OSDN Git Service

runtime: Save all registers on stack for GC scan.
[pf3gnuchains/gcc-fork.git] / libgo / runtime / proc.c
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 #include <limits.h>
6 #include <stdlib.h>
7 #include <pthread.h>
8 #include <unistd.h>
9
10 #include "config.h"
11 #include "runtime.h"
12 #include "arch.h"
13 #include "defs.h"
14 #include "malloc.h"
15 #include "go-defer.h"
16
17 #ifdef USING_SPLIT_STACK
18
19 /* FIXME: These are not declared anywhere.  */
20
21 extern void __splitstack_getcontext(void *context[10]);
22
23 extern void __splitstack_setcontext(void *context[10]);
24
25 extern void *__splitstack_makecontext(size_t, void *context[10], size_t *);
26
27 extern void * __splitstack_resetcontext(void *context[10], size_t *);
28
29 extern void *__splitstack_find(void *, void *, size_t *, void **, void **,
30                                void **);
31
32 extern void __splitstack_block_signals (int *, int *);
33
34 extern void __splitstack_block_signals_context (void *context[10], int *,
35                                                 int *);
36
37 #endif
38
39 #if defined(USING_SPLIT_STACK) && defined(LINKER_SUPPORTS_SPLIT_STACK)
40 # ifdef PTHREAD_STACK_MIN
41 #  define StackMin PTHREAD_STACK_MIN
42 # else
43 #  define StackMin 8192
44 # endif
45 #else
46 # define StackMin 2 * 1024 * 1024
47 #endif
48
49 static void schedule(G*);
50
51 typedef struct Sched Sched;
52
53 M       runtime_m0;
54 G       runtime_g0;     // idle goroutine for m0
55
56 #ifdef __rtems__
57 #define __thread
58 #endif
59
60 static __thread G *g;
61 static __thread M *m;
62
63 #ifndef SETCONTEXT_CLOBBERS_TLS
64
65 static inline void
66 initcontext(void)
67 {
68 }
69
70 static inline void
71 fixcontext(ucontext_t *c __attribute__ ((unused)))
72 {
73 }
74
75 # else
76
77 # if defined(__x86_64__) && defined(__sun__)
78
79 // x86_64 Solaris 10 and 11 have a bug: setcontext switches the %fs
80 // register to that of the thread which called getcontext.  The effect
81 // is that the address of all __thread variables changes.  This bug
82 // also affects pthread_self() and pthread_getspecific.  We work
83 // around it by clobbering the context field directly to keep %fs the
84 // same.
85
86 static __thread greg_t fs;
87
88 static inline void
89 initcontext(void)
90 {
91         ucontext_t c;
92
93         getcontext(&c);
94         fs = c.uc_mcontext.gregs[REG_FSBASE];
95 }
96
97 static inline void
98 fixcontext(ucontext_t* c)
99 {
100         c->uc_mcontext.gregs[REG_FSBASE] = fs;
101 }
102
103 # else
104
105 #  error unknown case for SETCONTEXT_CLOBBERS_TLS
106
107 # endif
108
109 #endif
110
111 // We can not always refer to the TLS variables directly.  The
112 // compiler will call tls_get_addr to get the address of the variable,
113 // and it may hold it in a register across a call to schedule.  When
114 // we get back from the call we may be running in a different thread,
115 // in which case the register now points to the TLS variable for a
116 // different thread.  We use non-inlinable functions to avoid this
117 // when necessary.
118
119 G* runtime_g(void) __attribute__ ((noinline, no_split_stack));
120
121 G*
122 runtime_g(void)
123 {
124         return g;
125 }
126
127 M* runtime_m(void) __attribute__ ((noinline, no_split_stack));
128
129 M*
130 runtime_m(void)
131 {
132         return m;
133 }
134
135 int32   runtime_gcwaiting;
136
137 // Go scheduler
138 //
139 // The go scheduler's job is to match ready-to-run goroutines (`g's)
140 // with waiting-for-work schedulers (`m's).  If there are ready g's
141 // and no waiting m's, ready() will start a new m running in a new
142 // OS thread, so that all ready g's can run simultaneously, up to a limit.
143 // For now, m's never go away.
144 //
145 // By default, Go keeps only one kernel thread (m) running user code
146 // at a single time; other threads may be blocked in the operating system.
147 // Setting the environment variable $GOMAXPROCS or calling
148 // runtime.GOMAXPROCS() will change the number of user threads
149 // allowed to execute simultaneously.  $GOMAXPROCS is thus an
150 // approximation of the maximum number of cores to use.
151 //
152 // Even a program that can run without deadlock in a single process
153 // might use more m's if given the chance.  For example, the prime
154 // sieve will use as many m's as there are primes (up to runtime_sched.mmax),
155 // allowing different stages of the pipeline to execute in parallel.
156 // We could revisit this choice, only kicking off new m's for blocking
157 // system calls, but that would limit the amount of parallel computation
158 // that go would try to do.
159 //
160 // In general, one could imagine all sorts of refinements to the
161 // scheduler, but the goal now is just to get something working on
162 // Linux and OS X.
163
164 struct Sched {
165         Lock;
166
167         G *gfree;       // available g's (status == Gdead)
168         int32 goidgen;
169
170         G *ghead;       // g's waiting to run
171         G *gtail;
172         int32 gwait;    // number of g's waiting to run
173         int32 gcount;   // number of g's that are alive
174         int32 grunning; // number of g's running on cpu or in syscall
175
176         M *mhead;       // m's waiting for work
177         int32 mwait;    // number of m's waiting for work
178         int32 mcount;   // number of m's that have been created
179
180         volatile uint32 atomic; // atomic scheduling word (see below)
181
182         int32 profilehz;        // cpu profiling rate
183
184         bool init;  // running initialization
185         bool lockmain;  // init called runtime.LockOSThread
186
187         Note    stopped;        // one g can set waitstop and wait here for m's to stop
188 };
189
190 // The atomic word in sched is an atomic uint32 that
191 // holds these fields.
