1 // Set implementation -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 // Free Software Foundation, Inc.
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
29 * Hewlett-Packard Company
31 * Permission to use, copy, modify, distribute and sell this software
32 * and its documentation for any purpose is hereby granted without fee,
33 * provided that the above copyright notice appear in all copies and
34 * that both that copyright notice and this permission notice appear
35 * in supporting documentation. Hewlett-Packard Company makes no
36 * representations about the suitability of this software for any
37 * purpose. It is provided "as is" without express or implied warranty.
40 * Copyright (c) 1996,1997
41 * Silicon Graphics Computer Systems, Inc.
43 * Permission to use, copy, modify, distribute and sell this software
44 * and its documentation for any purpose is hereby granted without fee,
45 * provided that the above copyright notice appear in all copies and
46 * that both that copyright notice and this permission notice appear
47 * in supporting documentation. Silicon Graphics makes no
48 * representations about the suitability of this software for any
49 * purpose. It is provided "as is" without express or implied warranty.
53 * This is an internal header file, included by other library headers.
54 * You should not attempt to use it directly.
60 #include <bits/concept_check.h>
61 #include <initializer_list>
63 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
66 * @brief A standard container made up of unique keys, which can be
67 * retrieved in logarithmic time.
69 * @ingroup associative_containers
71 * Meets the requirements of a <a href="tables.html#65">container</a>, a
72 * <a href="tables.html#66">reversible container</a>, and an
73 * <a href="tables.html#69">associative container</a> (using unique keys).
75 * Sets support bidirectional iterators.
77 * @param Key Type of key objects.
78 * @param Compare Comparison function object type, defaults to less<Key>.
79 * @param Alloc Allocator type, defaults to allocator<Key>.
81 * The private tree data is declared exactly the same way for set and
82 * multiset; the distinction is made entirely in how the tree functions are
83 * called (*_unique versus *_equal, same as the standard).
85 template<typename _Key, typename _Compare = std::less<_Key>,
86 typename _Alloc = std::allocator<_Key> >
89 // concept requirements
90 typedef typename _Alloc::value_type _Alloc_value_type;
91 __glibcxx_class_requires(_Key, _SGIAssignableConcept)
92 __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
93 _BinaryFunctionConcept)
94 __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept)
100 typedef _Key key_type;
101 typedef _Key value_type;
102 typedef _Compare key_compare;
103 typedef _Compare value_compare;
104 typedef _Alloc allocator_type;
108 typedef typename _Alloc::template rebind<_Key>::other _Key_alloc_type;
110 typedef _Rb_tree<key_type, value_type, _Identity<value_type>,
111 key_compare, _Key_alloc_type> _Rep_type;
112 _Rep_type _M_t; // Red-black tree representing set.
116 /// Iterator-related typedefs.
117 typedef typename _Key_alloc_type::pointer pointer;
118 typedef typename _Key_alloc_type::const_pointer const_pointer;
119 typedef typename _Key_alloc_type::reference reference;
120 typedef typename _Key_alloc_type::const_reference const_reference;
121 // _GLIBCXX_RESOLVE_LIB_DEFECTS
122 // DR 103. set::iterator is required to be modifiable,
123 // but this allows modification of keys.
124 typedef typename _Rep_type::const_iterator iterator;
125 typedef typename _Rep_type::const_iterator const_iterator;
126 typedef typename _Rep_type::const_reverse_iterator reverse_iterator;
127 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
128 typedef typename _Rep_type::size_type size_type;
129 typedef typename _Rep_type::difference_type difference_type;
132 // allocation/deallocation
134 * @brief Default constructor creates no elements.
140 * @brief Creates a %set with no elements.
141 * @param comp Comparator to use.
142 * @param a An allocator object.
145 set(const _Compare& __comp,
146 const allocator_type& __a = allocator_type())
147 : _M_t(__comp, __a) { }
150 * @brief Builds a %set from a range.
151 * @param first An input iterator.
152 * @param last An input iterator.
154 * Create a %set consisting of copies of the elements from [first,last).
155 * This is linear in N if the range is already sorted, and NlogN
156 * otherwise (where N is distance(first,last)).
158 template<typename _InputIterator>
159 set(_InputIterator __first, _InputIterator __last)
161 { _M_t._M_insert_unique(__first, __last); }
164 * @brief Builds a %set from a range.
165 * @param first An input iterator.
166 * @param last An input iterator.
167 * @param comp A comparison functor.
168 * @param a An allocator object.
