;; libgcc routines for the Hitachi H8/300 CPU. ;; Contributed by Steve Chamberlain /* Copyright (C) 1994, 2000, 2001 Free Software Foundation, Inc. This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Assembler register definitions. */ #define A0 r0 #define A0L r0l #define A0H r0h #define A1 r1 #define A1L r1l #define A1H r1h #define A2 r2 #define A2L r2l #define A2H r2h #define A3 r3 #define A3L r3l #define A3H r3h #define S0 r4 #define S0L r4l #define S0H r4h #define S1 r5 #define S1L r5l #define S1H r5h #define S2 r6 #define S2L r6l #define S2H r6h #ifdef __H8300__ #define MOVP mov.w /* pointers are 16 bits */ #define ADDP add.w #define CMPP cmp.w #define PUSHP push #define POPP pop #define A0P r0 #define A1P r1 #define A2P r2 #define A3P r3 #define S0P r4 #define S1P r5 #define S2P r6 #endif #if defined (__H8300H__) || defined (__H8300S__) #define MOVP mov.l /* pointers are 32 bits */ #define ADDP add.l #define CMPP cmp.l #define PUSHP push.l #define POPP pop.l #define A0P er0 #define A1P er1 #define A2P er2 #define A3P er3 #define S0P er4 #define S1P er5 #define S2P er6 #define A0E e0 #define A1E e1 #define A2E e2 #define A3E e3 #endif #ifdef __H8300H__ .h8300h #endif #ifdef __H8300S__ .h8300s #endif #ifdef L_cmpsi2 #ifdef __H8300__ .section .text .align 2 .global ___cmpsi2 ___cmpsi2: cmp.w A2,A0 bne .L2 cmp.w A3,A1 bne .L2 mov.w #1,A0 rts .L2: cmp.w A0,A2 bgt .L4 bne .L3 cmp.w A1,A3 bls .L3 .L4: sub.w A0,A0 rts .L3: mov.w #2,A0 .L5: rts .end #endif #endif /* L_cmpsi2 */ #ifdef L_ucmpsi2 #ifdef __H8300__ .section .text .align 2 .global ___ucmpsi2 ___ucmpsi2: cmp.w A2,A0 bne .L2 cmp.w A3,A1 bne .L2 mov.w #1,A0 rts .L2: cmp.w A0,A2 bhi .L4 bne .L3 cmp.w A1,A3 bls .L3 .L4: sub.w A0,A0 rts .L3: mov.w #2,A0 .L5: rts .end #endif #endif /* L_ucmpsi2 */ #ifdef L_divhi3 ;; HImode divides for the H8/300. ;; We bunch all of this into one object file since there are several ;; "supporting routines". ; general purpose normalize routine ; ; divisor in A0 ; dividend in A1 ; turns both into +ve numbers, and leaves what the answer sign ; should be in A2L #ifdef __H8300__ .section .text .align 2 divnorm: mov.b #0x0,A2L or A0H,A0H ; is divisor > 0 bge _lab1 not A0H ; no - then make it +ve not A0L adds #1,A0 xor #0x1,A2L ; and remember that in A2L _lab1: or A1H,A1H ; look at dividend bge _lab2 not A1H ; it is -ve, make it positive not A1L adds #1,A1 xor #0x1,A2L; and toggle sign of result _lab2: rts ;; Basically the same, except that the sign of the divisor determines ;; the sign. modnorm: mov.b #0x0,A2L or A0H,A0H ; is divisor > 0 bge _lab7 not A0H ; no - then make it +ve not A0L adds #1,A0 xor #0x1,A2L ; and remember that in A2L _lab7: or A1H,A1H ; look at dividend bge _lab8 not A1H ; it is -ve, make it positive not A1L adds #1,A1 _lab8: rts ; A0=A0/A1 signed .global ___divhi3 ___divhi3: