------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- P A R _ S C O -- -- -- -- B o d y -- -- -- -- Copyright (C) 2009, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING3. If not, go to -- -- http://www.gnu.org/licenses for a complete copy of the license. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Atree; use Atree; with Debug; use Debug; with Lib; use Lib; with Lib.Util; use Lib.Util; with Namet; use Namet; with Nlists; use Nlists; with Opt; use Opt; with Output; use Output; with Put_SCOs; with SCOs; use SCOs; with Sinfo; use Sinfo; with Sinput; use Sinput; with Snames; use Snames; with Table; with GNAT.HTable; use GNAT.HTable; with GNAT.Heap_Sort_G; package body Par_SCO is ----------------------- -- Unit Number Table -- ----------------------- -- This table parallels the SCO_Unit_Table, keeping track of the unit -- numbers corresponding to the entries made in this table, so that before -- writing out the SCO information to the ALI file, we can fill in the -- proper dependency numbers and file names. -- Note that the zero'th entry is here for convenience in sorting the -- table, the real lower bound is 1. package SCO_Unit_Number_Table is new Table.Table ( Table_Component_Type => Unit_Number_Type, Table_Index_Type => SCO_Unit_Index, Table_Low_Bound => 0, -- see note above on sort Table_Initial => 20, Table_Increment => 200, Table_Name => "SCO_Unit_Number_Entry"); -------------------------- -- Condition Hash Table -- -------------------------- -- We need to be able to get to conditions quickly for handling the calls -- to Set_SCO_Condition efficiently. For this purpose we identify the -- conditions in the table by their starting sloc, and use the following -- hash table to map from these starting sloc values to SCO_Table indexes. type Header_Num is new Integer range 0 .. 996; -- Type for hash table headers function Hash (F : Source_Ptr) return Header_Num; -- Function to Hash source pointer value function Equal (F1, F2 : Source_Ptr) return Boolean; -- Function to test two keys for equality package Condition_Hash_Table is new Simple_HTable (Header_Num, Int, 0, Source_Ptr, Hash, Equal); -- The actual hash table -------------------------- -- Internal Subprograms -- -------------------------- function Has_Decision (N : Node_Id) return Boolean; -- N is the node for a subexpression. Returns True if the subexpression -- contains a nested decision (i.e. either is a logical operator, or -- contains a logical operator in its subtree). function Is_Logical_Operator (N : Node_Id) return Boolean; -- N is the node for a subexpression. This procedure just tests N to see -- if it is a logical operator (including short circuit conditions, but -- excluding OR and AND) and returns True if so, False otherwise, it does -- no other processing. procedure Process_Decisions (N : Node_Id; T : Character); -- If N is Empty, has no effect. Otherwise scans the tree for the node N, -- to output any decisions it contains. T is one of IEPWX (for context of -- expresion: if/exit when/pragma/while/expression). If T is other than X, -- then a decision is always present (at the very least a simple decision -- is present at the top level). procedure Process_Decisions (L : List_Id; T : Character); -- Calls above procedure for each element of the list L procedure Set_Table_Entry (C1 : Character; C2 : Character; From : Source_Ptr; To : Source_Ptr; Last : Boolean); -- Append an entry to SCO_Table with fields set as per arguments procedure Traverse_Declarations_Or_Statements (L : List_Id); procedure Traverse_Generic_Package_Declaration (N : Node_Id); procedure Traverse_Handled_Statement_Sequence (N : Node_Id); procedure Traverse_Package_Body (N : Node_Id); procedure Traverse_Package_Declaration (N : Node_Id); procedure Traverse_Subprogram_Body (N : Node_Id); -- Traverse the corresponding construct, generating SCO table entries procedure Write_SCOs_To_ALI_File is new Put_SCOs; -- Write SCO information to the ALI file using routines in Lib.Util ---------- -- dsco -- ---------- procedure dsco is begin -- Dump SCO unit table Write_Line ("SCO Unit Table"); Write_Line ("--------------"); for Index in 1 .. SCO_Unit_Table.Last loop declare UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (Index); begin Write_Str (" "); Write_Int (Int (Index)); Write_Str (". Dep_Num = "); Write_Int (Int (UTE.Dep_Num)); Write_Str (" From = "); Write_Int (Int (UTE.From)); Write_Str (" To = "); Write_Int (Int (UTE.To)); Write_Str (" File_Name = """); if UTE.File_Name /= null then Write_Str (UTE.File_Name.all); end if; Write_Char ('"'); Write_Eol; end; end loop; -- Dump SCO Unit number table if it contains any entries if SCO_Unit_Number_Table.Last >= 1 then Write_Eol; Write_Line ("SCO Unit Number Table"); Write_Line ("---------------------"); for Index in 1 .. SCO_Unit_Number_Table.Last loop Write_Str (" "); Write_Int (Int (Index)); Write_Str (". Unit_Number = "); Write_Int (Int (SCO_Unit_Number_Table.Table (Index))); Write_Eol; end loop; end if; -- Dump SCO table itself Write_Eol; Write_Line ("SCO Table"); Write_Line ("---------"); for Index in 1 .. SCO_Table.Last loop declare T : SCO_Table_Entry renames SCO_Table.Table (Index); begin Write_Str (" "); Write_Int (Index); Write_Char ('.'); if T.C1 /= ' ' then Write_Str (" C1 = '"); Write_Char (T.C1); Write_Char ('''); end if; if T.C2 /= ' ' then Write_Str (" C2 = '"); Write_Char (T.C2); Write_Char ('''); end if; if T.From /= No_Source_Location then Write_Str (" From = "); Write_Int (Int (T.From.Line)); Write_Char (':'); Write_Int (Int (T.From.Col)); end if; if T.To /= No_Source_Location then Write_Str (" To = "); Write_Int (Int (T.To.Line)); Write_Char (':'); Write_Int (Int (T.To.Col)); end if; if T.Last then Write_Str (" True"); else Write_Str (" False"); end if; Write_Eol; end; end loop; end dsco; ----------- -- Equal -- ----------- function Equal (F1, F2 : Source_Ptr) return Boolean is begin return F1 = F2; end Equal; ------------------ -- Has_Decision -- ------------------ function Has_Decision (N : Node_Id) return Boolean is function Check_Node (N : Node_Id) return Traverse_Result; ---------------- -- Check_Node -- ---------------- function Check_Node (N : Node_Id) return Traverse_Result is begin if Is_Logical_Operator (N) then return Abandon; else return OK; end if; end Check_Node; function Traverse is new Traverse_Func (Check_Node); -- Start of processing for Has_Decision begin return Traverse (N) = Abandon; end Has_Decision; ---------- -- Hash -- ---------- function Hash (F : Source_Ptr) return Header_Num is begin return Header_Num (Nat (F) mod 997); end Hash; ---------------- -- Initialize -- ---------------- procedure Initialize is begin SCO_Unit_Number_Table.Init; -- Set dummy 0'th entry in place for sort SCO_Unit_Number_Table.Increment_Last; end Initialize; ------------------------- -- Is_Logical_Operator -- ------------------------- function Is_Logical_Operator (N : Node_Id) return Boolean is begin return Nkind_In (N, N_Op_Xor, N_Op_Not, N_And_Then, N_Or_Else); end Is_Logical_Operator; ----------------------- -- Process_Decisions -- ----------------------- -- Version taking a list procedure Process_Decisions (L : List_Id; T : Character) is N : Node_Id; begin if L /= No_List then N := First (L); while Present (N) loop Process_Decisions (N, T); Next (N); end loop; end if; end Process_Decisions; -- Version taking a node procedure Process_Decisions (N : Node_Id; T : Character) is function Process_Node (N : Node_Id) return Traverse_Result; -- Processes one node in the traversal, looking for logical operators, -- and if one is found, outputs the appropriate table entries. procedure Output_Decision_Operand (N : Node_Id); -- The node N is the top level logical operator of a decision, or it is -- one of the operands of a logical operator belonging to a single -- complex decision. This routine outputs the sequence of table entries -- corresponding to the node. Note that we do not process the sub- -- operands to look for further decisions, that processing is done in -- Process_Decision_Operand, because we can't get decisions mixed up in -- the global table. Call has no effect if N is Empty. procedure Output_Element (N : Node_Id; T : Character); -- Node N is an operand of a logical operator that is not itself a -- logical operator, or it is a simple decision. This routine outputs -- the table entry for the element, with C1 set to T (' ' for one of -- the elements