1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
34 #include "coretypes.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
52 #include "pointer-set.h"
54 /* Each tree code class has an associated string representation.
55 These must correspond to the tree_code_class entries. */
57 const char *const tree_code_class_strings[] =
71 /* obstack.[ch] explicitly declined to prototype this. */
72 extern int _obstack_allocated_p (struct obstack *h, void *obj);
74 #ifdef GATHER_STATISTICS
75 /* Statistics-gathering stuff. */
77 int tree_node_counts[(int) all_kinds];
78 int tree_node_sizes[(int) all_kinds];
80 /* Keep in sync with tree.h:enum tree_node_kind. */
81 static const char * const tree_node_kind_names[] = {
101 #endif /* GATHER_STATISTICS */
103 /* Unique id for next decl created. */
104 static GTY(()) int next_decl_uid;
105 /* Unique id for next type created. */
106 static GTY(()) int next_type_uid = 1;
108 /* Since we cannot rehash a type after it is in the table, we have to
109 keep the hash code. */
111 struct type_hash GTY(())
117 /* Initial size of the hash table (rounded to next prime). */
118 #define TYPE_HASH_INITIAL_SIZE 1000
120 /* Now here is the hash table. When recording a type, it is added to
121 the slot whose index is the hash code. Note that the hash table is
122 used for several kinds of types (function types, array types and
123 array index range types, for now). While all these live in the
124 same table, they are completely independent, and the hash code is
125 computed differently for each of these. */
127 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
128 htab_t type_hash_table;
130 /* Hash table and temporary node for larger integer const values. */
131 static GTY (()) tree int_cst_node;
132 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
133 htab_t int_cst_hash_table;
135 /* General tree->tree mapping structure for use in hash tables. */
138 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
139 htab_t debug_expr_for_decl;
141 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
142 htab_t value_expr_for_decl;
144 static GTY ((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
145 htab_t init_priority_for_decl;
147 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
148 htab_t restrict_base_for_decl;
150 struct tree_int_map GTY(())
155 static unsigned int tree_int_map_hash (const void *);
156 static int tree_int_map_eq (const void *, const void *);
157 static int tree_int_map_marked_p (const void *);
158 static void set_type_quals (tree, int);
159 static int type_hash_eq (const void *, const void *);
160 static hashval_t type_hash_hash (const void *);
161 static hashval_t int_cst_hash_hash (const void *);
162 static int int_cst_hash_eq (const void *, const void *);
163 static void print_type_hash_statistics (void);
164 static void print_debug_expr_statistics (void);
165 static void print_value_expr_statistics (void);
166 static tree make_vector_type (tree, int, enum machine_mode);
167 static int type_hash_marked_p (const void *);
168 static unsigned int type_hash_list (tree, hashval_t);
169 static unsigned int attribute_hash_list (tree, hashval_t);
171 tree global_trees[TI_MAX];
172 tree integer_types[itk_none];
174 unsigned char tree_contains_struct[256][64];
182 /* Initialize the hash table of types. */
183 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
186 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
189 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
191 init_priority_for_decl = htab_create_ggc (512, tree_int_map_hash,
193 restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
196 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
197 int_cst_hash_eq, NULL);
199 int_cst_node = make_node (INTEGER_CST);
201 tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
202 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
203 tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
206 tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
207 tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
208 tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
209 tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
210 tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
211 tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
212 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
213 tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
214 tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
217 tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
218 tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
219 tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
220 tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
221 tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
222 tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
224 tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
225 tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
226 tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
227 tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
228 tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
229 tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
230 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
231 tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
232 tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
234 tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
235 tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
236 tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
237 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
239 tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
240 tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
241 tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
242 tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
243 tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
244 tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
245 tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
246 tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
248 lang_hooks.init_ts ();
252 /* The name of the object as the assembler will see it (but before any
253 translations made by ASM_OUTPUT_LABELREF). Often this is the same
254 as DECL_NAME. It is an IDENTIFIER_NODE. */
256 decl_assembler_name (tree decl)
258 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
259 lang_hooks.set_decl_assembler_name (decl);
260 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
263 /* Compute the number of bytes occupied by a tree with code CODE.
264 This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
265 codes, which are of variable length. */
267 tree_code_size (enum tree_code code)
269 switch (TREE_CODE_CLASS (code))
271 case tcc_declaration: /* A decl node */
276 return sizeof (struct tree_field_decl);
278 return sizeof (struct tree_parm_decl);
280 return sizeof (struct tree_var_decl);
282 return sizeof (struct tree_label_decl);
284 return sizeof (struct tree_result_decl);
286 return sizeof (struct tree_const_decl);
288 return sizeof (struct tree_type_decl);
290 return sizeof (struct tree_function_decl);
292 return sizeof (struct tree_decl_non_common);
296 case tcc_type: /* a type node */
297 return sizeof (struct tree_type);
299 case tcc_reference: /* a reference */
300 case tcc_expression: /* an expression */
301 case tcc_statement: /* an expression with side effects */
302 case tcc_comparison: /* a comparison expression */
303 case tcc_unary: /* a unary arithmetic expression */
304 case tcc_binary: /* a binary arithmetic expression */
305 return (sizeof (struct tree_exp)
306 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
308 case tcc_constant: /* a constant */
311 case INTEGER_CST: return sizeof (struct tree_int_cst);
312 case REAL_CST: return sizeof (struct tree_real_cst);
313 case COMPLEX_CST: return sizeof (struct tree_complex);
314 case VECTOR_CST: return sizeof (struct tree_vector);
315 case STRING_CST: gcc_unreachable ();
317 return lang_hooks.tree_size (code);
320 case tcc_exceptional: /* something random, like an identifier. */
323 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
324 case TREE_LIST: return sizeof (struct tree_list);
327 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
330 case PHI_NODE: gcc_unreachable ();
332 case SSA_NAME: return sizeof (struct tree_ssa_name);
334 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
335 case BLOCK: return sizeof (struct tree_block);
336 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
337 case CONSTRUCTOR: return sizeof (struct tree_constructor);
340 return lang_hooks.tree_size (code);
348 /* Compute the number of bytes occupied by NODE. This routine only
349 looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes. */
351 tree_size (tree node)
353 enum tree_code code = TREE_CODE (node);
357 return (sizeof (struct tree_phi_node)
358 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
361 return (offsetof (struct tree_binfo, base_binfos)
362 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
365 return (sizeof (struct tree_vec)
366 + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
369 return sizeof (struct tree_string) + TREE_STRING_LENGTH (node) - 1;
372 return tree_code_size (code);
376 /* Return a newly allocated node of code CODE. For decl and type
377 nodes, some other fields are initialized. The rest of the node is
378 initialized to zero. This function cannot be used for PHI_NODE or
379 TREE_VEC nodes, which is enforced by asserts in tree_code_size.
381 Achoo! I got a code in the node. */
384 make_node_stat (enum tree_code code MEM_STAT_DECL)
387 enum tree_code_class type = TREE_CODE_CLASS (code);
388 size_t length = tree_code_size (code);
389 #ifdef GATHER_STATISTICS
394 case tcc_declaration: /* A decl node */
398 case tcc_type: /* a type node */
402 case tcc_statement: /* an expression with side effects */
406 case tcc_reference: /* a reference */
410 case tcc_expression: /* an expression */
411 case tcc_comparison: /* a comparison expression */
412 case tcc_unary: /* a unary arithmetic expression */
413 case tcc_binary: /* a binary arithmetic expression */
417 case tcc_constant: /* a constant */
421 case tcc_exceptional: /* something random, like an identifier. */
424 case IDENTIFIER_NODE:
441 kind = ssa_name_kind;
462 tree_node_counts[(int) kind]++;
463 tree_node_sizes[(int) kind] += length;
466 if (code == IDENTIFIER_NODE)
467 t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
469 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
471 memset (t, 0, length);
473 TREE_SET_CODE (t, code);
478 TREE_SIDE_EFFECTS (t) = 1;
481 case tcc_declaration:
482 if (code != FUNCTION_DECL)
484 DECL_USER_ALIGN (t) = 0;
485 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
486 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
487 /* We have not yet computed the alias set for this declaration. */
488 DECL_POINTER_ALIAS_SET (t) = -1;
489 DECL_SOURCE_LOCATION (t) = input_location;
490 DECL_UID (t) = next_decl_uid++;
495 TYPE_UID (t) = next_type_uid++;
496 TYPE_ALIGN (t) = BITS_PER_UNIT;
497 TYPE_USER_ALIGN (t) = 0;
498 TYPE_MAIN_VARIANT (t) = t;
500 /* Default to no attributes for type, but let target change that. */
501 TYPE_ATTRIBUTES (t) = NULL_TREE;
502 targetm.set_default_type_attributes (t);
504 /* We have not yet computed the alias set for this type. */
505 TYPE_ALIAS_SET (t) = -1;
509 TREE_CONSTANT (t) = 1;
510 TREE_INVARIANT (t) = 1;
519 case PREDECREMENT_EXPR:
520 case PREINCREMENT_EXPR:
521 case POSTDECREMENT_EXPR:
522 case POSTINCREMENT_EXPR:
523 /* All of these have side-effects, no matter what their
525 TREE_SIDE_EFFECTS (t) = 1;
534 /* Other classes need no special treatment. */
541 /* Return a new node with the same contents as NODE except that its
542 TREE_CHAIN is zero and it has a fresh uid. */
545 copy_node_stat (tree node MEM_STAT_DECL)
548 enum tree_code code = TREE_CODE (node);
551 gcc_assert (code != STATEMENT_LIST);
553 length = tree_size (node);
554 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
555 memcpy (t, node, length);
558 TREE_ASM_WRITTEN (t) = 0;
559 TREE_VISITED (t) = 0;
562 if (TREE_CODE_CLASS (code) == tcc_declaration)
564 DECL_UID (t) = next_decl_uid++;
565 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
566 && DECL_HAS_VALUE_EXPR_P (node))
568 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
569 DECL_HAS_VALUE_EXPR_P (t) = 1;
571 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
573 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
574 DECL_HAS_INIT_PRIORITY_P (t) = 1;
576 if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
578 SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
579 DECL_BASED_ON_RESTRICT_P (t) = 1;
582 else if (TREE_CODE_CLASS (code) == tcc_type)
584 TYPE_UID (t) = next_type_uid++;
585 /* The following is so that the debug code for
586 the copy is different from the original type.
587 The two statements usually duplicate each other
588 (because they clear fields of the same union),
589 but the optimizer should catch that. */
590 TYPE_SYMTAB_POINTER (t) = 0;
591 TYPE_SYMTAB_ADDRESS (t) = 0;
593 /* Do not copy the values cache. */
594 if (TYPE_CACHED_VALUES_P(t))
596 TYPE_CACHED_VALUES_P (t) = 0;
597 TYPE_CACHED_VALUES (t) = NULL_TREE;
604 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
605 For example, this can copy a list made of TREE_LIST nodes. */
608 copy_list (tree list)
616 head = prev = copy_node (list);
617 next = TREE_CHAIN (list);
620 TREE_CHAIN (prev) = copy_node (next);
621 prev = TREE_CHAIN (prev);
622 next = TREE_CHAIN (next);
628 /* Create an INT_CST node with a LOW value sign extended. */
631 build_int_cst (tree type, HOST_WIDE_INT low)
633 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
636 /* Create an INT_CST node with a LOW value zero extended. */
639 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
641 return build_int_cst_wide (type, low, 0);
644 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
645 if it is negative. This function is similar to build_int_cst, but
646 the extra bits outside of the type precision are cleared. Constants
647 with these extra bits may confuse the fold so that it detects overflows
648 even in cases when they do not occur, and in general should be avoided.