bsr divnorm bsr ___udivhi3 negans: or A2L,A2L ; should answer be negative ? beq _lab4 not A0H ; yes, so make it so not A0L adds #1,A0 _lab4: rts ; A0=A0%A1 signed .global ___modhi3 ___modhi3: bsr modnorm bsr ___udivhi3 mov A3,A0 bra negans ; A0=A0%A1 unsigned .global ___umodhi3 ___umodhi3: bsr ___udivhi3 mov A3,A0 rts ; A0=A0/A1 unsigned ; A3=A0%A1 unsigned ; A2H trashed ; D high 8 bits of denom ; d low 8 bits of denom ; N high 8 bits of num ; n low 8 bits of num ; M high 8 bits of mod ; m low 8 bits of mod ; Q high 8 bits of quot ; q low 8 bits of quot ; P preserve ; The H8/300 only has a 16/8 bit divide, so we look at the incoming and ; see how to partition up the expression. .global ___udivhi3 ___udivhi3: ; A0 A1 A2 A3 ; Nn Dd P sub.w A3,A3 ; Nn Dd xP 00 or A1H,A1H bne divlongway or A0H,A0H beq _lab6 ; we know that D == 0 and N is != 0 mov.b A0H,A3L ; Nn Dd xP 0N divxu A1L,A3 ; MQ mov.b A3L,A0H ; Q ; dealt with N, do n _lab6: mov.b A0L,A3L ; n divxu A1L,A3 ; mq mov.b A3L,A0L ; Qq mov.b A3H,A3L ; m mov.b #0x0,A3H ; Qq 0m rts ; D != 0 - which means the denominator is ; loop around to get the result. divlongway: mov.b A0H,A3L ; Nn Dd xP 0N mov.b #0x0,A0H ; high byte of answer has to be zero mov.b #0x8,A2H ; 8 div8: add.b A0L,A0L ; n*=2 rotxl A3L ; Make remainder bigger rotxl A3H sub.w A1,A3 ; Q-=N bhs setbit ; set a bit ? add.w A1,A3 ; no : too far , Q+=N dec A2H bne div8 ; next bit rts setbit: inc A0L ; do insert bit dec A2H bne div8 ; next bit rts #endif /* __H8300__ */ #endif /* L_divhi3 */ #ifdef L_divsi3 ;; 4 byte integer divides for the H8/300. ;; ;; We have one routine which does all the work and lots of ;; little ones which prepare the args and massage the sign. ;; We bunch all of this into one object file since there are several ;; "supporting routines". .section .text .align 2 ; Put abs SIs into r0/r1 and r2/r3, and leave a 1 in r6l with sign of rest. ; This function is here to keep branch displacements small. #ifdef __H8300__ divnorm: mov.b #0,S2L ; keep the sign in S2 mov.b A0H,A0H ; is the numerator -ve bge postive ; negate arg not A0H not A1H not A0L not A1L add #1,A1L addx #0,A1H addx #0,A0L addx #0,A0H mov.b #1,S2L ; the sign will be -ve postive: mov.b A2H,A2H ; is the denominator -ve bge postive2 not A2L not A2H not A3L not A3H add.b #1,A3L addx #0,A3H addx #0,A2L addx #0,A2H xor #1,S2L ; toggle result sign postive2: rts ;; Basically the same, except that the sign of the divisor determines ;; the sign. modnorm: mov.b #0,S2L ; keep the sign in S2 mov.b A0H,A0H ; is the numerator -ve bge mpostive ; negate arg not A0H not A1H not A0L not A1L add #1,A1L addx #0,A1H addx #0,A0L addx #0,A0H mov.b #1,S2L ; the sign will be -ve mpostive: mov.b A2H,A2H ; is the denominator -ve bge mpostive2 not A2L not A2H not A3L not A3H add.b #1,A3L addx #0,A3H addx #0,A2L addx #0,A2H