement (node) tree node; { tree bc_label = EXIT_BLOCK_LABELED_BLOCK (node), target_stmt; tree labeled_block = ctxp->current_labeled_block; EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); /* Having an identifier here means that the target is unknown. */ if (bc_label != NULL_TREE && TREE_CODE (bc_label) == IDENTIFIER_NODE) { parse_error_context (wfl_operator, "No label definition found for `%s'", IDENTIFIER_POINTER (bc_label)); return error_mark_node; } if (! IS_BREAK_STMT_P (node)) { /* It's a continue statement. */ for (;; labeled_block = TREE_CHAIN (labeled_block)) { if (labeled_block == NULL_TREE) { if (bc_label == NULL_TREE) parse_error_context (wfl_operator, "`continue' must be in loop"); else parse_error_context (wfl_operator, "continue label `%s' does not name a loop", IDENTIFIER_POINTER (bc_label)); return error_mark_node; } if ((DECL_NAME (LABELED_BLOCK_LABEL (labeled_block)) == continue_identifier_node) && (bc_label == NULL_TREE || TREE_CHAIN (labeled_block) == bc_label)) { bc_label = labeled_block; break; } } } else if (!bc_label) { for (;; labeled_block = TREE_CHAIN (labeled_block)) { if (labeled_block == NULL_TREE) { parse_error_context (wfl_operator, "`break' must be in loop or switch"); return error_mark_node; } target_stmt = LABELED_BLOCK_BODY (labeled_block); if (TREE_CODE (target_stmt) == SWITCH_EXPR || search_loop (target_stmt)) { bc_label = labeled_block; break; } } } EXIT_BLOCK_LABELED_BLOCK (node) = bc_label; CAN_COMPLETE_NORMALLY (bc_label) = 1; /* Our break/continue don't return values. */ TREE_TYPE (node) = void_type_node; /* Encapsulate the break within a compound statement so that it's expanded all the times by expand_expr (and not clobbered sometimes, like after a if statement) */ node = add_stmt_to_compound (NULL_TREE, void_type_node, node); TREE_SIDE_EFFECTS (node) = 1; return node; } /* Process the exit expression belonging to a loop. Its type must be boolean. */ static tree patch_exit_expr (node) tree node; { tree expression = TREE_OPERAND (node, 0); TREE_TYPE (node) = error_mark_node; EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); /* The type of expression must be boolean */ if (TREE_TYPE (expression) != boolean_type_node) { parse_error_context (wfl_operator, "Incompatible type for loop conditional. Can't convert `%s' to `boolean'", lang_printable_name (TREE_TYPE (expression), 0)); return error_mark_node; } /* Now we know things are allright, invert the condition, fold and return */ TREE_OPERAND (node, 0) = fold (build1 (TRUTH_NOT_EXPR, boolean_type_node, expression)); if (! integer_zerop (TREE_OPERAND (node, 0)) && ctxp->current_loop != NULL_TREE && TREE_CODE (ctxp->current_loop) == LOOP_EXPR) CAN_COMPLETE_NORMALLY (ctxp->current_loop) = 1; if (! integer_onep (TREE_OPERAND (node, 0))) CAN_COMPLETE_NORMALLY (node) = 1; TREE_TYPE (node) = void_type_node; return node; } /* 14.9 Switch statement */ static tree patch_switch_statement (node) tree node; { tree se = TREE_OPERAND (node, 0), se_type; tree save, iter; /* Complete the switch expression */ se = TREE_OPERAND (node, 0) = java_complete_tree (se); se_type = TREE_TYPE (se); /* The type of the switch expression must be char, byte, short or int */ if (! JINTEGRAL_TYPE_P (se_type) || se_type == long_type_node) { EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); parse_error_context (wfl_operator, "Incompatible type for `switch'. Can't convert `%s' to `int'", lang_printable_name (se_type, 0)); /* This is what java_complete_tree will check */ TREE_OPERAND (node, 0) = error_mark_node; return error_mark_node; } /* Save and restore the outer case label list. */ save = case_label_list; case_label_list = NULL_TREE; TREE_OPERAND (node, 1) = java_complete_tree (TREE_OPERAND (node, 1)); /* See if we've found a duplicate label. We can't leave this until code generation, because in `--syntax-only' and `-C' modes we don't do ordinary code generation. */ for (iter = case_label_list; iter != NULL_TREE; iter = TREE_CHAIN (iter)) { HOST_WIDE_INT val = TREE_INT_CST_LOW (TREE_VALUE (iter)); tree subiter; for (subiter = TREE_CHAIN (iter); subiter != NULL_TREE; subiter = TREE_CHAIN (subiter)) { HOST_WIDE_INT subval = TREE_INT_CST_LOW (TREE_VALUE (subiter)); if (val == subval) { EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (TREE_PURPOSE (iter)); /* The case_label_list is in reverse order, so print the outer label first. */ parse_error_context (wfl_operator, "duplicate case label: `" HOST_WIDE_INT_PRINT_DEC "'", subval); EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (TREE_PURPOSE (subiter)); parse_error_context (wfl_operator, "original label is here"); break; } } } case_label_list = save; /* Ready to return */ if (TREE_CODE (TREE_OPERAND (node, 1)) == ERROR_MARK) { TREE_TYPE (node) = error_mark_node; return error_mark_node; } TREE_TYPE (node) = void_type_node; TREE_SIDE_EFFECTS (node) = 1; CAN_COMPLETE_NORMALLY (node) = CAN_COMPLETE_NORMALLY (TREE_OPERAND (node, 1)) || ! SWITCH_HAS_DEFAULT (node); return node; } /* 14.18 The try/catch statements */ /* Encapsulate TRY_STMTS' in a try catch sequence. The catch clause catches TYPE and executes CATCH_STMTS. */ static tree encapsulate_with_try_catch (location, type, try_stmts, catch_stmts) int location; tree type, try_stmts, catch_stmts; { tree try_block, catch_clause_param, catch_block, catch; /* First build a try block */ try_block = build_expr_block (try_stmts, NULL_TREE); /* Build a catch block: we need a catch clause parameter */ catch_clause_param = build_decl (VAR_DECL, wpv_id, build_pointer_type (type)); /* And a block */ catch_block = build_expr_block (NULL_TREE, catch_clause_param); /* Initialize the variable and store in the block */ catch = build (MODIFY_EXPR, NULL_TREE, catch_clause_param, build (JAVA_EXC_OBJ_EXPR, ptr_type_node)); add_stmt_to_block (catch_block, NULL_TREE, catch); /* Add the catch statements */ add_stmt_to_block (catch_block, NULL_TREE, catch_stmts); /* Now we can build a CATCH_EXPR */ catch_block = build1 (CATCH_EXPR, NULL_TREE, catch_block); return build_try_statement (location, try_block, catch_block); } static tree build_try_statement (location, try_block, catches) int location; tree try_block, catches; { tree node = build (TRY_EXPR, NULL_TREE, try_block, catches); EXPR_WFL_LINECOL (node) = location; return node; } static tree build_try_finally_statement (location, try_block, finally) int location; tree try_block, finally; { tree node = build (TRY_FINALLY_EXPR, NULL_TREE, try_block, finally); EXPR_WFL_LINECOL (node) = location; return node; } static tree patch_try_statement (node) tree node; { int error_found = 0; tree try = TREE_OPERAND (node, 0); /* Exception handlers are considered in left to right order */ tree catch = nreverse (TREE_OPERAND (node, 1)); tree current, caught_type_list = NULL_TREE; /* Check catch clauses, if any. Every time we find an error, we try to process the next catch clause. We process the catch clause before the try block so that when processing the try block we can check thrown exceptions againts the caught type list. */ for (current = catch; current; current = TREE_CHAIN (current)) { tree carg_decl, carg_type; tree sub_current, catch_block, catch_clause; int unreachable; /* At this point, the structure of the catch clause is CATCH_EXPR (catch node) BLOCK (with the decl of the parameter) COMPOUND_EXPR MODIFY_EXPR (assignment of the catch parameter) BLOCK (catch clause block) */ catch_clause = TREE_OPERAND (current, 