649 We cannot however make this a default behavior of build_int_cst without
650 more intrusive changes, since there are parts of gcc that rely on the extra
651 precision of the integer constants. */
654 build_int_cst_type (tree type, HOST_WIDE_INT low)
656 unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
657 unsigned HOST_WIDE_INT hi, mask;
663 type = integer_type_node;
665 bits = TYPE_PRECISION (type);
666 signed_p = !TYPE_UNSIGNED (type);
668 if (bits >= HOST_BITS_PER_WIDE_INT)
669 negative = (low < 0);
672 /* If the sign bit is inside precision of LOW, use it to determine
673 the sign of the constant. */
674 negative = ((val >> (bits - 1)) & 1) != 0;
676 /* Mask out the bits outside of the precision of the constant. */
677 mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
679 if (signed_p && negative)
685 /* Determine the high bits. */
686 hi = (negative ? ~(unsigned HOST_WIDE_INT) 0 : 0);
688 /* For unsigned type we need to mask out the bits outside of the type
692 if (bits <= HOST_BITS_PER_WIDE_INT)
696 bits -= HOST_BITS_PER_WIDE_INT;
697 mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
702 return build_int_cst_wide (type, val, hi);
705 /* These are the hash table functions for the hash table of INTEGER_CST
706 nodes of a sizetype. */
708 /* Return the hash code code X, an INTEGER_CST. */
711 int_cst_hash_hash (const void *x)
715 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
716 ^ htab_hash_pointer (TREE_TYPE (t)));
719 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
720 is the same as that given by *Y, which is the same. */
723 int_cst_hash_eq (const void *x, const void *y)
728 return (TREE_TYPE (xt) == TREE_TYPE (yt)
729 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
730 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
733 /* Create an INT_CST node of TYPE and value HI:LOW. If TYPE is NULL,
734 integer_type_node is used. The returned node is always shared.
735 For small integers we use a per-type vector cache, for larger ones
736 we use a single hash table. */
739 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
746 type = integer_type_node;
748 switch (TREE_CODE (type))
752 /* Cache NULL pointer. */
761 /* Cache false or true. */
770 if (TYPE_UNSIGNED (type))
773 limit = INTEGER_SHARE_LIMIT;
774 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
780 limit = INTEGER_SHARE_LIMIT + 1;
781 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
783 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
793 /* Look for it in the type's vector of small shared ints. */
794 if (!TYPE_CACHED_VALUES_P (type))
796 TYPE_CACHED_VALUES_P (type) = 1;
797 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
800 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
803 /* Make sure no one is clobbering the shared constant. */
804 gcc_assert (TREE_TYPE (t) == type);
805 gcc_assert (TREE_INT_CST_LOW (t) == low);
806 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
810 /* Create a new shared int. */
811 t = make_node (INTEGER_CST);
813 TREE_INT_CST_LOW (t) = low;
814 TREE_INT_CST_HIGH (t) = hi;
815 TREE_TYPE (t) = type;
817 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
822 /* Use the cache of larger shared ints. */
825 TREE_INT_CST_LOW (int_cst_node) = low;
826 TREE_INT_CST_HIGH (int_cst_node) = hi;
827 TREE_TYPE (int_cst_node) = type;
829 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
833 /* Insert this one into the hash table. */
836 /* Make a new node for next time round. */
837 int_cst_node = make_node (INTEGER_CST);
844 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
845 and the rest are zeros. */
848 build_low_bits_mask (tree type, unsigned bits)
850 unsigned HOST_WIDE_INT low;
852 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
854 gcc_assert (bits <= TYPE_PRECISION (type));
856 if (bits == TYPE_PRECISION (type)
857 && !TYPE_UNSIGNED (type))
859 /* Sign extended all-ones mask. */
863 else if (bits <= HOST_BITS_PER_WIDE_INT)
865 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
870 bits -= HOST_BITS_PER_WIDE_INT;
872 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
875 return build_int_cst_wide (type, low, high);
878 /* Checks that X is integer constant that can be expressed in (unsigned)
879 HOST_WIDE_INT without loss of precision. */
882 cst_and_fits_in_hwi (tree x)
884 if (TREE_CODE (x) != INTEGER_CST)
887 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
890 return (TREE_INT_CST_HIGH (x) == 0
891 || TREE_INT_CST_HIGH (x) == -1);
894 /* Return a new VECTOR_CST node whose type is TYPE and whose values
895 are in a list pointed to by VALS. */
898 build_vector (tree type, tree vals)
900 tree v = make_node (VECTOR_CST);
901 int over1 = 0, over2 = 0;
904 TREE_VECTOR_CST_ELTS (v) = vals;
905 TREE_TYPE (v) = type;
907 /* Iterate through elements and check for overflow. */
908 for (link = vals; link; link = TREE_CHAIN (link))
910 tree value = TREE_VALUE (link);
912 over1 |= TREE_OVERFLOW (value);
913 over2 |= TREE_CONSTANT_OVERFLOW (value);
916 TREE_OVERFLOW (v) = over1;
917 TREE_CONSTANT_OVERFLOW (v) = over2;
922 /* Return a new VECTOR_CST node whose type is TYPE and whose values
923 are extracted from V, a vector of CONSTRUCTOR_ELT. */
926 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
928 tree list = NULL_TREE;
929 unsigned HOST_WIDE_INT idx;
932 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
933 list = tree_cons (NULL_TREE, value, list);
934 return build_vector (type, nreverse (list));
937 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
938 are in the VEC pointed to by VALS. */
940 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
942 tree c = make_node (CONSTRUCTOR);
943 TREE_TYPE (c) = type;
944 CONSTRUCTOR_ELTS (c) = vals;
948 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
951 build_constructor_single (tree type, tree index, tree value)
953 VEC(constructor_elt,gc) *v;
954 constructor_elt *elt;
956 v = VEC_alloc (constructor_elt, gc, 1);
957 elt = VEC_quick_push (constructor_elt, v, NULL);
961 return build_constructor (type, v);
965 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
966 are in a list pointed to by VALS. */
968 build_constructor_from_list (tree type, tree vals)
971 VEC(constructor_elt,gc) *v = NULL;
975 v = VEC_alloc (constructor_elt, gc, list_length (vals));
976 for (t = vals; t; t = TREE_CHAIN (t))
978 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
979 elt->index = TREE_PURPOSE (t);
980 elt->value = TREE_VALUE (t);
984 return build_constructor (type, v);
988 /* Return a new REAL_CST node whose type is TYPE and value is D. */
991 build_real (tree type, REAL_VALUE_TYPE d)
997 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
998 Consider doing it via real_convert now. */
1000 v = make_node (REAL_CST);
1001 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1002 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1004 TREE_TYPE (v) = type;
1005 TREE_REAL_CST_PTR (v) = dp;
1006 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1010 /* Return a new REAL_CST node whose type is TYPE
1011 and whose value is the integer value of the INTEGER_CST node I. */
1014 real_value_from_int_cst (tree type, tree i)
1018 /* Clear all bits of the real value type so that we can later do
1019 bitwise comparisons to see if two values are the same. */
1020 memset (&d, 0, sizeof d);
1022 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1023 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1024 TYPE_UNSIGNED (TREE_TYPE (i)));
1028 /* Given a tree representing an integer constant I, return a tree
1029 representing the same value as a floating-point constant of type TYPE. */
1032 build_real_from_int_cst (tree type, tree i)
1035 int overflow = TREE_OVERFLOW (i);
1037 v = build_real (type, real_value_from_int_cst (type, i));
1039 TREE_OVERFLOW (v) |= overflow;
1040 TREE_CONSTANT_OVERFLOW (v) |= overflow;
1044 /* Return a newly constructed STRING_CST node whose value is
1045 the LEN characters at STR.
1046 The TREE_TYPE is not initialized. */
1049 build_string (int len, const char *str)
1054 length = len + sizeof (struct tree_string);
1056 #ifdef GATHER_STATISTICS
1057 tree_node_counts[(int) c_kind]++;
1058 tree_node_sizes[(int) c_kind] += length;
1061 s = ggc_alloc_tree (length);
1063 memset (s, 0, sizeof (struct tree_common));
1064 TREE_SET_CODE (s, STRING_CST);
1065 TREE_CONSTANT (s) = 1;
1066 TREE_INVARIANT (s) = 1;
1067 TREE_STRING_LENGTH (s) = len;
1068 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
1069 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
1074 /* Return a newly constructed COMPLEX_CST node whose value is
1075 specified by the real and imaginary parts REAL and IMAG.