192 //
193 //      [15 bits] mcpu          number of m's executing on cpu
194 //      [15 bits] mcpumax       max number of m's allowed on cpu
195 //      [1 bit] waitstop        some g is waiting on stopped
196 //      [1 bit] gwaiting        gwait != 0
197 //
198 // These fields are the information needed by entersyscall
199 // and exitsyscall to decide whether to coordinate with the
200 // scheduler.  Packing them into a single machine word lets
201 // them use a fast path with a single atomic read/write and
202 // no lock/unlock.  This greatly reduces contention in
203 // syscall- or cgo-heavy multithreaded programs.
204 //
205 // Except for entersyscall and exitsyscall, the manipulations
206 // to these fields only happen while holding the schedlock,
207 // so the routines holding schedlock only need to worry about
208 // what entersyscall and exitsyscall do, not the other routines
209 // (which also use the schedlock).
210 //
211 // In particular, entersyscall and exitsyscall only read mcpumax,
212 // waitstop, and gwaiting.  They never write them.  Thus, writes to those
213 // fields can be done (holding schedlock) without fear of write conflicts.
214 // There may still be logic conflicts: for example, the set of waitstop must
215 // be conditioned on mcpu >= mcpumax or else the wait may be a
216 // spurious sleep.  The Promela model in proc.p verifies these accesses.
217 enum {
218         mcpuWidth = 15,
219         mcpuMask = (1<<mcpuWidth) - 1,
220         mcpuShift = 0,
221         mcpumaxShift = mcpuShift + mcpuWidth,
222         waitstopShift = mcpumaxShift + mcpuWidth,
223         gwaitingShift = waitstopShift+1,
224
225         // The max value of GOMAXPROCS is constrained
226         // by the max value we can store in the bit fields
227         // of the atomic word.  Reserve a few high values
228         // so that we can detect accidental decrement
229         // beyond zero.
230         maxgomaxprocs = mcpuMask - 10,
231 };
232
233 #define atomic_mcpu(v)          (((v)>>mcpuShift)&mcpuMask)
234 #define atomic_mcpumax(v)       (((v)>>mcpumaxShift)&mcpuMask)
235 #define atomic_waitstop(v)      (((v)>>waitstopShift)&1)
236 #define atomic_gwaiting(v)      (((v)>>gwaitingShift)&1)
237
238 Sched runtime_sched;
239 int32 runtime_gomaxprocs;
240 bool runtime_singleproc;
241
242 static bool canaddmcpu(void);
243
244 // An m that is waiting for notewakeup(&m->havenextg).  This may
245 // only be accessed while the scheduler lock is held.  This is used to
246 // minimize the number of times we call notewakeup while the scheduler
247 // lock is held, since the m will normally move quickly to lock the
248 // scheduler itself, producing lock contention.
249 static M* mwakeup;
250
251 // Scheduling helpers.  Sched must be locked.
252 static void gput(G*);   // put/get on ghead/gtail
253 static G* gget(void);
254 static void mput(M*);   // put/get on mhead
255 static M* mget(G*);
256 static void gfput(G*);  // put/get on gfree
257 static G* gfget(void);
258 static void matchmg(void);      // match m's to g's
259 static void readylocked(G*);    // ready, but sched is locked
260 static void mnextg(M*, G*);
261 static void mcommoninit(M*);
262
263 void
264 setmcpumax(uint32 n)
265 {
266         uint32 v, w;
267
268         for(;;) {
269                 v = runtime_sched.atomic;
270                 w = v;
271                 w &= ~(mcpuMask<<mcpumaxShift);
272                 w |= n<<mcpumaxShift;
273                 if(runtime_cas(&runtime_sched.atomic, v, w))
274                         break;
275         }
276 }
277
278 // First function run by a new goroutine.  This replaces gogocall.
279 static void
280 kickoff(void)
281 {
282         void (*fn)(void*);
283
284         fn = (void (*)(void*))(g->entry);
285         fn(g->param);
286         runtime_goexit();
287 }
288
289 // Switch context to a different goroutine.  This is like longjmp.
290 static void runtime_gogo(G*) __attribute__ ((noinline));
291 static void
292 runtime_gogo(G* newg)
293 {
294 #ifdef USING_SPLIT_STACK
295         __splitstack_setcontext(&newg->stack_context[0]);
296 #endif
297         g = newg;
298         newg->fromgogo = true;
299         fixcontext(&newg->context);
300         setcontext(&newg->context);
301         runtime_throw("gogo setcontext returned");
302 }
303
304 // Save context and call fn passing g as a parameter.  This is like
305 // setjmp.  Because getcontext always returns 0, unlike setjmp, we use
306 // g->fromgogo as a code.  It will be true if we got here via
307 // setcontext.  g == nil the first time this is called in a new m.
308 static void runtime_mcall(void (*)(G*)) __attribute__ ((noinline));
309 static void
310 runtime_mcall(void (*pfn)(G*))
311 {
312 #ifndef USING_SPLIT_STACK
313         int i;
314 #endif
315
316         // Ensure that all registers are on the stack for the garbage
317         // collector.
318         __builtin_unwind_init();
319
320         if(g == m->g0)
321                 runtime_throw("runtime: mcall called on m->g0 stack");
322
323         if(g != nil) {
324
325 #ifdef USING_SPLIT_STACK
326                 __splitstack_getcontext(&g->stack_context[0]);
327 #else
328                 g->gcnext_sp = &i;
329 #endif
330                 g->fromgogo = false;
331                 getcontext(&g->context);
332         }
333         if (g == nil || !g->fromgogo) {
334 #ifdef USING_SPLIT_STACK
335                 __splitstack_setcontext(&m->g0->stack_context[0]);
336 #endif
337                 m->g0->entry = (byte*)pfn;
338                 m->g0->param = g;
339                 g = m->g0;
340                 fixcontext(&m->g0->context);
341                 setcontext(&m->g0->context);
342                 runtime_throw("runtime: mcall function returned");
343         }
344 }
345
346 // The bootstrap sequence is:
347 //
348 //      call osinit
349 //      call schedinit
350 //      make & queue new G
351 //      call runtime_mstart
352 //
353 // The new G calls runtime_main.
