1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
24 #include "coretypes.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
34 #include "diagnostic.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph;
44 /* Local functions. */
45 static int compare_values (tree val1, tree val2);
47 /* Location information for ASSERT_EXPRs. Each instance of this
48 structure describes an ASSERT_EXPR for an SSA name. Since a single
49 SSA name may have more than one assertion associated with it, these
50 locations are kept in a linked list attached to the corresponding
54 /* Basic block where the assertion would be inserted. */
57 /* Some assertions need to be inserted on an edge (e.g., assertions
58 generated by COND_EXPRs). In those cases, BB will be NULL. */
61 /* Pointer to the statement that generated this assertion. */
62 block_stmt_iterator si;
64 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
65 enum tree_code comp_code;
67 /* Value being compared against. */
70 /* Next node in the linked list. */
71 struct assert_locus_d *next;
74 typedef struct assert_locus_d *assert_locus_t;
76 /* If bit I is present, it means that SSA name N_i has a list of
77 assertions that should be inserted in the IL. */
78 static bitmap need_assert_for;
80 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
81 holds a list of ASSERT_LOCUS_T nodes that describe where
82 ASSERT_EXPRs for SSA name N_I should be inserted. */
83 static assert_locus_t *asserts_for;
85 /* Set of blocks visited in find_assert_locations. Used to avoid
86 visiting the same block more than once. */
87 static sbitmap blocks_visited;
89 /* Value range array. After propagation, VR_VALUE[I] holds the range
90 of values that SSA name N_I may take. */
91 static value_range_t **vr_value;
94 /* Return true if ARG is marked with the nonnull attribute in the
95 current function signature. */
98 nonnull_arg_p (tree arg)
100 tree t, attrs, fntype;
101 unsigned HOST_WIDE_INT arg_num;
103 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
105 fntype = TREE_TYPE (current_function_decl);
106 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
108 /* If "nonnull" wasn't specified, we know nothing about the argument. */
109 if (attrs == NULL_TREE)
112 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
113 if (TREE_VALUE (attrs) == NULL_TREE)
116 /* Get the position number for ARG in the function signature. */
117 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
119 t = TREE_CHAIN (t), arg_num++)
125 gcc_assert (t == arg);
127 /* Now see if ARG_NUM is mentioned in the nonnull list. */
128 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
130 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
138 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
141 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
142 tree max, bitmap equiv)
144 #if defined ENABLE_CHECKING
145 /* Check the validity of the range. */
146 if (t == VR_RANGE || t == VR_ANTI_RANGE)
150 gcc_assert (min && max);
152 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
153 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
154 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
156 cmp = compare_values (min, max);
157 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
160 if (t == VR_UNDEFINED || t == VR_VARYING)
161 gcc_assert (min == NULL_TREE && max == NULL_TREE);
163 if (t == VR_UNDEFINED || t == VR_VARYING)
164 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
171 /* Since updating the equivalence set involves deep copying the
172 bitmaps, only do it if absolutely necessary. */
173 if (vr->equiv == NULL)
174 vr->equiv = BITMAP_ALLOC (NULL);
176 if (equiv != vr->equiv)
178 if (equiv && !bitmap_empty_p (equiv))
179 bitmap_copy (vr->equiv, equiv);
181 bitmap_clear (vr->equiv);
186 /* Copy value range FROM into value range TO. */
189 copy_value_range (value_range_t *to, value_range_t *from)
191 set_value_range (to, from->type, from->min, from->max, from->equiv);
194 /* Set value range VR to a non-negative range of type TYPE. */
197 set_value_range_to_nonnegative (value_range_t *vr, tree type)
199 tree zero = build_int_cst (type, 0);
200 set_value_range (vr, VR_RANGE, zero, TYPE_MAX_VALUE (type), vr->equiv);
203 /* Set value range VR to a non-NULL range of type TYPE. */
206 set_value_range_to_nonnull (value_range_t *vr, tree type)
208 tree zero = build_int_cst (type, 0);
209 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
213 /* Set value range VR to a NULL range of type TYPE. */
216 set_value_range_to_null (value_range_t *vr, tree type)
218 tree zero = build_int_cst (type, 0);
219 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
223 /* Set value range VR to VR_VARYING. */
226 set_value_range_to_varying (value_range_t *vr)
228 vr->type = VR_VARYING;
229 vr->min = vr->max = NULL_TREE;
231 bitmap_clear (vr->equiv);
235 /* Set value range VR to VR_UNDEFINED. */
238 set_value_range_to_undefined (value_range_t *vr)
240 vr->type = VR_UNDEFINED;
241 vr->min = vr->max = NULL_TREE;
243 bitmap_clear (vr->equiv);
247 /* Return value range information for VAR.
