1 // Map implementation -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 // Free Software Foundation, Inc.
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
29 * Hewlett-Packard Company
31 * Permission to use, copy, modify, distribute and sell this software
32 * and its documentation for any purpose is hereby granted without fee,
33 * provided that the above copyright notice appear in all copies and
34 * that both that copyright notice and this permission notice appear
35 * in supporting documentation. Hewlett-Packard Company makes no
36 * representations about the suitability of this software for any
37 * purpose. It is provided "as is" without express or implied warranty.
40 * Copyright (c) 1996,1997
41 * Silicon Graphics Computer Systems, Inc.
43 * Permission to use, copy, modify, distribute and sell this software
44 * and its documentation for any purpose is hereby granted without fee,
45 * provided that the above copyright notice appear in all copies and
46 * that both that copyright notice and this permission notice appear
47 * in supporting documentation. Silicon Graphics makes no
48 * representations about the suitability of this software for any
49 * purpose. It is provided "as is" without express or implied warranty.
53 * This is an internal header file, included by other library headers.
54 * You should not attempt to use it directly.
60 #include <bits/functexcept.h>
61 #include <bits/concept_check.h>
62 #include <initializer_list>
64 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
67 * @brief A standard container made up of (key,value) pairs, which can be
68 * retrieved based on a key, in logarithmic time.
70 * @ingroup associative_containers
72 * Meets the requirements of a <a href="tables.html#65">container</a>, a
73 * <a href="tables.html#66">reversible container</a>, and an
74 * <a href="tables.html#69">associative container</a> (using unique keys).
75 * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
76 * value_type is std::pair<const Key,T>.
78 * Maps support bidirectional iterators.
80 * The private tree data is declared exactly the same way for map and
81 * multimap; the distinction is made entirely in how the tree functions are
82 * called (*_unique versus *_equal, same as the standard).
84 template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
85 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
89 typedef _Key key_type;
90 typedef _Tp mapped_type;
91 typedef std::pair<const _Key, _Tp> value_type;
92 typedef _Compare key_compare;
93 typedef _Alloc allocator_type;
96 // concept requirements
97 typedef typename _Alloc::value_type _Alloc_value_type;
98 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
99 __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
100 _BinaryFunctionConcept)
101 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
105 : public std::binary_function<value_type, value_type, bool>
107 friend class map<_Key, _Tp, _Compare, _Alloc>;
111 value_compare(_Compare __c)
115 bool operator()(const value_type& __x, const value_type& __y) const
116 { return comp(__x.first, __y.first); }
120 /// This turns a red-black tree into a [multi]map.
121 typedef typename _Alloc::template rebind<value_type>::other
124 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
125 key_compare, _Pair_alloc_type> _Rep_type;
127 /// The actual tree structure.
131 // many of these are specified differently in ISO, but the following are
132 // "functionally equivalent"
133 typedef typename _Pair_alloc_type::pointer pointer;
134 typedef typename _Pair_alloc_type::const_pointer const_pointer;
135 typedef typename _Pair_alloc_type::reference reference;
136 typedef typename _Pair_alloc_type::const_reference const_reference;
137 typedef typename _Rep_type::iterator iterator;
138 typedef typename _Rep_type::const_iterator const_iterator;
139 typedef typename _Rep_type::size_type size_type;
140 typedef typename _Rep_type::difference_type difference_type;
141 typedef typename _Rep_type::reverse_iterator reverse_iterator;
142 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
144 // [23.3.1.1] construct/copy/destroy
145 // (get_allocator() is normally listed in this section, but seems to have
146 // been accidentally omitted in the printed standard)
148 * @brief Default constructor creates no elements.
154 * @brief Creates a %map with no elements.
155 * @param comp A comparison object.
156 * @param a An allocator object.
159 map(const _Compare& __comp,
160 const allocator_type& __a = allocator_type())
161 : _M_t(__comp, __a) { }
164 * @brief %Map copy constructor.