354 void
355 runtime_schedinit(void)
356 {
357         int32 n;
358         const byte *p;
359
360         m = &runtime_m0;
361         g = &runtime_g0;
362         m->g0 = g;
363         m->curg = g;
364         g->m = m;
365
366         initcontext();
367
368         m->nomemprof++;
369         runtime_mallocinit();
370         mcommoninit(m);
371
372         runtime_goargs();
373         runtime_goenvs();
374
375         // For debugging:
376         // Allocate internal symbol table representation now,
377         // so that we don't need to call malloc when we crash.
378         // runtime_findfunc(0);
379
380         runtime_gomaxprocs = 1;
381         p = runtime_getenv("GOMAXPROCS");
382         if(p != nil && (n = runtime_atoi(p)) != 0) {
383                 if(n > maxgomaxprocs)
384                         n = maxgomaxprocs;
385                 runtime_gomaxprocs = n;
386         }
387         setmcpumax(runtime_gomaxprocs);
388         runtime_singleproc = runtime_gomaxprocs == 1;
389
390         canaddmcpu();   // mcpu++ to account for bootstrap m
391         m->helpgc = 1;  // flag to tell schedule() to mcpu--
392         runtime_sched.grunning++;
393
394         // Can not enable GC until all roots are registered.
395         // mstats.enablegc = 1;
396         m->nomemprof--;
397 }
398
399 extern void main_init(void) __asm__ ("__go_init_main");
400 extern void main_main(void) __asm__ ("main.main");
401
402 // The main goroutine.
403 void
404 runtime_main(void)
405 {
406         // Lock the main goroutine onto this, the main OS thread,
407         // during initialization.  Most programs won't care, but a few
408         // do require certain calls to be made by the main thread.
409         // Those can arrange for main.main to run in the main thread
410         // by calling runtime.LockOSThread during initialization
411         // to preserve the lock.
412         runtime_LockOSThread();
413         runtime_sched.init = true;
414         main_init();
415         runtime_sched.init = false;
416         if(!runtime_sched.lockmain)
417                 runtime_UnlockOSThread();
418
419         // For gccgo we have to wait until after main is initialized
420         // to enable GC, because initializing main registers the GC
421         // roots.
422         mstats.enablegc = 1;
423
424         main_main();
425         runtime_exit(0);
426         for(;;)
427                 *(int32*)0 = 0;
428 }
429
430 // Lock the scheduler.
431 static void
432 schedlock(void)
433 {
434         runtime_lock(&runtime_sched);
435 }
436
437 // Unlock the scheduler.
438 static void
439 schedunlock(void)
440 {
441         M *m;
442
443         m = mwakeup;
444         mwakeup = nil;
445         runtime_unlock(&runtime_sched);
446         if(m != nil)
447                 runtime_notewakeup(&m->havenextg);
448 }
449
450 void
451 runtime_goexit(void)
452 {
453         g->status = Gmoribund;
454         runtime_gosched();
455 }
456
457 void
458 runtime_goroutineheader(G *g)
459 {
460         const char *status;
461
462         switch(g->status) {
463         case Gidle:
464                 status = "idle";
465                 break;
466         case Grunnable:
467                 status = "runnable";
468                 break;
469         case Grunning:
470                 status = "running";
471                 break;
472         case Gsyscall:
473                 status = "syscall";
474                 break;
475         case Gwaiting:
476                 if(g->waitreason)
477                         status = g->waitreason;
478                 else
479                         status = "waiting";
480                 break;
481         case Gmoribund:
482                 status = "moribund";
483                 break;
484         default:
485                 status = "???";
486                 break;
487         }
488         runtime_printf("goroutine %d [%s]:\n", g->goid, status);
489 }
490
491 void
492 runtime_tracebackothers(G *me)
493 {
494         G *g;
495
496         for(g = runtime_allg; g != nil; g = g->alllink) {
497                 if(g == me || g->status == Gdead)
498                         continue;
499                 runtime_printf("\n");
500                 runtime_goroutineheader(g);
501                 // runtime_traceback(g->sched.pc, g->sched.sp, 0, g);
502         }
503 }
504
505 // Mark this g as m's idle goroutine.
506 // This functionality might be used in environments where programs
507 // are limited to a single thread, to simulate a select-driven
508 // network server.  It is not exposed via the standard runtime API.
509 void
510 runtime_idlegoroutine(void)
511 {
512         if(g->idlem != nil)
513                 runtime_throw("g is already an idle goroutine");
514         g->idlem = m;
515 }
516
517 static void
518 mcommoninit(M *m)
519 {
520         // Add to runtime_allm so garbage collector doesn't free m
521         // when it is just in a register or thread-local storage.
522         m->alllink = runtime_allm;
523         // runtime_Cgocalls() iterates over allm w/o schedlock,
524         // so we need to publish it safely.
525         runtime_atomicstorep((void**)&runtime_allm, m);
526
527         m->id = runtime_sched.mcount++;
528         m->fastrand = 0x49f6428aUL + m->id + runtime_cputicks();
529
530         if(m->mcache == nil)
531                 m->mcache = runtime_allocmcache();
532 }
533
534 // Try to increment mcpu.  Report whether succeeded.
535 static bool
536 canaddmcpu(void)
537 {
538         uint32 v;
539
540         for(;;) {
541                 v = runtime_sched.atomic;
542                 if(atomic_mcpu(v) >= atomic_mcpumax(v))
543                         return 0;
544                 if(runtime_cas(&runtime_sched.atomic, v, v+(1<<mcpuShift)))
545                         return 1;
546         }
547 }
548
549 // Put on `g' queue.  Sched must be locked.
550 static void
551 gput(G *g)
552 {
553         M *m;
554
555         // If g is wired, hand it off directly.
556         if((m = g->lockedm) != nil && canaddmcpu()) {
557                 mnextg(m, g);
558                 return;
559         }
560
561         // If g is the idle goroutine for an m, hand it off.
562         if(g->idlem != nil) {
563                 if(g->idlem->idleg != nil) {
564                         runtime_printf("m%d idle out of sync: g%d g%d\n",
565                                 g->idlem->id,
566                                 g->idlem->idleg->goid, g->goid);
567                         runtime_throw("runtime: double idle");
568                 }
569                 g->idlem->idleg = g;
570                 return;
571         }
572
573         g->schedlink = nil;
574         if(runtime_sched.ghead == nil)
575                 runtime_sched.ghead = g;
576         else
577                 runtime_sched.gtail->schedlink = g;
578         runtime_sched.gtail = g;
579
580         // increment gwait.
