OSDN Git Service

PR middle-end/40525
[pf3gnuchains/gcc-fork.git] / libiberty / hashtab.c
1 /* An expandable hash tables datatype.  
2    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009
3    Free Software Foundation, Inc.
4    Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6 This file is part of the libiberty library.
7 Libiberty is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 Libiberty is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 Library General Public License for more details.
16
17 You should have received a copy of the GNU Library General Public
18 License along with libiberty; see the file COPYING.LIB.  If
19 not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA.  */
21
22 /* This package implements basic hash table functionality.  It is possible
23    to search for an entry, create an entry and destroy an entry.
24
25    Elements in the table are generic pointers.
26
27    The size of the table is not fixed; if the occupancy of the table
28    grows too high the hash table will be expanded.
29
30    The abstract data implementation is based on generalized Algorithm D
31    from Knuth's book "The art of computer programming".  Hash table is
32    expanded by creation of new hash table and transferring elements from
33    the old table to the new table. */
34
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
38
39 #include <sys/types.h>
40
41 #ifdef HAVE_STDLIB_H
42 #include <stdlib.h>
43 #endif
44 #ifdef HAVE_STRING_H
45 #include <string.h>
46 #endif
47 #ifdef HAVE_MALLOC_H
48 #include <malloc.h>
49 #endif
50 #ifdef HAVE_LIMITS_H
51 #include <limits.h>
52 #endif
53 #ifdef HAVE_STDINT_H
54 #include <stdint.h>
55 #endif
56
57 #include <stdio.h>
58
59 #include "libiberty.h"
60 #include "ansidecl.h"
61 #include "hashtab.h"
62
63 #ifndef CHAR_BIT
64 #define CHAR_BIT 8
65 #endif
66
67 static unsigned int higher_prime_index (unsigned long);
68 static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
69 static hashval_t htab_mod (hashval_t, htab_t);
70 static hashval_t htab_mod_m2 (hashval_t, htab_t);
71 static hashval_t hash_pointer (const void *);
72 static int eq_pointer (const void *, const void *);
73 static int htab_expand (htab_t);
74 static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
75
76 /* At some point, we could make these be NULL, and modify the
77    hash-table routines to handle NULL specially; that would avoid
78    function-call overhead for the common case of hashing pointers.  */
79 htab_hash htab_hash_pointer = hash_pointer;
80 htab_eq htab_eq_pointer = eq_pointer;
81
82 /* Table of primes and multiplicative inverses.
83
84    Note that these are not minimally reduced inverses.  Unlike when generating
85    code to divide by a constant, we want to be able to use the same algorithm
86    all the time.  All of these inverses (are implied to) have bit 32 set.
87
88    For the record, here's the function that computed the table; it's a 
89    vastly simplified version of the function of the same name from gcc.  */
90
91 #if 0
92 unsigned int
93 ceil_log2 (unsigned int x)
94 {
95   int i;
96   for (i = 31; i >= 0 ; --i)
97     if (x > (1u << i))
98       return i+1;
99   abort ();
100 }
101
102 unsigned int
103 choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
104 {
105   unsigned long long mhigh;
106   double nx;
107   int lgup, post_shift;
108   int pow, pow2;
109   int n = 32, precision = 32;
110
111   lgup = ceil_log2 (d);
112   pow = n + lgup;
113   pow2 = n + lgup - precision;
114
115   nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
116   mhigh = nx / d;
117
118   *shiftp = lgup - 1;
119   *mlp = mhigh;
120   return mhigh >> 32;
121 }
122 #endif
123
124 struct prime_ent
125 {
126   hashval_t prime;
127   hashval_t inv;
128   hashval_t inv_m2;     /* inverse of prime-2 */
129   hashval_t shift;
130 };
131
132 static struct prime_ent const prime_tab[] = {
133   {          7, 0x24924925, 0x9999999b, 2 },
