OSDN Git Service

2007-01-18 Jerry DeLisle <jvdelisle@gcc.gnu.org>
[pf3gnuchains/gcc-fork.git] / libstdc++-v3 / doc / html / ext / pb_ds / pq_performance_tests.html
1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2     "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
5 <head>
6 <meta name="generator" content="HTML Tidy for Linux/x86 (vers 12 April 2005), see www.w3.org" />
7 <title>Priority-Queue Performance Tests</title>
8 <meta http-equiv="Content-Type" content="text/html; charset=us-ascii" />
9 </head>
10 <body>
11 <div id="page">
12 <h1>Priority-Queue Performance Tests</h1>
13 <h2><a name="settings" id="settings">Settings</a></h2>
14 <p>This section describes performance tests and their results.
15     In the following, <a href="#gcc"><u>g++</u></a>, <a href="#msvc"><u>msvc++</u></a>, and <a href="#local"><u>local</u></a> (the build used for generating this
16     documentation) stand for three different builds:</p>
17 <div id="gcc_settings_div">
18 <div class="c1">
19 <h3><a name="gcc" id="gcc"><u>g++</u></a></h3>
20 <ul>
21 <li>CPU speed - cpu MHz : 2660.644</li>
22 <li>Memory - MemTotal: 484412 kB</li>
23 <li>Platform -
24           Linux-2.6.12-9-386-i686-with-debian-testing-unstable</li>
25 <li>Compiler - g++ (GCC) 4.0.2 20050808 (prerelease)
26           (Ubuntu 4.0.1-4ubuntu9) Copyright (C) 2005 Free Software
27           Foundation, Inc. This is free software; see the source
28           for copying conditions. There is NO warranty; not even
29           for MERCHANTABILITY or FITNESS FOR A PARTICULAR
30           PURPOSE.</li>
31 </ul>
32 </div>
33 <div class="c2"></div>
34 </div>
35 <div id="msvc_settings_div">
36 <div class="c1">
37 <h3><a name="msvc" id="msvc"><u>msvc++</u></a></h3>
38 <ul>
39 <li>CPU speed - cpu MHz : 2660.554</li>
40 <li>Memory - MemTotal: 484412 kB</li>
41 <li>Platform - Windows XP Pro</li>
42 <li>Compiler - Microsoft (R) 32-bit C/C++ Optimizing
43           Compiler Version 13.10.3077 for 80x86 Copyright (C)
44           Microsoft Corporation 1984-2002. All rights
45           reserved.</li>
46 </ul>
47 </div>
48 <div class="c2"></div>
49 </div>
50 <div id="local_settings_div"><div style = "border-style: dotted; border-width: 1px; border-color: lightgray"><h3><a name = "local"><u>local</u></a></h3><ul>
51 <li>CPU speed - cpu MHz         : 2250.000</li>
52 <li>Memory - MemTotal:      2076248 kB</li>
53 <li>Platform - Linux-2.6.16-1.2133_FC5-i686-with-redhat-5-Bordeaux</li>
54 <li>Compiler - g++ (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1)