mpostive2: rts #else /* __H8300H__ */ divnorm: mov.b #0,S2L ; keep the sign in S2 mov.l A0P,A0P ; is the numerator -ve bge postive neg.l A0P ; negate arg mov.b #1,S2L ; the sign will be -ve postive: mov.l A1P,A1P ; is the denominator -ve bge postive2 neg.l A1P ; negate arg xor.b #1,S2L ; toggle result sign postive2: rts ;; Basically the same, except that the sign of the divisor determines ;; the sign. modnorm: mov.b #0,S2L ; keep the sign in S2 mov.l A0P,A0P ; is the numerator -ve bge mpostive neg.l A0P ; negate arg mov.b #1,S2L ; the sign will be -ve mpostive: mov.l A1P,A1P ; is the denominator -ve bge mpostive2 neg.l A1P ; negate arg mpostive2: rts #endif ; numerator in A0/A1 ; denominator in A2/A3 .global ___modsi3 ___modsi3: PUSHP S2P PUSHP S0P PUSHP S1P bsr modnorm bsr divmodsi4 #ifdef __H8300__ mov S0,A0 mov S1,A1 #else mov.l S0P,A0P #endif bra exitdiv .global ___udivsi3 ___udivsi3: PUSHP S2P PUSHP S0P PUSHP S1P mov.b #0,S2L ; keep sign low bsr divmodsi4 bra exitdiv .global ___umodsi3 ___umodsi3: PUSHP S2P PUSHP S0P PUSHP S1P mov.b #0,S2L ; keep sign low bsr divmodsi4 #ifdef __H8300__ mov S0,A0 mov S1,A1 #else mov.l S0P,A0P #endif bra exitdiv .global ___divsi3 ___divsi3: PUSHP S2P PUSHP S0P PUSHP S1P jsr divnorm jsr divmodsi4 ; examine what the sign should be exitdiv: POPP S1P POPP S0P or S2L,S2L beq reti ; should be -ve #ifdef __H8300__ not A0H not A1H not A0L not A1L add #1,A1L addx #0,A1H addx #0,A0L addx #0,A0H #else /* __H8300H__ */ neg.l A0P #endif reti: POPP S2P rts ; takes A0/A1 numerator (A0P for 300H) ; A2/A3 denominator (A1P for 300H) ; returns A0/A1 quotient (A0P for 300H) ; S0/S1 remainder (S0P for 300H) ; trashes S2 #ifdef __H8300__ divmodsi4: sub.w S0,S0 ; zero play area mov.w S0,S1 mov.b A2H,S2H or A2L,S2H or A3H,S2H bne DenHighZero mov.b A0H,A0H bne NumByte0Zero mov.b A0L,A0L bne NumByte1Zero mov.b A1H,A1H bne NumByte2Zero bra NumByte3Zero NumByte0Zero: mov.b A0H,S1L divxu A3L,S1 mov.b S1L,A0H NumByte1Zero: mov.b A0L,S1L divxu A3L,S1 mov.b S1L,A0L NumByte2Zero: mov.b A1H,S1L divxu A3L,S1 mov.b S1L,A1H NumByte3Zero: mov.b A1L,S1L divxu A3L,S1 mov.b S1L,A1L mov.b S1H,S1L mov.b #0x0,S1H rts ; have to do the divide by shift and test DenHighZero: mov.b A0H,S1L mov.b A0L,A0H mov.b A1H,A0L mov.b A1L,A1H mov.b #0,A1L mov.b #24,S2H ; only do 24 iterations nextbit: add.w A1,A1 ; double the answer guess rotxl A0L rotxl A0H rotxl S1L ; double remainder rotxl S1H rotxl S0L rotxl S0H sub.w A3,S1 ; does it all fit subx A2L,S0L subx A2H,S0H bhs setone add.w A3,S1 ; no, restore mistake addx A2L,S0L addx A2H,S0H dec S2H bne nextbit rts setone: inc A1L dec S2H bne nextbit rts #else /* __H8300H__ */ divmodsi4: sub.l S0P,S0P ; zero play area mov.w A1E,A1E ; denominator top word 0? bne DenHighZero ; do it the easy way, see page 107 in manual mov.w A0E,A2 extu.l A2P divxu.w