134   {         13, 0x3b13b13c, 0x745d1747, 3 },
135   {         31, 0x08421085, 0x1a7b9612, 4 },
136   {         61, 0x0c9714fc, 0x15b1e5f8, 5 },
137   {        127, 0x02040811, 0x0624dd30, 6 },
138   {        251, 0x05197f7e, 0x073260a5, 7 },
139   {        509, 0x01824366, 0x02864fc8, 8 },
140   {       1021, 0x00c0906d, 0x014191f7, 9 },
141   {       2039, 0x0121456f, 0x0161e69e, 10 },
142   {       4093, 0x00300902, 0x00501908, 11 },
143   {       8191, 0x00080041, 0x00180241, 12 },
144   {      16381, 0x000c0091, 0x00140191, 13 },
145   {      32749, 0x002605a5, 0x002a06e6, 14 },
146   {      65521, 0x000f00e2, 0x00110122, 15 },
147   {     131071, 0x00008001, 0x00018003, 16 },
148   {     262139, 0x00014002, 0x0001c004, 17 },
149   {     524287, 0x00002001, 0x00006001, 18 },
150   {    1048573, 0x00003001, 0x00005001, 19 },
151   {    2097143, 0x00004801, 0x00005801, 20 },
152   {    4194301, 0x00000c01, 0x00001401, 21 },
153   {    8388593, 0x00001e01, 0x00002201, 22 },
154   {   16777213, 0x00000301, 0x00000501, 23 },
155   {   33554393, 0x00001381, 0x00001481, 24 },
156   {   67108859, 0x00000141, 0x000001c1, 25 },
157   {  134217689, 0x000004e1, 0x00000521, 26 },
158   {  268435399, 0x00000391, 0x000003b1, 27 },
159   {  536870909, 0x00000019, 0x00000029, 28 },
160   { 1073741789, 0x0000008d, 0x00000095, 29 },
161   { 2147483647, 0x00000003, 0x00000007, 30 },
162   /* Avoid "decimal constant so large it is unsigned" for 4294967291.  */
163   { 0xfffffffb, 0x00000006, 0x00000008, 31 }
164 };
165
166 /* The following function returns an index into the above table of the
167    nearest prime number which is greater than N, and near a power of two. */
168
169 static unsigned int
170 higher_prime_index (unsigned long n)
171 {
172   unsigned int low = 0;
173   unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
174
175   while (low != high)
176     {
177       unsigned int mid = low + (high - low) / 2;
178       if (n > prime_tab[mid].prime)
179         low = mid + 1;
180       else
181         high = mid;
182     }
183
184   /* If we've run out of primes, abort.  */
185   if (n > prime_tab[low].prime)
186     {
187       fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
188       abort ();
189     }
190
191   return low;
192 }
193
194 /* Returns a hash code for P.  */
195
196 static hashval_t
197 hash_pointer (const PTR p)
198 {
199   return (hashval_t) ((long)p >> 3);
200 }
201
202 /* Returns non-zero if P1 and P2 are equal.  */
203
204 static int
205 eq_pointer (const PTR p1, const PTR p2)
206 {
207   return p1 == p2;
208 }
209
210
211 /* The parens around the function names in the next two definitions
212    are essential in order to prevent macro expansions of the name.
213    The bodies, however, are expanded as expected, so they are not
214    recursive definitions.  */
215
216 /* Return the current size of given hash table.  */
217
218 #define htab_size(htab)  ((htab)->size)
219
220 size_t
221 (htab_size) (htab_t htab)
222 {
223   return htab_size (htab);
224 }
225
226 /* Return the current number of elements in given hash table. */
227
228 #define htab_elements(htab)  ((htab)->n_elements - (htab)->n_deleted)
229
230 size_t
231 (htab_elements) (htab_t htab)
232 {
233   return htab_elements (htab);
234 }
235
236 /* Return X % Y.  */
237
238 static inline hashval_t
239 htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
240 {
241   /* The multiplicative inverses computed above are for 32-bit types, and
242      requires that we be able to compute a highpart multiply.  */
243 #ifdef UNSIGNED_64BIT_TYPE
244   __extension__ typedef UNSIGNED_64BIT_TYPE ull;
245   if (sizeof (hashval_t) * CHAR_BIT <= 32)
246     {
247       hashval_t t1, t2, t3, t4, q, r;
248
249       t1 = ((ull)x * inv) >> 32;
250       t2 = x - t1;
251       t3 = t2 >> 1;
252       t4 = t1 + t3;
253       q  = t4 >> shift;
254       r  = x - (q * y);
255
256       return r;
257     }
258 #endif
259
260   /* Otherwise just use the native division routines.  */