581         // if it transitions to nonzero, set atomic gwaiting bit.
582         if(runtime_sched.gwait++ == 0)
583                 runtime_xadd(&runtime_sched.atomic, 1<<gwaitingShift);
584 }
585
586 // Report whether gget would return something.
587 static bool
588 haveg(void)
589 {
590         return runtime_sched.ghead != nil || m->idleg != nil;
591 }
592
593 // Get from `g' queue.  Sched must be locked.
594 static G*
595 gget(void)
596 {
597         G *g;
598
599         g = runtime_sched.ghead;
600         if(g){
601                 runtime_sched.ghead = g->schedlink;
602                 if(runtime_sched.ghead == nil)
603                         runtime_sched.gtail = nil;
604                 // decrement gwait.
605                 // if it transitions to zero, clear atomic gwaiting bit.
606                 if(--runtime_sched.gwait == 0)
607                         runtime_xadd(&runtime_sched.atomic, -1<<gwaitingShift);
608         } else if(m->idleg != nil) {
609                 g = m->idleg;
610                 m->idleg = nil;
611         }
612         return g;
613 }
614
615 // Put on `m' list.  Sched must be locked.
616 static void
617 mput(M *m)
618 {
619         m->schedlink = runtime_sched.mhead;
620         runtime_sched.mhead = m;
621         runtime_sched.mwait++;
622 }
623
624 // Get an `m' to run `g'.  Sched must be locked.
625 static M*
626 mget(G *g)
627 {
628         M *m;
629
630         // if g has its own m, use it.
631         if(g && (m = g->lockedm) != nil)
632                 return m;
633
634         // otherwise use general m pool.
635         if((m = runtime_sched.mhead) != nil){
636                 runtime_sched.mhead = m->schedlink;
637                 runtime_sched.mwait--;
638         }
639         return m;
640 }
641
642 // Mark g ready to run.
643 void
644 runtime_ready(G *g)
645 {
646         schedlock();
647         readylocked(g);
648         schedunlock();
649 }
650
651 // Mark g ready to run.  Sched is already locked.
652 // G might be running already and about to stop.
653 // The sched lock protects g->status from changing underfoot.
654 static void
655 readylocked(G *g)
656 {
657         if(g->m){
658                 // Running on another machine.
659                 // Ready it when it stops.
660                 g->readyonstop = 1;
661                 return;
662         }
663
664         // Mark runnable.
665         if(g->status == Grunnable || g->status == Grunning) {
666                 runtime_printf("goroutine %d has status %d\n", g->goid, g->status);
667                 runtime_throw("bad g->status in ready");
668         }
669         g->status = Grunnable;
670
671         gput(g);
672         matchmg();
673 }
674
675 // Same as readylocked but a different symbol so that
676 // debuggers can set a breakpoint here and catch all
677 // new goroutines.
678 static void
679 newprocreadylocked(G *g)
680 {
681         readylocked(g);
682 }
683
684 // Pass g to m for running.
685 // Caller has already incremented mcpu.
686 static void
687 mnextg(M *m, G *g)
688 {
689         runtime_sched.grunning++;
690         m->nextg = g;
691         if(m->waitnextg) {
692                 m->waitnextg = 0;
693                 if(mwakeup != nil)
694                         runtime_notewakeup(&mwakeup->havenextg);
695                 mwakeup = m;
696         }
697 }
698
699 // Get the next goroutine that m should run.
700 // Sched must be locked on entry, is unlocked on exit.
701 // Makes sure that at most $GOMAXPROCS g's are
702 // running on cpus (not in system calls) at any given time.
703 static G*
704 nextgandunlock(void)
705 {
706         G *gp;
707         uint32 v;
708
709 top:
710         if(atomic_mcpu(runtime_sched.atomic) >= maxgomaxprocs)
711                 runtime_throw("negative mcpu");
712
713         // If there is a g waiting as m->nextg, the mcpu++
714         // happened before it was passed to mnextg.
715         if(m->nextg != nil) {
716                 gp = m->nextg;
717                 m->nextg = nil;
718                 schedunlock();
719                 return gp;
720         }
721
722         if(m->lockedg != nil) {
723                 // We can only run one g, and it's not available.
724                 // Make sure some other cpu is running to handle
725                 // the ordinary run queue.
726                 if(runtime_sched.gwait != 0) {
727                         matchmg();
728                         // m->lockedg might have been on the queue.
729                         if(m->nextg != nil) {
730                                 gp = m->nextg;
731                                 m->nextg = nil;
732                                 schedunlock();
733                                 return gp;
734                         }
735                 }
736         } else {
737                 // Look for work on global queue.
738                 while(haveg() && canaddmcpu()) {
739                         gp = gget();
740                         if(gp == nil)
741                                 runtime_throw("gget inconsistency");
742
743                         if(gp->lockedm) {
744                                 mnextg(gp->lockedm, gp);
745                                 continue;
746                         }
747                         runtime_sched.grunning++;
748                         schedunlock();
749                         return gp;
750                 }
751
752                 // The while loop ended either because the g queue is empty
753                 // or because we have maxed out our m procs running go
754                 // code (mcpu >= mcpumax).  We need to check that
755                 // concurrent actions by entersyscall/exitsyscall cannot
756                 // invalidate the decision to end the loop.
757                 //
758                 // We hold the sched lock, so no one else is manipulating the
759                 // g queue or changing mcpumax.  Entersyscall can decrement
760                 // mcpu, but if does so when there is something on the g queue,
761                 // the gwait bit will be set, so entersyscall will take the slow path
762                 // and use the sched lock.  So it cannot invalidate our decision.
763                 //
764                 // Wait on global m queue.
765                 mput(m);
766         }
767
768         v = runtime_atomicload(&runtime_sched.atomic);
769         if(runtime_sched.grunning == 0)
770                 runtime_throw("all goroutines are asleep - deadlock!");
771         m->nextg = nil;
772         m->waitnextg = 1;
773         runtime_noteclear(&m->havenextg);
774
775         // Stoptheworld is waiting for all but its cpu to go to stop.