of a complex decision, or 'I'/'W'/'E' for a simple -- decision (from an IF, WHILE, or EXIT WHEN). Last is set to False, -- and an entry is made in the condition hash table. procedure Process_Decision_Operand (N : Node_Id); -- This is called on node N, the top level node of a decision, or on one -- of its operands or suboperands after generating the full output for -- the complex decision. It process the suboperands of the decision -- looking for nested decisions. ----------------------------- -- Output_Decision_Operand -- ----------------------------- procedure Output_Decision_Operand (N : Node_Id) is C : Character; L : Node_Id; begin if No (N) then return; -- Logical operator elsif Is_Logical_Operator (N) then if Nkind (N) = N_Op_Not then C := '!'; L := Empty; else L := Left_Opnd (N); if Nkind (N) = N_Op_Xor then C := '^'; elsif Nkind_In (N, N_Op_Or, N_Or_Else) then C := '|'; else C := '&'; end if; end if; Set_Table_Entry (C, ' ', No_Location, No_Location, False); Output_Decision_Operand (L); Output_Decision_Operand (Right_Opnd (N)); -- Not a logical operator else Output_Element (N, ' '); end if; end Output_Decision_Operand; -------------------- -- Output_Element -- -------------------- procedure Output_Element (N : Node_Id; T : Character) is FSloc : Source_Ptr; LSloc : Source_Ptr; begin Sloc_Range (N, FSloc, LSloc); Set_Table_Entry (T, 'c', FSloc, LSloc, False); Condition_Hash_Table.Set (FSloc, SCO_Table.Last); end Output_Element; ------------------------------ -- Process_Decision_Operand -- ------------------------------ procedure Process_Decision_Operand (N : Node_Id) is begin if Is_Logical_Operator (N) then if Nkind (N) /= N_Op_Not then Process_Decision_Operand (Left_Opnd (N)); end if; Process_Decision_Operand (Right_Opnd (N)); else Process_Decisions (N, 'X'); end if; end Process_Decision_Operand; ------------------ -- Process_Node -- ------------------ function Process_Node (N : Node_Id) return Traverse_Result is begin case Nkind (N) is -- Logical operators, output table entries and then process -- operands recursively to deal with nested conditions. when N_And_Then | N_Or_Else | N_Op_Not => declare T : Character; begin -- If outer level, then type comes from call, otherwise it -- is more deeply nested and counts as X for expression. if N = Process_Decisions.N then T := Process_Decisions.T; else T := 'X'; end if; -- Output header for sequence Set_Table_Entry (T, ' ', No_Location, No_Location, False); -- Output the decision Output_Decision_Operand (N); -- Change Last in last table entry to True to mark end SCO_Table.Table (SCO_Table.Last).Last := True; -- Process any embedded decisions Process_Decision_Operand (N); return Skip; end; -- Conditional expression, processed like an if statement when N_Conditional_Expression => declare Cond : constant Node_Id := First (Expressions (N)); Thnx : constant Node_Id := Next (Cond); Elsx : constant Node_Id := Next (Thnx); begin Process_Decisions (Cond, 'I'); Process_Decisions (Thnx, 'X'); Process_Decisions (Elsx, 'X'); return Skip; end; -- All other cases, continue scan when others => return OK; end case; end Process_Node; procedure Traverse is new Traverse_Proc (Process_Node); -- Start of processing for Process_Decisions begin if No (N) then return; end if; -- See if we have simple decision at outer level and if so then -- generate the decision entry for this simple decision. A simple -- decision is a boolean expression (which is not a logical operator -- or short circuit form) appearing as the operand of an IF, WHILE -- or EXIT WHEN construct. if T /= 'X' and then not Is_Logical_Operator (N) then Output_Element (N, T); -- Change Last in last table entry to True to mark end of -- sequence, which is this case is only one element long. SCO_Table.Table (SCO_Table.Last).Last := True; end if; Traverse (N); end Process_Decisions; ----------- -- pscos -- ----------- procedure pscos is procedure Write_Info_Char (C : Character) renames Write_Char; -- Write one character; procedure Write_Info_Initiate (Key : Character) renames Write_Char; -- Start new one and write one character; procedure Write_Info_Nat (N : Nat); -- Write value of N procedure Write_Info_Terminate renames Write_Eol; -- Terminate