249 If we have no values ranges recorded (ie, VRP is not running), then
250 return NULL. Otherwise create an empty range if none existed for VAR. */
252 static value_range_t *
253 get_value_range (tree var)
257 unsigned ver = SSA_NAME_VERSION (var);
259 /* If we have no recorded ranges, then return NULL. */
267 /* Create a default value range. */
268 vr_value[ver] = vr = XNEW (value_range_t);
269 memset (vr, 0, sizeof (*vr));
271 /* Allocate an equivalence set. */
272 vr->equiv = BITMAP_ALLOC (NULL);
274 /* If VAR is a default definition, the variable can take any value
276 sym = SSA_NAME_VAR (var);
277 if (var == default_def (sym))
279 /* Try to use the "nonnull" attribute to create ~[0, 0]
280 anti-ranges for pointers. Note that this is only valid with
281 default definitions of PARM_DECLs. */
282 if (TREE_CODE (sym) == PARM_DECL
283 && POINTER_TYPE_P (TREE_TYPE (sym))
284 && nonnull_arg_p (sym))
285 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
287 set_value_range_to_varying (vr);
294 /* Update the value range and equivalence set for variable VAR to
295 NEW_VR. Return true if NEW_VR is different from VAR's previous
298 NOTE: This function assumes that NEW_VR is a temporary value range
299 object created for the sole purpose of updating VAR's range. The
300 storage used by the equivalence set from NEW_VR will be freed by
301 this function. Do not call update_value_range when NEW_VR
302 is the range object associated with another SSA name. */
305 update_value_range (tree var, value_range_t *new_vr)
307 value_range_t *old_vr;
310 /* Update the value range, if necessary. */
311 old_vr = get_value_range (var);
312 is_new = old_vr->type != new_vr->type
313 || old_vr->min != new_vr->min
314 || old_vr->max != new_vr->max
315 || (old_vr->equiv == NULL && new_vr->equiv)
316 || (old_vr->equiv && new_vr->equiv == NULL)
317 || (!bitmap_equal_p (old_vr->equiv, new_vr->equiv));
320 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
323 BITMAP_FREE (new_vr->equiv);
324 new_vr->equiv = NULL;
330 /* Add VAR and VAR's equivalence set to EQUIV. */
333 add_equivalence (bitmap equiv, tree var)
335 unsigned ver = SSA_NAME_VERSION (var);
336 value_range_t *vr = vr_value[ver];
338 bitmap_set_bit (equiv, ver);
340 bitmap_ior_into (equiv, vr->equiv);
344 /* Return true if VR is ~[0, 0]. */
347 range_is_nonnull (value_range_t *vr)
349 return vr->type == VR_ANTI_RANGE
350 && integer_zerop (vr->min)
351 && integer_zerop (vr->max);
355 /* Return true if VR is [0, 0]. */
358 range_is_null (value_range_t *vr)
360 return vr->type == VR_RANGE
361 && integer_zerop (vr->min)
362 && integer_zerop (vr->max);
366 /* Return true if value range VR involves at least one symbol. */
369 symbolic_range_p (value_range_t *vr)
371 return (!is_gimple_min_invariant (vr->min)
372 || !is_gimple_min_invariant (vr->max));
375 /* Like tree_expr_nonnegative_p, but this function uses value ranges
379 vrp_expr_computes_nonnegative (tree expr)
381 return tree_expr_nonnegative_p (expr);
384 /* Like tree_expr_nonzero_p, but this function uses value ranges
388 vrp_expr_computes_nonzero (tree expr)
390 if (tree_expr_nonzero_p (expr))
393 /* If we have an expression of the form &X->a, then the expression
394 is nonnull if X is nonnull. */
395 if (TREE_CODE (expr) == ADDR_EXPR)
397 tree base = get_base_address (TREE_OPERAND (expr, 0));
399 if (base != NULL_TREE
400 && TREE_CODE (base) == INDIRECT_REF
401 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
403 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
404 if (range_is_nonnull (vr))
413 /* Compare two values VAL1 and VAL2. Return
415 -2 if VAL1 and VAL2 cannot be compared at compile-time,
418 +1 if VAL1 > VAL2, and
421 This is similar to tree_int_cst_compare but supports pointer values
422 and values that cannot be compared at compile time. */
425 compare_values (tree val1, tree val2)
430 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
432 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
433 == POINTER_TYPE_P (TREE_TYPE (val2)));
435 /* Do some limited symbolic comparisons. */
436 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
438 /* We can determine some comparisons against +INF and -INF even
439 if the other value is an expression. */
440 if (val1 == TYPE_MAX_VALUE (TREE_TYPE (val1))
441 && TREE_CODE (val2) == MINUS_EXPR)
443 /* +INF > NAME - CST. */