776         // Entersyscall might have decremented mcpu too, but if so
777         // it will see the waitstop and take the slow path.
778         // Exitsyscall never increments mcpu beyond mcpumax.
779         if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) {
780                 // set waitstop = 0 (known to be 1)
781                 runtime_xadd(&runtime_sched.atomic, -1<<waitstopShift);
782                 runtime_notewakeup(&runtime_sched.stopped);
783         }
784         schedunlock();
785
786         runtime_notesleep(&m->havenextg);
787         if(m->helpgc) {
788                 runtime_gchelper();
789                 m->helpgc = 0;
790                 runtime_lock(&runtime_sched);
791                 goto top;
792         }
793         if((gp = m->nextg) == nil)
794                 runtime_throw("bad m->nextg in nextgoroutine");
795         m->nextg = nil;
796         return gp;
797 }
798
799 int32
800 runtime_helpgc(bool *extra)
801 {
802         M *mp;
803         int32 n, max;
804
805         // Figure out how many CPUs to use.
806         // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
807         max = runtime_gomaxprocs;
808         if(max > runtime_ncpu)
809                 max = runtime_ncpu > 0 ? runtime_ncpu : 1;
810         if(max > MaxGcproc)
811                 max = MaxGcproc;
812
813         // We're going to use one CPU no matter what.
814         // Figure out the max number of additional CPUs.
815         max--;
816
817         runtime_lock(&runtime_sched);
818         n = 0;
819         while(n < max && (mp = mget(nil)) != nil) {
820                 n++;
821                 mp->helpgc = 1;
822                 mp->waitnextg = 0;
823                 runtime_notewakeup(&mp->havenextg);
824         }
825         runtime_unlock(&runtime_sched);
826         if(extra)
827                 *extra = n != max;
828         return n;
829 }
830
831 void
832 runtime_stoptheworld(void)
833 {
834         uint32 v;
835
836         schedlock();
837         runtime_gcwaiting = 1;
838
839         setmcpumax(1);
840
841         // while mcpu > 1
842         for(;;) {
843                 v = runtime_sched.atomic;
844                 if(atomic_mcpu(v) <= 1)
845                         break;
846
847                 // It would be unsafe for multiple threads to be using
848                 // the stopped note at once, but there is only
849                 // ever one thread doing garbage collection.
850                 runtime_noteclear(&runtime_sched.stopped);
851                 if(atomic_waitstop(v))
852                         runtime_throw("invalid waitstop");
853
854                 // atomic { waitstop = 1 }, predicated on mcpu <= 1 check above
855                 // still being true.
856                 if(!runtime_cas(&runtime_sched.atomic, v, v+(1<<waitstopShift)))
857                         continue;
858
859                 schedunlock();
860                 runtime_notesleep(&runtime_sched.stopped);
861                 schedlock();
862         }
863         runtime_singleproc = runtime_gomaxprocs == 1;
864         schedunlock();
865 }
866
867 void
868 runtime_starttheworld(bool extra)
869 {
870         M *m;
871
872         schedlock();
873         runtime_gcwaiting = 0;
874         setmcpumax(runtime_gomaxprocs);
875         matchmg();
876         if(extra && canaddmcpu()) {
877                 // Start a new m that will (we hope) be idle
878                 // and so available to help when the next
879                 // garbage collection happens.
880                 // canaddmcpu above did mcpu++
881                 // (necessary, because m will be doing various
882                 // initialization work so is definitely running),
883                 // but m is not running a specific goroutine,
884                 // so set the helpgc flag as a signal to m's
885                 // first schedule(nil) to mcpu-- and grunning--.
886                 m = runtime_newm();
887                 m->helpgc = 1;
888                 runtime_sched.grunning++;
889         }
890         schedunlock();
891 }
892
893 // Called to start an M.
894 void*
895 runtime_mstart(void* mp)
896 {
897         m = (M*)mp;
898         g = m->g0;
899
900         initcontext();
901
902         g->entry = nil;
903         g->param = nil;
904
905         // Record top of stack for use by mcall.
906         // Once we call schedule we're never coming back,
907         // so other calls can reuse this stack space.
908 #ifdef USING_SPLIT_STACK
909         __splitstack_getcontext(&g->stack_context[0]);
910 #else
911         g->gcinitial_sp = &mp;
912         g->gcstack_size = StackMin;
913         g->gcnext_sp = &mp;
914 #endif
915         getcontext(&g->context);
916
917         if(g->entry != nil) {
918                 // Got here from mcall.
919                 void (*pfn)(G*) = (void (*)(G*))g->entry;
920                 G* gp = (G*)g->param;
921                 pfn(gp);
922                 *(int*)0x21 = 0x21;
923         }
924         runtime_minit();
925
926 #ifdef USING_SPLIT_STACK
927         {
928           int dont_block_signals = 0;
929           __splitstack_block_signals(&dont_block_signals, nil);
930         }
931 #endif
932
933         schedule(nil);
934         return nil;
935 }
936
937 typedef struct CgoThreadStart CgoThreadStart;
938 struct CgoThreadStart
939 {
940         M *m;
941         G *g;
942         void (*fn)(void);
943 };
944
945 // Kick off new m's as needed (up to mcpumax).
946 // Sched is locked.
947 static void
948 matchmg(void)
949 {
950         G *gp;
951         M *mp;
952
953         if(m->mallocing || m->gcing)
954                 return;
955
956         while(haveg() && canaddmcpu()) {
957                 gp = gget();
958                 if(gp == nil)
959                         runtime_throw("gget inconsistency");
960
961                 // Find the m that will run gp.
962                 if((mp = mget(gp)) == nil)
963                         mp = runtime_newm();
964                 mnextg(mp, gp);
965         }
966 }
967
968 // Create a new m.  It will start off with a call to runtime_mstart.