1076 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1077 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1080 build_complex (tree type, tree real, tree imag)
1082 tree t = make_node (COMPLEX_CST);
1084 TREE_REALPART (t) = real;
1085 TREE_IMAGPART (t) = imag;
1086 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1087 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1088 TREE_CONSTANT_OVERFLOW (t)
1089 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1093 /* Build a BINFO with LEN language slots. */
1096 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1099 size_t length = (offsetof (struct tree_binfo, base_binfos)
1100 + VEC_embedded_size (tree, base_binfos));
1102 #ifdef GATHER_STATISTICS
1103 tree_node_counts[(int) binfo_kind]++;
1104 tree_node_sizes[(int) binfo_kind] += length;
1107 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1109 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1111 TREE_SET_CODE (t, TREE_BINFO);
1113 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1119 /* Build a newly constructed TREE_VEC node of length LEN. */
1122 make_tree_vec_stat (int len MEM_STAT_DECL)
1125 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1127 #ifdef GATHER_STATISTICS
1128 tree_node_counts[(int) vec_kind]++;
1129 tree_node_sizes[(int) vec_kind] += length;
1132 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1134 memset (t, 0, length);
1136 TREE_SET_CODE (t, TREE_VEC);
1137 TREE_VEC_LENGTH (t) = len;
1142 /* Return 1 if EXPR is the integer constant zero or a complex constant
1146 integer_zerop (tree expr)
1150 return ((TREE_CODE (expr) == INTEGER_CST
1151 && ! TREE_CONSTANT_OVERFLOW (expr)
1152 && TREE_INT_CST_LOW (expr) == 0
1153 && TREE_INT_CST_HIGH (expr) == 0)
1154 || (TREE_CODE (expr) == COMPLEX_CST
1155 && integer_zerop (TREE_REALPART (expr))
1156 && integer_zerop (TREE_IMAGPART (expr))));
1159 /* Return 1 if EXPR is the integer constant one or the corresponding
1160 complex constant. */
1163 integer_onep (tree expr)
1167 return ((TREE_CODE (expr) == INTEGER_CST
1168 && ! TREE_CONSTANT_OVERFLOW (expr)
1169 && TREE_INT_CST_LOW (expr) == 1
1170 && TREE_INT_CST_HIGH (expr) == 0)
1171 || (TREE_CODE (expr) == COMPLEX_CST
1172 && integer_onep (TREE_REALPART (expr))
1173 && integer_zerop (TREE_IMAGPART (expr))));
1176 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1177 it contains. Likewise for the corresponding complex constant. */
1180 integer_all_onesp (tree expr)
1187 if (TREE_CODE (expr) == COMPLEX_CST
1188 && integer_all_onesp (TREE_REALPART (expr))
1189 && integer_zerop (TREE_IMAGPART (expr)))
1192 else if (TREE_CODE (expr) != INTEGER_CST
1193 || TREE_CONSTANT_OVERFLOW (expr))
1196 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1198 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1199 && TREE_INT_CST_HIGH (expr) == -1);
1201 /* Note that using TYPE_PRECISION here is wrong. We care about the
1202 actual bits, not the (arbitrary) range of the type. */
1203 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1204 if (prec >= HOST_BITS_PER_WIDE_INT)
1206 HOST_WIDE_INT high_value;
1209 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1211 /* Can not handle precisions greater than twice the host int size. */
1212 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1213 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1214 /* Shifting by the host word size is undefined according to the ANSI
1215 standard, so we must handle this as a special case. */
1218 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1220 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1221 && TREE_INT_CST_HIGH (expr) == high_value);
1224 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1227 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1231 integer_pow2p (tree expr)
1234 HOST_WIDE_INT high, low;
1238 if (TREE_CODE (expr) == COMPLEX_CST
1239 && integer_pow2p (TREE_REALPART (expr))
1240 && integer_zerop (TREE_IMAGPART (expr)))
1243 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1246 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1247 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1248 high = TREE_INT_CST_HIGH (expr);
1249 low = TREE_INT_CST_LOW (expr);
1251 /* First clear all bits that are beyond the type's precision in case
1252 we've been sign extended. */
1254 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1256 else if (prec > HOST_BITS_PER_WIDE_INT)
1257 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1261 if (prec < HOST_BITS_PER_WIDE_INT)
1262 low &= ~((HOST_WIDE_INT) (-1) << prec);
1265 if (high == 0 && low == 0)
1268 return ((high == 0 && (low & (low - 1)) == 0)
1269 || (low == 0 && (high & (high - 1)) == 0));
1272 /* Return 1 if EXPR is an integer constant other than zero or a
1273 complex constant other than zero. */
1276 integer_nonzerop (tree expr)
1280 return ((TREE_CODE (expr) == INTEGER_CST
1281 && ! TREE_CONSTANT_OVERFLOW (expr)
1282 && (TREE_INT_CST_LOW (expr) != 0
1283 || TREE_INT_CST_HIGH (expr) != 0))
1284 || (TREE_CODE (expr) == COMPLEX_CST
1285 && (integer_nonzerop (TREE_REALPART (expr))
1286 || integer_nonzerop (TREE_IMAGPART (expr)))));
1289 /* Return the power of two represented by a tree node known to be a
1293 tree_log2 (tree expr)
1296 HOST_WIDE_INT high, low;
1300 if (TREE_CODE (expr) == COMPLEX_CST)
1301 return tree_log2 (TREE_REALPART (expr));
1303 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1304 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1306 high = TREE_INT_CST_HIGH (expr);
1307 low = TREE_INT_CST_LOW (expr);
1309 /* First clear all bits that are beyond the type's precision in case
1310 we've been sign extended. */
1312 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1314 else if (prec > HOST_BITS_PER_WIDE_INT)
1315 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1319 if (prec < HOST_BITS_PER_WIDE_INT)
1320 low &= ~((HOST_WIDE_INT) (-1) << prec);
1323 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1324 : exact_log2 (low));
1327 /* Similar, but return the largest integer Y such that 2 ** Y is less
1328 than or equal to EXPR. */
1331 tree_floor_log2 (tree expr)
1334 HOST_WIDE_INT high, low;
1338 if (TREE_CODE (expr) == COMPLEX_CST)
1339 return tree_log2 (TREE_REALPART (expr));
1341 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1342 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1344 high = TREE_INT_CST_HIGH (expr);
1345 low = TREE_INT_CST_LOW (expr);
1347 /* First clear all bits that are beyond the type's precision in case
1348 we've been sign extended. Ignore if type's precision hasn't been set
1349 since what we are doing is setting it. */
1351 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1353 else if (prec > HOST_BITS_PER_WIDE_INT)
1354 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1358 if (prec < HOST_BITS_PER_WIDE_INT)
1359 low &= ~((HOST_WIDE_INT) (-1) << prec);
1362 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1363 : floor_log2 (low));
1366 /* Return 1 if EXPR is the real constant zero. */
1369 real_zerop (tree expr)
1373 return ((TREE_CODE (expr) == REAL_CST
1374 && ! TREE_CONSTANT_OVERFLOW (expr)
1375 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1376 || (TREE_CODE (expr) == COMPLEX_CST
1377 && real_zerop (TREE_REALPART (expr))
1378 && real_zerop (TREE_IMAGPART (expr))));
1381 /* Return 1 if EXPR is the real constant one in real or complex form. */
1384 real_onep (tree expr)
1388 return ((TREE_CODE (expr) == REAL_CST
1389 && ! TREE_CONSTANT_OVERFLOW (expr)
1390 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1391 || (TREE_CODE (expr) == COMPLEX_CST
1392 && real_onep (TREE_REALPART (expr))
1393 && real_zerop (TREE_IMAGPART (expr))));
1396 /* Return 1 if EXPR is the real constant two. */
1399 real_twop (tree expr)
1403 return ((TREE_CODE (expr) == REAL_CST
1404 && ! TREE_CONSTANT_OVERFLOW (expr)
1405 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1406 || (TREE_CODE (expr) == COMPLEX_CST
1407 && real_twop (TREE_REALPART (expr))
1408 && real_zerop (TREE_IMAGPART (expr))));
1411 /* Return 1 if EXPR is the real constant minus one. */
1414 real_minus_onep (tree expr)
1418 return ((TREE_CODE (expr) == REAL_CST
1419 && ! TREE_CONSTANT_OVERFLOW (expr)
1420 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1421 || (TREE_CODE (expr) == COMPLEX_CST
1422 && real_minus_onep (TREE_REALPART (expr))
1423 && real_zerop (TREE_IMAGPART (expr))));
1426 /* Nonzero if EXP is a constant or a cast of a constant. */
1429 really_constant_p (tree exp)
1431 /* This is not quite the same as STRIP_NOPS. It does more. */
1432 while (TREE_CODE (exp) == NOP_EXPR
1433 || TREE_CODE (exp) == CONVERT_EXPR
1434 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1435 exp = TREE_OPERAND (exp, 0);
1436 return TREE_CONSTANT (exp);
1439 /* Return first list element whose TREE_VALUE is ELEM.
1440 Return 0 if ELEM is not in LIST. */
1443 value_member (tree elem, tree list)
1447 if (elem == TREE_VALUE (list))
1449 list = TREE_CHAIN (list);
1454 /* Return first list element whose TREE_PURPOSE is ELEM.
1455 Return 0 if ELEM is not in LIST. */
1458 purpose_member (tree elem, tree list)
1462 if (elem == TREE_PURPOSE (list))
1464 list = TREE_CHAIN (list);
1469 /* Return nonzero if ELEM is part of the chain CHAIN. */
1472 chain_member (tree elem, tree chain)
1478 chain = TREE_CHAIN (chain);
1484 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1485 We expect a null pointer to mark the end of the chain.
1486 This is the Lisp primitive `length'. */
1489 list_length (tree t)
1492 #ifdef ENABLE_TREE_CHECKING
1500 #ifdef ENABLE_TREE_CHECKING
1503 gcc_assert (p != q);
1511 /* Returns the number of FIELD_DECLs in TYPE. */
1514 fields_length (tree type)
1516 tree t = TYPE_FIELDS (type);
1519 for (; t; t = TREE_CHAIN (t))
1520 if (TREE_CODE (t) == FIELD_DECL)
1526 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1527 by modifying the last node in chain 1 to point to chain 2.
1528 This is the Lisp primitive `nconc'. */
1531 chainon (tree op1, tree op2)
1540 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1542 TREE_CHAIN (t1) = op2;
1544 #ifdef ENABLE_TREE_CHECKING
1547 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1548 gcc_assert (t2 != t1);
1555 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1558 tree_last (tree chain)
1562 while ((next = TREE_CHAIN (chain)))
1567 /* Reverse the order of elements in the chain T,
1568 and return the new head of the chain (old last element). */
1573 tree prev = 0, decl, next;
1574 for (decl = t; decl; decl = next)
1576 next = TREE_CHAIN (decl);
1577 TREE_CHAIN (decl) = prev;
1583 /* Return a newly created TREE_LIST node whose
1584 purpose and value fields are PARM and VALUE. */
1587 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1589 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1590 TREE_PURPOSE (t) = parm;
1591 TREE_VALUE (t) = value;
1595 /* Return a newly created TREE_LIST node whose
1596 purpose and value fields are PURPOSE and VALUE
1597 and whose TREE_CHAIN is CHAIN. */
1600 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1604 node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1606 memset (node, 0, sizeof (struct tree_common));
1608 #ifdef GATHER_STATISTICS
1609 tree_node_counts[(int) x_kind]++;
1610 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1613 TREE_SET_CODE (node, TREE_LIST);
1614 TREE_CHAIN (node) = chain;
1615 TREE_PURPOSE (node) = purpose;
1616 TREE_VALUE (node) = value;
1621 /* Return the size nominally occupied by an object of type TYPE
1622 when it resides in memory. The value is measured in units of bytes,
1623 and its data type is that normally used for type sizes
1624 (which is the first type created by make_signed_type or
1625 make_unsigned_type). */
1628 size_in_bytes (tree type)
1632 if (type == error_mark_node)
1633 return integer_zero_node;
1635 type = TYPE_MAIN_VARIANT (type);
1636 t = TYPE_SIZE_UNIT (type);
1640 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1641 return size_zero_node;
1644 if (TREE_CODE (t) == INTEGER_CST)
1645 t = force_fit_type (t, 0, false, false);
1650 /* Return the size of TYPE (in bytes) as a wide integer
1651 or return -1 if the size can vary or is larger than an integer. */
1654 int_size_in_bytes (tree type)
1658 if (type == error_mark_node)
1661 type = TYPE_MAIN_VARIANT (type);
1662 t = TYPE_SIZE_UNIT (type);
1664 || TREE_CODE (t) != INTEGER_CST
1665 || TREE_OVERFLOW (t)
1666 || TREE_INT_CST_HIGH (t) != 0
1667 /* If the result would appear negative, it's too big to represent. */
1668 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1671 return TREE_INT_CST_LOW (t);
1674 /* Return the bit position of FIELD, in bits from the start of the record.
1675 This is a tree of type bitsizetype. */
1678 bit_position (tree field)
1680 return bit_from_pos (DECL_FIELD_OFFSET (field),
1681 DECL_FIELD_BIT_OFFSET (field));
1684 /* Likewise, but return as an integer. It must be representable in
1685 that way (since it could be a signed value, we don't have the
1686 option of returning -1 like int_size_in_byte can. */
1689 int_bit_position (tree field)
1691 return tree_low_cst (bit_position (field), 0);
1694 /* Return the byte position of FIELD, in bytes from the start of the record.
1695 This is a tree of type sizetype. */
1698 byte_position (tree field)
1700 return byte_from_pos (DECL_FIELD_OFFSET (field),
1701 DECL_FIELD_BIT_OFFSET (field));
1704 /* Likewise, but return as an integer. It must be representable in
1705 that way (since it could be a signed value, we don't have the
1706 option of returning -1 like int_size_in_byte can. */
1709 int_byte_position (tree field)
1711 return tree_low_cst (byte_position (field), 0);
1714 /* Return the strictest alignment, in bits, that T is known to have. */
1719 unsigned int align0, align1;
1721 switch (TREE_CODE (t))
1723 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1724 /* If we have conversions, we know that the alignment of the
1725 object must meet each of the alignments of the types. */
1726 align0 = expr_align (TREE_OPERAND (t, 0));
1727 align1 = TYPE_ALIGN (TREE_TYPE (t));
1728 return MAX (align0, align1);
1730 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1731 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1732 case CLEANUP_POINT_EXPR:
1733 /* These don't change the alignment of an object. */
1734 return expr_align (TREE_OPERAND (t, 0));
1737 /* The best we can do is say that the alignment is the least aligned
1739 align0 = expr_align (TREE_OPERAND (t, 1));
1740 align1 = expr_align (TREE_OPERAND (t, 2));
1741 return MIN (align0, align1);
1743 case LABEL_DECL: case CONST_DECL:
1744 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1745 if (DECL_ALIGN (t) != 0)
1746 return DECL_ALIGN (t);
1750 return FUNCTION_BOUNDARY;
1756 /* Otherwise take the alignment from that of the type. */
1757 return TYPE_ALIGN (TREE_TYPE (t));
1760 /* Return, as a tree node, the number of elements for TYPE (which is an
1761 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1764 array_type_nelts (tree type)
1766 tree index_type, min, max;
1768 /* If they did it with unspecified bounds, then we should have already
1769 given an error about it before we got here. */
1770 if (! TYPE_DOMAIN (type))
1771 return error_mark_node;
1773 index_type = TYPE_DOMAIN (type);
1774 min = TYPE_MIN_VALUE (index_type);
1775 max = TYPE_MAX_VALUE (index_type);
1777 return (integer_zerop (min)
1779 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1782 /* If arg is static -- a reference to an object in static storage -- then
1783 return the object. This is not the same as the C meaning of `static'.