165 * @param x A %map of identical element and allocator types.
167 * The newly-created %map uses a copy of the allocation object
173 #ifdef __GXX_EXPERIMENTAL_CXX0X__
175 * @brief %Map move constructor.
176 * @param x A %map of identical element and allocator types.
178 * The newly-created %map contains the exact contents of @a x.
179 * The contents of @a x are a valid, but unspecified %map.
182 : _M_t(std::forward<_Rep_type>(__x._M_t)) { }
185 * @brief Builds a %map from an initializer_list.
186 * @param l An initializer_list.
187 * @param comp A comparison object.
188 * @param a An allocator object.
190 * Create a %map consisting of copies of the elements in the
191 * initializer_list @a l.
192 * This is linear in N if the range is already sorted, and NlogN
193 * otherwise (where N is @a l.size()).
195 map(initializer_list<value_type> __l,
196 const _Compare& __c = _Compare(),
197 const allocator_type& __a = allocator_type())
199 { _M_t._M_insert_unique(__l.begin(), __l.end()); }
203 * @brief Builds a %map from a range.
204 * @param first An input iterator.
205 * @param last An input iterator.
207 * Create a %map consisting of copies of the elements from [first,last).
208 * This is linear in N if the range is already sorted, and NlogN
209 * otherwise (where N is distance(first,last)).
211 template<typename _InputIterator>
212 map(_InputIterator __first, _InputIterator __last)
214 { _M_t._M_insert_unique(__first, __last); }
217 * @brief Builds a %map from a range.
218 * @param first An input iterator.
219 * @param last An input iterator.
220 * @param comp A comparison functor.
221 * @param a An allocator object.
223 * Create a %map consisting of copies of the elements from [first,last).
224 * This is linear in N if the range is already sorted, and NlogN
225 * otherwise (where N is distance(first,last)).
227 template<typename _InputIterator>
228 map(_InputIterator __first, _InputIterator __last,
229 const _Compare& __comp,
230 const allocator_type& __a = allocator_type())
232 { _M_t._M_insert_unique(__first, __last); }
234 // FIXME There is no dtor declared, but we should have something
235 // generated by Doxygen. I don't know what tags to add to this
236 // paragraph to make that happen:
238 * The dtor only erases the elements, and note that if the elements
239 * themselves are pointers, the pointed-to memory is not touched in any
240 * way. Managing the pointer is the user's responsibility.
244 * @brief %Map assignment operator.
245 * @param x A %map of identical element and allocator types.
247 * All the elements of @a x are copied, but unlike the copy constructor,
248 * the allocator object is not copied.
251 operator=(const map& __x)
257 #ifdef __GXX_EXPERIMENTAL_CXX0X__
259 * @brief %Map move assignment operator.
260 * @param x A %map of identical element and allocator types.
262 * The contents of @a x are moved into this map (without copying).
263 * @a x is a valid, but unspecified %map.
275 * @brief %Map list assignment operator.
276 * @param l An initializer_list.
278 * This function fills a %map with copies of the elements in the
279 * initializer list @a l.
281 * Note that the assignment completely changes the %map and
282 * that the resulting %map's size is the same as the number
283 * of elements assigned. Old data may be lost.
286 operator=(initializer_list<value_type> __l)
289 this->insert(__l.begin(), __l.end());
294 /// Get a copy of the memory allocation object.
296 get_allocator() const
297 { return _M_t.get_allocator(); }
301 * Returns a read/write iterator that points to the first pair in the
303 * Iteration is done in ascending order according to the keys.
307 { return _M_t.begin(); }
310 * Returns a read-only (constant) iterator that points to the first pair
311 * in the %map. Iteration is done in ascending order according to the
316 { return _M_t.begin(); }
319 * Returns a read/write iterator that points one past the last
320 * pair in the %map. Iteration is done in ascending order
321 * according to the keys.