170 * Create a %set consisting of copies of the elements from [first,last).
171 * This is linear in N if the range is already sorted, and NlogN
172 * otherwise (where N is distance(first,last)).
174 template<typename _InputIterator>
175 set(_InputIterator __first, _InputIterator __last,
176 const _Compare& __comp,
177 const allocator_type& __a = allocator_type())
179 { _M_t._M_insert_unique(__first, __last); }
182 * @brief %Set copy constructor.
183 * @param x A %set of identical element and allocator types.
185 * The newly-created %set uses a copy of the allocation object used
191 #ifdef __GXX_EXPERIMENTAL_CXX0X__
193 * @brief %Set move constructor
194 * @param x A %set of identical element and allocator types.
196 * The newly-created %set contains the exact contents of @a x.
197 * The contents of @a x are a valid, but unspecified %set.
200 : _M_t(std::forward<_Rep_type>(__x._M_t)) { }
203 * @brief Builds a %set from an initializer_list.
204 * @param l An initializer_list.
205 * @param comp A comparison functor.
206 * @param a An allocator object.
208 * Create a %set consisting of copies of the elements in the list.
209 * This is linear in N if the list is already sorted, and NlogN
210 * otherwise (where N is @a l.size()).
212 set(initializer_list<value_type> __l,
213 const _Compare& __comp = _Compare(),
214 const allocator_type& __a = allocator_type())
216 { _M_t._M_insert_unique(__l.begin(), __l.end()); }
220 * @brief %Set assignment operator.
221 * @param x A %set of identical element and allocator types.
223 * All the elements of @a x are copied, but unlike the copy constructor,
224 * the allocator object is not copied.
227 operator=(const set& __x)
233 #ifdef __GXX_EXPERIMENTAL_CXX0X__
235 * @brief %Set move assignment operator.
236 * @param x A %set of identical element and allocator types.
238 * The contents of @a x are moved into this %set (without copying).
239 * @a x is a valid, but unspecified %set.
251 * @brief %Set list assignment operator.
252 * @param l An initializer_list.
254 * This function fills a %set with copies of the elements in the
255 * initializer list @a l.
257 * Note that the assignment completely changes the %set and
258 * that the resulting %set's size is the same as the number
259 * of elements assigned. Old data may be lost.
262 operator=(initializer_list<value_type> __l)
265 this->insert(__l.begin(), __l.end());
272 /// Returns the comparison object with which the %set was constructed.
275 { return _M_t.key_comp(); }
276 /// Returns the comparison object with which the %set was constructed.
279 { return _M_t.key_comp(); }
280 /// Returns the allocator object with which the %set was constructed.
282 get_allocator() const
283 { return _M_t.get_allocator(); }
286 * Returns a read-only (constant) iterator that points to the first
287 * element in the %set. Iteration is done in ascending order according
292 { return _M_t.begin(); }
295 * Returns a read-only (constant) iterator that points one past the last
296 * element in the %set. Iteration is done in ascending order according
301 { return _M_t.end(); }
304 * Returns a read-only (constant) iterator that points to the last
305 * element in the %set. Iteration is done in descending order according
310 { return _M_t.rbegin(); }
313 * Returns a read-only (constant) reverse iterator that points to the
314 * last pair in the %set. Iteration is done in descending order
315 * according to the keys.
319 { return _M_t.rend(); }
321 #ifdef __GXX_EXPERIMENTAL_CXX0X__
323 * Returns a read-only (constant) iterator that points to the first
324 * element in the %set. Iteration is done in ascending order according
329 { return _M_t.begin(); }
332 * Returns a read-only (constant) iterator that points one past the last
333 * element in the %set. Iteration is done in ascending order according
338 { return _M_t.end(); }
341 * Returns a read-only (constant) iterator that points to the last
342 * element in the %set. Iteration is done in descending order according
347 { return _M_t.rbegin(); }
350 * Returns a read-only (constant) reverse iterator that points to the
351 * last pair in the %set. Iteration is done in descending order
352 * according to the keys.
356 { return _M_t.rend(); }
359 /// Returns true if the %set is empty.
362 { return _M_t.empty(); }
364 /// Returns the size of the %set.
367 { return _M_t.size(); }
369 /// Returns the maximum size of the %set.
372 { return _M_t.max_size(); }
375 * @brief Swaps data with another %set.
376 * @param x A %set of the same element and allocator types.
378 * This exchanges the elements between two sets in constant time.