1784 If arg isn't static, return NULL. */
1789 switch (TREE_CODE (arg))
1792 /* Nested functions are static, even though taking their address will
1793 involve a trampoline as we unnest the nested function and create
1794 the trampoline on the tree level. */
1798 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1799 && ! DECL_THREAD_LOCAL_P (arg)
1800 && ! DECL_DLLIMPORT_P (arg)
1804 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1808 return TREE_STATIC (arg) ? arg : NULL;
1815 /* If the thing being referenced is not a field, then it is
1816 something language specific. */
1817 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1818 return (*lang_hooks.staticp) (arg);
1820 /* If we are referencing a bitfield, we can't evaluate an
1821 ADDR_EXPR at compile time and so it isn't a constant. */
1822 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1825 return staticp (TREE_OPERAND (arg, 0));
1830 case MISALIGNED_INDIRECT_REF:
1831 case ALIGN_INDIRECT_REF:
1833 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1836 case ARRAY_RANGE_REF:
1837 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1838 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1839 return staticp (TREE_OPERAND (arg, 0));
1844 if ((unsigned int) TREE_CODE (arg)
1845 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1846 return lang_hooks.staticp (arg);
1852 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1853 Do this to any expression which may be used in more than one place,
1854 but must be evaluated only once.
1856 Normally, expand_expr would reevaluate the expression each time.
1857 Calling save_expr produces something that is evaluated and recorded
1858 the first time expand_expr is called on it. Subsequent calls to
1859 expand_expr just reuse the recorded value.
1861 The call to expand_expr that generates code that actually computes
1862 the value is the first call *at compile time*. Subsequent calls
1863 *at compile time* generate code to use the saved value.
1864 This produces correct result provided that *at run time* control
1865 always flows through the insns made by the first expand_expr
1866 before reaching the other places where the save_expr was evaluated.
1867 You, the caller of save_expr, must make sure this is so.
1869 Constants, and certain read-only nodes, are returned with no
1870 SAVE_EXPR because that is safe. Expressions containing placeholders
1871 are not touched; see tree.def for an explanation of what these
1875 save_expr (tree expr)
1877 tree t = fold (expr);
1880 /* If the tree evaluates to a constant, then we don't want to hide that
1881 fact (i.e. this allows further folding, and direct checks for constants).
1882 However, a read-only object that has side effects cannot be bypassed.
1883 Since it is no problem to reevaluate literals, we just return the
1885 inner = skip_simple_arithmetic (t);
1887 if (TREE_INVARIANT (inner)
1888 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1889 || TREE_CODE (inner) == SAVE_EXPR
1890 || TREE_CODE (inner) == ERROR_MARK)
1893 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1894 it means that the size or offset of some field of an object depends on
1895 the value within another field.
1897 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1898 and some variable since it would then need to be both evaluated once and
1899 evaluated more than once. Front-ends must assure this case cannot
1900 happen by surrounding any such subexpressions in their own SAVE_EXPR
1901 and forcing evaluation at the proper time. */
1902 if (contains_placeholder_p (inner))
1905 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
1907 /* This expression might be placed ahead of a jump to ensure that the
1908 value was computed on both sides of the jump. So make sure it isn't
1909 eliminated as dead. */
1910 TREE_SIDE_EFFECTS (t) = 1;
1911 TREE_INVARIANT (t) = 1;
1915 /* Look inside EXPR and into any simple arithmetic operations. Return
1916 the innermost non-arithmetic node. */
1919 skip_simple_arithmetic (tree expr)
1923 /* We don't care about whether this can be used as an lvalue in this
1925 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1926 expr = TREE_OPERAND (expr, 0);
1928 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1929 a constant, it will be more efficient to not make another SAVE_EXPR since
1930 it will allow better simplification and GCSE will be able to merge the
1931 computations if they actually occur. */
1935 if (UNARY_CLASS_P (inner))
1936 inner = TREE_OPERAND (inner, 0);
1937 else if (BINARY_CLASS_P (inner))
1939 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
1940 inner = TREE_OPERAND (inner, 0);
1941 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
1942 inner = TREE_OPERAND (inner, 1);
1953 /* Return which tree structure is used by T. */
1955 enum tree_node_structure_enum
1956 tree_node_structure (tree t)
1958 enum tree_code code = TREE_CODE (t);
1960 switch (TREE_CODE_CLASS (code))
1962 case tcc_declaration:
1967 return TS_FIELD_DECL;
1969 return TS_PARM_DECL;
1973 return TS_LABEL_DECL;
1975 return TS_RESULT_DECL;
1977 return TS_CONST_DECL;
1979 return TS_TYPE_DECL;
1981 return TS_FUNCTION_DECL;
1983 return TS_DECL_NON_COMMON;
1989 case tcc_comparison:
1992 case tcc_expression:
1995 default: /* tcc_constant and tcc_exceptional */
2000 /* tcc_constant cases. */
2001 case INTEGER_CST: return TS_INT_CST;
2002 case REAL_CST: return TS_REAL_CST;
2003 case COMPLEX_CST: return TS_COMPLEX;
2004 case VECTOR_CST: return TS_VECTOR;
2005 case STRING_CST: return TS_STRING;
2006 /* tcc_exceptional cases. */
2007 case ERROR_MARK: return TS_COMMON;
2008 case IDENTIFIER_NODE: return TS_IDENTIFIER;
2009 case TREE_LIST: return TS_LIST;
2010 case TREE_VEC: return TS_VEC;
2011 case PHI_NODE: return TS_PHI_NODE;
2012 case SSA_NAME: return TS_SSA_NAME;
2013 case PLACEHOLDER_EXPR: return TS_COMMON;
2014 case STATEMENT_LIST: return TS_STATEMENT_LIST;
2015 case BLOCK: return TS_BLOCK;
2016 case CONSTRUCTOR: return TS_CONSTRUCTOR;
2017 case TREE_BINFO: return TS_BINFO;
2018 case VALUE_HANDLE: return TS_VALUE_HANDLE;
2025 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2026 or offset that depends on a field within a record. */
2029 contains_placeholder_p (tree exp)
2031 enum tree_code code;
2036 code = TREE_CODE (exp);
2037 if (code == PLACEHOLDER_EXPR)
2040 switch (TREE_CODE_CLASS (code))
2043 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2044 position computations since they will be converted into a
2045 WITH_RECORD_EXPR involving the reference, which will assume
2046 here will be valid. */
2047 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2049 case tcc_exceptional:
2050 if (code == TREE_LIST)
2051 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2052 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2057 case tcc_comparison:
2058 case tcc_expression:
2062 /* Ignoring the first operand isn't quite right, but works best. */
2063 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2066 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2067 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2068 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2071 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2077 switch (TREE_CODE_LENGTH (code))
2080 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2082 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2083 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2094 /* Return true if any part of the computation of TYPE involves a
2095 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2096 (for QUAL_UNION_TYPE) and field positions. */
2099 type_contains_placeholder_1 (tree type)
2101 /* If the size contains a placeholder or the parent type (component type in
2102 the case of arrays) type involves a placeholder, this type does. */
2103 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2104 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2105 || (TREE_TYPE (type) != 0
2106 && type_contains_placeholder_p (TREE_TYPE (type))))
2109 /* Now do type-specific checks. Note that the last part of the check above
2110 greatly limits what we have to do below. */
2111 switch (TREE_CODE (type))
2120 case REFERENCE_TYPE:
2128 /* Here we just check the bounds. */
2129 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2130 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2133 /* We're already checked the component type (TREE_TYPE), so just check
2135 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2139 case QUAL_UNION_TYPE:
2143 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2144 if (TREE_CODE (field) == FIELD_DECL
2145 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2146 || (TREE_CODE (type) == QUAL_UNION_TYPE
2147 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2148 || type_contains_placeholder_p (TREE_TYPE (field))))
2160 type_contains_placeholder_p (tree type)
2164 /* If the contains_placeholder_bits field has been initialized,
2165 then we know the answer. */
2166 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2167 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2169 /* Indicate that we've seen this type node, and the answer is false.
2170 This is what we want to return if we run into recursion via fields. */
2171 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2173 /* Compute the real value. */
2174 result = type_contains_placeholder_1 (type);
2176 /* Store the real value. */
2177 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2182 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2183 return a tree with all occurrences of references to F in a
2184 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2185 contains only arithmetic expressions or a CALL_EXPR with a
2186 PLACEHOLDER_EXPR occurring only in its arglist. */
2189 substitute_in_expr (tree exp, tree f, tree r)
2191 enum tree_code code = TREE_CODE (exp);
2192 tree op0, op1, op2, op3;
2196 /* We handle TREE_LIST and COMPONENT_REF separately. */
2197 if (code == TREE_LIST)
2199 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2200 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2201 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2204 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2206 else if (code == COMPONENT_REF)
2208 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2209 and it is the right field, replace it with R. */
2210 for (inner = TREE_OPERAND (exp, 0);
2211 REFERENCE_CLASS_P (inner);
2212 inner = TREE_OPERAND (inner, 0))
2214 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2215 && TREE_OPERAND (exp, 1) == f)
2218 /* If this expression hasn't been completed let, leave it alone. */
2219 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2222 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2223 if (op0 == TREE_OPERAND (exp, 0))
2226 new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2227 op0, TREE_OPERAND (exp, 1), NULL_TREE);
2230 switch (TREE_CODE_CLASS (code))
2233 case tcc_declaration:
2236 case tcc_exceptional:
2239 case tcc_comparison:
2240 case tcc_expression:
2242 switch (TREE_CODE_LENGTH (code))
2248 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2249 if (op0 == TREE_OPERAND (exp, 0))
2252 new = fold_build1 (code, TREE_TYPE (exp), op0);
2256 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2257 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2259 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2262 new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2266 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2267 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2268 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2270 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2271 && op2 == TREE_OPERAND (exp, 2))
2274 new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2278 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2279 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2280 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2281 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2283 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2284 && op2 == TREE_OPERAND (exp, 2)
2285 && op3 == TREE_OPERAND (exp, 3))
2288 new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2300 TREE_READONLY (new) = TREE_READONLY (exp);
2304 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2305 for it within OBJ, a tree that is an object or a chain of references. */
2308 substitute_placeholder_in_expr (tree exp, tree obj)
2310 enum tree_code code = TREE_CODE (exp);
2311 tree op0, op1, op2, op3;
2313 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2314 in the chain of OBJ. */
2315 if (code == PLACEHOLDER_EXPR)
2317 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2320 for (elt = obj; elt != 0;
2321 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2322 || TREE_CODE (elt) == COND_EXPR)
2323 ? TREE_OPERAND (elt, 1)
2324 : (REFERENCE_CLASS_P (elt)
2325 || UNARY_CLASS_P (elt)
2326 || BINARY_CLASS_P (elt)
2327 || EXPRESSION_CLASS_P (elt))
2328 ? TREE_OPERAND (elt, 0) : 0))
2329 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2332 for (elt = obj; elt != 0;
2333 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2334 || TREE_CODE (elt) == COND_EXPR)
2335 ? TREE_OPERAND (elt, 1)
2336 : (REFERENCE_CLASS_P (elt)
2337 || UNARY_CLASS_P (elt)
2338 || BINARY_CLASS_P (elt)
2339 || EXPRESSION_CLASS_P (elt))
2340 ? TREE_OPERAND (elt, 0) : 0))
2341 if (POINTER_TYPE_P (TREE_TYPE (elt))
2342 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2344 return fold_build1 (INDIRECT_REF, need_type, elt);
2346 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2347 survives until RTL generation, there will be an error. */
2351 /* TREE_LIST is special because we need to look at TREE_VALUE
2352 and TREE_CHAIN, not TREE_OPERANDS. */
2353 else if (code == TREE_LIST)
2355 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2356 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2357 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2360 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2363 switch (TREE_CODE_CLASS (code))
2366 case tcc_declaration:
2369 case tcc_exceptional:
2372 case tcc_comparison:
2373 case tcc_expression:
2376 switch (TREE_CODE_LENGTH (code))
2382 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2383 if (op0 == TREE_OPERAND (exp, 0))
2386 return fold_build1 (code, TREE_TYPE (exp), op0);
2389 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2390 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2392 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2395 return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2398 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2399 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2400 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2402 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2403 && op2 == TREE_OPERAND (exp, 2))
2406 return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2409 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2410 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2411 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2412 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2414 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2415 && op2 == TREE_OPERAND (exp, 2)
2416 && op3 == TREE_OPERAND (exp, 3))
2419 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2431 /* Stabilize a reference so that we can use it any number of times
2432 without causing its operands to be evaluated more than once.