325 { return _M_t.end(); }
328 * Returns a read-only (constant) iterator that points one past the last
329 * pair in the %map. Iteration is done in ascending order according to
334 { return _M_t.end(); }
337 * Returns a read/write reverse iterator that points to the last pair in
338 * the %map. Iteration is done in descending order according to the
343 { return _M_t.rbegin(); }
346 * Returns a read-only (constant) reverse iterator that points to the
347 * last pair in the %map. Iteration is done in descending order
348 * according to the keys.
350 const_reverse_iterator
352 { return _M_t.rbegin(); }
355 * Returns a read/write reverse iterator that points to one before the
356 * first pair in the %map. Iteration is done in descending order
357 * according to the keys.
361 { return _M_t.rend(); }
364 * Returns a read-only (constant) reverse iterator that points to one
365 * before the first pair in the %map. Iteration is done in descending
366 * order according to the keys.
368 const_reverse_iterator
370 { return _M_t.rend(); }
372 #ifdef __GXX_EXPERIMENTAL_CXX0X__
374 * Returns a read-only (constant) iterator that points to the first pair
375 * in the %map. Iteration is done in ascending order according to the
380 { return _M_t.begin(); }
383 * Returns a read-only (constant) iterator that points one past the last
384 * pair in the %map. Iteration is done in ascending order according to
389 { return _M_t.end(); }
392 * Returns a read-only (constant) reverse iterator that points to the
393 * last pair in the %map. Iteration is done in descending order
394 * according to the keys.
396 const_reverse_iterator
398 { return _M_t.rbegin(); }
401 * Returns a read-only (constant) reverse iterator that points to one
402 * before the first pair in the %map. Iteration is done in descending
403 * order according to the keys.
405 const_reverse_iterator
407 { return _M_t.rend(); }
411 /** Returns true if the %map is empty. (Thus begin() would equal
416 { return _M_t.empty(); }
418 /** Returns the size of the %map. */
421 { return _M_t.size(); }
423 /** Returns the maximum size of the %map. */
426 { return _M_t.max_size(); }
428 // [23.3.1.2] element access
430 * @brief Subscript ( @c [] ) access to %map data.
431 * @param k The key for which data should be retrieved.
432 * @return A reference to the data of the (key,data) %pair.
434 * Allows for easy lookup with the subscript ( @c [] )
435 * operator. Returns data associated with the key specified in
436 * subscript. If the key does not exist, a pair with that key
437 * is created using default values, which is then returned.
439 * Lookup requires logarithmic time.
442 operator[](const key_type& __k)
444 // concept requirements
445 __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
447 iterator __i = lower_bound(__k);
448 // __i->first is greater than or equivalent to __k.
449 if (__i == end() || key_comp()(__k, (*__i).first))
450 __i = insert(__i, value_type(__k, mapped_type()));
451 return (*__i).second;
454 // _GLIBCXX_RESOLVE_LIB_DEFECTS
455 // DR 464. Suggestion for new member functions in standard containers.
457 * @brief Access to %map data.
458 * @param k The key for which data should be retrieved.
459 * @return A reference to the data whose key is equivalent to @a k, if
460 * such a data is present in the %map.
461 * @throw std::out_of_range If no such data is present.
464 at(const key_type& __k)
466 iterator __i = lower_bound(__k);
467 if (__i == end() || key_comp()(__k, (*__i).first))
468 __throw_out_of_range(__N("map::at"));
469 return (*__i).second;
473 at(const key_type& __k) const
475 const_iterator __i = lower_bound(__k);
476 if (__i == end() || key_comp()(__k, (*__i).first))
477 __throw_out_of_range(__N("map::at"));
478 return (*__i).second;
483 * @brief Attempts to insert a std::pair into the %map.
485 * @param x Pair to be inserted (see std::make_pair for easy creation
488 * @return A pair, of which the first element is an iterator that
489 * points to the possibly inserted pair, and the second is
490 * a bool that is true if the pair was actually inserted.
492 * This function attempts to insert a (key, value) %pair into the %map.