446 else if (val1 == TYPE_MIN_VALUE (TREE_TYPE (val1))
447 && TREE_CODE (val2) == PLUS_EXPR)
449 /* -INF < NAME + CST. */
452 else if (TREE_CODE (val1) == MINUS_EXPR
453 && val2 == TYPE_MAX_VALUE (TREE_TYPE (val2)))
455 /* NAME - CST < +INF. */
458 else if (TREE_CODE (val1) == PLUS_EXPR
459 && val2 == TYPE_MIN_VALUE (TREE_TYPE (val2)))
461 /* NAME + CST > -INF. */
466 if ((TREE_CODE (val1) == SSA_NAME
467 || TREE_CODE (val1) == PLUS_EXPR
468 || TREE_CODE (val1) == MINUS_EXPR)
469 && (TREE_CODE (val2) == SSA_NAME
470 || TREE_CODE (val2) == PLUS_EXPR
471 || TREE_CODE (val2) == MINUS_EXPR))
475 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
476 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
477 same name, return -2. */
478 if (TREE_CODE (val1) == SSA_NAME)
485 n1 = TREE_OPERAND (val1, 0);
486 c1 = TREE_OPERAND (val1, 1);
489 if (TREE_CODE (val2) == SSA_NAME)
496 n2 = TREE_OPERAND (val2, 0);
497 c2 = TREE_OPERAND (val2, 1);
500 /* Both values must use the same name. */
504 if (TREE_CODE (val1) == SSA_NAME)
506 if (TREE_CODE (val2) == SSA_NAME)
509 else if (TREE_CODE (val2) == PLUS_EXPR)
510 /* NAME < NAME + CST */
512 else if (TREE_CODE (val2) == MINUS_EXPR)
513 /* NAME > NAME - CST */
516 else if (TREE_CODE (val1) == PLUS_EXPR)
518 if (TREE_CODE (val2) == SSA_NAME)
519 /* NAME + CST > NAME */
521 else if (TREE_CODE (val2) == PLUS_EXPR)
522 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
523 return compare_values (c1, c2);
524 else if (TREE_CODE (val2) == MINUS_EXPR)
525 /* NAME + CST1 > NAME - CST2 */
528 else if (TREE_CODE (val1) == MINUS_EXPR)
530 if (TREE_CODE (val2) == SSA_NAME)
531 /* NAME - CST < NAME */
533 else if (TREE_CODE (val2) == PLUS_EXPR)
534 /* NAME - CST1 < NAME + CST2 */
536 else if (TREE_CODE (val2) == MINUS_EXPR)
537 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
538 C1 and C2 are swapped in the call to compare_values. */
539 return compare_values (c2, c1);
545 /* We cannot compare non-constants. */
546 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
549 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
551 /* We cannot compare overflowed values. */
552 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
555 return tree_int_cst_compare (val1, val2);
561 /* First see if VAL1 and VAL2 are not the same. */
562 if (val1 == val2 || operand_equal_p (val1, val2, 0))
565 /* If VAL1 is a lower address than VAL2, return -1. */
566 t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
567 if (t == boolean_true_node)
570 /* If VAL1 is a higher address than VAL2, return +1. */
571 t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
572 if (t == boolean_true_node)
575 /* If VAL1 is different than VAL2, return +2. */
576 t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
577 if (t == boolean_true_node)
585 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
586 0 if VAL is not inside VR,
587 -2 if we cannot tell either way.
589 FIXME, the current semantics of this functions are a bit quirky
590 when taken in the context of VRP. In here we do not care
591 about VR's type. If VR is the anti-range ~[3, 5] the call
592 value_inside_range (4, VR) will return 1.
594 This is counter-intuitive in a strict sense, but the callers
595 currently expect this. They are calling the function
596 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
597 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
600 This also applies to value_ranges_intersect_p and
601 range_includes_zero_p. The semantics of VR_RANGE and
602 VR_ANTI_RANGE should be encoded here, but that also means
603 adapting the users of these functions to the new semantics. */
606 value_inside_range (tree val, value_range_t *vr)
610 cmp1 = compare_values (val, vr->min);
611 if (cmp1 == -2 || cmp1 == 2)
614 cmp2 = compare_values (val, vr->max);
615 if (cmp2 == -2 || cmp2 == 2)
618 return (cmp1 == 0 || cmp1 == 1) && (cmp2 == -1 || cmp2 == 0);
622 /* Return true if value ranges VR0 and VR1 have a non-empty
626 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
628 return (value_inside_range (vr1->min, vr0) == 1
629 || value_inside_range (vr1->max, vr0) == 1
630 || value_inside_range (vr0->min, vr1) == 1
631 || value_inside_range (vr0->max, vr1) == 1);
635 /* Return true if VR includes the value zero, false otherwise. FIXME,
636 currently this will return false for an anti-range like ~[-4, 3].