2433 Returns the stabilized reference. This works by means of save_expr,
2434 so see the caveats in the comments about save_expr.
2436 Also allows conversion expressions whose operands are references.
2437 Any other kind of expression is returned unchanged. */
2440 stabilize_reference (tree ref)
2443 enum tree_code code = TREE_CODE (ref);
2450 /* No action is needed in this case. */
2456 case FIX_TRUNC_EXPR:
2457 case FIX_FLOOR_EXPR:
2458 case FIX_ROUND_EXPR:
2460 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2464 result = build_nt (INDIRECT_REF,
2465 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2469 result = build_nt (COMPONENT_REF,
2470 stabilize_reference (TREE_OPERAND (ref, 0)),
2471 TREE_OPERAND (ref, 1), NULL_TREE);
2475 result = build_nt (BIT_FIELD_REF,
2476 stabilize_reference (TREE_OPERAND (ref, 0)),
2477 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2478 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2482 result = build_nt (ARRAY_REF,
2483 stabilize_reference (TREE_OPERAND (ref, 0)),
2484 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2485 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2488 case ARRAY_RANGE_REF:
2489 result = build_nt (ARRAY_RANGE_REF,
2490 stabilize_reference (TREE_OPERAND (ref, 0)),
2491 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2492 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2496 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2497 it wouldn't be ignored. This matters when dealing with
2499 return stabilize_reference_1 (ref);
2501 /* If arg isn't a kind of lvalue we recognize, make no change.
2502 Caller should recognize the error for an invalid lvalue. */
2507 return error_mark_node;
2510 TREE_TYPE (result) = TREE_TYPE (ref);
2511 TREE_READONLY (result) = TREE_READONLY (ref);
2512 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2513 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2518 /* Subroutine of stabilize_reference; this is called for subtrees of
2519 references. Any expression with side-effects must be put in a SAVE_EXPR
2520 to ensure that it is only evaluated once.
2522 We don't put SAVE_EXPR nodes around everything, because assigning very
2523 simple expressions to temporaries causes us to miss good opportunities
2524 for optimizations. Among other things, the opportunity to fold in the
2525 addition of a constant into an addressing mode often gets lost, e.g.
2526 "y[i+1] += x;". In general, we take the approach that we should not make
2527 an assignment unless we are forced into it - i.e., that any non-side effect
2528 operator should be allowed, and that cse should take care of coalescing
2529 multiple utterances of the same expression should that prove fruitful. */
2532 stabilize_reference_1 (tree e)
2535 enum tree_code code = TREE_CODE (e);
2537 /* We cannot ignore const expressions because it might be a reference
2538 to a const array but whose index contains side-effects. But we can
2539 ignore things that are actual constant or that already have been
2540 handled by this function. */
2542 if (TREE_INVARIANT (e))
2545 switch (TREE_CODE_CLASS (code))
2547 case tcc_exceptional:
2549 case tcc_declaration:
2550 case tcc_comparison:
2552 case tcc_expression:
2554 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2555 so that it will only be evaluated once. */
2556 /* The reference (r) and comparison (<) classes could be handled as
2557 below, but it is generally faster to only evaluate them once. */
2558 if (TREE_SIDE_EFFECTS (e))
2559 return save_expr (e);
2563 /* Constants need no processing. In fact, we should never reach
2568 /* Division is slow and tends to be compiled with jumps,
2569 especially the division by powers of 2 that is often
2570 found inside of an array reference. So do it just once. */
2571 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2572 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2573 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2574 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2575 return save_expr (e);
2576 /* Recursively stabilize each operand. */
2577 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2578 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2582 /* Recursively stabilize each operand. */
2583 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2590 TREE_TYPE (result) = TREE_TYPE (e);
2591 TREE_READONLY (result) = TREE_READONLY (e);
2592 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2593 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2594 TREE_INVARIANT (result) = 1;
2599 /* Low-level constructors for expressions. */
2601 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2602 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2605 recompute_tree_invarant_for_addr_expr (tree t)
2608 bool tc = true, ti = true, se = false;
2610 /* We started out assuming this address is both invariant and constant, but
2611 does not have side effects. Now go down any handled components and see if
2612 any of them involve offsets that are either non-constant or non-invariant.
2613 Also check for side-effects.
2615 ??? Note that this code makes no attempt to deal with the case where
2616 taking the address of something causes a copy due to misalignment. */
2618 #define UPDATE_TITCSE(NODE) \
2619 do { tree _node = (NODE); \
2620 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2621 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2622 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2624 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2625 node = TREE_OPERAND (node, 0))
2627 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2628 array reference (probably made temporarily by the G++ front end),
2629 so ignore all the operands. */
2630 if ((TREE_CODE (node) == ARRAY_REF
2631 || TREE_CODE (node) == ARRAY_RANGE_REF)
2632 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2634 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2635 if (TREE_OPERAND (node, 2))
2636 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2637 if (TREE_OPERAND (node, 3))
2638 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2640 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2641 FIELD_DECL, apparently. The G++ front end can put something else
2642 there, at least temporarily. */
2643 else if (TREE_CODE (node) == COMPONENT_REF
2644 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2646 if (TREE_OPERAND (node, 2))
2647 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2649 else if (TREE_CODE (node) == BIT_FIELD_REF)
2650 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2653 node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2655 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2656 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2657 invariant and constant if the decl is static. It's also invariant if it's
2658 a decl in the current function. Taking the address of a volatile variable
2659 is not volatile. If it's a constant, the address is both invariant and
2660 constant. Otherwise it's neither. */
2661 if (TREE_CODE (node) == INDIRECT_REF)
2662 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2663 else if (DECL_P (node))
2667 else if (decl_function_context (node) == current_function_decl
2668 /* Addresses of thread-local variables are invariant. */
2669 || (TREE_CODE (node) == VAR_DECL
2670 && DECL_THREAD_LOCAL_P (node)))
2675 else if (CONSTANT_CLASS_P (node))
2680 se |= TREE_SIDE_EFFECTS (node);
2683 TREE_CONSTANT (t) = tc;
2684 TREE_INVARIANT (t) = ti;
2685 TREE_SIDE_EFFECTS (t) = se;
2686 #undef UPDATE_TITCSE
2689 /* Build an expression of code CODE, data type TYPE, and operands as
2690 specified. Expressions and reference nodes can be created this way.
2691 Constants, decls, types and misc nodes cannot be.
2693 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2694 enough for all extant tree codes. These functions can be called
2695 directly (preferably!), but can also be obtained via GCC preprocessor
2696 magic within the build macro. */
2699 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2703 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2705 t = make_node_stat (code PASS_MEM_STAT);
2712 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2714 int length = sizeof (struct tree_exp);
2715 #ifdef GATHER_STATISTICS
2716 tree_node_kind kind;
2720 #ifdef GATHER_STATISTICS
2721 switch (TREE_CODE_CLASS (code))
2723 case tcc_statement: /* an expression with side effects */
2726 case tcc_reference: /* a reference */
2734 tree_node_counts[(int) kind]++;
2735 tree_node_sizes[(int) kind] += length;
2738 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2740 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
2742 memset (t, 0, sizeof (struct tree_common));
2744 TREE_SET_CODE (t, code);
2746 TREE_TYPE (t) = type;
2747 #ifdef USE_MAPPED_LOCATION
2748 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2750 SET_EXPR_LOCUS (t, NULL);
2752 TREE_COMPLEXITY (t) = 0;
2753 TREE_OPERAND (t, 0) = node;
2754 TREE_BLOCK (t) = NULL_TREE;
2755 if (node && !TYPE_P (node))
2757 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2758 TREE_READONLY (t) = TREE_READONLY (node);
2761 if (TREE_CODE_CLASS (code) == tcc_statement)
2762 TREE_SIDE_EFFECTS (t) = 1;
2766 /* All of these have side-effects, no matter what their
2768 TREE_SIDE_EFFECTS (t) = 1;
2769 TREE_READONLY (t) = 0;
2772 case MISALIGNED_INDIRECT_REF:
2773 case ALIGN_INDIRECT_REF:
2775 /* Whether a dereference is readonly has nothing to do with whether
2776 its operand is readonly. */
2777 TREE_READONLY (t) = 0;
2782 recompute_tree_invarant_for_addr_expr (t);
2786 if (TREE_CODE_CLASS (code) == tcc_unary
2787 && node && !TYPE_P (node)
2788 && TREE_CONSTANT (node))
2789 TREE_CONSTANT (t) = 1;
2790 if (TREE_CODE_CLASS (code) == tcc_unary
2791 && node && TREE_INVARIANT (node))
2792 TREE_INVARIANT (t) = 1;
2793 if (TREE_CODE_CLASS (code) == tcc_reference
2794 && node && TREE_THIS_VOLATILE (node))
2795 TREE_THIS_VOLATILE (t) = 1;
2802 #define PROCESS_ARG(N) \
2804 TREE_OPERAND (t, N) = arg##N; \
2805 if (arg##N &&!TYPE_P (arg##N)) \
2807 if (TREE_SIDE_EFFECTS (arg##N)) \
2809 if (!TREE_READONLY (arg##N)) \
2811 if (!TREE_CONSTANT (arg##N)) \
2813 if (!TREE_INVARIANT (arg##N)) \
2819 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2821 bool constant, read_only, side_effects, invariant;
2824 gcc_assert (TREE_CODE_LENGTH (code) == 2);
2826 t = make_node_stat (code PASS_MEM_STAT);
2829 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2830 result based on those same flags for the arguments. But if the
2831 arguments aren't really even `tree' expressions, we shouldn't be trying
2834 /* Expressions without side effects may be constant if their
2835 arguments are as well. */
2836 constant = (TREE_CODE_CLASS (code) == tcc_comparison
2837 || TREE_CODE_CLASS (code) == tcc_binary);
2839 side_effects = TREE_SIDE_EFFECTS (t);
2840 invariant = constant;
2845 TREE_READONLY (t) = read_only;
2846 TREE_CONSTANT (t) = constant;
2847 TREE_INVARIANT (t) = invariant;
2848 TREE_SIDE_EFFECTS (t) = side_effects;
2849 TREE_THIS_VOLATILE (t)
2850 = (TREE_CODE_CLASS (code) == tcc_reference
2851 && arg0 && TREE_THIS_VOLATILE (arg0));
2857 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2858 tree arg2 MEM_STAT_DECL)
2860 bool constant, read_only, side_effects, invariant;
2863 gcc_assert (TREE_CODE_LENGTH (code) == 3);
2865 t = make_node_stat (code PASS_MEM_STAT);
2868 side_effects = TREE_SIDE_EFFECTS (t);
2874 if (code == CALL_EXPR && !side_effects)
2879 /* Calls have side-effects, except those to const or
2881 i = call_expr_flags (t);
2882 if (!(i & (ECF_CONST | ECF_PURE)))
2885 /* And even those have side-effects if their arguments do. */
2886 else for (node = arg1; node; node = TREE_CHAIN (node))
2887 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2894 TREE_SIDE_EFFECTS (t) = side_effects;
2895 TREE_THIS_VOLATILE (t)
2896 = (TREE_CODE_CLASS (code) == tcc_reference
2897 && arg0 && TREE_THIS_VOLATILE (arg0));
2903 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2904 tree arg2, tree arg3 MEM_STAT_DECL)
2906 bool constant, read_only, side_effects, invariant;
2909 gcc_assert (TREE_CODE_LENGTH (code) == 4);
2911 t = make_node_stat (code PASS_MEM_STAT);
2914 side_effects = TREE_SIDE_EFFECTS (t);
2921 TREE_SIDE_EFFECTS (t) = side_effects;
2922 TREE_THIS_VOLATILE (t)
2923 = (TREE_CODE_CLASS (code) == tcc_reference
2924 && arg0 && TREE_THIS_VOLATILE (arg0));
2930 build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2931 tree arg2, tree arg3, tree arg4, tree arg5,
2932 tree arg6 MEM_STAT_DECL)
2934 bool constant, read_only, side_effects, invariant;
2937 gcc_assert (code == TARGET_MEM_REF);
2939 t = make_node_stat (code PASS_MEM_STAT);
2942 side_effects = TREE_SIDE_EFFECTS (t);
2952 TREE_SIDE_EFFECTS (t) = side_effects;
2953 TREE_THIS_VOLATILE (t) = 0;
2958 /* Backup definition for non-gcc build compilers. */
2961 (build) (enum tree_code code, tree tt, ...)