969 M*
970 runtime_newm(void)
971 {
972         M *m;
973         pthread_attr_t attr;
974         pthread_t tid;
975
976         m = runtime_malloc(sizeof(M));
977         mcommoninit(m);
978         m->g0 = runtime_malg(-1, nil, nil);
979
980         if(pthread_attr_init(&attr) != 0)
981                 runtime_throw("pthread_attr_init");
982         if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0)
983                 runtime_throw("pthread_attr_setdetachstate");
984
985 #ifndef PTHREAD_STACK_MIN
986 #define PTHREAD_STACK_MIN 8192
987 #endif
988         if(pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN) != 0)
989                 runtime_throw("pthread_attr_setstacksize");
990
991         if(pthread_create(&tid, &attr, runtime_mstart, m) != 0)
992                 runtime_throw("pthread_create");
993
994         return m;
995 }
996
997 // One round of scheduler: find a goroutine and run it.
998 // The argument is the goroutine that was running before
999 // schedule was called, or nil if this is the first call.
1000 // Never returns.
1001 static void
1002 schedule(G *gp)
1003 {
1004         int32 hz;
1005         uint32 v;
1006
1007         schedlock();
1008         if(gp != nil) {
1009                 // Just finished running gp.
1010                 gp->m = nil;
1011                 runtime_sched.grunning--;
1012
1013                 // atomic { mcpu-- }
1014                 v = runtime_xadd(&runtime_sched.atomic, -1<<mcpuShift);
1015                 if(atomic_mcpu(v) > maxgomaxprocs)
1016                         runtime_throw("negative mcpu in scheduler");
1017
1018                 switch(gp->status){
1019                 case Grunnable:
1020                 case Gdead:
1021                         // Shouldn't have been running!
1022                         runtime_throw("bad gp->status in sched");
1023                 case Grunning:
1024                         gp->status = Grunnable;
1025                         gput(gp);
1026                         break;
1027                 case Gmoribund:
1028                         gp->status = Gdead;
1029                         if(gp->lockedm) {
1030                                 gp->lockedm = nil;
1031                                 m->lockedg = nil;
1032                         }
1033                         gp->idlem = nil;
1034                         gfput(gp);
1035                         if(--runtime_sched.gcount == 0)
1036                                 runtime_exit(0);
1037                         break;
1038                 }
1039                 if(gp->readyonstop){
1040                         gp->readyonstop = 0;
1041                         readylocked(gp);
1042                 }
1043         } else if(m->helpgc) {
1044                 // Bootstrap m or new m started by starttheworld.
1045                 // atomic { mcpu-- }
1046                 v = runtime_xadd(&runtime_sched.atomic, -1<<mcpuShift);
1047                 if(atomic_mcpu(v) > maxgomaxprocs)
1048                         runtime_throw("negative mcpu in scheduler");
1049                 // Compensate for increment in starttheworld().
1050                 runtime_sched.grunning--;
1051                 m->helpgc = 0;
1052         } else if(m->nextg != nil) {
1053                 // New m started by matchmg.
1054         } else {
1055                 runtime_throw("invalid m state in scheduler");
1056         }
1057
1058         // Find (or wait for) g to run.  Unlocks runtime_sched.
1059         gp = nextgandunlock();
1060         gp->readyonstop = 0;
1061         gp->status = Grunning;
1062         m->curg = gp;
1063         gp->m = m;
1064
1065         // Check whether the profiler needs to be turned on or off.
1066         hz = runtime_sched.profilehz;
1067         if(m->profilehz != hz)
1068                 runtime_resetcpuprofiler(hz);
1069
1070         runtime_gogo(gp);
1071 }
1072
1073 // Enter scheduler.  If g->status is Grunning,
1074 // re-queues g and runs everyone else who is waiting
1075 // before running g again.  If g->status is Gmoribund,
1076 // kills off g.
1077 void
1078 runtime_gosched(void)
1079 {
1080         if(m->locks != 0)
1081                 runtime_throw("gosched holding locks");
1082         if(g == m->g0)
1083                 runtime_throw("gosched of g0");
1084         runtime_mcall(schedule);
1085 }
1086
1087 // The goroutine g is about to enter a system call.
1088 // Record that it's not using the cpu anymore.
1089 // This is called only from the go syscall library and cgocall,
1090 // not from the low-level system calls used by the runtime.
1091 //
1092 // Entersyscall cannot split the stack: the runtime_gosave must
1093 // make g->sched refer to the caller's stack segment, because
1094 // entersyscall is going to return immediately after.
1095 // It's okay to call matchmg and notewakeup even after
1096 // decrementing mcpu, because we haven't released the
1097 // sched lock yet, so the garbage collector cannot be running.
1098
1099 void runtime_entersyscall(void) __attribute__ ((no_split_stack));
1100
1101 void
1102 runtime_entersyscall(void)
1103 {
1104         uint32 v;
1105
1106         // Leave SP around for gc and traceback.
1107 #ifdef USING_SPLIT_STACK
1108         g->gcstack = __splitstack_find(NULL, NULL, &g->gcstack_size,
1109                                        &g->gcnext_segment, &g->gcnext_sp,
1110                                        &g->gcinitial_sp);
1111 #else
1112         g->gcnext_sp = (byte *) &v;
1113 #endif
1114
1115         // Save the registers in the g structure so that any pointers
1116         // held in registers will be seen by the garbage collector.
1117         // We could use getcontext here, but setjmp is more efficient
1118         // because it doesn't need to save the signal mask.
1119         setjmp(g->gcregs);
1120
1121         g->status = Gsyscall;
1122
1123         // Fast path.
1124         // The slow path inside the schedlock/schedunlock will get
1125         // through without stopping if it does:
1126         //      mcpu--
1127         //      gwait not true
1128         //      waitstop && mcpu <= mcpumax not true
1129         // If we can do the same with a single atomic add,
1130         // then we can skip the locks.
1131         v = runtime_xadd(&runtime_sched.atomic, -1<<mcpuShift);
1132         if(!atomic_gwaiting(v) && (!atomic_waitstop(v) || atomic_mcpu(v) > atomic_mcpumax(v)))
1133                 return;
1134
1135         schedlock();
1136         v = runtime_atomicload(&runtime_sched.atomic);
1137         if(atomic_gwaiting(v)) {
1138                 matchmg();
1139                 v = runtime_atomicload(&runtime_sched.atomic);
1140         }
1141         if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) {
1142                 runtime_xadd(&runtime_sched.atomic, -1<<waitstopShift);
1143                 runtime_notewakeup(&runtime_sched.stopped);
1144         }
1145
1146         schedunlock();
1147 }
1148
1149 // The goroutine g exited its system call.
