------------------------------------------------------------------------------ -- -- -- GNAT RUN-TIME COMPONENTS -- -- -- -- A D A . N U M E R I C S . A U X -- -- -- -- S p e c -- -- (C Library Version, non-x86) -- -- -- -- Copyright (C) 1992-2009, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ -- This package provides the basic computational interface for the generic -- elementary functions. The C library version interfaces with the routines -- in the C mathematical library, and is thus quite portable, although it may -- not necessarily meet the requirements for accuracy in the numerics annex. -- One advantage of using this package is that it will interface directly to -- hardware instructions, such as the those provided on the Intel x86. -- This version is for use with normal Unix math functions. Alternative -- packages are used on OpenVMS (different import names), VxWorks (no -- need for the -lm Linker_Options), and on the x86 (where we have two -- versions one using inline ASM, and one importing from the C long -- routines that take 80-bit arguments). package Ada.Numerics.Aux is pragma Pure; pragma Linker_Options ("-lm"); type Double is digits 15; -- Type Double is the type used to call the C routines -- We import these functions directly from C. Note that we label them -- all as pure functions, because indeed all of them are in fact pure! function Sin (X : Double) return Double; pragma Import (C, Sin, "sin"); pragma Pure_Function (Sin); function Cos (X : Double) return Double; pragma Import (C, Cos, "cos"); pragma Pure_Function (Cos); function Tan (X : Double) return Double; pragma Import (C, Tan, "tan"); pragma Pure_Function (Tan); function Exp (X : Double) return Double; pragma Import (C, Exp, "exp"); pragma Pure_Function (Exp); function Sqrt (X : Double) return Double; pragma Import (C, Sqrt, "sqrt"); pragma Pure_Function (Sqrt); function Log (X : Double) return Double; pragma Import (C, Log, "log"); pragma Pure_Function (Log); function Acos (X : Double) return Double; pragma Import (C, Acos, "acos"); pragma Pure_Function (Acos); function Asin (X : Double) return Double; pragma Import (C, Asin, "asin"); pragma Pure_Function (Asin); function Atan (X : Double) return Double; pragma Import (C, Atan, "atan"); pragma Pure_Function (Atan); function Sinh (X : Double) return Double; pragma Import (C, Sinh, "sinh"); pragma Pure_Function (Sinh); function Cosh (X : Double) return Double; pragma Import (C, Cosh, "cosh"); pragma Pure_Function (Cosh); function Tanh (X : Double) return Double; pragma Import (C, Tanh, "tanh"); pragma Pure_Function (Tanh); function Pow (X, Y : Double) return Double; pragma Import (C, Pow, "pow"); pragma Pure_Function (Pow); end Ada.Numerics.Aux;