261   return x % y;
262 }
263
264 /* Compute the primary hash for HASH given HTAB's current size.  */
265
266 static inline hashval_t
267 htab_mod (hashval_t hash, htab_t htab)
268 {
269   const struct prime_ent *p = &prime_tab[htab->size_prime_index];
270   return htab_mod_1 (hash, p->prime, p->inv, p->shift);
271 }
272
273 /* Compute the secondary hash for HASH given HTAB's current size.  */
274
275 static inline hashval_t
276 htab_mod_m2 (hashval_t hash, htab_t htab)
277 {
278   const struct prime_ent *p = &prime_tab[htab->size_prime_index];
279   return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
280 }
281
282 /* This function creates table with length slightly longer than given
283    source length.  Created hash table is initiated as empty (all the
284    hash table entries are HTAB_EMPTY_ENTRY).  The function returns the
285    created hash table, or NULL if memory allocation fails.  */
286
287 htab_t
288 htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
289                    htab_del del_f, htab_alloc alloc_f, htab_free free_f)
290 {
291   htab_t result;
292   unsigned int size_prime_index;
293
294   size_prime_index = higher_prime_index (size);
295   size = prime_tab[size_prime_index].prime;
296
297   result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
298   if (result == NULL)
299     return NULL;
300   result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
301   if (result->entries == NULL)
302     {
303       if (free_f != NULL)
304         (*free_f) (result);
305       return NULL;
306     }
307   result->size = size;
308   result->size_prime_index = size_prime_index;
309   result->hash_f = hash_f;
310   result->eq_f = eq_f;
311   result->del_f = del_f;
312   result->alloc_f = alloc_f;
313   result->free_f = free_f;
314   return result;
315 }
316
317 /* As above, but use the variants of alloc_f and free_f which accept
318    an extra argument.  */
319
320 htab_t
321 htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
322                       htab_del del_f, void *alloc_arg,
323                       htab_alloc_with_arg alloc_f,
324                       htab_free_with_arg free_f)
325 {
326   htab_t result;
327   unsigned int size_prime_index;
328
329   size_prime_index = higher_prime_index (size);
330   size = prime_tab[size_prime_index].prime;
331
332   result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
333   if (result == NULL)
334     return NULL;
335   result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
336   if (result->entries == NULL)
337     {
338       if (free_f != NULL)
339         (*free_f) (alloc_arg, result);
340       return NULL;
341     }
342   result->size = size;
343   result->size_prime_index = size_prime_index;
344   result->hash_f = hash_f;
345   result->eq_f = eq_f;
346   result->del_f = del_f;
347   result->alloc_arg = alloc_arg;
348   result->alloc_with_arg_f = alloc_f;
349   result->free_with_arg_f = free_f;
350   return result;
351 }
352
353 /* Update the function pointers and allocation parameter in the htab_t.  */
354
355 void
356 htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
357                        htab_del del_f, PTR alloc_arg,
358                        htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
359 {
360   htab->hash_f = hash_f;
361   htab->eq_f = eq_f;
362   htab->del_f = del_f;
363   htab->alloc_arg = alloc_arg;
364   htab->alloc_with_arg_f = alloc_f;
365   htab->free_with_arg_f = free_f;
366 }
367
368 /* These functions exist solely for backward compatibility.  */
369
370 #undef htab_create
371 htab_t
372 htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
373 {
374   return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
375 }
376
377 htab_t
378 htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
379 {
380   return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
381 }
382
383 /* This function frees all memory allocated for given hash table.