379 * (It is only swapping a pointer, an integer, and an instance of
380 * the @c Compare type (which itself is often stateless and empty), so it
381 * should be quite fast.)
382 * Note that the global std::swap() function is specialized such that
383 * std::swap(s1,s2) will feed to this function.
387 { _M_t.swap(__x._M_t); }
391 * @brief Attempts to insert an element into the %set.
392 * @param x Element to be inserted.
393 * @return A pair, of which the first element is an iterator that points
394 * to the possibly inserted element, and the second is a bool
395 * that is true if the element was actually inserted.
397 * This function attempts to insert an element into the %set. A %set
398 * relies on unique keys and thus an element is only inserted if it is
399 * not already present in the %set.
401 * Insertion requires logarithmic time.
403 std::pair<iterator, bool>
404 insert(const value_type& __x)
406 std::pair<typename _Rep_type::iterator, bool> __p =
407 _M_t._M_insert_unique(__x);
408 return std::pair<iterator, bool>(__p.first, __p.second);
412 * @brief Attempts to insert an element into the %set.
413 * @param position An iterator that serves as a hint as to where the
414 * element should be inserted.
415 * @param x Element to be inserted.
416 * @return An iterator that points to the element with key of @a x (may
417 * or may not be the element passed in).
419 * This function is not concerned about whether the insertion took place,
420 * and thus does not return a boolean like the single-argument insert()
421 * does. Note that the first parameter is only a hint and can
422 * potentially improve the performance of the insertion process. A bad
423 * hint would cause no gains in efficiency.
425 * For more on "hinting", see:
426 * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
428 * Insertion requires logarithmic time (if the hint is not taken).
431 insert(iterator __position, const value_type& __x)
432 { return _M_t._M_insert_unique_(__position, __x); }
435 * @brief A template function that attempts to insert a range
437 * @param first Iterator pointing to the start of the range to be
439 * @param last Iterator pointing to the end of the range.
441 * Complexity similar to that of the range constructor.
443 template<typename _InputIterator>
445 insert(_InputIterator __first, _InputIterator __last)
446 { _M_t._M_insert_unique(__first, __last); }
448 #ifdef __GXX_EXPERIMENTAL_CXX0X__
450 * @brief Attempts to insert a list of elements into the %set.
451 * @param list A std::initializer_list<value_type> of elements
454 * Complexity similar to that of the range constructor.
457 insert(initializer_list<value_type> __l)
458 { this->insert(__l.begin(), __l.end()); }
462 * @brief Erases an element from a %set.
463 * @param position An iterator pointing to the element to be erased.
465 * This function erases an element, pointed to by the given iterator,
466 * from a %set. Note that this function only erases the element, and
467 * that if the element is itself a pointer, the pointed-to memory is not
468 * touched in any way. Managing the pointer is the user's responsibility.
471 erase(iterator __position)
472 { _M_t.erase(__position); }
475 * @brief Erases elements according to the provided key.
476 * @param x Key of element to be erased.
477 * @return The number of elements erased.
479 * This function erases all the elements located by the given key from
481 * Note that this function only erases the element, and that if
482 * the element is itself a pointer, the pointed-to memory is not touched
483 * in any way. Managing the pointer is the user's responsibility.
486 erase(const key_type& __x)
487 { return _M_t.erase(__x); }
490 * @brief Erases a [first,last) range of elements from a %set.
491 * @param first Iterator pointing to the start of the range to be
493 * @param last Iterator pointing to the end of the range to be erased.
495 * This function erases a sequence of elements from a %set.
496 * Note that this function only erases the element, and that if
497 * the element is itself a pointer, the pointed-to memory is not touched
498 * in any way. Managing the pointer is the user's responsibility.
501 erase(iterator __first, iterator __last)
502 { _M_t.erase(__first, __last); }
505 * Erases all elements in a %set. Note that this function only erases
506 * the elements, and that if the elements themselves are pointers, the
507 * pointed-to memory is not touched in any way. Managing the pointer is
508 * the user's responsibility.
517 * @brief Finds the number of elements.
518 * @param x Element to located.
519 * @return Number of elements with specified key.
521 * This function only makes sense for multisets; for set the result will
522 * either be 0 (not present) or 1 (present).
525 count(const key_type& __x) const
526 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
528 // _GLIBCXX_RESOLVE_LIB_DEFECTS
529 // 214. set::find() missing const overload
532 * @brief Tries to locate an element in a %set.
533 * @param x Element to be located.