0); carg_decl = BLOCK_EXPR_DECLS (catch_clause); carg_type = TREE_TYPE (TREE_TYPE (carg_decl)); /* Catch clauses can't have more than one parameter declared, but it's already enforced by the grammar. Make sure that the only parameter of the clause statement in of class Throwable or a subclass of Throwable, but that was done earlier. The catch clause parameter type has also been resolved. */ /* Just make sure that the catch clause parameter type inherits from java.lang.Throwable */ if (!inherits_from_p (carg_type, throwable_type_node)) { EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (current); parse_error_context (wfl_operator, "Can't catch class `%s'. Catch clause parameter type must be a subclass of class `java.lang.Throwable'", lang_printable_name (carg_type, 0)); error_found = 1; continue; } /* Partial check for unreachable catch statement: The catch clause is reachable iff is no earlier catch block A in the try statement such that the type of the catch clause's parameter is the same as or a subclass of the type of A's parameter */ unreachable = 0; for (sub_current = catch; sub_current != current; sub_current = TREE_CHAIN (sub_current)) { tree sub_catch_clause, decl; sub_catch_clause = TREE_OPERAND (sub_current, 0); decl = BLOCK_EXPR_DECLS (sub_catch_clause); if (inherits_from_p (carg_type, TREE_TYPE (TREE_TYPE (decl)))) { EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (current); parse_error_context (wfl_operator, "`catch' not reached because of the catch clause at line %d", EXPR_WFL_LINENO (sub_current)); unreachable = error_found = 1; break; } } /* Complete the catch clause block */ catch_block = java_complete_tree (TREE_OPERAND (current, 0)); if (catch_block == error_mark_node) { error_found = 1; continue; } if (CAN_COMPLETE_NORMALLY (catch_block)) CAN_COMPLETE_NORMALLY (node) = 1; TREE_OPERAND (current, 0) = catch_block; if (unreachable) continue; /* Things to do here: the exception must be thrown */ /* Link this type to the caught type list */ caught_type_list = tree_cons (NULL_TREE, carg_type, caught_type_list); } PUSH_EXCEPTIONS (caught_type_list); if ((try = java_complete_tree (try)) == error_mark_node) error_found = 1; if (CAN_COMPLETE_NORMALLY (try)) CAN_COMPLETE_NORMALLY (node) = 1; POP_EXCEPTIONS (); /* Verification ends here */ if (error_found) return error_mark_node; TREE_OPERAND (node, 0) = try; TREE_OPERAND (node, 1) = catch; TREE_TYPE (node) = void_type_node; return node; } /* 14.17 The synchronized Statement */ static tree patch_synchronized_statement (node, wfl_op1) tree node, wfl_op1; { tree expr = java_complete_tree (TREE_OPERAND (node, 0)); tree block = TREE_OPERAND (node, 1); tree tmp, enter, exit, expr_decl, assignment; if (expr == error_mark_node) { block = java_complete_tree (block); return expr; } /* We might be trying to synchronize on a STRING_CST */ if ((tmp = patch_string (expr))) expr = tmp; /* The TYPE of expr must be a reference type */ if (!JREFERENCE_TYPE_P (TREE_TYPE (expr))) { SET_WFL_OPERATOR (wfl_operator, node, wfl_op1); parse_error_context (wfl_operator, "Incompatible type for `synchronized'. Can't convert `%s' to `java.lang.Object'", lang_printable_name (TREE_TYPE (expr), 0)); return error_mark_node; } if (flag_emit_xref) { TREE_OPERAND (node, 0) = expr; TREE_OPERAND (node, 1) = java_complete_tree (block); CAN_COMPLETE_NORMALLY (node) = 1; return node; } /* Generate a try-finally for the synchronized statement, except that the handler that catches all throw exception calls _Jv_MonitorExit and then rethrow the exception. The synchronized statement is then implemented as: TRY { _Jv_MonitorEnter (expression) synchronized_block _Jv_MonitorExit (expression) } CATCH_ALL { e = _Jv_exception_info (); _Jv_MonitorExit (expression) Throw (e); } */ expr_decl = build_decl (VAR_DECL, generate_name (), TREE_TYPE (expr)); BUILD_MONITOR_ENTER (enter, expr_decl); BUILD_MONITOR_EXIT (exit, expr_decl); CAN_COMPLETE_NORMALLY (enter) = 1; CAN_COMPLETE_NORMALLY (exit) = 1; assignment = build (MODIFY_EXPR, NULL_TREE, expr_decl, expr); TREE_SIDE_EFFECTS (assignment) = 1; node = build (COMPOUND_EXPR, NULL_TREE, build (COMPOUND_EXPR, NULL_TREE, assignment, enter), build (TRY_FINALLY_EXPR, NULL_TREE, block, exit)); node = build_expr_block (node, expr_decl); return java_complete_tree (node); } /* 14.16 The throw Statement */ static tree patch_throw_statement (node, wfl_op1) tree node, wfl_op1; { tree expr = TREE_OPERAND (node, 0); tree type = TREE_TYPE (expr); int unchecked_ok = 0, tryblock_throws_ok = 0; /* Thrown expression must be assignable to java.lang.Throwable */ if (!try_reference_assignconv (throwable_type_node, expr)) { SET_WFL_OPERATOR (wfl_operator, node, wfl_op1); parse_error_context (wfl_operator, "Can't throw `%s'; it must be a subclass of class `java.lang.Throwable'", lang_printable_name (type, 0)); /* If the thrown expression was a reference, we further the compile-time check. */ if (!JREFERENCE_TYPE_P (type)) return error_mark_node; } /* At least one of the following must be true */ /* The type of the throw expression is a not checked exception, i.e. is a unchecked expression. */ unchecked_ok = IS_UNCHECKED_EXCEPTION_P (TREE_TYPE (type)); SET_WFL_OPERATOR (wfl_operator, node, wfl_op1); /* An instance can't throw a checked exception unless that exception is explicitly declared in the `throws' clause of each constructor. This doesn't apply to anonymous classes, since they don't have declared constructors. */ if (!unchecked_ok && DECL_INSTINIT_P (current_function_decl) && !ANONYMOUS_CLASS_P (current_class)) { tree current; for (current = TYPE_METHODS (current_class); current; current = TREE_CHAIN (current)) if (DECL_CONSTRUCTOR_P (current) && !check_thrown_exceptions_do (TREE_TYPE (expr))) { parse_error_context (wfl_operator, "Checked exception `%s' can't be thrown in instance initializer (not all declared constructor are declaring it in their `throws' clause)", lang_printable_name (TREE_TYPE (expr), 0)); return error_mark_node; } } /* Throw is contained in a try statement and at least one catch clause can receive the thrown expression or the current method is declared to throw such an exception. Or, the throw statement is contained in a method or constructor declaration and the type of the Expression is assignable to at least one type listed in the throws clause the declaration. */ if (!unchecked_ok) tryblock_throws_ok = check_thrown_exceptions_do (TREE_TYPE (expr)); if (!(unchecked_ok || tryblock_throws_ok)) { /* If there is a surrounding try block that has no matching clatch clause, report it first. A surrounding try block exits only if there is something after the list of checked exception thrown by the current function (if any). */ if (IN_TRY_BLOCK_P ()) parse_error_context (wfl_operator, "Checked exception `%s' can't be caught by any of the catch clause(s) of the surrounding `try' block", lang_printable_name (type, 0)); /* If we have no surrounding try statement and the method doesn't have any throws, report it now. FIXME */ /* We report that the exception can't be throw from a try block in all circumstances but when the `throw' is inside a static block. */ else if (!EXCEPTIONS_P (currently_caught_type_list) && !tryblock_throws_ok) { if (DECL_CLINIT_P (current_function_decl)) parse_error_context (wfl_operator, "Checked exception `%s' can't be thrown in initializer", lang_printable_name (type, 0)); else parse_error_context (wfl_operator, "Checked exception `%s' isn't