55 Copyright (C) 2006 Free Software Foundation, Inc.
56 This is free software; see the source for copying conditions.  There is NO
57 warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
58 </li>
59 </ul>
60 </div><div style = "width: 100%; height: 20px"></div></div>
61 <h2><a name="pq_tests" id="pq_tests">Tests</a></h2>
62 <ol>
63 <li><a href="priority_queue_text_push_timing_test.html">Priority Queue
64       Text <tt>push</tt> Timing Test</a></li>
65 <li><a href="priority_queue_text_push_pop_timing_test.html">Priority
66       Queue Text <tt>push</tt> and <tt>pop</tt> Timing
67       Test</a></li>
68 <li><a href="priority_queue_random_int_push_timing_test.html">Priority
69       Queue Random Integer <tt>push</tt> Timing Test</a></li>
70 <li><a href="priority_queue_random_int_push_pop_timing_test.html">Priority
71       Queue Random Integer <tt>push</tt> and <tt>pop</tt> Timing
72       Test</a></li>
73 <li><a href="priority_queue_text_pop_mem_usage_test.html">Priority Queue
74       Text <tt>pop</tt> Memory Use Test</a></li>
75 <li><a href="priority_queue_text_join_timing_test.html">Priority Queue
76       Text <tt>join</tt> Timing Test</a></li>
77 <li><a href="priority_queue_text_modify_up_timing_test.html">Priority
78       Queue Text <tt>modify</tt> Timing Test - I</a></li>
79 <li><a href="priority_queue_text_modify_down_timing_test.html">Priority
80       Queue Text <tt>modify</tt> Timing Test - II</a></li>
81 </ol>
82 <h2><a name="pq_observations" id="pq_observations">Observations</a></h2>
83 <h3><a name="pq_observations_cplx" id="pq_observations_cplx">Underlying Data Structures
84     Complexity</a></h3>
85 <p>The following table shows the complexities of the different
86     underlying data structures in terms of orders of growth. It is
87     interesting to note that this table implies something about the
88     constants of the operations as well (see <a href="#pq_observations_amortized_push_pop">Amortized <tt>push</tt>
89     and <tt>pop</tt> operations</a>).</p>
90 <table class="c1" width="100%" border="1" summary="pq complexities">
91 <tr>
92 <td align="left"></td>
93 <td align="left"><tt>push</tt></td>
94 <td align="left"><tt>pop</tt></td>
95 <td align="left"><tt>modify</tt></td>
96 <td align="left"><tt>erase</tt></td>
97 <td align="left"><tt>join</tt></td>
98 </tr>
99 <tr>
100 <td align="left">
101 <p><tt>std::priority_queue</tt></p>
102 </td>
103 <td align="left">
104 <p><i>&Theta;(n)</i> worst</p>
105 <p><i>&Theta;(log(n))</i> amortized</p>
106 </td>
107 <td align="left">
108 <p class="c1">&Theta;(log(n)) Worst</p>
109 </td>
110 <td align="left">
111 <p><i>Theta;(n log(n))</i> Worst</p>
112 <p><sub><a href="#std_mod1">[std note 1]</a></sub></p>
113 </td>
114 <td align="left">
115 <p class="c3">&Theta;(n log(n))</p>
116 <p><sub><a href="#std_mod2">[std note 2]</a></sub></p>
117 </td>
118 <td align="left">
119 <p class="c3">&Theta;(n log(n))</p>
120 <p><sub><a href="#std_mod1">[std note 1]</a></sub></p>
121 </td>
122 </tr>
123 <tr>
124 <td align="left">
125 <p><a href="priority_queue.html"><tt>priority_queue</tt></a></p>
126 <p>with <tt>Tag</tt> =</p>
127 <p><a href="pairing_heap_tag.html"><tt>pairing_heap_tag</tt></a></p>
128 </td>
129 <td align="left">
130 <p class="c1">O(1)</p>
131 </td>
132 <td align="left">
133 <p><i>&Theta;(n)</i> worst</p>
134 <p><i>&Theta;(log(n))</i> amortized</p>
135 </td>
136 <td align="left">
137 <p><i>&Theta;(n)</i> worst</p>
138 <p><i>&Theta;(log(n))</i> amortized</p>
139 </td>
140 <td align="left">
141 <p><i>&Theta;(n)</i> worst</p>
142 <p><i>&Theta;(log(n))</i> amortized</p>