2963 tree t, arg0, arg1, arg2, arg3, arg4, arg5, arg6;
2964 int length = TREE_CODE_LENGTH (code);
2971 t = build0 (code, tt);
2974 arg0 = va_arg (p, tree);
2975 t = build1 (code, tt, arg0);
2978 arg0 = va_arg (p, tree);
2979 arg1 = va_arg (p, tree);
2980 t = build2 (code, tt, arg0, arg1);
2983 arg0 = va_arg (p, tree);
2984 arg1 = va_arg (p, tree);
2985 arg2 = va_arg (p, tree);
2986 t = build3 (code, tt, arg0, arg1, arg2);
2989 arg0 = va_arg (p, tree);
2990 arg1 = va_arg (p, tree);
2991 arg2 = va_arg (p, tree);
2992 arg3 = va_arg (p, tree);
2993 t = build4 (code, tt, arg0, arg1, arg2, arg3);
2996 arg0 = va_arg (p, tree);
2997 arg1 = va_arg (p, tree);
2998 arg2 = va_arg (p, tree);
2999 arg3 = va_arg (p, tree);
3000 arg4 = va_arg (p, tree);
3001 arg5 = va_arg (p, tree);
3002 arg6 = va_arg (p, tree);
3003 t = build7 (code, tt, arg0, arg1, arg2, arg3, arg4, arg5, arg6);
3013 /* Similar except don't specify the TREE_TYPE
3014 and leave the TREE_SIDE_EFFECTS as 0.
3015 It is permissible for arguments to be null,
3016 or even garbage if their values do not matter. */
3019 build_nt (enum tree_code code, ...)
3028 t = make_node (code);
3029 length = TREE_CODE_LENGTH (code);
3031 for (i = 0; i < length; i++)
3032 TREE_OPERAND (t, i) = va_arg (p, tree);
3038 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3039 We do NOT enter this node in any sort of symbol table.
3041 layout_decl is used to set up the decl's storage layout.
3042 Other slots are initialized to 0 or null pointers. */
3045 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3049 t = make_node_stat (code PASS_MEM_STAT);
3051 /* if (type == error_mark_node)
3052 type = integer_type_node; */
3053 /* That is not done, deliberately, so that having error_mark_node
3054 as the type can suppress useless errors in the use of this variable. */
3056 DECL_NAME (t) = name;
3057 TREE_TYPE (t) = type;
3059 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3061 else if (code == FUNCTION_DECL)
3062 DECL_MODE (t) = FUNCTION_MODE;
3064 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
3066 /* Set default visibility to whatever the user supplied with
3067 visibility_specified depending on #pragma GCC visibility. */
3068 DECL_VISIBILITY (t) = default_visibility;
3069 DECL_VISIBILITY_SPECIFIED (t) = visibility_options.inpragma;
3075 /* Builds and returns function declaration with NAME and TYPE. */
3078 build_fn_decl (const char *name, tree type)
3080 tree id = get_identifier (name);
3081 tree decl = build_decl (FUNCTION_DECL, id, type);
3083 DECL_EXTERNAL (decl) = 1;
3084 TREE_PUBLIC (decl) = 1;
3085 DECL_ARTIFICIAL (decl) = 1;
3086 TREE_NOTHROW (decl) = 1;
3092 /* BLOCK nodes are used to represent the structure of binding contours
3093 and declarations, once those contours have been exited and their contents
3094 compiled. This information is used for outputting debugging info. */
3097 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3099 tree block = make_node (BLOCK);
3101 BLOCK_VARS (block) = vars;
3102 BLOCK_SUBBLOCKS (block) = subblocks;
3103 BLOCK_SUPERCONTEXT (block) = supercontext;
3104 BLOCK_CHAIN (block) = chain;
3108 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
3109 /* ??? gengtype doesn't handle conditionals */
3110 static GTY(()) location_t *last_annotated_node;
3113 #ifdef USE_MAPPED_LOCATION
3116 expand_location (source_location loc)
3118 expanded_location xloc;
3119 if (loc == 0) { xloc.file = NULL; xloc.line = 0; xloc.column = 0; }
3122 const struct line_map *map = linemap_lookup (&line_table, loc);
3123 xloc.file = map->to_file;
3124 xloc.line = SOURCE_LINE (map, loc);
3125 xloc.column = SOURCE_COLUMN (map, loc);
3132 /* Record the exact location where an expression or an identifier were
3136 annotate_with_file_line (tree node, const char *file, int line)
3138 /* Roughly one percent of the calls to this function are to annotate
3139 a node with the same information already attached to that node!
3140 Just return instead of wasting memory. */
3141 if (EXPR_LOCUS (node)
3142 && EXPR_LINENO (node) == line
3143 && (EXPR_FILENAME (node) == file
3144 || !strcmp (EXPR_FILENAME (node), file)))
3146 last_annotated_node = EXPR_LOCUS (node);
3150 /* In heavily macroized code (such as GCC itself) this single
3151 entry cache can reduce the number of allocations by more
3153 if (last_annotated_node
3154 && last_annotated_node->line == line
3155 && (last_annotated_node->file == file
3156 || !strcmp (last_annotated_node->file, file)))
3158 SET_EXPR_LOCUS (node, last_annotated_node);
3162 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
3163 EXPR_LINENO (node) = line;
3164 EXPR_FILENAME (node) = file;
3165 last_annotated_node = EXPR_LOCUS (node);
3169 annotate_with_locus (tree node, location_t locus)
3171 annotate_with_file_line (node, locus.file, locus.line);
3175 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3179 build_decl_attribute_variant (tree ddecl, tree attribute)
3181 DECL_ATTRIBUTES (ddecl) = attribute;
3185 /* Borrowed from hashtab.c iterative_hash implementation. */
3186 #define mix(a,b,c) \
3188 a -= b; a -= c; a ^= (c>>13); \
3189 b -= c; b -= a; b ^= (a<< 8); \
3190 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3191 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3192 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3193 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3194 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3195 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3196 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3200 /* Produce good hash value combining VAL and VAL2. */
3201 static inline hashval_t
3202 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3204 /* the golden ratio; an arbitrary value. */
3205 hashval_t a = 0x9e3779b9;
3211 /* Produce good hash value combining PTR and VAL2. */
3212 static inline hashval_t
3213 iterative_hash_pointer (void *ptr, hashval_t val2)
3215 if (sizeof (ptr) == sizeof (hashval_t))
3216 return iterative_hash_hashval_t ((size_t) ptr, val2);
3219 hashval_t a = (hashval_t) (size_t) ptr;
3220 /* Avoid warnings about shifting of more than the width of the type on
3221 hosts that won't execute this path. */
3223 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3229 /* Produce good hash value combining VAL and VAL2. */
3230 static inline hashval_t
3231 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3233 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3234 return iterative_hash_hashval_t (val, val2);
3237 hashval_t a = (hashval_t) val;
3238 /* Avoid warnings about shifting of more than the width of the type on
3239 hosts that won't execute this path. */
3241 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3243 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3245 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3246 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3253 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3256 Record such modified types already made so we don't make duplicates. */
3259 build_type_attribute_variant (tree ttype, tree attribute)
3261 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3263 hashval_t hashcode = 0;
3265 enum tree_code code = TREE_CODE (ttype);
3267 ntype = copy_node (ttype);
3269 TYPE_POINTER_TO (ntype) = 0;
3270 TYPE_REFERENCE_TO (ntype) = 0;
3271 TYPE_ATTRIBUTES (ntype) = attribute;
3273 /* Create a new main variant of TYPE. */
3274 TYPE_MAIN_VARIANT (ntype) = ntype;
3275 TYPE_NEXT_VARIANT (ntype) = 0;
3276 set_type_quals (ntype, TYPE_UNQUALIFIED);
3278 hashcode = iterative_hash_object (code, hashcode);
3279 if (TREE_TYPE (ntype))
3280 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3282 hashcode = attribute_hash_list (attribute, hashcode);
3284 switch (TREE_CODE (ntype))
3287 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3290 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3294 hashcode = iterative_hash_object
3295 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3296 hashcode = iterative_hash_object
3297 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3301 unsigned int precision = TYPE_PRECISION (ntype);
3302 hashcode = iterative_hash_object (precision, hashcode);
3309 ntype = type_hash_canon (hashcode, ntype);
3310 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
3317 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3320 We try both `text' and `__text__', ATTR may be either one. */
3321 /* ??? It might be a reasonable simplification to require ATTR to be only
3322 `text'. One might then also require attribute lists to be stored in
3323 their canonicalized form. */
3326 is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3331 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3334 p = IDENTIFIER_POINTER (ident);
3335 ident_len = IDENTIFIER_LENGTH (ident);
3337 if (ident_len == attr_len
3338 && strcmp (attr, p) == 0)
3341 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3344 gcc_assert (attr[1] == '_');
3345 gcc_assert (attr[attr_len - 2] == '_');
3346 gcc_assert (attr[attr_len - 1] == '_');
3347 gcc_assert (attr[1] == '_');
3348 if (ident_len == attr_len - 4
3349 && strncmp (attr + 2, p, attr_len - 4) == 0)
3354 if (ident_len == attr_len + 4
3355 && p[0] == '_' && p[1] == '_'
3356 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3357 && strncmp (attr, p + 2, attr_len) == 0)
3364 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3367 We try both `text' and `__text__', ATTR may be either one. */
3370 is_attribute_p (const char *attr, tree ident)
3372 return is_attribute_with_length_p (attr, strlen (attr), ident);
3375 /* Given an attribute name and a list of attributes, return a pointer to the
3376 attribute's list element if the attribute is part of the list, or NULL_TREE
3377 if not found. If the attribute appears more than once, this only
3378 returns the first occurrence; the TREE_CHAIN of the return value should
3379 be passed back in if further occurrences are wanted. */
3382 lookup_attribute (const char *attr_name, tree list)
3385 size_t attr_len = strlen (attr_name);
3387 for (l = list; l; l = TREE_CHAIN (l))
3389 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3390 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3397 /* Return an attribute list that is the union of a1 and a2. */
3400 merge_attributes (tree a1, tree a2)
3404 /* Either one unset? Take the set one. */
3406 if ((attributes = a1) == 0)
3409 /* One that completely contains the other? Take it. */
3411 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3413 if (attribute_list_contained (a2, a1))
3417 /* Pick the longest list, and hang on the other list. */
3419 if (list_length (a1) < list_length (a2))
3420 attributes = a2, a2 = a1;
3422 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3425 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3428 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3431 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
3436 a1 = copy_node (a2);
3437 TREE_CHAIN (a1) = attributes;
3446 /* Given types T1 and T2, merge their attributes and return
3450 merge_type_attributes (tree t1, tree t2)
3452 return merge_attributes (TYPE_ATTRIBUTES (t1),
3453 TYPE_ATTRIBUTES (t2));
3456 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3460 merge_decl_attributes (tree olddecl, tree newdecl)
3462 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3463 DECL_ATTRIBUTES (newdecl));
3466 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3468 /* Specialization of merge_decl_attributes for various Windows targets.