thrown from a `try' block", lang_printable_name (type, 0)); } /* Otherwise, the current method doesn't have the appropriate throws declaration */ else parse_error_context (wfl_operator, "Checked exception `%s' doesn't match any of current method's `throws' declaration(s)", lang_printable_name (type, 0)); return error_mark_node; } if (! flag_emit_class_files && ! flag_emit_xref) BUILD_THROW (node, expr); /* If doing xrefs, keep the location where the `throw' was seen. */ if (flag_emit_xref) EXPR_WFL_LINECOL (node) = EXPR_WFL_LINECOL (wfl_op1); return node; } /* Check that exception said to be thrown by method DECL can be effectively caught from where DECL is invoked. */ static void check_thrown_exceptions (location, decl) int location; tree decl; { tree throws; /* For all the unchecked exceptions thrown by DECL */ for (throws = DECL_FUNCTION_THROWS (decl); throws; throws = TREE_CHAIN (throws)) if (!check_thrown_exceptions_do (TREE_VALUE (throws))) { #if 1 /* Temporary hack to suppresses errors about cloning arrays. FIXME */ if (DECL_NAME (decl) == get_identifier ("clone")) continue; #endif EXPR_WFL_LINECOL (wfl_operator) = location; if (DECL_FINIT_P (current_function_decl)) parse_error_context (wfl_operator, "Exception `%s' can't be thrown in initializer", lang_printable_name (TREE_VALUE (throws), 0)); else { parse_error_context (wfl_operator, "Exception `%s' must be caught, or it must be declared in the `throws' clause of `%s'", lang_printable_name (TREE_VALUE (throws), 0), (DECL_INIT_P (current_function_decl) ? IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (current_class))) : IDENTIFIER_POINTER (DECL_NAME (current_function_decl)))); } } } /* Return 1 if checked EXCEPTION is caught at the current nesting level of try-catch blocks, OR is listed in the `throws' clause of the current method. */ static int check_thrown_exceptions_do (exception) tree exception; { tree list = currently_caught_type_list; resolve_and_layout (exception, NULL_TREE); /* First, all the nested try-catch-finally at that stage. The last element contains `throws' clause exceptions, if any. */ if (IS_UNCHECKED_EXCEPTION_P (exception)) return 1; while (list) { tree caught; for (caught = TREE_VALUE (list); caught; caught = TREE_CHAIN (caught)) if (valid_ref_assignconv_cast_p (exception, TREE_VALUE (caught), 0)) return 1; list = TREE_CHAIN (list); } return 0; } static void purge_unchecked_exceptions (mdecl) tree mdecl; { tree throws = DECL_FUNCTION_THROWS (mdecl); tree new = NULL_TREE; while (throws) { tree next = TREE_CHAIN (throws); if (!IS_UNCHECKED_EXCEPTION_P (TREE_VALUE (throws))) { TREE_CHAIN (throws) = new; new = throws; } throws = next; } /* List is inverted here, but it doesn't matter */ DECL_FUNCTION_THROWS (mdecl) = new; } /* This function goes over all of CLASS_TYPE ctors and checks whether each of them features at least one unchecked exception in its `throws' clause. If it's the case, it returns `true', `false' otherwise. */ static bool ctors_unchecked_throws_clause_p (class_type) tree class_type; { tree current; for (current = TYPE_METHODS (class_type); current; current = TREE_CHAIN (current)) { bool ctu = false; /* Ctor Throws Unchecked */ if (DECL_CONSTRUCTOR_P (current)) { tree throws; for (throws = DECL_FUNCTION_THROWS (current); throws && !ctu; throws = TREE_CHAIN (throws)) if (inherits_from_p (TREE_VALUE (throws), exception_type_node)) ctu = true; } /* We return false as we found one ctor that is unfit. */ if (!ctu && DECL_CONSTRUCTOR_P (current)) return false; } /* All ctors feature at least one unchecked exception in their `throws' clause. */ return true; } /* 15.24 Conditional Operator ?: */ static tree patch_conditional_expr (node, wfl_cond, wfl_op1) tree