OSDN Git Service

* doc/install.texi (Prerequisites): Document libelf usability on
[pf3gnuchains/gcc-fork.git] / libiberty / random.c
1 /*
2  * Copyright (c) 1983 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. [rescinded 22 July 1999]
14  * 4. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30
31 /*
32  * This is derived from the Berkeley source:
33  *      @(#)random.c    5.5 (Berkeley) 7/6/88
34  * It was reworked for the GNU C Library by Roland McGrath.
35  */
36
37 /*
38
39 @deftypefn Supplement {long int} random (void)
40 @deftypefnx Supplement void srandom (unsigned int @var{seed})
41 @deftypefnx Supplement void* initstate (unsigned int @var{seed}, void *@var{arg_state}, unsigned long @var{n})
42 @deftypefnx Supplement void* setstate (void *@var{arg_state})
43
44 Random number functions.  @code{random} returns a random number in the
45 range 0 to @code{LONG_MAX}.  @code{srandom} initializes the random
46 number generator to some starting point determined by @var{seed}
47 (else, the values returned by @code{random} are always the same for each
48 run of the program).  @code{initstate} and @code{setstate} allow fine-grained
49 control over the state of the random number generator.
50
51 @end deftypefn
52
53 */
54
55 #include <errno.h>
56
57 #if 0
58
59 #include <ansidecl.h>
60 #include <limits.h>
61 #include <stddef.h>
62 #include <stdlib.h>
63
64 #else
65
66 #define ULONG_MAX  ((unsigned long)(~0L))     /* 0xFFFFFFFF for 32-bits */
67 #define LONG_MAX   ((long)(ULONG_MAX >> 1))   /* 0x7FFFFFFF for 32-bits*/
68
69 #ifdef __STDC__
70 #  define PTR void *
71 #  ifndef NULL
72 #    define NULL (void *) 0
73 #  endif
74 #else
75 #  define PTR char *
76 #  ifndef NULL
77 #    define NULL (void *) 0
78 #  endif
79 #endif
80
81 #endif
82
83 long int random (void);
84
85 /* An improved random number generation package.  In addition to the standard
86    rand()/srand() like interface, this package also has a special state info
87    interface.  The initstate() routine is called with a seed, an array of
88    bytes, and a count of how many bytes are being passed in; this array is
89    then initialized to contain information for random number generation with
90    that much state information.  Good sizes for the amount of state
91    information are 32, 64, 128, and 256 bytes.  The state can be switched by
92    calling the setstate() function with the same array as was initiallized
93    with initstate().  By default, the package runs with 128 bytes of state
94    information and generates far better random numbers than a linear
95    congruential generator.  If the amount of state information is less than
96    32 bytes, a simple linear congruential R.N.G. is used.  Internally, the
97    state information is treated as an array of longs; the zeroeth element of
98    the array is the type of R.N.G. being used (small integer); the remainder
99    of the array is the state information for the R.N.G.  Thus, 32 bytes of
100    state information will give 7 longs worth of state information, which will
101    allow a degree seven polynomial.  (Note: The zeroeth word of state
102    information also has some other information stored in it; see setstate
103    for details).  The random number generation technique is a linear feedback
104    shift register approach, employing trinomials (since there are fewer terms
105    to sum up that way).  In this approach, the least significant bit of all
106    the numbers in the state table will act as a linear feedback shift register,
107    and will have period 2^deg - 1 (where deg is the degree of the polynomial
108    being used, assuming that the polynomial is irreducible and primitive).
109    The higher order bits will have longer periods, since their values are
110    also influenced by pseudo-random carries out of the lower bits.  The
111    total period of the generator is approximately deg*(2**deg - 1); thus
112    doubling the amount of state information has a vast influence on the
113    period of the generator.  Note: The deg*(2**deg - 1) is an approximation
114    only good for large deg, when the period of the shift register is the
115    dominant factor.  With deg equal to seven, the period is actually much
116    longer than the 7*(2**7 - 1) predicted by this formula.  */
117
118
119
120 /* For each of the currently supported random number generators, we have a
121    break value on the amount of state information (you need at least thi
122    bytes of state info to support this random number generator), a degree for
123    the polynomial (actually a trinomial) that the R.N.G. is based on, and
124    separation between the two lower order coefficients of the trinomial.  */
125
126 /* Linear congruential.  */
127 #define TYPE_0          0
128 #define BREAK_0         8
129 #define DEG_0           0
130 #define SEP_0           0
131
132 /* x**7 + x**3 + 1.  */
133 #define TYPE_1          1
134 #define BREAK_1         32
135 #define DEG_1           7
136 #define SEP_1           3
137
138 /* x**15 + x + 1.  */
139 #define TYPE_2          2
140 #define BREAK_2         64
141 #define DEG_2           15
142 #define SEP_2           1
143
144 /* x**31 + x**3 + 1.  */
145 #define TYPE_3          3
146 #define BREAK_3         128
147 #define DEG_3           31
148 #define SEP_3           3
149
150 /* x**63 + x + 1.  */
151 #define TYPE_4          4
152 #define BREAK_4         256
153 #define DEG_4           63
154 #define SEP_4           1
155
156
157 /* Array versions of the above information to make code run faster.