384    Naturally the hash table must already exist. */
385
386 void
387 htab_delete (htab_t htab)
388 {
389   size_t size = htab_size (htab);
390   PTR *entries = htab->entries;
391   int i;
392
393   if (htab->del_f)
394     for (i = size - 1; i >= 0; i--)
395       if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
396         (*htab->del_f) (entries[i]);
397
398   if (htab->free_f != NULL)
399     {
400       (*htab->free_f) (entries);
401       (*htab->free_f) (htab);
402     }
403   else if (htab->free_with_arg_f != NULL)
404     {
405       (*htab->free_with_arg_f) (htab->alloc_arg, entries);
406       (*htab->free_with_arg_f) (htab->alloc_arg, htab);
407     }
408 }
409
410 /* This function clears all entries in the given hash table.  */
411
412 void
413 htab_empty (htab_t htab)
414 {
415   size_t size = htab_size (htab);
416   PTR *entries = htab->entries;
417   int i;
418
419   if (htab->del_f)
420     for (i = size - 1; i >= 0; i--)
421       if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
422         (*htab->del_f) (entries[i]);
423
424   /* Instead of clearing megabyte, downsize the table.  */
425   if (size > 1024*1024 / sizeof (PTR))
426     {
427       int nindex = higher_prime_index (1024 / sizeof (PTR));
428       int nsize = prime_tab[nindex].prime;
429
430       if (htab->free_f != NULL)
431         (*htab->free_f) (htab->entries);
432       else if (htab->free_with_arg_f != NULL)
433         (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
434       if (htab->alloc_with_arg_f != NULL)
435         htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
436                                                            sizeof (PTR *));
437       else
438         htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
439      htab->size = nsize;
440      htab->size_prime_index = nindex;
441     }
442   else
443     memset (entries, 0, size * sizeof (PTR));
444   htab->n_deleted = 0;
445   htab->n_elements = 0;
446 }
447
448 /* Similar to htab_find_slot, but without several unwanted side effects:
449     - Does not call htab->eq_f when it finds an existing entry.
450     - Does not change the count of elements/searches/collisions in the
451       hash table.
452    This function also assumes there are no deleted entries in the table.
453    HASH is the hash value for the element to be inserted.  */
454
455 static PTR *
456 find_empty_slot_for_expand (htab_t htab, hashval_t hash)
457 {
458   hashval_t index = htab_mod (hash, htab);
459   size_t size = htab_size (htab);
460   PTR *slot = htab->entries + index;
461   hashval_t hash2;
462
463   if (*slot == HTAB_EMPTY_ENTRY)
464     return slot;
465   else if (*slot == HTAB_DELETED_ENTRY)
466     abort ();
467
468   hash2 = htab_mod_m2 (hash, htab);
469   for (;;)
470     {
471       index += hash2;
472       if (index >= size)
473         index -= size;
474
475       slot = htab->entries + index;
476       if (*slot == HTAB_EMPTY_ENTRY)
477         return slot;
478       else if (*slot == HTAB_DELETED_ENTRY)
479         abort ();
480     }
481 }
482
483 /* The following function changes size of memory allocated for the
484    entries and repeatedly inserts the table elements.  The occupancy
485    of the table after the call will be about 50%.  Naturally the hash
486    table must already exist.  Remember also that the place of the
487    table entries is changed.  If memory allocation failures are allowed,
488    this function will return zero, indicating that the table could not be
489    expanded.  If all goes well, it will return a non-zero value.  */
490
491 static int
492 htab_expand (htab_t htab)
493 {
494   PTR *oentries;
495   PTR *olimit;
496   PTR *p;
497   PTR *nentries;
498   size_t nsize, osize, elts;
499   unsigned int oindex, nindex;
500
501   oentries = htab->entries;
502   oindex = htab->size_prime_index;
503   osize = htab->size;
504   olimit = oentries + osize;
505   elts = htab_elements (htab);
506
507   /* Resize only when table after removal of unused elements is either
508      too full or too empty.  */
509   if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
510     {
511       nindex = higher_prime_index (elts * 2);
512       nsize = prime_tab[nindex].prime;
513     }
514   else
515     {
516       nindex = oindex;
517       nsize = osize;
518     }
519
520   if (htab->alloc_with_arg_f != NULL)
521     nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
522                                                   sizeof (PTR *));
523   else
524     nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
525   if (nentries == NULL)
526     return 0;
527   htab->entries = nentries;
528   htab->size = nsize;
529   htab->size_prime_index = nindex;
530   htab->n_elements -= htab->n_deleted;
531   htab->n_deleted = 0;
532
533   p = oentries;
534   do
535     {