493 * A %map relies on unique keys and thus a %pair is only inserted if its
494 * first element (the key) is not already present in the %map.
496 * Insertion requires logarithmic time.
498 std::pair<iterator, bool>
499 insert(const value_type& __x)
500 { return _M_t._M_insert_unique(__x); }
502 #ifdef __GXX_EXPERIMENTAL_CXX0X__
504 * @brief Attempts to insert a list of std::pairs into the %map.
505 * @param list A std::initializer_list<value_type> of pairs to be
508 * Complexity similar to that of the range constructor.
511 insert(std::initializer_list<value_type> __list)
512 { insert (__list.begin(), __list.end()); }
516 * @brief Attempts to insert a std::pair into the %map.
517 * @param position An iterator that serves as a hint as to where the
518 * pair should be inserted.
519 * @param x Pair to be inserted (see std::make_pair for easy creation
521 * @return An iterator that points to the element with key of @a x (may
522 * or may not be the %pair passed in).
525 * This function is not concerned about whether the insertion
526 * took place, and thus does not return a boolean like the
527 * single-argument insert() does. Note that the first
528 * parameter is only a hint and can potentially improve the
529 * performance of the insertion process. A bad hint would
530 * cause no gains in efficiency.
533 * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
534 * for more on "hinting".
536 * Insertion requires logarithmic time (if the hint is not taken).
539 insert(iterator __position, const value_type& __x)
540 { return _M_t._M_insert_unique_(__position, __x); }
543 * @brief Template function that attempts to insert a range of elements.
544 * @param first Iterator pointing to the start of the range to be
546 * @param last Iterator pointing to the end of the range.
548 * Complexity similar to that of the range constructor.
550 template<typename _InputIterator>
552 insert(_InputIterator __first, _InputIterator __last)
553 { _M_t._M_insert_unique(__first, __last); }
555 #ifdef __GXX_EXPERIMENTAL_CXX0X__
556 // _GLIBCXX_RESOLVE_LIB_DEFECTS
557 // DR 130. Associative erase should return an iterator.
559 * @brief Erases an element from a %map.
560 * @param position An iterator pointing to the element to be erased.
561 * @return An iterator pointing to the element immediately following
562 * @a position prior to the element being erased. If no such
563 * element exists, end() is returned.
565 * This function erases an element, pointed to by the given
566 * iterator, from a %map. Note that this function only erases
567 * the element, and that if the element is itself a pointer,
568 * the pointed-to memory is not touched in any way. Managing
569 * the pointer is the user's responsibility.
572 erase(iterator __position)
573 { return _M_t.erase(__position); }
576 * @brief Erases an element from a %map.
577 * @param position An iterator pointing to the element to be erased.
579 * This function erases an element, pointed to by the given
580 * iterator, from a %map. Note that this function only erases
581 * the element, and that if the element is itself a pointer,
582 * the pointed-to memory is not touched in any way. Managing
583 * the pointer is the user's responsibility.
586 erase(iterator __position)
587 { _M_t.erase(__position); }
591 * @brief Erases elements according to the provided key.
592 * @param x Key of element to be erased.
593 * @return The number of elements erased.
595 * This function erases all the elements located by the given key from
597 * Note that this function only erases the element, and that if
598 * the element is itself a pointer, the pointed-to memory is not touched
599 * in any way. Managing the pointer is the user's responsibility.
602 erase(const key_type& __x)
603 { return _M_t.erase(__x); }
605 #ifdef __GXX_EXPERIMENTAL_CXX0X__
606 // _GLIBCXX_RESOLVE_LIB_DEFECTS
607 // DR 130. Associative erase should return an iterator.
609 * @brief Erases a [first,last) range of elements from a %map.
610 * @param first Iterator pointing to the start of the range to be
612 * @param last Iterator pointing to the end of the range to be erased.
613 * @return The iterator @a last.
615 * This function erases a sequence of elements from a %map.