158    Relies on fact that TYPE_i == i.  */
159
160 #define MAX_TYPES       5       /* Max number of types above.  */
161
162 static int degrees[MAX_TYPES] = { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
163 static int seps[MAX_TYPES] = { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
164
165
166
167 /* Initially, everything is set up as if from:
168         initstate(1, randtbl, 128);
169    Note that this initialization takes advantage of the fact that srandom
170    advances the front and rear pointers 10*rand_deg times, and hence the
171    rear pointer which starts at 0 will also end up at zero; thus the zeroeth
172    element of the state information, which contains info about the current
173    position of the rear pointer is just
174         (MAX_TYPES * (rptr - state)) + TYPE_3 == TYPE_3.  */
175
176 static long int randtbl[DEG_3 + 1] =
177   { TYPE_3,
178       0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342, 
179       0xde3b81e0, 0xdf0a6fb5, 0xf103bc02, 0x48f340fb, 
180       0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd, 
181       0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86, 
182       0xda672e2a, 0x1588ca88, 0xe369735d, 0x904f35f7, 
183       0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc, 
184       0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b, 
185       0xf5ad9d0e, 0x8999220b, 0x27fb47b9
186     };
187
188 /* FPTR and RPTR are two pointers into the state info, a front and a rear
189    pointer.  These two pointers are always rand_sep places aparts, as they
190    cycle through the state information.  (Yes, this does mean we could get
191    away with just one pointer, but the code for random is more efficient
192    this way).  The pointers are left positioned as they would be from the call:
193         initstate(1, randtbl, 128);
194    (The position of the rear pointer, rptr, is really 0 (as explained above
195    in the initialization of randtbl) because the state table pointer is set
196    to point to randtbl[1] (as explained below).)  */
197
198 static long int *fptr = &randtbl[SEP_3 + 1];
199 static long int *rptr = &randtbl[1];
200
201
202
203 /* The following things are the pointer to the state information table,
204    the type of the current generator, the degree of the current polynomial
205    being used, and the separation between the two pointers.
206    Note that for efficiency of random, we remember the first location of
207    the state information, not the zeroeth.  Hence it is valid to access
208    state[-1], which is used to store the type of the R.N.G.
209    Also, we remember the last location, since this is more efficient than
210    indexing every time to find the address of the last element to see if
211    the front and rear pointers have wrapped.  */
212
213 static long int *state = &randtbl[1];
214
215 static int rand_type = TYPE_3;
216 static int rand_deg = DEG_3;
217 static int rand_sep = SEP_3;
218
219 static long int *end_ptr = &randtbl[sizeof(randtbl) / sizeof(randtbl[0])];
220 \f
221 /* Initialize the random number generator based on the given seed.  If the
222    type is the trivial no-state-information type, just remember the seed.
223    Otherwise, initializes state[] based on the given "seed" via a linear
224    congruential generator.  Then, the pointers are set to known locations
225    that are exactly rand_sep places apart.  Lastly, it cycles the state
226    information a given number of times to get rid of any initial dependencies
227    introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
228    for default usage relies on values produced by this routine.  */
229 void
230 srandom (unsigned int x)
231 {
232   state[0] = x;
233   if (rand_type != TYPE_0)
234     {
235       register long int i;
236       for (i = 1; i < rand_deg; ++i)
237         state[i] = (1103515145 * state[i - 1]) + 12345;
238       fptr = &state[rand_sep];
239       rptr = &state[0];
240       for (i = 0; i < 10 * rand_deg; ++i)
241         random();
242     }
243 }
244 \f
245 /* Initialize the state information in the given array of N bytes for
246    future random number generation.  Based on the number of bytes we
247    are given, and the break values for the different R.N.G.'s, we choose
248    the best (largest) one we can and set things up for it.  srandom is
249    then called to initialize the state information.  Note that on return
250    from srandom, we set state[-1] to be the type multiplexed with the current
251    value of the rear pointer; this is so successive calls to initstate won't
252    lose this information and will be able to restart with setstate.
253    Note: The first thing we do is save the current state, if any, just like
254    setstate so that it doesn't matter when initstate is called.
