OSDN Git Service

3e3b4f68ce4e3f3c713af3f07ab3627e3c945575
[pf3gnuchains/gcc-fork.git] / libquadmath / math / remquoq.c
1 /* Compute remainder and a congruent to the quotient.
2    Copyright (C) 1997, 1999, 2002 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
5                   Jakub Jelinek <jj@ultra.linux.cz>, 1999.
6
7    The GNU C Library is free software; you can redistribute it and/or
8    modify it under the terms of the GNU Lesser General Public
9    License as published by the Free Software Foundation; either
10    version 2.1 of the License, or (at your option) any later version.
11
12    The GNU C Library is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15    Lesser General Public License for more details.
16
17    You should have received a copy of the GNU Lesser General Public
18    License along with the GNU C Library; if not, write to the Free
19    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
20    02111-1307 USA.  */
21
22 #include "quadmath-imp.h"
23
24
25 static const __float128 zero = 0.0;
26
27
28 __float128
29 remquoq (__float128 x, __float128 y, int *quo)
30 {
31   int64_t hx,hy;
32   u_int64_t sx,lx,ly,qs;
33   int cquo;
34
35   GET_FLT128_WORDS64 (hx, lx, x);
36   GET_FLT128_WORDS64 (hy, ly, y);
37   sx = hx & 0x8000000000000000ULL;
38   qs = sx ^ (hy & 0x8000000000000000ULL);
39   hy &= 0x7fffffffffffffffLL;
40   hx &= 0x7fffffffffffffffLL;
41
42   /* Purge off exception values.  */
43   if ((hy | ly) == 0)
44     return (x * y) / (x * y);                   /* y = 0 */
45   if ((hx >= 0x7fff000000000000LL)              /* x not finite */
46       || ((hy >= 0x7fff000000000000LL)          /* y is NaN */
47           && (((hy - 0x7fff000000000000LL) | ly) != 0)))
48     return (x * y) / (x * y);
49
50   if (hy <= 0x7ffbffffffffffffLL)
51     x = fmodq (x, 8 * y);              /* now x < 8y */
52       
53   if (((hx - hy) | (lx - ly)) == 0)
54     {
55       *quo = qs ? -1 : 1;
56       return zero * x;
57     }
58
59   x  = fabsq (x);
60   y  = fabsq (y);
61   cquo = 0;
62
63   if (x >= 4 * y)
64     {
65       x -= 4 * y;
66       cquo += 4;
67     }
68   if (x >= 2 * y)
69     {
70       x -= 2 * y;
71       cquo += 2;
72     }
73
74   if (hy < 0x0002000000000000LL)
75     {
76       if (x + x > y)
77         {
78           x -= y;
79           ++cquo;
80           if (x + x >= y)
81             {
82               x -= y;
83               ++cquo;
84             }
85         }
86     }
87   else
88     {
89       __float128 y_half = 0.5Q * y;
90       if (x > y_half)
91         {
92           x -= y;
93           ++cquo;
94           if (x >= y_half)
95             {
96               x -= y;
97               ++cquo;
98             }
99         }
100     }
101
102   *quo = qs ? -cquo : cquo;
103
104   if (sx)
105     x = -x;
106   return x;
107 }