143 </td>
144 <td align="left">
145 <p class="c1">O(1)</p>
146 </td>
147 </tr>
148 <tr>
149 <td align="left">
150 <p><a href="priority_queue.html"><tt>priority_queue</tt></a></p>
151 <p>with <tt>Tag</tt> =</p>
152 <p><a href="binary_heap_tag.html"><tt>binary_heap_tag</tt></a></p>
153 </td>
154 <td align="left">
155 <p><i>&Theta;(n)</i> worst</p>
156 <p><i>&Theta;(log(n))</i> amortized</p>
157 </td>
158 <td align="left">
159 <p><i>&Theta;(n)</i> worst</p>
160 <p><i>&Theta;(log(n))</i> amortized</p>
161 </td>
162 <td align="left">
163 <p class="c1">&Theta;(n)</p>
164 </td>
165 <td align="left">
166 <p class="c1">&Theta;(n)</p>
167 </td>
168 <td align="left">
169 <p class="c1">&Theta;(n)</p>
170 </td>
171 </tr>
172 <tr>
173 <td align="left">
174 <p><a href="priority_queue.html"><tt>priority_queue</tt></a></p>
175 <p>with <tt>Tag</tt> =</p>
176 <p><a href="binomial_heap_tag.html"><tt>binomial_heap_tag</tt></a></p>
177 </td>
178 <td align="left">
179 <p><i>&Theta;(log(n))</i> worst</p>
180 <p><i>O(1)</i> amortized</p>
181 </td>
182 <td align="left">
183 <p class="c1">&Theta;(log(n))</p>
184 </td>
185 <td align="left">
186 <p class="c1">&Theta;(log(n))</p>
187 </td>
188 <td align="left">
189 <p class="c1">&Theta;(log(n))</p>
190 </td>
191 <td align="left">
192 <p class="c1">&Theta;(log(n))</p>
193 </td>
194 </tr>
195 <tr>
196 <td align="left">
197 <p><a href="priority_queue.html"><tt>priority_queue</tt></a></p>
198 <p>with <tt>Tag</tt> =</p>
199 <p><a href="rc_binomial_heap_tag.html"><tt>rc_binomial_heap_tag</tt></a></p>
200 </td>
201 <td align="left">
202 <p class="c1">O(1)</p>
203 </td>
204 <td align="left">
205 <p class="c1">&Theta;(log(n))</p>
206 </td>
207 <td align="left">
208 <p class="c1">&Theta;(log(n))</p>
209 </td>
210 <td align="left">
211 <p class="c1">&Theta;(log(n))</p>
212 </td>
213 <td align="left">
214 <p class="c1">&Theta;(log(n))</p>
215 </td>
216 </tr>
217 <tr>
218 <td align="left">
219 <p><a href="priority_queue.html"><tt>priority_queue</tt></a></p>
220 <p>with <tt>Tag</tt> =</p>
221 <p><a href="thin_heap_tag.html"><tt>thin_heap_tag</tt></a></p>
222 </td>
223 <td align="left">
224 <p class="c1">O(1)</p>
225 </td>
226 <td align="left">
227 <p><i>&Theta;(n)</i> worst</p>
228 <p><i>&Theta;(log(n))</i> amortized</p>
229 </td>
230 <td align="left">
231 <p><i>&Theta;(log(n))</i> worst</p>
232 <p><i>O(1)</i> amortized,</p>or
233
234           <p><i>&Theta;(log(n))</i> amortized</p>
235 <p><sub><a href="#thin_heap_note">[thin_heap_note]</a></sub></p>
236 </td>
237 <td align="left">
238 <p><i>&Theta;(n)</i> worst</p>
239 <p><i>&Theta;(log(n))</i> amortized</p>
240 </td>
241 <td align="left">
242 <p class="c1">&Theta;(n)</p>
243 </td>
244 </tr>
245 </table>
246 <p><sub><a name="std_mod1" id="std_mod1">[std note 1]</a> This
247     is not a property of the algorithm, but rather due to the fact
248     that the STL's priority queue implementation does not support
249     iterators (and consequently the ability to access a specific
250     value inside it). If the priority queue is adapting an
251     <tt>std::vector</tt>, then it is still possible to reduce this
252     to <i>&Theta;(n)</i> by adapting over the STL's adapter and
253     using the fact that <tt>top</tt> returns a reference to the
254     first value; if, however, it is adapting an
255     <tt>std::deque</tt>, then this is impossible.</sub></p>
256 <p><sub><a name="std_mod2" id="std_mod2">[std note 2]</a> As
257     with <a href="#std_mod1">[std note 1]</a>, this is not a
258     property of the algorithm, but rather the STL's implementation.
