1 // { dg-options "-std=gnu++0x" }
3 // Copyright (C) 2010 Free Software Foundation, Inc.
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License
17 // along with this library; see the file COPYING3. If not see
18 // <http://www.gnu.org/licenses/>.
21 #include <unordered_set>
25 #include <testsuite_hooks.h>
29 // { dg-options "-DNTESTS=1 -DNSTRINGS=100 -DSTRSIZE=21" { target simulator } }
40 const unsigned int num_quality_tests = NTESTS;
41 const unsigned int num_strings_for_quality_tests = NSTRINGS;
42 const unsigned int string_size = STRSIZE;
45 random_strings(unsigned int n, unsigned int len)
48 unordered_set<string> result_set;
49 while (result_set.size() < n)
52 unsigned int tmp = rand();
54 s[tmp / 256] = tmp % 256;
56 return vector<string>(result_set.begin(), result_set.end());
60 score_from_varying_position(string s, unsigned int index)
62 bool test __attribute__((unused)) = true;
63 unsigned int bits_in_hash_code = sizeof(size_t) * 8;
65 // We'll iterate through all 256 vals for s[index], leaving the rest
66 // of s fixed. Then, for example, out of the 128 times that
67 // s[index] has its 3rd bit equal to 0 we would like roughly half 1s
68 // and half 0s in bit 9 of the hash codes.
70 // Bookkeeping: Conceptually we want a 3D array of ints. We want to
71 // count the number of times each output position (of which there are
72 // bits_in_hash_code) is 1 for each bit position within s[index] (of
73 // which there are 8) and value of that bit (of which there are 2).
74 const unsigned int jj = 2;
75 const unsigned int kk = jj * bits_in_hash_code;
76 const unsigned int array_size = 8 * kk;
77 vector<int> ones(array_size, 0);
79 for (int i = 0; i < 256; i++)
82 size_t h = hash<string>()(s);
83 for (int j = 0; h != 0; j++, h >>= 1)
87 for (int k = 0; k < 8; k++)
88 ++ones[k * kk + j * jj + ((i >> k) & 1)];
93 // At most, the innermost statement in the above loop nest can
94 // execute 256 * bits_in_hash_code * 8 times. If the hash is good,
95 // it'll execute about half that many times, with a pretty even
96 // spread across the elements of ones[].
97 VERIFY( 256 * bits_in_hash_code * 8 / array_size == 128 );
98 int max_ones_possible = 128;
99 int good = 0, bad = 0;
100 for (int bit = 0; bit <= 1; bit++)
102 for (unsigned int j = 0; j < bits_in_hash_code; j++)
104 for (int bitpos = 0; bitpos < 8; bitpos++)
106 int z = ones[bitpos * kk + j * jj + bit];
107 if (z <= max_ones_possible / 6
108 || z >= max_ones_possible * 5 / 6)
110 // The hash function screwed up, or was just unlucky,
111 // as 128 flips of a perfect coin occasionally yield
112 // far from 64 heads.
120 return good / (double)(good + bad);
124 score_from_varying_position(const vector<string>& v, unsigned int index)
127 for (unsigned int i = 0; i < v.size(); i++)
128 score += score_from_varying_position(v[i], index);
129 return score / v.size();
133 quality_test(unsigned int num_strings, unsigned int string_size)
135 // Construct random strings.
136 vector<string> v = random_strings(num_strings, string_size);
137 double sum_of_scores = 0;
138 for (unsigned int i = 0; i < string_size; i++)
139 sum_of_scores += score_from_varying_position(v, i);
141 // A good hash function should have a score very close to 1, and a bad
142 // hash function will have a score close to 0.
143 return sum_of_scores / string_size;
149 bool test __attribute__((unused)) = true;
151 double sum_of_scores = 0;
152 for (unsigned int i = 0; i < num_quality_tests; i++)
154 double score = quality_test(num_strings_for_quality_tests,
156 sum_of_scores += score;
157 VERIFY( score > 0.99 );
160 if (num_quality_tests > 1)
162 double mean_quality = sum_of_scores / num_quality_tests;
163 VERIFY( mean_quality > 0.9999 );