OSDN Git Service

060f900ae0a08792a75fe2ece703d6c837a525d9
[pf3gnuchains/gcc-fork.git] / libiberty / splay-tree.c
1 /* A splay-tree datatype.  
2    Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3    Contributed by Mark Mitchell (mark@markmitchell.com).
4
5 This file is part of GNU CC.
6    
7 GNU CC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING.  If not, write to
19 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA.  */
21
22 /* For an easily readable description of splay-trees, see:
23
24      Lewis, Harry R. and Denenberg, Larry.  Data Structures and Their
25      Algorithms.  Harper-Collins, Inc.  1991.  */
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #ifdef HAVE_STDLIB_H
32 #include <stdlib.h>
33 #endif
34
35 #include <stdio.h>
36
37 #include "libiberty.h"
38 #include "splay-tree.h"
39
40 static void splay_tree_delete_helper (splay_tree, splay_tree_node);
41 static inline void rotate_left (splay_tree_node *,
42                                 splay_tree_node, splay_tree_node);
43 static inline void rotate_right (splay_tree_node *,
44                                 splay_tree_node, splay_tree_node);
45 static void splay_tree_splay (splay_tree, splay_tree_key);
46 static int splay_tree_foreach_helper (splay_tree, splay_tree_node,
47                                       splay_tree_foreach_fn, void*);
48
49 /* Deallocate NODE (a member of SP), and all its sub-trees.  */
50
51 static void 
52 splay_tree_delete_helper (splay_tree sp, splay_tree_node node)
53 {
54   splay_tree_node pending = 0;
55   splay_tree_node active = 0;
56
57   if (!node)
58     return;
59
60 #define KDEL(x)  if (sp->delete_key) (*sp->delete_key)(x);
61 #define VDEL(x)  if (sp->delete_value) (*sp->delete_value)(x);
62
63   KDEL (node->key);
64   VDEL (node->value);
65
66   /* We use the "key" field to hold the "next" pointer.  */
67   node->key = (splay_tree_key)pending;
68   pending = (splay_tree_node)node;
69
70   /* Now, keep processing the pending list until there aren't any
71      more.  This is a little more complicated than just recursing, but
72      it doesn't toast the stack for large trees.  */
73
74   while (pending)
75     {
76       active = pending;
77       pending = 0;
78       while (active)
79         {
80           splay_tree_node temp;
81
82           /* active points to a node which has its key and value
83              deallocated, we just need to process left and right.  */
84
85           if (active->left)
86             {
87               KDEL (active->left->key);
88               VDEL (active->left->value);
89               active->left->key = (splay_tree_key)pending;
90               pending = (splay_tree_node)(active->left);
91             }
92           if (active->right)
93             {
94               KDEL (active->right->key);
95               VDEL (active->right->value);
96               active->right->key = (splay_tree_key)pending;
97               pending = (splay_tree_node)(active->right);
98             }
99
100           temp = active;
101           active = (splay_tree_node)(temp->key);
102           (*sp->deallocate) ((char*) temp, sp->allocate_data);
103         }
104     }
105 #undef KDEL
106 #undef VDEL
107 }
108
109 /* Rotate the edge joining the left child N with its parent P.  PP is the
110    grandparents pointer to P.  */
111
112 static inline void
113 rotate_left (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
114 {
115   splay_tree_node tmp;
116   tmp = n->right;
117   n->right = p;
118   p->left = tmp;
119   *pp = n;
120 }
121
122 /* Rotate the edge joining the right child N with its parent P.  PP is the
123    grandparents pointer to P.  */
124
125 static inline void
126 rotate_right (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
127 {
128   splay_tree_node tmp;
129   tmp = n->left;
130   n->left = p;
131   p->right = tmp;
132   *pp = n;
133 }
134
135 /* Bottom up splay of key.  */
136
137 static void
138 splay_tree_splay (splay_tree sp, splay_tree_key key)
139 {
140   if (sp->root == 0)
141     return;
142
143   do {
144     int cmp1, cmp2;
145     splay_tree_node n, c;
146
147     n = sp->root;
148     cmp1 = (*sp->comp) (key, n->key);
149
150     /* Found.  */
151     if (cmp1 == 0)
152       return;
153
154     /* Left or right?  If no child, then we're done.  */
155     if (cmp1 < 0)
156       c = n->left;
157     else
158       c = n->right;
159     if (!c)
160       return;
161
162     /* Next one left or right?  If found or no child, we're done
163        after one rotation.  */
164     cmp2 = (*sp->comp) (key, c->key);
165     if (cmp2 == 0
166         || (cmp2 < 0 && !c->left)
167         || (cmp2 > 0 && !c->right))
168       {
169         if (cmp1 < 0)
170           rotate_left (&sp->root, n, c);
171         else
172           rotate_right (&sp->root, n, c);
173         return;
174       }
175
176     /* Now we have the four cases of double-rotation.  */
177     if (cmp1 < 0 && cmp2 < 0)
178       {
179         rotate_left (&n->left, c, c->left);