259     Again, if the priority queue is adapting an
260     <tt>std::vector</tt> then it is possible to reduce this to
261     <i>&Theta;(n)</i>, but with a very high constant (one must call
262     <tt>std::make_heap</tt> which is an expensive linear
263     operation); if the priority queue is adapting an
264     <tt>std::dequeu</tt>, then this is impossible.</sub></p>
265 <p><sub><a name="thin_heap_note" id="thin_heap_note">[thin_heap_note]</a> A thin heap has
266     <i>&amp;Theta(log(n))</i> worst case <tt>modify</tt> time
267     always, but the amortized time depends on the nature of the
268     operation: I) if the operation increases the key (in the sense
269     of the priority queue's comparison functor), then the amortized
270     time is <i>O(1)</i>, but if II) it decreases it, then the
271     amortized time is the same as the worst case time. Note that
272     for most algorithms, I) is important and II) is not.</sub></p>
273 <h3><a name="pq_observations_amortized_push_pop" id="pq_observations_amortized_push_pop">Amortized <tt>push</tt>
274     and <tt>pop</tt> operations</a></h3>
275 <p>In many cases, a priority queue is needed primarily for
276     sequences of <tt>push</tt> and <tt>pop</tt> operations. All of
277     the underlying data structures have the same amortized
278     logarithmic complexity, but they differ in terms of
279     constants.</p>
280 <p>The table above shows that the different data structures are
281     "constrained" in some respects. In general, if a data structure
282     has lower worst-case complexity than another, then it will
283     perform slower in the amortized sense. Thus, for example a
284     redundant-counter binomial heap (<a href="priority_queue.html"><tt>priority_queue</tt></a> with
285     <tt>Tag</tt> = <a href="rc_binomial_heap_tag.html"><tt>rc_binomial_heap_tag</tt></a>)
286     has lower worst-case <tt>push</tt> performance than a binomial
287     heap (<a href="priority_queue.html"><tt>priority_queue</tt></a>
288     with <tt>Tag</tt> = <a href="binomial_heap_tag.html"><tt>binomial_heap_tag</tt></a>),
289     and so its amortized <tt>push</tt> performance is slower in
290     terms of constants.</p>
291 <p>As the table shows, the "least constrained" underlying
292     data structures are binary heaps and pairing heaps.
293     Consequently, it is not surprising that they perform best in
294     terms of amortized constants.</p>
295 <ol>
296 <li>Pairing heaps seem to perform best for non-primitive
297       types (<i>e.g.</i>, <tt>std::string</tt>s), as shown by
298       <a href="priority_queue_text_push_timing_test.html">Priority
299       Queue Text <tt>push</tt> Timing Test</a> and <a href="priority_queue_text_push_pop_timing_test.html">Priority
300       Queue Text <tt>push</tt> and <tt>pop</tt> Timing
301       Test</a></li>
302 <li>binary heaps seem to perform best for primitive types
303       (<i>e.g.</i>, <tt><b>int</b></tt>s), as shown by <a href="priority_queue_random_int_push_timing_test.html">Priority
304       Queue Random Integer <tt>push</tt> Timing Test</a> and
305       <a href="priority_queue_random_int_push_pop_timing_test.html">Priority
306       Queue Random Integer <tt>push</tt> and <tt>pop</tt> Timing
307       Test</a>.</li>
308 </ol>
309 <h3><a name="pq_observations_graph" id="pq_observations_graph">Graph Algorithms</a></h3>
310 <p>In some graph algorithms, a decrease-key operation is
311     required [<a href="references.html#clrs2001">clrs2001</a>];
312     this operation is identical to <tt>modify</tt> if a value is
313     increased (in the sense of the priority queue's comparison
314     functor). The table above and <a href="priority_queue_text_modify_up_timing_test.html">Priority Queue
315     Text <tt>modify</tt> Timing Test - I</a> show that a thin heap
316     (<a href="priority_queue.html"><tt>priority_queue</tt></a> with
317     <tt>Tag</tt> = <a href="thin_heap_tag.html"><tt>thin_heap_tag</tt></a>)
318     outperforms a pairing heap (<a href="priority_queue.html"><tt>priority_queue</tt></a> with
319     <tt>Tag</tt> =<tt>Tag</tt> = <a href="pairing_heap_tag.html"><tt>pairing_heap_tag</tt></a>),
320     but the rest of the tests show otherwise.</p>
321 <p>This makes it difficult to decide which implementation to
322     use in this case. Dijkstra's shortest-path algorithm, for
323     example, requires <i>&Theta;(n)</i> <tt>push</tt> and
324     <tt>pop</tt> operations (in the number of vertices), but
325     <i>O(n<sup>2</sup>)</i> <tt>modify</tt> operations, which can
326     be in practice <i>&Theta;(n)</i> as well. It is difficult to
327     find an <i>a-priori</i> characterization of graphs in which the
328     <u>actual</u> number of <tt>modify</tt> operations will dwarf
329     the number of <tt>push</tt> and <tt>pop</tt> operations.</p>
330 </div>
331 </body>
332 </html>