1150 // Arrange for it to run on a cpu again.
1151 // This is called only from the go syscall library, not
1152 // from the low-level system calls used by the runtime.
1153 void
1154 runtime_exitsyscall(void)
1155 {
1156         G *gp;
1157         uint32 v;
1158
1159         // Fast path.
1160         // If we can do the mcpu++ bookkeeping and
1161         // find that we still have mcpu <= mcpumax, then we can
1162         // start executing Go code immediately, without having to
1163         // schedlock/schedunlock.
1164         gp = g;
1165         v = runtime_xadd(&runtime_sched.atomic, (1<<mcpuShift));
1166         if(m->profilehz == runtime_sched.profilehz && atomic_mcpu(v) <= atomic_mcpumax(v)) {
1167                 // There's a cpu for us, so we can run.
1168                 gp->status = Grunning;
1169                 // Garbage collector isn't running (since we are),
1170                 // so okay to clear gcstack.
1171 #ifdef USING_SPLIT_STACK
1172                 gp->gcstack = nil;
1173 #endif
1174                 gp->gcnext_sp = nil;
1175                 runtime_memclr(gp->gcregs, sizeof gp->gcregs);
1176                 return;
1177         }
1178
1179         // Tell scheduler to put g back on the run queue:
1180         // mostly equivalent to g->status = Grunning,
1181         // but keeps the garbage collector from thinking
1182         // that g is running right now, which it's not.
1183         gp->readyonstop = 1;
1184
1185         // All the cpus are taken.
1186         // The scheduler will ready g and put this m to sleep.
1187         // When the scheduler takes g away from m,
1188         // it will undo the runtime_sched.mcpu++ above.
1189         runtime_gosched();
1190
1191         // Gosched returned, so we're allowed to run now.
1192         // Delete the gcstack information that we left for
1193         // the garbage collector during the system call.
1194         // Must wait until now because until gosched returns
1195         // we don't know for sure that the garbage collector
1196         // is not running.
1197 #ifdef USING_SPLIT_STACK
1198         gp->gcstack = nil;
1199 #endif
1200         gp->gcnext_sp = nil;
1201         runtime_memclr(gp->gcregs, sizeof gp->gcregs);
1202 }
1203
1204 // Allocate a new g, with a stack big enough for stacksize bytes.
1205 G*
1206 runtime_malg(int32 stacksize, byte** ret_stack, size_t* ret_stacksize)
1207 {
1208         G *newg;
1209
1210         newg = runtime_malloc(sizeof(G));
1211         if(stacksize >= 0) {
1212 #if USING_SPLIT_STACK
1213                 int dont_block_signals = 0;
1214
1215                 *ret_stack = __splitstack_makecontext(stacksize,
1216                                                       &newg->stack_context[0],
1217                                                       ret_stacksize);
1218                 __splitstack_block_signals_context(&newg->stack_context[0],
1219                                                    &dont_block_signals, nil);
1220 #else
1221                 *ret_stack = runtime_mallocgc(stacksize, FlagNoProfiling|FlagNoGC, 0, 0);
1222                 *ret_stacksize = stacksize;
1223                 newg->gcinitial_sp = *ret_stack;
1224                 newg->gcstack_size = stacksize;
1225 #endif
1226         }
1227         return newg;
1228 }
1229
1230 /* For runtime package testing.  */
1231
1232 void runtime_testing_entersyscall(void)
1233   __asm__("libgo_runtime.runtime.entersyscall");
1234
1235 void
1236 runtime_testing_entersyscall()
1237 {
1238         runtime_entersyscall();
1239 }
1240
1241 void runtime_testing_exitsyscall(void)
1242   __asm__("libgo_runtime.runtime.exitsyscall");
1243
1244 void
1245 runtime_testing_exitsyscall()
1246 {
1247         runtime_exitsyscall();
1248 }
1249
1250 G*
1251 __go_go(void (*fn)(void*), void* arg)
1252 {
1253         byte *sp;
1254         size_t spsize;
1255         G * volatile newg;      // volatile to avoid longjmp warning
1256
1257         schedlock();
1258
1259         if((newg = gfget()) != nil){
1260 #ifdef USING_SPLIT_STACK
1261                 int dont_block_signals = 0;
1262
1263                 sp = __splitstack_resetcontext(&newg->stack_context[0],
1264                                                &spsize);
1265                 __splitstack_block_signals_context(&newg->stack_context[0],
1266                                                    &dont_block_signals, nil);
1267 #else
1268                 sp = newg->gcinitial_sp;
1269                 spsize = newg->gcstack_size;
1270                 newg->gcnext_sp = sp;
1271 #endif
1272         } else {
1273                 newg = runtime_malg(StackMin, &sp, &spsize);
1274                 if(runtime_lastg == nil)
1275                         runtime_allg = newg;
1276                 else
1277                         runtime_lastg->alllink = newg;
1278                 runtime_lastg = newg;
1279         }
1280         newg->status = Gwaiting;
1281         newg->waitreason = "new goroutine";
1282
1283         newg->entry = (byte*)fn;
1284         newg->param = arg;
1285         newg->gopc = (uintptr)__builtin_return_address(0);
1286
1287         runtime_sched.gcount++;
1288         runtime_sched.goidgen++;
1289         newg->goid = runtime_sched.goidgen;
1290
1291         if(sp == nil)
1292                 runtime_throw("nil g->stack0");
1293
1294         getcontext(&newg->context);
1295         newg->context.uc_stack.ss_sp = sp;
1296         newg->context.uc_stack.ss_size = spsize;
1297         makecontext(&newg->context, kickoff, 0);
1298
1299         newprocreadylocked(newg);
1300         schedunlock();
1301
1302         return newg;
1303 //printf(" goid=%d\n", newg->goid);
1304 }
1305
1306 // Put on gfree list.  Sched must be locked.
1307 static void
1308 gfput(G *g)
1309 {
1310         g->schedlink = runtime_sched.gfree;
1311         runtime_sched.gfree = g;
1312 }
1313
1314 // Get from gfree list.  Sched must be locked.