534 * @return Iterator pointing to sought-after element, or end() if not
537 * This function takes a key and tries to locate the element with which
538 * the key matches. If successful the function returns an iterator
539 * pointing to the sought after element. If unsuccessful it returns the
540 * past-the-end ( @c end() ) iterator.
543 find(const key_type& __x)
544 { return _M_t.find(__x); }
547 find(const key_type& __x) const
548 { return _M_t.find(__x); }
553 * @brief Finds the beginning of a subsequence matching given key.
554 * @param x Key to be located.
555 * @return Iterator pointing to first element equal to or greater
556 * than key, or end().
558 * This function returns the first element of a subsequence of elements
559 * that matches the given key. If unsuccessful it returns an iterator
560 * pointing to the first element that has a greater value than given key
561 * or end() if no such element exists.
564 lower_bound(const key_type& __x)
565 { return _M_t.lower_bound(__x); }
568 lower_bound(const key_type& __x) const
569 { return _M_t.lower_bound(__x); }
574 * @brief Finds the end of a subsequence matching given key.
575 * @param x Key to be located.
576 * @return Iterator pointing to the first element
577 * greater than key, or end().
580 upper_bound(const key_type& __x)
581 { return _M_t.upper_bound(__x); }
584 upper_bound(const key_type& __x) const
585 { return _M_t.upper_bound(__x); }
590 * @brief Finds a subsequence matching given key.
591 * @param x Key to be located.
592 * @return Pair of iterators that possibly points to the subsequence
593 * matching given key.
595 * This function is equivalent to
597 * std::make_pair(c.lower_bound(val),
598 * c.upper_bound(val))
600 * (but is faster than making the calls separately).
602 * This function probably only makes sense for multisets.
604 std::pair<iterator, iterator>
605 equal_range(const key_type& __x)
606 { return _M_t.equal_range(__x); }
608 std::pair<const_iterator, const_iterator>
609 equal_range(const key_type& __x) const
610 { return _M_t.equal_range(__x); }
613 template<typename _K1, typename _C1, typename _A1>
615 operator==(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&);
617 template<typename _K1, typename _C1, typename _A1>
619 operator<(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&);
624 * @brief Set equality comparison.
626 * @param y A %set of the same type as @a x.
627 * @return True iff the size and elements of the sets are equal.
629 * This is an equivalence relation. It is linear in the size of the sets.
630 * Sets are considered equivalent if their sizes are equal, and if
631 * corresponding elements compare equal.
633 template<typename _Key, typename _Compare, typename _Alloc>
635 operator==(const set<_Key, _Compare, _Alloc>& __x,
636 const set<_Key, _Compare, _Alloc>& __y)
637 { return __x._M_t == __y._M_t; }
640 * @brief Set ordering relation.
642 * @param y A %set of the same type as @a x.
643 * @return True iff @a x is lexicographically less than @a y.
645 * This is a total ordering relation. It is linear in the size of the
646 * maps. The elements must be comparable with @c <.
648 * See std::lexicographical_compare() for how the determination is made.
650 template<typename _Key, typename _Compare, typename _Alloc>
652 operator<(const set<_Key, _Compare, _Alloc>& __x,
653 const set<_Key, _Compare, _Alloc>& __y)
654 { return __x._M_t < __y._M_t; }
656 /// Returns !(x == y).
657 template<typename _Key, typename _Compare, typename _Alloc>
659 operator!=(const set<_Key, _Compare, _Alloc>& __x,
660 const set<_Key, _Compare, _Alloc>& __y)
661 { return !(__x == __y); }
664 template<typename _Key, typename _Compare, typename _Alloc>
666 operator>(const set<_Key, _Compare, _Alloc>& __x,
667 const set<_Key, _Compare, _Alloc>& __y)
668 { return __y < __x; }
671 template<typename _Key, typename _Compare, typename _Alloc>
673 operator<=(const set<_Key, _Compare, _Alloc>& __x,
674 const set<_Key, _Compare, _Alloc>& __y)
675 { return !(__y < __x); }
678 template<typename _Key, typename _Compare, typename _Alloc>
680 operator>=(const set<_Key, _Compare, _Alloc>& __x,
681 const set<_Key, _Compare, _Alloc>& __y)
682 { return !(__x < __y); }
684 /// See std::set::swap().
685 template<typename _Key, typename _Compare, typename _Alloc>
687 swap(set<_Key, _Compare, _Alloc>& __x, set<_Key, _Compare, _Alloc>& __y)
690 _GLIBCXX_END_NESTED_NAMESPACE
692 #endif /* _STL_SET_H */