node, wfl_cond, wfl_op1; { tree cond = TREE_OPERAND (node, 0); tree op1 = TREE_OPERAND (node, 1); tree op2 = TREE_OPERAND (node, 2); tree resulting_type = NULL_TREE; tree t1, t2, patched; int error_found = 0; /* Operands of ?: might be StringBuffers crafted as a result of a string concatenation. Obtain a descent operand here. */ if ((patched = patch_string (op1))) TREE_OPERAND (node, 1) = op1 = patched; if ((patched = patch_string (op2))) TREE_OPERAND (node, 2) = op2 = patched; t1 = TREE_TYPE (op1); t2 = TREE_TYPE (op2); /* The first expression must be a boolean */ if (TREE_TYPE (cond) != boolean_type_node) { SET_WFL_OPERATOR (wfl_operator, node, wfl_cond); parse_error_context (wfl_operator, "Incompatible type for `?:'. Can't convert `%s' to `boolean'", lang_printable_name (TREE_TYPE (cond), 0)); error_found = 1; } /* Second and third can be numeric, boolean (i.e. primitive), references or null. Anything else results in an error */ if (!((JNUMERIC_TYPE_P (t1) && JNUMERIC_TYPE_P (t2)) || ((JREFERENCE_TYPE_P (t1) || op1 == null_pointer_node) && (JREFERENCE_TYPE_P (t2) || op2 == null_pointer_node)) || (t1 == boolean_type_node && t2 == boolean_type_node))) error_found = 1; /* Determine the type of the conditional expression. Same types are easy to deal with */ else if (t1 == t2) resulting_type = t1; /* There are different rules for numeric types */ else if (JNUMERIC_TYPE_P (t1)) { /* if byte/short found, the resulting type is short */ if ((t1 == byte_type_node && t2 == short_type_node) || (t1 == short_type_node && t2 == byte_type_node)) resulting_type = short_type_node; /* If t1 is a constant int and t2 is of type byte, short or char and t1's value fits in t2, then the resulting type is t2 */ else if ((t1 == int_type_node && TREE_CONSTANT (TREE_OPERAND (node, 1))) && JBSC_TYPE_P (t2) && int_fits_type_p (TREE_OPERAND (node, 1), t2)) resulting_type = t2; /* If t2 is a constant int and t1 is of type byte, short or char and t2's value fits in t1, then the resulting type is t1 */ else if ((t2 == int_type_node && TREE_CONSTANT (TREE_OPERAND (node, 2))) && JBSC_TYPE_P (t1) && int_fits_type_p (TREE_OPERAND (node, 2), t1)) resulting_type = t1; /* Otherwise, binary numeric promotion is applied and the resulting type is the promoted type of operand 1 and 2 */ else resulting_type = binary_numeric_promotion (t1, t2, &TREE_OPERAND (node, 1), &TREE_OPERAND (node, 2)); } /* Cases of a reference and a null type */ else if (JREFERENCE_TYPE_P (t1) && op2 == null_pointer_node) resulting_type = t1; else if (JREFERENCE_TYPE_P (t2) && op1 == null_pointer_node) resulting_type = t2; /* Last case: different reference types. If a type can be converted into the other one by assignment conversion, the latter determines the type of the expression */ else if ((resulting_type = try_reference_assignconv (t1, op2))) resulting_type = promote_type (t1); else if ((resulting_type = try_reference_assignconv (t2, op1))) resulting_type = promote_type (t2); /* If we don't have any resulting type, we're in trouble */ if (!resulting_type) { char *t = xstrdup (lang_printable_name (t1, 0)); SET_WFL_OPERATOR (wfl_operator, node, wfl_op1); parse_error_context (wfl_operator, "Incompatible type for `?:'. Can't convert `%s' to `%s'", t, lang_printable_name (t2, 0)); free (t); error_found = 1; } if (error_found) { TREE_TYPE (node) = error_mark_node; return error_mark_node; } TREE_TYPE (node) = resulting_type; TREE_SET_CODE (node, COND_EXPR); CAN_COMPLETE_NORMALLY (node) = 1; return node; } /* Wrap EXPR with code to initialize DECL's class, if appropriate. */ static tree maybe_build_class_init_for_field (decl, expr) tree decl, expr; { tree clas = DECL_CONTEXT (decl); if (flag_emit_class_files || flag_emit_xref) return expr; if (TREE_CODE (decl) == VAR_DECL && FIELD_STATIC (decl) && FIELD_FINAL (decl)) { tree init = DECL_INITIAL (decl); if (init != NULL_TREE) init = fold_constant_for_init (init, decl); if (init != NULL_TREE && CONSTANT_VALUE_P (init)) return expr; } return build_class_init (clas, expr); } /* Try to constant fold NODE. If NODE is not a constant expression, return NULL_EXPR. CONTEXT is a static final VAR_DECL whose initializer we are folding. */ static tree fold_constant_for_init (node, context) tree node; tree context; { tree op0, op1, val; enum tree_code code = TREE_CODE (node); switch (code) { case STRING_CST: case INTEGER_CST: case REAL_CST: return node; case PLUS_EXPR: case MINUS_EXPR: case MULT_EXPR: case TRUNC_MOD_EXPR: case RDIV_EXPR: case LSHIFT_EXPR: case RSHIFT_EXPR: case URSHIFT_EXPR: case BIT_AND_EXPR: case BIT_XOR_EXPR: case BIT_IOR_EXPR: case TRUTH_ANDIF_EXPR: case TRUTH_ORIF_EXPR: case EQ_EXPR: case NE_EXPR: case GT_EXPR: case GE_EXPR: case LT_EXPR: case LE_EXPR: op0 = TREE_OPERAND (node, 0); op1 = TREE_OPERAND (node, 1); val = fold_constant_for_init (op0, context); if (val == NULL_TREE || ! TREE_CONSTANT (val)) return NULL_TREE; TREE_OPERAND (node, 0) = val; val = fold_constant_for_init (op1, context); if (val == NULL_TREE || ! TREE_CONSTANT (val)) return NULL_TREE; TREE_OPERAND (node, 1) = val; return patch_binop (node, op0, op1); case UNARY_PLUS_EXPR: case NEGATE_EXPR: case TRUTH_NOT_EXPR: case BIT_NOT_EXPR: case CONVERT_EXPR: op0 = TREE_OPERAND (node, 0); val = fold_constant_for_init (op0, context); if (val == NULL_TREE || ! TREE_CONSTANT (val)) return NULL_TREE; TREE_OPERAND (node, 0) = val; return patch_unaryop (node, op0); break; case COND_EXPR: val = fold_constant_for_init (TREE_OPERAND (node, 0), context); if (val == NULL_TREE || ! TREE_CONSTANT (val)) return NULL_TREE; TREE_OPERAND (node, 0) = val; val = fold_constant_for_init (TREE_OPERAND (node, 1), context); if (val == NULL_TREE || ! TREE_CONSTANT (val)) return NULL_TREE; TREE_OPERAND (node, 1) = val; val = fold_constant_for_init (TREE_OPERAND (node, 2), context); if (val == NULL_TREE || ! TREE_CONSTANT (val)) return NULL_TREE; TREE_OPERAND (node, 2) = val; return integer_zerop (TREE_OPERAND (node, 0)) ? TREE_OPERAND (node, 1) : TREE_OPERAND (node, 2); case VAR_DECL: case FIELD_DECL: if (! FIELD_FINAL (node) || DECL_INITIAL (node) == NULL_TREE) return NULL_TREE; val = DECL_INITIAL (node); /* Guard against infinite recursion. */ DECL_INITIAL (node) = NULL_TREE; val = fold_constant_for_init (val, node); DECL_INITIAL (node) = val; return val; case EXPR_WITH_FILE_LOCATION: /* Compare java_complete_tree and resolve_expression_name. */ if (!EXPR_WFL_NODE (node) /* Or a PRIMARY flag ? */ || TREE_CODE (EXPR_WFL_NODE (node)) == IDENTIFIER_NODE) { tree name = EXPR_WFL_NODE (node); tree decl; if (PRIMARY_P (node)) return NULL_TREE; else if (! QUALIFIED_P (name)) { decl = lookup_field_wrapper (DECL_CONTEXT (context), name); if (decl == NULL_TREE || (! FIELD_STATIC (decl) && ! FIELD_FINAL (decl))) return NULL_TREE; return fold_constant_for_init (decl, decl); } else { /* Install the proper context for the field resolution. The prior context is restored once the name is properly qualified. */ tree saved_current_class = current_class; /* Wait until the USE_COMPONENT_REF re-write. FIXME. */ current_class = DECL_CONTEXT (context); qualify_ambiguous_name (node); current_class = saved_current_class; if (resolve_field_access (node, &decl, NULL) && decl != NULL_TREE) return fold_constant_for_init (decl, decl); return NULL_TREE; } } else { op0 = TREE_OPERAND (node, 0); val = fold_constant_for_init (op0, context); if (val == NULL_TREE || ! TREE_CONSTANT (val)) return NULL_TREE; TREE_OPERAND (node, 0) = val; return