3470 This handles the following situation:
3472 __declspec (dllimport) int foo;
3475 The second instance of `foo' nullifies the dllimport. */
3478 merge_dllimport_decl_attributes (tree old, tree new)
3481 int delete_dllimport_p = 1;
3483 /* What we need to do here is remove from `old' dllimport if it doesn't
3484 appear in `new'. dllimport behaves like extern: if a declaration is
3485 marked dllimport and a definition appears later, then the object
3486 is not dllimport'd. We also remove a `new' dllimport if the old list
3487 contains dllexport: dllexport always overrides dllimport, regardless
3488 of the order of declaration. */
3489 if (!VAR_OR_FUNCTION_DECL_P (new))
3490 delete_dllimport_p = 0;
3491 else if (DECL_DLLIMPORT_P (new)
3492 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3494 DECL_DLLIMPORT_P (new) = 0;
3495 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3496 "dllimport ignored", new);
3498 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3500 /* Warn about overriding a symbol that has already been used. eg:
3501 extern int __attribute__ ((dllimport)) foo;
3502 int* bar () {return &foo;}
3505 if (TREE_USED (old))
3507 warning (0, "%q+D redeclared without dllimport attribute "
3508 "after being referenced with dll linkage", new);
3509 /* If we have used a variable's address with dllimport linkage,
3510 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3511 decl may already have had TREE_INVARIANT and TREE_CONSTANT
3513 We still remove the attribute so that assembler code refers
3514 to '&foo rather than '_imp__foo'. */
3515 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3516 DECL_DLLIMPORT_P (new) = 1;
3519 /* Let an inline definition silently override the external reference,
3520 but otherwise warn about attribute inconsistency. */
3521 else if (TREE_CODE (new) == VAR_DECL
3522 || !DECL_DECLARED_INLINE_P (new))
3523 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3524 "previous dllimport ignored", new);
3527 delete_dllimport_p = 0;
3529 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3531 if (delete_dllimport_p)
3534 const size_t attr_len = strlen ("dllimport");
3536 /* Scan the list for dllimport and delete it. */
3537 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3539 if (is_attribute_with_length_p ("dllimport", attr_len,
3542 if (prev == NULL_TREE)
3545 TREE_CHAIN (prev) = TREE_CHAIN (t);
3554 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3555 struct attribute_spec.handler. */
3558 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3563 /* These attributes may apply to structure and union types being created,
3564 but otherwise should pass to the declaration involved. */
3567 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3568 | (int) ATTR_FLAG_ARRAY_NEXT))
3570 *no_add_attrs = true;
3571 return tree_cons (name, args, NULL_TREE);
3573 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3575 warning (OPT_Wattributes, "%qs attribute ignored",
3576 IDENTIFIER_POINTER (name));
3577 *no_add_attrs = true;
3583 /* Report error on dllimport ambiguities seen now before they cause
3585 if (is_attribute_p ("dllimport", name))
3587 /* Honor any target-specific overrides. */
3588 if (!targetm.valid_dllimport_attribute_p (node))
3589 *no_add_attrs = true;
3591 else if (TREE_CODE (node) == FUNCTION_DECL
3592 && DECL_DECLARED_INLINE_P (node))
3594 warning (OPT_Wattributes, "inline function %q+D declared as "
3595 " dllimport: attribute ignored", node);
3596 *no_add_attrs = true;
3598 /* Like MS, treat definition of dllimported variables and
3599 non-inlined functions on declaration as syntax errors. */
3600 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
3602 error ("function %q+D definition is marked dllimport", node);
3603 *no_add_attrs = true;
3606 else if (TREE_CODE (node) == VAR_DECL)
3608 if (DECL_INITIAL (node))
3610 error ("variable %q+D definition is marked dllimport",
3612 *no_add_attrs = true;
3615 /* `extern' needn't be specified with dllimport.
3616 Specify `extern' now and hope for the best. Sigh. */
3617 DECL_EXTERNAL (node) = 1;
3618 /* Also, implicitly give dllimport'd variables declared within
3619 a function global scope, unless declared static. */
3620 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3621 TREE_PUBLIC (node) = 1;
3624 if (*no_add_attrs == false)
3625 DECL_DLLIMPORT_P (node) = 1;
3628 /* Report error if symbol is not accessible at global scope. */
3629 if (!TREE_PUBLIC (node)
3630 && (TREE_CODE (node) == VAR_DECL
3631 || TREE_CODE (node) == FUNCTION_DECL))
3633 error ("external linkage required for symbol %q+D because of "
3634 "%qs attribute", node, IDENTIFIER_POINTER (name));
3635 *no_add_attrs = true;
3641 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3643 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3644 of the various TYPE_QUAL values. */
3647 set_type_quals (tree type, int type_quals)
3649 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3650 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3651 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3654 /* Returns true iff cand is equivalent to base with type_quals. */
3657 check_qualified_type (tree cand, tree base, int type_quals)
3659 return (TYPE_QUALS (cand) == type_quals
3660 && TYPE_NAME (cand) == TYPE_NAME (base)
3661 /* Apparently this is needed for Objective-C. */
3662 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3663 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3664 TYPE_ATTRIBUTES (base)));
3667 /* Return a version of the TYPE, qualified as indicated by the
3668 TYPE_QUALS, if one exists. If no qualified version exists yet,
3669 return NULL_TREE. */
3672 get_qualified_type (tree type, int type_quals)
3676 if (TYPE_QUALS (type) == type_quals)
3679 /* Search the chain of variants to see if there is already one there just
3680 like the one we need to have. If so, use that existing one. We must
3681 preserve the TYPE_NAME, since there is code that depends on this. */
3682 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3683 if (check_qualified_type (t, type, type_quals))
3689 /* Like get_qualified_type, but creates the type if it does not
3690 exist. This function never returns NULL_TREE. */
3693 build_qualified_type (tree type, int type_quals)
3697 /* See if we already have the appropriate qualified variant. */
3698 t = get_qualified_type (type, type_quals);
3700 /* If not, build it. */
3703 t = build_variant_type_copy (type);
3704 set_type_quals (t, type_quals);
3706 /* If it's a pointer type, the new variant points to the same type. */
3707 if (TREE_CODE (type) == POINTER_TYPE)
3709 TYPE_NEXT_PTR_TO (t) = TYPE_NEXT_PTR_TO (type);
3710 TYPE_NEXT_PTR_TO (type) = t;
3713 /* Same for a reference type. */
3714 else if (TREE_CODE (type) == REFERENCE_TYPE)
3716 TYPE_NEXT_REF_TO (t) = TYPE_NEXT_REF_TO (type);
3717 TYPE_NEXT_REF_TO (type) = t;
3724 /* Create a new distinct copy of TYPE. The new type is made its own
3728 build_distinct_type_copy (tree type)
3730 tree t = copy_node (type);
3732 TYPE_POINTER_TO (t) = 0;
3733 TYPE_REFERENCE_TO (t) = 0;
3735 /* Make it its own variant. */
3736 TYPE_MAIN_VARIANT (t) = t;
3737 TYPE_NEXT_VARIANT (t) = 0;
3742 /* Create a new variant of TYPE, equivalent but distinct.
3743 This is so the caller can modify it. */
3746 build_variant_type_copy (tree type)
3748 tree t, m = TYPE_MAIN_VARIANT (type);
3750 t = build_distinct_type_copy (type);
3752 /* Add the new type to the chain of variants of TYPE. */
3753 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3754 TYPE_NEXT_VARIANT (m) = t;
3755 TYPE_MAIN_VARIANT (t) = m;
3760 /* Return true if the from tree in both tree maps are equal. */
3763 tree_map_eq (const void *va, const void *vb)
3765 const struct tree_map *a = va, *b = vb;
3766 return (a->from == b->from);
3769 /* Hash a from tree in a tree_map. */
3772 tree_map_hash (const void *item)
3774 return (((const struct tree_map *) item)->hash);
3777 /* Return true if this tree map structure is marked for garbage collection
3778 purposes. We simply return true if the from tree is marked, so that this
3779 structure goes away when the from tree goes away. */
3782 tree_map_marked_p (const void *p)
3784 tree from = ((struct tree_map *) p)->from;
3786 return ggc_marked_p (from);
3789 /* Return true if the trees in the tree_int_map *'s VA and VB are equal. */
3792 tree_int_map_eq (const void *va, const void *vb)
3794 const struct tree_int_map *a = va, *b = vb;
3795 return (a->from == b->from);
3798 /* Hash a from tree in the tree_int_map * ITEM. */
3801 tree_int_map_hash (const void *item)
3803 return htab_hash_pointer (((const struct tree_int_map *)item)->from);
3806 /* Return true if this tree int map structure is marked for garbage collection
3807 purposes. We simply return true if the from tree_int_map *P's from tree is marked, so that this
3808 structure goes away when the from tree goes away. */
3811 tree_int_map_marked_p (const void *p)
3813 tree from = ((struct tree_int_map *) p)->from;
3815 return ggc_marked_p (from);
3817 /* Lookup an init priority for FROM, and return it if we find one. */
3820 decl_init_priority_lookup (tree from)
3822 struct tree_int_map *h, in;
3825 h = htab_find_with_hash (init_priority_for_decl,
3826 &in, htab_hash_pointer (from));
3832 /* Insert a mapping FROM->TO in the init priority hashtable. */
3835 decl_init_priority_insert (tree from, unsigned short to)
3837 struct tree_int_map *h;
3840 h = ggc_alloc (sizeof (struct tree_int_map));
3843 loc = htab_find_slot_with_hash (init_priority_for_decl, h,
3844 htab_hash_pointer (from), INSERT);
3845 *(struct tree_int_map **) loc = h;
3848 /* Look up a restrict qualified base decl for FROM. */
3851 decl_restrict_base_lookup (tree from)
3857 h = htab_find_with_hash (restrict_base_for_decl, &in,
3858 htab_hash_pointer (from));
3859 return h ? h->to : NULL_TREE;
3862 /* Record the restrict qualified base TO for FROM. */
3865 decl_restrict_base_insert (tree from, tree to)
3870 h = ggc_alloc (sizeof (struct tree_map));
3871 h->hash = htab_hash_pointer (from);
3874 loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
3875 *(struct tree_map **) loc = h;
3878 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
3881 print_debug_expr_statistics (void)
3883 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
3884 (long) htab_size (debug_expr_for_decl),
3885 (long) htab_elements (debug_expr_for_decl),
3886 htab_collisions (debug_expr_for_decl));
3889 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
3892 print_value_expr_statistics (void)
3894 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
3895 (long) htab_size (value_expr_for_decl),
3896 (long) htab_elements (value_expr_for_decl),
3897 htab_collisions (value_expr_for_decl));
3900 /* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
3901 don't print anything if the table is empty. */
3904 print_restrict_base_statistics (void)
3906 if (htab_elements (restrict_base_for_decl) != 0)
3908 "RESTRICT_BASE hash: size %ld, %ld elements, %f collisions\n",
3909 (long) htab_size (restrict_base_for_decl),
3910 (long) htab_elements (restrict_base_for_decl),
3911 htab_collisions (restrict_base_for_decl));
3914 /* Lookup a debug expression for FROM, and return it if we find one. */
3917 decl_debug_expr_lookup (tree from)
3919 struct tree_map *h, in;
3922 h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
3928 /* Insert a mapping FROM->TO in the debug expression hashtable. */
3931 decl_debug_expr_insert (tree from, tree to)
3936 h = ggc_alloc (sizeof (struct tree_map));
3937 h->hash = htab_hash_pointer (from);
3940 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
3941 *(struct tree_map **) loc = h;
3944 /* Lookup a value expression for FROM, and return it if we find one. */
3947 decl_value_expr_lookup (tree from)
3949 struct tree_map *h, in;
3952 h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
3958 /* Insert a mapping FROM->TO in the value expression hashtable. */
3961 decl_value_expr_insert (tree from, tree to)
3966 h = ggc_alloc (sizeof (struct tree_map));
3967 h->hash = htab_hash_pointer (from);
3970 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
3971 *(struct tree_map **) loc = h;
3974 /* Hashing of types so that we don't make duplicates.