536       PTR x = *p;
537
538       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
539         {
540           PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
541
542           *q = x;
543         }
544
545       p++;
546     }
547   while (p < olimit);
548
549   if (htab->free_f != NULL)
550     (*htab->free_f) (oentries);
551   else if (htab->free_with_arg_f != NULL)
552     (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
553   return 1;
554 }
555
556 /* This function searches for a hash table entry equal to the given
557    element.  It cannot be used to insert or delete an element.  */
558
559 PTR
560 htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
561 {
562   hashval_t index, hash2;
563   size_t size;
564   PTR entry;
565
566   htab->searches++;
567   size = htab_size (htab);
568   index = htab_mod (hash, htab);
569
570   entry = htab->entries[index];
571   if (entry == HTAB_EMPTY_ENTRY
572       || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
573     return entry;
574
575   hash2 = htab_mod_m2 (hash, htab);
576   for (;;)
577     {
578       htab->collisions++;
579       index += hash2;
580       if (index >= size)
581         index -= size;
582
583       entry = htab->entries[index];
584       if (entry == HTAB_EMPTY_ENTRY
585           || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
586         return entry;
587     }
588 }
589
590 /* Like htab_find_slot_with_hash, but compute the hash value from the
591    element.  */
592
593 PTR
594 htab_find (htab_t htab, const PTR element)
595 {
596   return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
597 }
598
599 /* This function searches for a hash table slot containing an entry
600    equal to the given element.  To delete an entry, call this with
601    insert=NO_INSERT, then call htab_clear_slot on the slot returned
602    (possibly after doing some checks).  To insert an entry, call this
603    with insert=INSERT, then write the value you want into the returned
604    slot.  When inserting an entry, NULL may be returned if memory
605    allocation fails.  */
606
607 PTR *
608 htab_find_slot_with_hash (htab_t htab, const PTR element,
609                           hashval_t hash, enum insert_option insert)
610 {
611   PTR *first_deleted_slot;
612   hashval_t index, hash2;
613   size_t size;
614   PTR entry;
615
616   size = htab_size (htab);
617   if (insert == INSERT && size * 3 <= htab->n_elements * 4)
618     {
619       if (htab_expand (htab) == 0)
620         return NULL;
621       size = htab_size (htab);
622     }
623
624   index = htab_mod (hash, htab);
625
626   htab->searches++;
627   first_deleted_slot = NULL;
628
629   entry = htab->entries[index];
630   if (entry == HTAB_EMPTY_ENTRY)
631     goto empty_entry;
632   else if (entry == HTAB_DELETED_ENTRY)
633     first_deleted_slot = &htab->entries[index];
634   else if ((*htab->eq_f) (entry, element))
635     return &htab->entries[index];
636       
637   hash2 = htab_mod_m2 (hash, htab);
638   for (;;)
639     {
640       htab->collisions++;
641       index += hash2;
642       if (index >= size)
643         index -= size;
644       
645       entry = htab->entries[index];
646       if (entry == HTAB_EMPTY_ENTRY)
647         goto empty_entry;
648       else if (entry == HTAB_DELETED_ENTRY)
649         {
650           if (!first_deleted_slot)
651             first_deleted_slot = &htab->entries[index];
652         }
653       else if ((*htab->eq_f) (entry, element))
654         return &htab->entries[index];
655     }
656
657  empty_entry:
658   if (insert == NO_INSERT)
659     return NULL;
660
661   if (first_deleted_slot)
662     {
663       htab->n_deleted--;
664       *first_deleted_slot = HTAB_EMPTY_ENTRY;
665       return first_deleted_slot;
666     }
667
668   htab->n_elements++;
669   return &htab->entries[index];
670 }
671
672 /* Like htab_find_slot_with_hash, but compute the hash value from the
673    element.  */
674
675 PTR *
676 htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
677 {
678   return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
679                                    insert);
680 }
681
682 /* This function deletes an element with the given value from hash
683    table (the hash is computed from the element).  If there is no matching
684    element in the hash table, this function does nothing.  */
685
686 void
687 htab_remove_elt (htab_t htab, PTR element)
688 {
689   htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
690 }
691
692
693 /* This function deletes an element with the given value from hash
694    table.  If there is no matching element in the hash table, this
695    function does nothing.  */
696
697 void
698 htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
699 {
700   PTR *slot;
701
702   slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