1315 static G*
1316 gfget(void)
1317 {
1318         G *g;
1319
1320         g = runtime_sched.gfree;
1321         if(g)
1322                 runtime_sched.gfree = g->schedlink;
1323         return g;
1324 }
1325
1326 // Run all deferred functions for the current goroutine.
1327 static void
1328 rundefer(void)
1329 {
1330         Defer *d;
1331
1332         while((d = g->defer) != nil) {
1333                 void (*pfn)(void*);
1334
1335                 pfn = d->__pfn;
1336                 d->__pfn = nil;
1337                 if (pfn != nil)
1338                         (*pfn)(d->__arg);
1339                 g->defer = d->__next;
1340                 runtime_free(d);
1341         }
1342 }
1343
1344 void runtime_Goexit (void) asm ("libgo_runtime.runtime.Goexit");
1345
1346 void
1347 runtime_Goexit(void)
1348 {
1349         rundefer();
1350         runtime_goexit();
1351 }
1352
1353 void runtime_Gosched (void) asm ("libgo_runtime.runtime.Gosched");
1354
1355 void
1356 runtime_Gosched(void)
1357 {
1358         runtime_gosched();
1359 }
1360
1361 // Implementation of runtime.GOMAXPROCS.
1362 // delete when scheduler is stronger
1363 int32
1364 runtime_gomaxprocsfunc(int32 n)
1365 {
1366         int32 ret;
1367         uint32 v;
1368
1369         schedlock();
1370         ret = runtime_gomaxprocs;
1371         if(n <= 0)
1372                 n = ret;
1373         if(n > maxgomaxprocs)
1374                 n = maxgomaxprocs;
1375         runtime_gomaxprocs = n;
1376         if(runtime_gomaxprocs > 1)
1377                 runtime_singleproc = false;
1378         if(runtime_gcwaiting != 0) {
1379                 if(atomic_mcpumax(runtime_sched.atomic) != 1)
1380                         runtime_throw("invalid mcpumax during gc");
1381                 schedunlock();
1382                 return ret;
1383         }
1384
1385         setmcpumax(n);
1386
1387         // If there are now fewer allowed procs
1388         // than procs running, stop.
1389         v = runtime_atomicload(&runtime_sched.atomic);
1390         if((int32)atomic_mcpu(v) > n) {
1391                 schedunlock();
1392                 runtime_gosched();
1393                 return ret;
1394         }
1395         // handle more procs
1396         matchmg();
1397         schedunlock();
1398         return ret;
1399 }
1400
1401 void
1402 runtime_LockOSThread(void)
1403 {
1404         if(m == &runtime_m0 && runtime_sched.init) {
1405                 runtime_sched.lockmain = true;
1406                 return;
1407         }
1408         m->lockedg = g;
1409         g->lockedm = m;
1410 }
1411
1412 void
1413 runtime_UnlockOSThread(void)
1414 {
1415         if(m == &runtime_m0 && runtime_sched.init) {
1416                 runtime_sched.lockmain = false;
1417                 return;
1418         }
1419         m->lockedg = nil;
1420         g->lockedm = nil;
1421 }
1422
1423 bool
1424 runtime_lockedOSThread(void)
1425 {
1426         return g->lockedm != nil && m->lockedg != nil;
1427 }
1428
1429 // for testing of callbacks
1430
1431 _Bool runtime_golockedOSThread(void)
1432   asm("libgo_runtime.runtime.golockedOSThread");
1433
1434 _Bool
1435 runtime_golockedOSThread(void)
1436 {
1437         return runtime_lockedOSThread();
1438 }
1439
1440 // for testing of wire, unwire
1441 uint32
1442 runtime_mid()
1443 {
1444         return m->id;
1445 }
1446
1447 int32 runtime_Goroutines (void)
1448   __asm__ ("libgo_runtime.runtime.Goroutines");
1449
1450 int32
1451 runtime_Goroutines()
1452 {
1453         return runtime_sched.gcount;
1454 }
1455
1456 int32
1457 runtime_mcount(void)
1458 {
1459         return runtime_sched.mcount;
1460 }
1461
1462 static struct {
1463         Lock;
1464         void (*fn)(uintptr*, int32);
1465         int32 hz;
1466         uintptr pcbuf[100];
1467 } prof;
1468
1469 // Called if we receive a SIGPROF signal.
1470 void
1471 runtime_sigprof(uint8 *pc __attribute__ ((unused)),
1472                 uint8 *sp __attribute__ ((unused)),
1473                 uint8 *lr __attribute__ ((unused)),
1474                 G *gp __attribute__ ((unused)))
1475 {
1476         // int32 n;
1477
1478         if(prof.fn == nil || prof.hz == 0)
1479                 return;
1480
1481         runtime_lock(&prof);
1482         if(prof.fn == nil) {
1483                 runtime_unlock(&prof);
1484                 return;
1485         }
1486         // n = runtime_gentraceback(pc, sp, lr, gp, 0, prof.pcbuf, nelem(prof.pcbuf));
1487         // if(n > 0)
1488         //      prof.fn(prof.pcbuf, n);
1489         runtime_unlock(&prof);
1490 }
1491
1492 // Arrange to call fn with a traceback hz times a second.
1493 void
1494 runtime_setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz)
1495 {
1496         // Force sane arguments.
1497         if(hz < 0)
1498                 hz = 0;
1499         if(hz == 0)
1500                 fn = nil;
1501         if(fn == nil)
1502                 hz = 0;
1503
1504         // Stop profiler on this cpu so that it is safe to lock prof.
1505         // if a profiling signal came in while we had prof locked,
1506         // it would deadlock.
1507         runtime_resetcpuprofiler(0);
1508
1509         runtime_lock(&prof);
1510         prof.fn = fn;
1511         prof.hz = hz;
1512         runtime_unlock(&prof);
1513         runtime_lock(&runtime_sched);
1514         runtime_sched.profilehz = hz;
1515         runtime_unlock(&runtime_sched);
1516
1517         if(hz != 0)
1518                 runtime_resetcpuprofiler(hz);
1519 }