A1,A2P mov.w A2E,A0E divxu.w A1,A0P mov.w A0E,S0 mov.w A2,A0E extu.l S0P rts DenHighZero: mov.w A0E,A2 mov.b A2H,S0L mov.b A2L,A2H mov.b A0H,A2L mov.w A2,A0E mov.b A0L,A0H mov.b #0,A0L mov.b #24,S2H ; only do 24 iterations nextbit: shll.l A0P ; double the answer guess rotxl.l S0P ; double remainder sub.l A1P,S0P ; does it all fit? bhs setone add.l A1P,S0P ; no, restore mistake dec S2H bne nextbit rts setone: inc A0L dec S2H bne nextbit rts #endif #endif /* L_divsi3 */ #ifdef L_mulhi3 ;; HImode multiply. ; The H8/300 only has an 8*8->16 multiply. ; The answer is the same as: ; ; product = (srca.l * srcb.l) + ((srca.h * srcb.l) + (srcb.h * srca.l)) * 256 ; (we can ignore A1.h * A0.h cause that will all off the top) ; A0 in ; A1 in ; A0 answer #ifdef __H8300__ .section .text .align 2 .global ___mulhi3 ___mulhi3: mov.b A1L,A2L ; A2l gets srcb.l mulxu A0L,A2 ; A2 gets first sub product mov.b A0H,A3L ; prepare for mulxu A1L,A3 ; second sub product add.b A3L,A2H ; sum first two terms mov.b A1H,A3L ; third sub product mulxu A0L,A3 add.b A3L,A2H ; almost there mov.w A2,A0 ; that is rts #endif #endif /* L_mulhi3 */ #ifdef L_mulsi3 ;; SImode multiply. ;; ;; I think that shift and add may be sufficient for this. Using the ;; supplied 8x8->16 would need 10 ops of 14 cycles each + overhead. This way ;; the inner loop uses maybe 20 cycles + overhead, but terminates ;; quickly on small args. ;; ;; A0/A1 src_a ;; A2/A3 src_b ;; ;; while (a) ;; { ;; if (a & 1) ;; r += b; ;; a >>= 1; ;; b <<= 1; ;; } .section .text .align 2 #ifdef __H8300__ .global ___mulsi3 ___mulsi3: PUSHP S0P PUSHP S1P PUSHP S2P sub.w S0,S0 sub.w S1,S1 ; while (a) _top: mov.w A0,A0 bne _more mov.w A1,A1 beq _done _more: ; if (a & 1) bld #0,A1L bcc _nobit ; r += b add.w A3,S1 addx A2L,S0L addx A2H,S0H _nobit: ; a >>= 1 shlr A0H rotxr A0L rotxr A1H rotxr A1L ; b <<= 1 add.w A3,A3 addx A2L,A2L addx A2H,A2H bra _top _done: mov.w S0,A0 mov.w S1,A1 POPP S2P POPP S1P POPP S0P rts #else /* __H8300H__ */ .global ___mulsi3 ___mulsi3: sub.l A2P,A2P ; while (a) _top: mov.l A0P,A0P beq _done ; if (a & 1) bld #0,A0L bcc _nobit ; r += b add.l A1P,A2P _nobit: ; a >>= 1 shlr.l A0P ; b <<= 1 shll.l A1P bra _top _done: mov.l A2P,A0P rts #endif #endif /* L_mulsi3 */ #ifdef L_fixunssfsi_asm /* For the h8300 we use asm to save some bytes, to allow more programs to fit into the tiny address space. For the H8/300H and H8S, the C version is good enough. */ #ifdef __H8300__ /* We still treat NANs different than libgcc2.c, but then, the behaviour is undefined anyways. */ .global ___fixunssfsi ___fixunssfsi: cmp.b #0x47,r0h bge Large_num jmp @___fixsfsi Large_num: bhi L_huge_num xor.b #0x80,A0L bmi L_shift8 L_huge_num: mov.w #65535,A0 mov.w A0,A1 rts L_shift8: mov.b A0L,A0H mov.b A1H,A0L mov.b A1L,A1H mov.b #0,A1L rts #endif #endif /* L_fixunssfsi_asm */