703   if (*slot == HTAB_EMPTY_ENTRY)
704     return;
705
706   if (htab->del_f)
707     (*htab->del_f) (*slot);
708
709   *slot = HTAB_DELETED_ENTRY;
710   htab->n_deleted++;
711 }
712
713 /* This function clears a specified slot in a hash table.  It is
714    useful when you've already done the lookup and don't want to do it
715    again.  */
716
717 void
718 htab_clear_slot (htab_t htab, PTR *slot)
719 {
720   if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
721       || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
722     abort ();
723
724   if (htab->del_f)
725     (*htab->del_f) (*slot);
726
727   *slot = HTAB_DELETED_ENTRY;
728   htab->n_deleted++;
729 }
730
731 /* This function scans over the entire hash table calling
732    CALLBACK for each live entry.  If CALLBACK returns false,
733    the iteration stops.  INFO is passed as CALLBACK's second
734    argument.  */
735
736 void
737 htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
738 {
739   PTR *slot;
740   PTR *limit;
741   
742   slot = htab->entries;
743   limit = slot + htab_size (htab);
744
745   do
746     {
747       PTR x = *slot;
748
749       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
750         if (!(*callback) (slot, info))
751           break;
752     }
753   while (++slot < limit);
754 }
755
756 /* Like htab_traverse_noresize, but does resize the table when it is
757    too empty to improve effectivity of subsequent calls.  */
758
759 void
760 htab_traverse (htab_t htab, htab_trav callback, PTR info)
761 {
762   size_t size = htab_size (htab);
763   if (htab_elements (htab) * 8 < size && size > 32)
764     htab_expand (htab);
765
766   htab_traverse_noresize (htab, callback, info);
767 }
768
769 /* Return the fraction of fixed collisions during all work with given
770    hash table. */
771
772 double
773 htab_collisions (htab_t htab)
774 {
775   if (htab->searches == 0)
776     return 0.0;
777
778   return (double) htab->collisions / (double) htab->searches;
779 }
780
781 /* Hash P as a null-terminated string.
782
783    Copied from gcc/hashtable.c.  Zack had the following to say with respect
784    to applicability, though note that unlike hashtable.c, this hash table
785    implementation re-hashes rather than chain buckets.
786
787    http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
788    From: Zack Weinberg <zackw@panix.com>
789    Date: Fri, 17 Aug 2001 02:15:56 -0400
790
791    I got it by extracting all the identifiers from all the source code
792    I had lying around in mid-1999, and testing many recurrences of
793    the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
794    prime numbers or the appropriate identity.  This was the best one.
795    I don't remember exactly what constituted "best", except I was
796    looking at bucket-length distributions mostly.
797    
798    So it should be very good at hashing identifiers, but might not be
799    as good at arbitrary strings.
800    
801    I'll add that it thoroughly trounces the hash functions recommended
802    for this use at http://burtleburtle.net/bob/hash/index.html, both
803    on speed and bucket distribution.  I haven't tried it against the
804    function they just started using for Perl's hashes.  */
805
806 hashval_t
807 htab_hash_string (const PTR p)
808 {
809   const unsigned char *str = (const unsigned char *) p;
810   hashval_t r = 0;
811   unsigned char c;
812
813   while ((c = *str++) != 0)
814     r = r * 67 + c - 113;
815
816   return r;
817 }
818
819 /* DERIVED FROM:
820 --------------------------------------------------------------------
821 lookup2.c, by Bob Jenkins, December 1996, Public Domain.
822 hash(), hash2(), hash3, and mix() are externally useful functions.
823 Routines to test the hash are included if SELF_TEST is defined.
824 You can use this free for any purpose.  It has no warranty.
825 --------------------------------------------------------------------
826 */
827
828 /*
829 --------------------------------------------------------------------
830 mix -- mix 3 32-bit values reversibly.
831 For every delta with one or two bit set, and the deltas of all three
832   high bits or all three low bits, whether the original value of a,b,c
833   is almost all zero or is uniformly distributed,
834 * If mix() is run forward or backward, at least 32 bits in a,b,c
835   have at least 1/4 probability of changing.
836 * If mix() is run forward, every bit of c will change between 1/3 and
837   2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.)
838 mix() was built out of 36 single-cycle latency instructions in a 
839   structure that could supported 2x parallelism, like so:
840       a -= b; 
841       a -= c; x = (c>>13);
842       b -= c; a ^= x;
843       b -= a; x = (a<<8);
844       c -= a; b ^= x;
845       c -= b; x = (b>>13);
846       ...