current line -------------------- -- Write_Info_Nat -- -------------------- procedure Write_Info_Nat (N : Nat) is begin Write_Int (N); end Write_Info_Nat; procedure Debug_Put_SCOs is new Put_SCOs; -- Start of processing for pscos begin Debug_Put_SCOs; end pscos; ---------------- -- SCO_Output -- ---------------- procedure SCO_Output is begin if Debug_Flag_Dot_OO then dsco; end if; -- Sort the unit tables based on dependency numbers Unit_Table_Sort : declare function Lt (Op1, Op2 : Natural) return Boolean; -- Comparison routine for sort call procedure Move (From : Natural; To : Natural); -- Move routine for sort call -------- -- Lt -- -------- function Lt (Op1, Op2 : Natural) return Boolean is begin return Dependency_Num (SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op1))) < Dependency_Num (SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op2))); end Lt; ---------- -- Move -- ---------- procedure Move (From : Natural; To : Natural) is begin SCO_Unit_Table.Table (SCO_Unit_Index (To)) := SCO_Unit_Table.Table (SCO_Unit_Index (From)); SCO_Unit_Number_Table.Table (SCO_Unit_Index (To)) := SCO_Unit_Number_Table.Table (SCO_Unit_Index (From)); end Move; package Sorting is new GNAT.Heap_Sort_G (Move, Lt); -- Start of processing for Unit_Table_Sort begin Sorting.Sort (Integer (SCO_Unit_Table.Last)); end Unit_Table_Sort; -- Loop through entries in the unit table to set file name and -- dependency number entries. for J in 1 .. SCO_Unit_Table.Last loop declare U : constant Unit_Number_Type := SCO_Unit_Number_Table.Table (J); UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (J); begin Get_Name_String (Reference_Name (Source_Index (U))); UTE.File_Name := new String'(Name_Buffer (1 .. Name_Len)); UTE.Dep_Num := Dependency_Num (U); end; end loop; -- Now the tables are all setup for output to the ALI file Write_SCOs_To_ALI_File; end SCO_Output; ---------------- -- SCO_Record -- ---------------- procedure SCO_Record (U : Unit_Number_Type) is Lu : Node_Id; From : Nat; begin -- Ignore call if not generating code and generating SCO's if not (Generate_SCO and then Operating_Mode = Generate_Code) then return; end if; -- Ignore call if this unit already recorded for J in 1 .. SCO_Unit_Number_Table.Last loop if U = SCO_Unit_Number_Table.Table (J) then return; end if; end loop; -- Otherwise record starting entry From := SCO_Table.Last + 1; -- Get Unit (checking case of subunit) Lu := Unit (Cunit (U)); if Nkind (Lu) = N_Subunit then Lu := Proper_Body (Lu); end if; -- Traverse the unit if Nkind (Lu) = N_Subprogram_Body then Traverse_Subprogram_Body (Lu); elsif Nkind (Lu) = N_Package_Declaration then Traverse_Package_Declaration (Lu); elsif Nkind (Lu) = N_Package_Body then Traverse_Package_Body (Lu); elsif Nkind (Lu) = N_Generic_Package_Declaration then Traverse_Generic_Package_Declaration (Lu); -- For anything else, the only issue is default expressions for -- parameters, where we have to worry about possible embedded decisions -- but nothing else. else Process_Decisions (Lu, 'X'); end if; -- Make entry for new unit in unit tables, we will fill in the file -- name and dependency numbers later. SCO_Unit_Table.Append ( (Dep_Num => 0, File_Name => null, From => From, To => SCO_Table.Last)); SCO_Unit_Number_Table.Append (U); end SCO_Record; ----------------------- -- Set_SCO_Condition -- ----------------------- procedure Set_SCO_Condition (First_Loc : Source_Ptr; Typ : Character) is Index : constant Nat := Condition_Hash_Table.Get (First_Loc); begin if Index /= 0 then SCO_Table.Table (Index).C2 := Typ; end if; end Set_SCO_Condition; --------------------- -- Set_Table_Entry -- --------------------- procedure Set_Table_Entry (C1 : Character; C2 : Character; From : Source_Ptr; To : Source_Ptr; Last : Boolean) is function To_Source_Location (S : Source_Ptr) return Source_Location; -- Converts Source_Ptr value to Source_Location (line/col) format ------------------------ -- To_Source_Location -- ------------------------ function To_Source_Location (S : Source_Ptr) return Source_Location is begin if S = No_Location then return No_Source_Location; else return (Line => Get_Logical_Line_Number (S), Col => Get_Column_Number (S)); end if; end To_Source_Location; -- Start of processing for Set_Table_Entry begin Add_SCO (C1 => C1, C2 => C2, From => To_Source_Location (From), To => To_Source_Location (To), Last => Last); end Set_Table_Entry; ----------------------------------------- -- Traverse_Declarations_Or_Statements -- ----------------------------------------- procedure Traverse_Declarations_Or_Statements (L : List_Id) is N : Node_Id; Dummy : Source_Ptr; type SC_Entry is record From : Source_Ptr; To : Source_Ptr; Typ : Character; end record; -- Used to store a single entry in the following array SC_Array : array (Nat range 1 .. 