616 * Note that this function only erases the element, and that if
617 * the element is itself a pointer, the pointed-to memory is not touched
618 * in any way. Managing the pointer is the user's responsibility.
621 erase(iterator __first, iterator __last)
622 { return _M_t.erase(__first, __last); }
625 * @brief Erases a [first,last) range of elements from a %map.
626 * @param first Iterator pointing to the start of the range to be
628 * @param last Iterator pointing to the end of the range to be erased.
630 * This function erases a sequence of elements from a %map.
631 * Note that this function only erases the element, and that if
632 * the element is itself a pointer, the pointed-to memory is not touched
633 * in any way. Managing the pointer is the user's responsibility.
636 erase(iterator __first, iterator __last)
637 { _M_t.erase(__first, __last); }
641 * @brief Swaps data with another %map.
642 * @param x A %map of the same element and allocator types.
644 * This exchanges the elements between two maps in constant
645 * time. (It is only swapping a pointer, an integer, and an
646 * instance of the @c Compare type (which itself is often
647 * stateless and empty), so it should be quite fast.) Note
648 * that the global std::swap() function is specialized such
649 * that std::swap(m1,m2) will feed to this function.
653 { _M_t.swap(__x._M_t); }
656 * Erases all elements in a %map. Note that this function only
657 * erases the elements, and that if the elements themselves are
658 * pointers, the pointed-to memory is not touched in any way.
659 * Managing the pointer is the user's responsibility.
667 * Returns the key comparison object out of which the %map was
672 { return _M_t.key_comp(); }
675 * Returns a value comparison object, built from the key comparison
676 * object out of which the %map was constructed.
680 { return value_compare(_M_t.key_comp()); }
682 // [23.3.1.3] map operations
684 * @brief Tries to locate an element in a %map.
685 * @param x Key of (key, value) %pair to be located.
686 * @return Iterator pointing to sought-after element, or end() if not
689 * This function takes a key and tries to locate the element with which
690 * the key matches. If successful the function returns an iterator
691 * pointing to the sought after %pair. If unsuccessful it returns the
692 * past-the-end ( @c end() ) iterator.
695 find(const key_type& __x)
696 { return _M_t.find(__x); }
699 * @brief Tries to locate an element in a %map.
700 * @param x Key of (key, value) %pair to be located.
701 * @return Read-only (constant) iterator pointing to sought-after
702 * element, or end() if not found.
704 * This function takes a key and tries to locate the element with which
705 * the key matches. If successful the function returns a constant
706 * iterator pointing to the sought after %pair. If unsuccessful it
707 * returns the past-the-end ( @c end() ) iterator.
710 find(const key_type& __x) const
711 { return _M_t.find(__x); }
714 * @brief Finds the number of elements with given key.
715 * @param x Key of (key, value) pairs to be located.
716 * @return Number of elements with specified key.
718 * This function only makes sense for multimaps; for map the result will
719 * either be 0 (not present) or 1 (present).
722 count(const key_type& __x) const
723 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
726 * @brief Finds the beginning of a subsequence matching given key.
727 * @param x Key of (key, value) pair to be located.
728 * @return Iterator pointing to first element equal to or greater
729 * than key, or end().
731 * This function returns the first element of a subsequence of elements
732 * that matches the given key. If unsuccessful it returns an iterator
733 * pointing to the first element that has a greater value than given key
734 * or end() if no such element exists.
737 lower_bound(const key_type& __x)
738 { return _M_t.lower_bound(__x); }
741 * @brief Finds the beginning of a subsequence matching given key.
742 * @param x Key of (key, value) pair to be located.
743 * @return Read-only (constant) iterator pointing to first element
744 * equal to or greater than key, or end().
746 * This function returns the first element of a subsequence of elements
747 * that matches the given key. If unsuccessful it returns an iterator
748 * pointing to the first element that has a greater value than given key
749 * or end() if no such element exists.