180         rotate_left (&sp->root, n, n->left);
181       }
182     else if (cmp1 > 0 && cmp2 > 0)
183       {
184         rotate_right (&n->right, c, c->right);
185         rotate_right (&sp->root, n, n->right);
186       }
187     else if (cmp1 < 0 && cmp2 > 0)
188       {
189         rotate_right (&n->left, c, c->right);
190         rotate_left (&sp->root, n, n->left);
191       }
192     else if (cmp1 > 0 && cmp2 < 0)
193       {
194         rotate_left (&n->right, c, c->left);
195         rotate_right (&sp->root, n, n->right);
196       }
197   } while (1);
198 }
199
200 /* Call FN, passing it the DATA, for every node below NODE, all of
201    which are from SP, following an in-order traversal.  If FN every
202    returns a non-zero value, the iteration ceases immediately, and the
203    value is returned.  Otherwise, this function returns 0.  */
204
205 static int
206 splay_tree_foreach_helper (splay_tree sp, splay_tree_node node,
207                            splay_tree_foreach_fn fn, void *data)
208 {
209   int val;
210
211   if (!node)
212     return 0;
213
214   val = splay_tree_foreach_helper (sp, node->left, fn, data);
215   if (val)
216     return val;
217
218   val = (*fn)(node, data);
219   if (val)
220     return val;
221
222   return splay_tree_foreach_helper (sp, node->right, fn, data);
223 }
224
225
226 /* An allocator and deallocator based on xmalloc.  */
227 static void *
228 splay_tree_xmalloc_allocate (int size, void *data ATTRIBUTE_UNUSED)
229 {
230   return (void *) xmalloc (size);
231 }
232
233 static void
234 splay_tree_xmalloc_deallocate (void *object, void *data ATTRIBUTE_UNUSED)
235 {
236   free (object);
237 }
238
239
240 /* Allocate a new splay tree, using COMPARE_FN to compare nodes,
241    DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
242    values.  Use xmalloc to allocate the splay tree structure, and any
243    nodes added.  */
244
245 splay_tree 
246 splay_tree_new (splay_tree_compare_fn compare_fn,
247                 splay_tree_delete_key_fn delete_key_fn,
248                 splay_tree_delete_value_fn delete_value_fn)
249 {
250   return (splay_tree_new_with_allocator
251           (compare_fn, delete_key_fn, delete_value_fn,
252            splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
253 }
254
255
256 /* Allocate a new splay tree, using COMPARE_FN to compare nodes,
257    DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
258    values.  */
259
260 splay_tree 
261 splay_tree_new_with_allocator (splay_tree_compare_fn compare_fn,
262                                splay_tree_delete_key_fn delete_key_fn,
263                                splay_tree_delete_value_fn delete_value_fn,
264                                splay_tree_allocate_fn allocate_fn,
265                                splay_tree_deallocate_fn deallocate_fn,
266                                void *allocate_data)
267 {
268   splay_tree sp = (splay_tree) (*allocate_fn) (sizeof (struct splay_tree_s),
269                                                allocate_data);
270   sp->root = 0;
271   sp->comp = compare_fn;
272   sp->delete_key = delete_key_fn;
273   sp->delete_value = delete_value_fn;
274   sp->allocate = allocate_fn;
275   sp->deallocate = deallocate_fn;
276   sp->allocate_data = allocate_data;
277
278   return sp;
279 }
280
281 /* Deallocate SP.  */
282
283 void 
284 splay_tree_delete (splay_tree sp)
285 {
286   splay_tree_delete_helper (sp, sp->root);
287   (*sp->deallocate) ((char*) sp, sp->allocate_data);
288 }
289
290 /* Insert a new node (associating KEY with DATA) into SP.  If a
291    previous node with the indicated KEY exists, its data is replaced
292    with the new value.  Returns the new node.  */
293
294 splay_tree_node
295 splay_tree_insert (splay_tree sp, splay_tree_key key, splay_tree_value value)
296 {
297   int comparison = 0;
298
299   splay_tree_splay (sp, key);
300
301   if (sp->root)
302     comparison = (*sp->comp)(sp->root->key, key);
303
304   if (sp->root && comparison == 0)
305     {
306       /* If the root of the tree already has the indicated KEY, just
307          replace the value with VALUE.  */
308       if (sp->delete_value)
309         (*sp->delete_value)(sp->root->value);
310       sp->root->value = value;
311     } 
312   else 
313     {
314       /* Create a new node, and insert it at the root.  */
315       splay_tree_node node;
316       
317       node = ((splay_tree_node)
318               (*sp->allocate) (sizeof (struct splay_tree_node_s),
319                                sp->allocate_data));
320       node->key = key;
321       node->value = value;
322       
323       if (!sp->root)
324         node->left = node->right = 0;
325       else if (comparison < 0)
326         {
327           node->left = sp->root;
328           node->right = node->left->right;
329           node->left->right = 0;
330         }
331       else
332         {
333           node->right = sp->root;
334           node->left = node->right->left;
335           node->right->left = 0;
336         }
337