val; } #ifdef USE_COMPONENT_REF case IDENTIFIER: case COMPONENT_REF: ?; #endif default: return NULL_TREE; } } #ifdef USE_COMPONENT_REF /* Context is 'T' for TypeName, 'P' for PackageName, 'M' for MethodName, 'E' for ExpressionName, and 'A' for AmbiguousName. */ tree resolve_simple_name (name, context) tree name; int context; { } tree resolve_qualified_name (name, context) tree name; int context; { } #endif /* Mark P, which is really a `struct parser_ctxt **' for GC. */ static void mark_parser_ctxt (p) void *p; { struct parser_ctxt *pc = *((struct parser_ctxt **) p); int i; if (!pc) return; #ifndef JC1_LITE for (i = 0; i < 11; ++i) ggc_mark_tree (pc->modifier_ctx[i]); ggc_mark_tree (pc->class_type); ggc_mark_tree (pc->function_decl); ggc_mark_tree (pc->package); ggc_mark_tree (pc->class_list); ggc_mark_tree (pc->current_parsed_class); ggc_mark_tree (pc->current_parsed_class_un); ggc_mark_tree (pc->non_static_initialized); ggc_mark_tree (pc->static_initialized); ggc_mark_tree (pc->instance_initializers); ggc_mark_tree (pc->import_list); ggc_mark_tree (pc->import_demand_list); ggc_mark_tree (pc->current_loop); ggc_mark_tree (pc->current_labeled_block); #endif /* JC1_LITE */ if (pc->next) mark_parser_ctxt (&pc->next); } void init_src_parse () { /* Sanity check; we've been bit by this before. */ if (ARRAY_SIZE (ctxp->modifier_ctx) != MODIFIER_TK - PUBLIC_TK) abort (); } /* This section deals with the functions that are called when tables recording class initialization information are traversed. */ /* Attach to PTR (a block) the declaration found in ENTRY. */ static int attach_init_test_initialization_flags (entry, ptr) PTR *entry; PTR ptr; { tree block = (tree)ptr; struct treetreehash_entry *ite = (struct treetreehash_entry *) *entry; TREE_CHAIN (ite->value) = BLOCK_EXPR_DECLS (block); BLOCK_EXPR_DECLS (block) = ite->value; return true; } /* This function is called for each classes that is known definitely assigned when a given static method was called. This function augments a compound expression (INFO) storing all assignment to initialized static class flags if a flag already existed, otherwise a new one is created. */ static int emit_test_initialization (entry_p, info) PTR *entry_p; PTR info; { tree l = (tree) info; tree decl, init; tree key = (tree) *entry_p; tree *ite; htab_t cf_ht = DECL_FUNCTION_INIT_TEST_TABLE (current_function_decl); /* If we haven't found a flag and we're dealing with self registered with current_function_decl, then don't do anything. Self is always added as definitely initialized but this information is valid only if used outside the current function. */ if (current_function_decl == TREE_PURPOSE (l) && java_treetreehash_find (cf_ht, key) == NULL) return true; ite = java_treetreehash_new (cf_ht, key); /* If we don't have a variable, create one and install it. */ if (*ite == NULL) { tree block; decl = build_decl (VAR_DECL, NULL_TREE, boolean_type_node); MAYBE_CREATE_VAR_LANG_DECL_SPECIFIC (decl); LOCAL_CLASS_INITIALIZATION_FLAG (decl) = 1; DECL_CONTEXT (decl) = current_function_decl; DECL_INITIAL (decl) = boolean_true_node; /* The trick is to find the right context for it. */ block = BLOCK_SUBBLOCKS (GET_CURRENT_BLOCK (current_function_decl)); TREE_CHAIN (decl) = BLOCK_EXPR_DECLS (block); BLOCK_EXPR_DECLS (block) = decl; *ite = decl; } else decl = *ite; /* Now simply augment the compound that holds all the assignments pertaining to this method invocation. */ init = build (MODIFY_EXPR, boolean_type_node, decl, boolean_true_node); TREE_SIDE_EFFECTS (init) = 1; TREE_VALUE (l) = add_stmt_to_compound (TREE_VALUE (l), void_type_node, init); TREE_SIDE_EFFECTS (TREE_VALUE (l)) = 1; return true; } #include "gt-java-parse.h" #include "gtype-java.h"