752 lower_bound(const key_type& __x) const
753 { return _M_t.lower_bound(__x); }
756 * @brief Finds the end of a subsequence matching given key.
757 * @param x Key of (key, value) pair to be located.
758 * @return Iterator pointing to the first element
759 * greater than key, or end().
762 upper_bound(const key_type& __x)
763 { return _M_t.upper_bound(__x); }
766 * @brief Finds the end of a subsequence matching given key.
767 * @param x Key of (key, value) pair to be located.
768 * @return Read-only (constant) iterator pointing to first iterator
769 * greater than key, or end().
772 upper_bound(const key_type& __x) const
773 { return _M_t.upper_bound(__x); }
776 * @brief Finds a subsequence matching given key.
777 * @param x Key of (key, value) pairs to be located.
778 * @return Pair of iterators that possibly points to the subsequence
779 * matching given key.
781 * This function is equivalent to
783 * std::make_pair(c.lower_bound(val),
784 * c.upper_bound(val))
786 * (but is faster than making the calls separately).
788 * This function probably only makes sense for multimaps.
790 std::pair<iterator, iterator>
791 equal_range(const key_type& __x)
792 { return _M_t.equal_range(__x); }
795 * @brief Finds a subsequence matching given key.
796 * @param x Key of (key, value) pairs to be located.
797 * @return Pair of read-only (constant) iterators that possibly points
798 * to the subsequence matching given key.
800 * This function is equivalent to
802 * std::make_pair(c.lower_bound(val),
803 * c.upper_bound(val))
805 * (but is faster than making the calls separately).
807 * This function probably only makes sense for multimaps.
809 std::pair<const_iterator, const_iterator>
810 equal_range(const key_type& __x) const
811 { return _M_t.equal_range(__x); }
813 template<typename _K1, typename _T1, typename _C1, typename _A1>
815 operator==(const map<_K1, _T1, _C1, _A1>&,
816 const map<_K1, _T1, _C1, _A1>&);
818 template<typename _K1, typename _T1, typename _C1, typename _A1>
820 operator<(const map<_K1, _T1, _C1, _A1>&,
821 const map<_K1, _T1, _C1, _A1>&);
825 * @brief Map equality comparison.
827 * @param y A %map of the same type as @a x.
828 * @return True iff the size and elements of the maps are equal.
830 * This is an equivalence relation. It is linear in the size of the
831 * maps. Maps are considered equivalent if their sizes are equal,
832 * and if corresponding elements compare equal.
834 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
836 operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
837 const map<_Key, _Tp, _Compare, _Alloc>& __y)
838 { return __x._M_t == __y._M_t; }
841 * @brief Map ordering relation.
843 * @param y A %map of the same type as @a x.
844 * @return True iff @a x is lexicographically less than @a y.
846 * This is a total ordering relation. It is linear in the size of the
847 * maps. The elements must be comparable with @c <.
849 * See std::lexicographical_compare() for how the determination is made.
851 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
853 operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
854 const map<_Key, _Tp, _Compare, _Alloc>& __y)
855 { return __x._M_t < __y._M_t; }
857 /// Based on operator==
858 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
860 operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
861 const map<_Key, _Tp, _Compare, _Alloc>& __y)
862 { return !(__x == __y); }
864 /// Based on operator<
865 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
867 operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
868 const map<_Key, _Tp, _Compare, _Alloc>& __y)
869 { return __y < __x; }
871 /// Based on operator<
872 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
874 operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
875 const map<_Key, _Tp, _Compare, _Alloc>& __y)
876 { return !(__y < __x); }
878 /// Based on operator<
879 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
881 operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
882 const map<_Key, _Tp, _Compare, _Alloc>& __y)
883 { return !(__x < __y); }
885 /// See std::map::swap().
886 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
888 swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
889 map<_Key, _Tp, _Compare, _Alloc>& __y)
892 _GLIBCXX_END_NESTED_NAMESPACE
894 #endif /* _STL_MAP_H */