338       sp->root = node;
339     }
340
341   return sp->root;
342 }
343
344 /* Remove KEY from SP.  It is not an error if it did not exist.  */
345
346 void
347 splay_tree_remove (splay_tree sp, splay_tree_key key)
348 {
349   splay_tree_splay (sp, key);
350
351   if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
352     {
353       splay_tree_node left, right;
354
355       left = sp->root->left;
356       right = sp->root->right;
357
358       /* Delete the root node itself.  */
359       if (sp->delete_value)
360         (*sp->delete_value) (sp->root->value);
361       (*sp->deallocate) (sp->root, sp->allocate_data);
362
363       /* One of the children is now the root.  Doesn't matter much
364          which, so long as we preserve the properties of the tree.  */
365       if (left)
366         {
367           sp->root = left;
368
369           /* If there was a right child as well, hang it off the 
370              right-most leaf of the left child.  */
371           if (right)
372             {
373               while (left->right)
374                 left = left->right;
375               left->right = right;
376             }
377         }
378       else
379         sp->root = right;
380     }
381 }
382
383 /* Lookup KEY in SP, returning VALUE if present, and NULL 
384    otherwise.  */
385
386 splay_tree_node
387 splay_tree_lookup (splay_tree sp, splay_tree_key key)
388 {
389   splay_tree_splay (sp, key);
390
391   if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
392     return sp->root;
393   else
394     return 0;
395 }
396
397 /* Return the node in SP with the greatest key.  */
398
399 splay_tree_node
400 splay_tree_max (splay_tree sp)
401 {
402   splay_tree_node n = sp->root;
403
404   if (!n)
405     return NULL;
406
407   while (n->right)
408     n = n->right;
409
410   return n;
411 }
412
413 /* Return the node in SP with the smallest key.  */
414
415 splay_tree_node
416 splay_tree_min (splay_tree sp)
417 {
418   splay_tree_node n = sp->root;
419
420   if (!n)
421     return NULL;
422
423   while (n->left)
424     n = n->left;
425
426   return n;
427 }
428
429 /* Return the immediate predecessor KEY, or NULL if there is no
430    predecessor.  KEY need not be present in the tree.  */
431
432 splay_tree_node
433 splay_tree_predecessor (splay_tree sp, splay_tree_key key)
434 {
435   int comparison;
436   splay_tree_node node;
437
438   /* If the tree is empty, there is certainly no predecessor.  */
439   if (!sp->root)
440     return NULL;
441
442   /* Splay the tree around KEY.  That will leave either the KEY
443      itself, its predecessor, or its successor at the root.  */
444   splay_tree_splay (sp, key);
445   comparison = (*sp->comp)(sp->root->key, key);
446
447   /* If the predecessor is at the root, just return it.  */
448   if (comparison < 0)
449     return sp->root;
450
451   /* Otherwise, find the rightmost element of the left subtree.  */
452   node = sp->root->left;
453   if (node)
454     while (node->right)
455       node = node->right;
456
457   return node;
458 }
459
460 /* Return the immediate successor KEY, or NULL if there is no
461    successor.  KEY need not be present in the tree.  */
462
463 splay_tree_node
464 splay_tree_successor (splay_tree sp, splay_tree_key key)
465 {
466   int comparison;
467   splay_tree_node node;
468
469   /* If the tree is empty, there is certainly no successor.  */
470   if (!sp->root)
471     return NULL;
472
473   /* Splay the tree around KEY.  That will leave either the KEY
474      itself, its predecessor, or its successor at the root.  */
475   splay_tree_splay (sp, key);
476   comparison = (*sp->comp)(sp->root->key, key);
477
478   /* If the successor is at the root, just return it.  */
479   if (comparison > 0)
480     return sp->root;
481
482   /* Otherwise, find the leftmost element of the right subtree.  */
483   node = sp->root->right;
484   if (node)
485     while (node->left)
486       node = node->left;
487
488   return node;
489 }
490
491 /* Call FN, passing it the DATA, for every node in SP, following an
492    in-order traversal.  If FN every returns a non-zero value, the
493    iteration ceases immediately, and the value is returned.
494    Otherwise, this function returns 0.  */
495
496 int
497 splay_tree_foreach (splay_tree sp, splay_tree_foreach_fn fn, void *data)
498 {
499   return splay_tree_foreach_helper (sp, sp->root, fn, data);
500 }
501
502 /* Splay-tree comparison function, treating the keys as ints.  */
503
504 int
505 splay_tree_compare_ints (splay_tree_key k1, splay_tree_key k2)
506 {
507   if ((int) k1 < (int) k2)
508     return -1;
509   else if ((int) k1 > (int) k2)
510     return 1;
511   else 
512     return 0;
513 }
514
515 /* Splay-tree comparison function, treating the keys as pointers.  */
516
517 int
518 splay_tree_compare_pointers (splay_tree_key k1, splay_tree_key k2)
519 {
520   if ((char*) k1 < (char*) k2)
521     return -1;
522   else if ((char*) k1 > (char*) k2)
523     return 1;
524   else 
525     return 0;
526 }