3975 The entry point is `type_hash_canon'. */
3977 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3978 with types in the TREE_VALUE slots), by adding the hash codes
3979 of the individual types. */
3982 type_hash_list (tree list, hashval_t hashcode)
3986 for (tail = list; tail; tail = TREE_CHAIN (tail))
3987 if (TREE_VALUE (tail) != error_mark_node)
3988 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3994 /* These are the Hashtable callback functions. */
3996 /* Returns true iff the types are equivalent. */
3999 type_hash_eq (const void *va, const void *vb)
4001 const struct type_hash *a = va, *b = vb;
4003 /* First test the things that are the same for all types. */
4004 if (a->hash != b->hash
4005 || TREE_CODE (a->type) != TREE_CODE (b->type)
4006 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4007 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4008 TYPE_ATTRIBUTES (b->type))
4009 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4010 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
4013 switch (TREE_CODE (a->type))
4018 case REFERENCE_TYPE:
4022 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4025 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4026 && !(TYPE_VALUES (a->type)
4027 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4028 && TYPE_VALUES (b->type)
4029 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4030 && type_list_equal (TYPE_VALUES (a->type),
4031 TYPE_VALUES (b->type))))
4034 /* ... fall through ... */
4040 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4041 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4042 TYPE_MAX_VALUE (b->type)))
4043 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4044 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4045 TYPE_MIN_VALUE (b->type))));
4048 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4051 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4052 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4053 || (TYPE_ARG_TYPES (a->type)
4054 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4055 && TYPE_ARG_TYPES (b->type)
4056 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4057 && type_list_equal (TYPE_ARG_TYPES (a->type),
4058 TYPE_ARG_TYPES (b->type)))));
4061 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4065 case QUAL_UNION_TYPE:
4066 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4067 || (TYPE_FIELDS (a->type)
4068 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4069 && TYPE_FIELDS (b->type)
4070 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4071 && type_list_equal (TYPE_FIELDS (a->type),
4072 TYPE_FIELDS (b->type))));
4075 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4076 || (TYPE_ARG_TYPES (a->type)
4077 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4078 && TYPE_ARG_TYPES (b->type)
4079 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4080 && type_list_equal (TYPE_ARG_TYPES (a->type),
4081 TYPE_ARG_TYPES (b->type))));
4088 /* Return the cached hash value. */
4091 type_hash_hash (const void *item)
4093 return ((const struct type_hash *) item)->hash;
4096 /* Look in the type hash table for a type isomorphic to TYPE.
4097 If one is found, return it. Otherwise return 0. */
4100 type_hash_lookup (hashval_t hashcode, tree type)
4102 struct type_hash *h, in;
4104 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4105 must call that routine before comparing TYPE_ALIGNs. */
4111 h = htab_find_with_hash (type_hash_table, &in, hashcode);
4117 /* Add an entry to the type-hash-table
4118 for a type TYPE whose hash code is HASHCODE. */
4121 type_hash_add (hashval_t hashcode, tree type)
4123 struct type_hash *h;
4126 h = ggc_alloc (sizeof (struct type_hash));
4129 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4130 *(struct type_hash **) loc = h;
4133 /* Given TYPE, and HASHCODE its hash code, return the canonical
4134 object for an identical type if one already exists.
4135 Otherwise, return TYPE, and record it as the canonical object.
4137 To use this function, first create a type of the sort you want.
4138 Then compute its hash code from the fields of the type that
4139 make it different from other similar types.
4140 Then call this function and use the value. */
4143 type_hash_canon (unsigned int hashcode, tree type)
4147 /* The hash table only contains main variants, so ensure that's what we're
4149 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4151 if (!lang_hooks.types.hash_types)
4154 /* See if the type is in the hash table already. If so, return it.
4155 Otherwise, add the type. */
4156 t1 = type_hash_lookup (hashcode, type);
4159 #ifdef GATHER_STATISTICS
4160 tree_node_counts[(int) t_kind]--;
4161 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4167 type_hash_add (hashcode, type);
4172 /* See if the data pointed to by the type hash table is marked. We consider
4173 it marked if the type is marked or if a debug type number or symbol
4174 table entry has been made for the type. This reduces the amount of
4175 debugging output and eliminates that dependency of the debug output on
4176 the number of garbage collections. */
4179 type_hash_marked_p (const void *p)
4181 tree type = ((struct type_hash *) p)->type;
4183 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4187 print_type_hash_statistics (void)
4189 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4190 (long) htab_size (type_hash_table),
4191 (long) htab_elements (type_hash_table),
4192 htab_collisions (type_hash_table));
4195 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4196 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4197 by adding the hash codes of the individual attributes. */
4200 attribute_hash_list (tree list, hashval_t hashcode)
4204 for (tail = list; tail; tail = TREE_CHAIN (tail))
4205 /* ??? Do we want to add in TREE_VALUE too? */
4206 hashcode = iterative_hash_object
4207 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4211 /* Given two lists of attributes, return true if list l2 is
4212 equivalent to l1. */
4215 attribute_list_equal (tree l1, tree l2)
4217 return attribute_list_contained (l1, l2)
4218 && attribute_list_contained (l2, l1);
4221 /* Given two lists of attributes, return true if list L2 is
4222 completely contained within L1. */
4223 /* ??? This would be faster if attribute names were stored in a canonicalized
4224 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4225 must be used to show these elements are equivalent (which they are). */
4226 /* ??? It's not clear that attributes with arguments will always be handled
4230 attribute_list_contained (tree l1, tree l2)
4234 /* First check the obvious, maybe the lists are identical. */
4238 /* Maybe the lists are similar. */
4239 for (t1 = l1, t2 = l2;
4241 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4242 && TREE_VALUE (t1) == TREE_VALUE (t2);
4243 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4245 /* Maybe the lists are equal. */
4246 if (t1 == 0 && t2 == 0)
4249 for (; t2 != 0; t2 = TREE_CHAIN (t2))
4252 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
4254 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4257 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4264 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
4271 /* Given two lists of types
4272 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4273 return 1 if the lists contain the same types in the same order.
4274 Also, the TREE_PURPOSEs must match. */
4277 type_list_equal (tree l1, tree l2)
4281 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4282 if (TREE_VALUE (t1) != TREE_VALUE (t2)
4283 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4284 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4285 && (TREE_TYPE (TREE_PURPOSE (t1))
4286 == TREE_TYPE (TREE_PURPOSE (t2))))))
4292 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4293 given by TYPE. If the argument list accepts variable arguments,
4294 then this function counts only the ordinary arguments. */
4297 type_num_arguments (tree type)
4302 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4303 /* If the function does not take a variable number of arguments,
4304 the last element in the list will have type `void'. */
4305 if (VOID_TYPE_P (TREE_VALUE (t)))
4313 /* Nonzero if integer constants T1 and T2
4314 represent the same constant value. */
4317 tree_int_cst_equal (tree t1, tree t2)
4322 if (t1 == 0 || t2 == 0)
4325 if (TREE_CODE (t1) == INTEGER_CST
4326 && TREE_CODE (t2) == INTEGER_CST
4327 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4328 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4334 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4335 The precise way of comparison depends on their data type. */
4338 tree_int_cst_lt (tree t1, tree t2)
4343 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4345 int t1_sgn = tree_int_cst_sgn (t1);
4346 int t2_sgn = tree_int_cst_sgn (t2);
4348 if (t1_sgn < t2_sgn)
4350 else if (t1_sgn > t2_sgn)
4352 /* Otherwise, both are non-negative, so we compare them as
4353 unsigned just in case one of them would overflow a signed
4356 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4357 return INT_CST_LT (t1, t2);
4359 return INT_CST_LT_UNSIGNED (t1, t2);
4362 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
4365 tree_int_cst_compare (tree t1, tree t2)
4367 if (tree_int_cst_lt (t1, t2))
4369 else if (tree_int_cst_lt (t2, t1))
4375 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4376 the host. If POS is zero, the value can be represented in a single
4377 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
4378 be represented in a single unsigned HOST_WIDE_INT. */
4381 host_integerp (tree t, int pos)
4383 return (TREE_CODE (t) == INTEGER_CST
4384 && ! TREE_OVERFLOW (t)
4385 && ((TREE_INT_CST_HIGH (t) == 0
4386 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4387 || (! pos && TREE_INT_CST_HIGH (t) == -1
4388 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4389 && !TYPE_UNSIGNED (TREE_TYPE (t)))
4390 || (pos && TREE_INT_CST_HIGH (t) == 0)));
4393 /* Return the HOST_WIDE_INT least significant bits of T if it is an
4394 INTEGER_CST and there is no overflow. POS is nonzero if the result must
4395 be non-negative. We must be able to satisfy the above conditions. */
4398 tree_low_cst (tree t, int pos)
4400 gcc_assert (host_integerp (t, pos));
4401 return TREE_INT_CST_LOW (t);
4404 /* Return the most significant bit of the integer constant T. */
4407 tree_int_cst_msb (tree t)
4411 unsigned HOST_WIDE_INT l;
4413 /* Note that using TYPE_PRECISION here is wrong. We care about the
4414 actual bits, not the (arbitrary) range of the type. */
4415 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4416 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4417 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4418 return (l & 1) == 1;
4421 /* Return an indication of the sign of the integer constant T.
4422 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4423 Note that -1 will never be returned if T's type is unsigned. */
4426 tree_int_cst_sgn (tree t)
4428 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4430 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4432 else if (TREE_INT_CST_HIGH (t) < 0)
4438 /* Compare two constructor-element-type constants. Return 1 if the lists
4439 are known to be equal; otherwise return 0. */
4442 simple_cst_list_equal (tree l1, tree l2)
4444 while (l1 != NULL_TREE && l2 != NULL_TREE)
4446 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4449 l1 = TREE_CHAIN (l1);
4450 l2 = TREE_CHAIN (l2);
4456 /* Return truthvalue of whether T1 is the same tree structure as T2.
4457 Return 1 if they are the same.
4458 Return 0 if they are understandably different.
4459 Return -1 if either contains tree structure not understood by
4463 simple_cst_equal (tree t1, tree t2)
4465 enum tree_code code1, code2;