255    Returns a pointer to the old state.  */
256 PTR
257 initstate (unsigned int seed, PTR arg_state, unsigned long n)
258 {
259   PTR ostate = (PTR) &state[-1];
260
261   if (rand_type == TYPE_0)
262     state[-1] = rand_type;
263   else
264     state[-1] = (MAX_TYPES * (rptr - state)) + rand_type;
265   if (n < BREAK_1)
266     {
267       if (n < BREAK_0)
268         {
269           errno = EINVAL;
270           return NULL;
271         }
272       rand_type = TYPE_0;
273       rand_deg = DEG_0;
274       rand_sep = SEP_0;
275     }
276   else if (n < BREAK_2)
277     {
278       rand_type = TYPE_1;
279       rand_deg = DEG_1;
280       rand_sep = SEP_1;
281     }
282   else if (n < BREAK_3)
283     {
284       rand_type = TYPE_2;
285       rand_deg = DEG_2;
286       rand_sep = SEP_2;
287     }
288   else if (n < BREAK_4)
289     {
290       rand_type = TYPE_3;
291       rand_deg = DEG_3;
292       rand_sep = SEP_3;
293     }
294   else
295     {
296       rand_type = TYPE_4;
297       rand_deg = DEG_4;
298       rand_sep = SEP_4;
299     }
300
301   state = &((long int *) arg_state)[1]; /* First location.  */
302   /* Must set END_PTR before srandom.  */
303   end_ptr = &state[rand_deg];
304   srandom(seed);
305   if (rand_type == TYPE_0)
306     state[-1] = rand_type;
307   else
308     state[-1] = (MAX_TYPES * (rptr - state)) + rand_type;
309
310   return ostate;
311 }
312 \f
313 /* Restore the state from the given state array.
314    Note: It is important that we also remember the locations of the pointers
315    in the current state information, and restore the locations of the pointers
316    from the old state information.  This is done by multiplexing the pointer
317    location into the zeroeth word of the state information. Note that due
318    to the order in which things are done, it is OK to call setstate with the
319    same state as the current state
320    Returns a pointer to the old state information.  */
321
322 PTR
323 setstate (PTR arg_state)
324 {
325   register long int *new_state = (long int *) arg_state;
326   register int type = new_state[0] % MAX_TYPES;
327   register int rear = new_state[0] / MAX_TYPES;
328   PTR ostate = (PTR) &state[-1];
329
330   if (rand_type == TYPE_0)
331     state[-1] = rand_type;
332   else
333     state[-1] = (MAX_TYPES * (rptr - state)) + rand_type;
334
335   switch (type)
336     {
337     case TYPE_0:
338     case TYPE_1:
339     case TYPE_2:
340     case TYPE_3:
341     case TYPE_4:
342       rand_type = type;
343       rand_deg = degrees[type];
344       rand_sep = seps[type];
345       break;
346     default:
347       /* State info munged.  */
348       errno = EINVAL;
349       return NULL;
350     }
351
352   state = &new_state[1];
353   if (rand_type != TYPE_0)
354     {
355       rptr = &state[rear];
356       fptr = &state[(rear + rand_sep) % rand_deg];
357     }
358   /* Set end_ptr too.  */
359   end_ptr = &state[rand_deg];
360
361   return ostate;
362 }
363 \f
364 /* If we are using the trivial TYPE_0 R.N.G., just do the old linear
365    congruential bit.  Otherwise, we do our fancy trinomial stuff, which is the
366    same in all ther other cases due to all the global variables that have been
367    set up.  The basic operation is to add the number at the rear pointer into
368    the one at the front pointer.  Then both pointers are advanced to the next
369    location cyclically in the table.  The value returned is the sum generated,
370    reduced to 31 bits by throwing away the "least random" low bit.
371    Note: The code takes advantage of the fact that both the front and
372    rear pointers can't wrap on the same call by not testing the rear
373    pointer if the front one has wrapped.  Returns a 31-bit random number.  */
374
375 long int
376 random (void)
377 {
378   if (rand_type == TYPE_0)
379     {
380       state[0] = ((state[0] * 1103515245) + 12345) & LONG_MAX;
381       return state[0];
382     }
383   else
384     {
385       long int i;
386       *fptr += *rptr;
387       /* Chucking least random bit.  */
388       i = (*fptr >> 1) & LONG_MAX;
389       ++fptr;
390       if (fptr >= end_ptr)
391         {
392           fptr = state;
393           ++rptr;
394         }
395       else
396         {
397           ++rptr;
398           if (rptr >= end_ptr)
399             rptr = state;
400         }
401       return i;
402     }
403 }