10_000) of SC_Entry; SC_Last : Nat; -- Used to store statement components for a CS entry to be output -- as a result of the call to this procedure. SC_Last is the last -- entry stored, so the current statement sequence is represented -- by SC_Array (1 .. SC_Last). Extend_Statement_Sequence adds an -- entry to this array, and Set_Statement_Entry clears it, copying -- the entries to the main SCO output table. The reason that we do -- the temporary caching of results in this array is that we want -- the SCO table entries for a given CS line to be contiguous, and -- the processing may output intermediate entries such as decision -- entries. Note that the limit of 10_000 here is arbitrary, but does -- not cause any trouble, if we encounter more than 10_000 statements -- we simply break the current CS sequence at that point, which is -- harmless, since this is only used for back annotation and it is -- not critical that back annotation always work in all cases. Anyway -- exceeding 10,000 statements in a basic block is very unlikely. procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character); -- Extend the current statement sequence to encompass the node N. Typ -- is the letter that identifies the type of statement/declaration that -- is being added to the sequence. procedure Extend_Statement_Sequence (From : Node_Id; To : Node_Id; Typ : Character); -- This version extends the current statement sequence with an entry -- that starts with the first token of From, and ends with the last -- token of To. It is used for example in a CASE statement to cover -- the range from the CASE token to the last token of the expression. procedure Set_Statement_Entry; -- If Start is No_Location, does nothing, otherwise outputs a SCO_Table -- statement entry for the range Start-Stop and then sets both Start -- and Stop to No_Location. Unconditionally sets Term to True. This is -- called when we find a statement or declaration that generates its -- own table entry, so that we must end the current statement sequence. ------------------------- -- Set_Statement_Entry -- ------------------------- procedure Set_Statement_Entry is C1 : Character; begin if SC_Last /= 0 then for J in 1 .. SC_Last loop if J = 1 then C1 := 'S'; else C1 := 's'; end if; Set_Table_Entry (C1 => C1, C2 => SC_Array (J).Typ, From => SC_Array (J).From, To => SC_Array (J).To, Last => (J = SC_Last)); end loop; SC_Last := 0; end if; end Set_Statement_Entry; ------------------------------- -- Extend_Statement_Sequence -- ------------------------------- procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character) is begin -- Clear out statement sequence if array full if SC_Last = SC_Array'Last then Set_Statement_Entry; else SC_Last := SC_Last + 1; end if; -- Record new entry Sloc_Range (N, SC_Array (SC_Last).From, SC_Array (SC_Last).To); SC_Array (SC_Last).Typ := Typ; end Extend_Statement_Sequence; procedure Extend_Statement_Sequence (From : Node_Id; To : Node_Id; Typ : Character) is begin -- Clear out statement sequence if array full if SC_Last = SC_Array'Last then Set_Statement_Entry; else SC_Last := SC_Last + 1; end if; -- Make new entry Sloc_Range (From, SC_Array (SC_Last).From, Dummy); Sloc_Range (To, Dummy, SC_Array (SC_Last).To); SC_Array (SC_Last).Typ := Typ; end Extend_Statement_Sequence; -- Start of processing for Traverse_Declarations_Or_Statements begin if Is_Non_Empty_List (L) then SC_Last := 0; -- Loop through statements or declarations N := First (L); while Present (N) loop -- Initialize or extend current statement sequence. Note that for -- special cases such as IF and Case statements we will modify -- the range to exclude internal statements that should not be -- counted as part of the current statement sequence. case Nkind (N) is -- Package declaration when N_Package_Declaration => Set_Statement_Entry; Traverse_Package_Declaration (N); -- Generic package declaration when N_Generic_Package_Declaration => Set_Statement_Entry; Traverse_Generic_Package_Declaration (N); -- Package body when N_Package_Body => Set_Statement_Entry; Traverse_Package_Body (N); -- Subprogram declaration when N_Subprogram_Declaration => Set_Statement_Entry; Process_Decisions (Parameter_Specifications (Specification (N)), 'X'); -- Generic subprogram declaration when N_Generic_Subprogram_Declaration => Set_Statement_Entry; Process_Decisions (Generic_Formal_Declarations (N), 'X'); Process_Decisions (Parameter_Specifications (Specification (N)), 'X'); -- Subprogram_Body when N_Subprogram_Body => Set_Statement_Entry; Traverse_Subprogram_Body (N); -- Exit statement, which is an exit statement in the SCO sense, -- so it is included in the current statement sequence, but -- then it terminates this sequence. We also have to process -- any decisions in the exit statement expression. when N_Exit_Statement => Extend_Statement_Sequence (N, ' '); Set_Statement_Entry; Process_Decisions (Condition (N), 'E'); -- Label, which breaks the current statement sequence, but the -- label itself is not included in the next statement sequence, -- since it generates no code. when N_Label => Set_Statement_Entry; -- Block statement, which breaks the current statement sequence when N_Block_Statement => Set_Statement_Entry; Traverse_Declarations_Or_Statements (Declarations (N)); Traverse_Handled_Statement_Sequence (Handled_Statement_Sequence (N)); -- If statement, which breaks the current statement sequence, -- but we include the condition in the current sequence. when N_If_Statement => Extend_Statement_Sequence (N, Condition (N), 'I'); Set_Statement_Entry; Process_Decisions (Condition (N), 'I'); Traverse_Declarations_Or_Statements (Then_Statements (N)); if Present (Elsif_Parts (N)) then declare Elif : Node_Id := First (Elsif_Parts (N)); begin while Present (Elif) loop Process_Decisions (Condition (Elif), 'I'); Traverse_Declarations_Or_Statements (Then_Statements (Elif)); Next (Elif); end loop; end; end if; Traverse_Declarations_Or_Statements (Else_Statements (N)); -- Case statement, which breaks the current statement sequence, -- but we include the expression in the current sequence. when N_Case_Statement => Extend_Statement_Sequence (N, Expression (N), 'C'); Set_Statement_Entry; Process_Decisions (Expression (N), 'X'); -- Process case branches declare Alt : Node_Id; begin Alt := First (Alternatives (N)); while Present (Alt) loop Traverse_Declarations_Or_Statements (Statements (Alt)); Next (Alt); end loop; end; -- Unconditional exit points, which are included in the current -- statement sequence, but then terminate it when N_Requeue_Statement | N_Goto_Statement | N_Raise_Statement => Extend_Statement_Sequence (N, ' '); Set_Statement_Entry; -- Simple return statement. which is an exit point, but we -- have to process the return expression for decisions. when N_Simple_Return_Statement => Extend_Statement_Sequence (N, ' '); Set_Statement_Entry; Process_Decisions (Expression (N), 'X'); -- Extended return statement when N_Extended_Return_Statement => declare Odecl : constant Node_Id := First (Return_Object_Declarations (N)); begin if Present (Expression (Odecl)) then Extend_Statement_Sequence (N, Expression (Odecl), 'R'); Process_Decisions (Expression (Odecl), 'X'); end if; end; Traverse_Handled_Statement_Sequence (Handled_Statement_Sequence (N)); -- Loop ends the current statement sequence, but we include -- the iteration scheme if present in the current sequence. -- But the body of the loop starts a new sequence, since it -- may not be executed as part of the current sequence. when N_Loop_Statement => if Present (Iteration_Scheme (N)) then -- If iteration scheme present, extend the current -- statement sequence to include the iteration scheme -- and process any decisions it contains. declare ISC : constant Node_Id := Iteration_Scheme (N); begin -- While statement if Present (Condition (ISC)) then Extend_Statement_Sequence (N, ISC, 'W'); Process_Decisions (Condition (ISC), 'W'); -- For statement else Extend_Statement_Sequence (N, ISC, 'F'); Process_Decisions (Loop_Parameter_Specification (ISC), 'X'); end if; end; end if; Set_Statement_Entry; Traverse_Declarations_Or_Statements (Statements (N)); -- Pragma when N_Pragma => Extend_Statement_Sequence (N, 'P'); -- For pragmas Assert, Check, Precondition, and -- Postcondition, we generate decision entries for the -- condition only if the pragma is enabled. For now, we just -- check Assertions_Enabled, which will be set to reflect -- the presence of -gnata. -- Later we should move processing of the relevant pragmas -- to Par_Prag, and properly set the flag Pragma_Enabled at -- parse time, so that we can check this flag instead ??? -- For all other pragmas, we always generate decision -- entries for any embedded expressions. declare Nam : constant Name_Id := Chars (Pragma_Identifier (N)); Arg : Node_Id := First (Pragma_Argument_Associations (N)); begin case Nam is when Name_Assert | Name_Check | Name_Precondition | Name_Postcondition => if Nam = Name_Check then Next (Arg); end if; if Assertions_Enabled then Process_Decisions (Expression (Arg), 'P'); end if; when others => Process_Decisions (N, 'X'); end case; end; -- All other cases, which extend the current statement sequence -- but do not terminate it, even if they have nested decisions. when others => -- Determine required type character code declare Typ : Character; begin case Nkind (N) is when N_Full_Type_Declaration | N_Incomplete_Type_Declaration | N_Private_Type_Declaration | N_Private_Extension_Declaration => Typ := 't'; when N_Subtype_Declaration => Typ := 's'; when N_Object_Declaration => Typ := 'o'; when N_Renaming_Declaration => Typ := 'r'; when N_Generic_Instantiation => Typ := 'i'; when others => Typ := ' '; end case; Extend_Statement_Sequence (N, Typ); end; -- Process any embedded decisions if Has_Decision (N) then Process_Decisions (N, 'X'); end if; end case; Next (N); end loop; Set_Statement_Entry; end if; end Traverse_Declarations_Or_Statements; ------------------------------------------ -- Traverse_Generic_Package_Declaration -- ------------------------------------------ procedure Traverse_Generic_Package_Declaration (N : Node_Id) is begin Process_Decisions (Generic_Formal_Declarations (N), 'X'); Traverse_Package_Declaration (N); end Traverse_Generic_Package_Declaration; ----------------------------------------- -- Traverse_Handled_Statement_Sequence -- ----------------------------------------- procedure Traverse_Handled_Statement_Sequence (N : Node_Id) is Handler : Node_Id; begin -- For package bodies without a statement part, the parser adds an empty -- one, to normalize the representation. The null statement therein, -- which does not come from source, does not get a SCO. if Present (N) and then Comes_From_Source (N) then Traverse_Declarations_Or_Statements (Statements (N)); if Present (Exception_Handlers (N)) then Handler := First (Exception_Handlers (N)); while Present (Handler) loop Traverse_Declarations_Or_Statements (Statements (Handler)); Next (Handler); end loop; end if; end if; end Traverse_Handled_Statement_Sequence; --------------------------- -- Traverse_Package_Body -- --------------------------- procedure Traverse_Package_Body (N : Node_Id) is begin Traverse_Declarations_Or_Statements (Declarations (N)); Traverse_Handled_Statement_Sequence (Handled_Statement_Sequence (N)); end Traverse_Package_Body; ---------------------------------- -- Traverse_Package_Declaration -- ---------------------------------- procedure Traverse_Package_Declaration (N : Node_Id) is Spec : constant Node_Id := Specification (N); begin Traverse_Declarations_Or_Statements (Visible_Declarations (Spec)); Traverse_Declarations_Or_Statements (Private_Declarations (Spec)); end Traverse_Package_Declaration; ------------------------------ -- Traverse_Subprogram_Body -- ------------------------------ procedure Traverse_Subprogram_Body (N : Node_Id) is begin Traverse_Declarations_Or_Statements (Declarations (N)); Traverse_Handled_Statement_Sequence (Handled_Statement_Sequence (N)); end Traverse_Subprogram_Body; end Par_SCO;