847   Unfortunately, superscalar Pentiums and Sparcs can't take advantage 
848   of that parallelism.  They've also turned some of those single-cycle
849   latency instructions into multi-cycle latency instructions.  Still,
850   this is the fastest good hash I could find.  There were about 2^^68
851   to choose from.  I only looked at a billion or so.
852 --------------------------------------------------------------------
853 */
854 /* same, but slower, works on systems that might have 8 byte hashval_t's */
855 #define mix(a,b,c) \
856 { \
857   a -= b; a -= c; a ^= (c>>13); \
858   b -= c; b -= a; b ^= (a<< 8); \
859   c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
860   a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
861   b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
862   c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
863   a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
864   b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
865   c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
866 }
867
868 /*
869 --------------------------------------------------------------------
870 hash() -- hash a variable-length key into a 32-bit value
871   k     : the key (the unaligned variable-length array of bytes)
872   len   : the length of the key, counting by bytes
873   level : can be any 4-byte value
874 Returns a 32-bit value.  Every bit of the key affects every bit of
875 the return value.  Every 1-bit and 2-bit delta achieves avalanche.
876 About 36+6len instructions.
877
878 The best hash table sizes are powers of 2.  There is no need to do
879 mod a prime (mod is sooo slow!).  If you need less than 32 bits,
880 use a bitmask.  For example, if you need only 10 bits, do
881   h = (h & hashmask(10));
882 In which case, the hash table should have hashsize(10) elements.
883
884 If you are hashing n strings (ub1 **)k, do it like this:
885   for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
886
887 By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use this
888 code any way you wish, private, educational, or commercial.  It's free.
889
890 See http://burtleburtle.net/bob/hash/evahash.html
891 Use for hash table lookup, or anything where one collision in 2^32 is
892 acceptable.  Do NOT use for cryptographic purposes.
893 --------------------------------------------------------------------
894 */
895
896 hashval_t
897 iterative_hash (const PTR k_in /* the key */,
898                 register size_t  length /* the length of the key */,
899                 register hashval_t initval /* the previous hash, or
900                                               an arbitrary value */)
901 {
902   register const unsigned char *k = (const unsigned char *)k_in;
903   register hashval_t a,b,c,len;
904
905   /* Set up the internal state */
906   len = length;
907   a = b = 0x9e3779b9;  /* the golden ratio; an arbitrary value */
908   c = initval;           /* the previous hash value */
909
910   /*---------------------------------------- handle most of the key */
911 #ifndef WORDS_BIGENDIAN
912   /* On a little-endian machine, if the data is 4-byte aligned we can hash
913      by word for better speed.  This gives nondeterministic results on
914      big-endian machines.  */
915   if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
916     while (len >= 12)    /* aligned */
917       {
918         a += *(hashval_t *)(k+0);
919         b += *(hashval_t *)(k+4);
920         c += *(hashval_t *)(k+8);
921         mix(a,b,c);
922         k += 12; len -= 12;
923       }
924   else /* unaligned */
925 #endif
926     while (len >= 12)
927       {
928         a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
929         b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
930         c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
931         mix(a,b,c);
932         k += 12; len -= 12;
933       }
934
935   /*------------------------------------- handle the last 11 bytes */
936   c += length;
937   switch(len)              /* all the case statements fall through */
938     {
939     case 11: c+=((hashval_t)k[10]<<24);
940     case 10: c+=((hashval_t)k[9]<<16);
941     case 9 : c+=((hashval_t)k[8]<<8);
942       /* the first byte of c is reserved for the length */
943     case 8 : b+=((hashval_t)k[7]<<24);
944     case 7 : b+=((hashval_t)k[6]<<16);
945     case 6 : b+=((hashval_t)k[5]<<8);
946     case 5 : b+=k[4];
947     case 4 : a+=((hashval_t)k[3]<<24);
948     case 3 : a+=((hashval_t)k[2]<<16);
949     case 2 : a+=((hashval_t)k[1]<<8);
950     case 1 : a+=k[0];
951       /* case 0: nothing left to add */
952     }
953   mix(a,b,c);
954   /*-------------------------------------------- report the result */
955   return c;
956 }