637 This will be wrong when the semantics of value_inside_range are
638 modified (currently the users of this function expect these
642 range_includes_zero_p (value_range_t *vr)
646 gcc_assert (vr->type != VR_UNDEFINED
647 && vr->type != VR_VARYING
648 && !symbolic_range_p (vr));
650 zero = build_int_cst (TREE_TYPE (vr->min), 0);
651 return (value_inside_range (zero, vr) == 1);
654 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
655 false otherwise or if no value range information is available. */
658 ssa_name_nonnegative_p (tree t)
660 value_range_t *vr = get_value_range (t);
665 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
666 which would return a useful value should be encoded as a VR_RANGE. */
667 if (vr->type == VR_RANGE)
669 int result = compare_values (vr->min, integer_zero_node);
671 return (result == 0 || result == 1);
676 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
677 false otherwise or if no value range information is available. */
680 ssa_name_nonzero_p (tree t)
682 value_range_t *vr = get_value_range (t);
687 /* A VR_RANGE which does not include zero is a nonzero value. */
688 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
689 return ! range_includes_zero_p (vr);
691 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
692 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
693 return range_includes_zero_p (vr);
699 /* When extracting ranges from X_i = ASSERT_EXPR <Y_j, pred>, we will
700 initially consider X_i and Y_j equivalent, so the equivalence set
701 of Y_j is added to the equivalence set of X_i. However, it is
702 possible to have a chain of ASSERT_EXPRs whose predicates are
703 actually incompatible. This is usually the result of nesting of
704 contradictory if-then-else statements. For instance, in PR 24670:
706 count_4 has range [-INF, 63]
710 count_19 = ASSERT_EXPR <count_4, count_4 != 0>
713 count_18 = ASSERT_EXPR <count_19, count_19 > 63>
719 Notice that 'if (count_19 > 63)' is trivially false and will be
720 folded out at the end. However, during propagation, the flowgraph
721 is not cleaned up and so, VRP will evaluate predicates more
722 predicates than necessary, so it must support these
723 inconsistencies. The problem here is that because of the chaining
724 of ASSERT_EXPRs, the equivalency set for count_18 includes count_4.
725 Since count_4 has an incompatible range, we ICE when evaluating the
726 ranges in the equivalency set. So, we need to remove count_4 from
730 fix_equivalence_set (value_range_t *vr_p)
734 bitmap e = vr_p->equiv;
735 bitmap to_remove = BITMAP_ALLOC (NULL);
737 /* Only detect inconsistencies on numeric ranges. */
738 if (vr_p->type == VR_VARYING
739 || vr_p->type == VR_UNDEFINED
740 || symbolic_range_p (vr_p))
743 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
745 value_range_t *equiv_vr = vr_value[i];
747 if (equiv_vr->type == VR_VARYING
748 || equiv_vr->type == VR_UNDEFINED
749 || symbolic_range_p (equiv_vr))
752 if (equiv_vr->type == VR_RANGE
753 && vr_p->type == VR_RANGE
754 && !value_ranges_intersect_p (vr_p, equiv_vr))
755 bitmap_set_bit (to_remove, i);
756 else if ((equiv_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
757 || (equiv_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
759 /* A range and an anti-range have an empty intersection if
760 their end points are the same. FIXME,
761 value_ranges_intersect_p should handle this
763 if (compare_values (equiv_vr->min, vr_p->min) == 0
764 && compare_values (equiv_vr->max, vr_p->max) == 0)
765 bitmap_set_bit (to_remove, i);
769 bitmap_and_compl_into (vr_p->equiv, to_remove);
770 BITMAP_FREE (to_remove);
774 /* Extract value range information from an ASSERT_EXPR EXPR and store
778 extract_range_from_assert (value_range_t *vr_p, tree expr)
780 tree var, cond, limit, min, max, type;
781 value_range_t *var_vr, *limit_vr;
782 enum tree_code cond_code;
784 var = ASSERT_EXPR_VAR (expr);
785 cond = ASSERT_EXPR_COND (expr);
787 gcc_assert (COMPARISON_CLASS_P (cond));
789 /* Find VAR in the ASSERT_EXPR conditional. */
790 if (var == TREE_OPERAND (cond, 0))
792 /* If the predicate is of the form VAR COMP LIMIT, then we just
793 take LIMIT from the RHS and use the same comparison code. */
794 limit = TREE_OPERAND (cond, 1);
795 cond_code = TREE_CODE (cond);
799 /* If the predicate is of the form LIMIT COMP VAR, then we need
800 to flip around the comparison code to create the proper range
802 limit = TREE_OPERAND (cond, 0);
803 cond_code = swap_tree_comparison (TREE_CODE (cond));
806 type = TREE_TYPE (limit);
807 gcc_assert (limit != var);
809 /* For pointer arithmetic, we only keep track of pointer equality
811 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
813 set_value_range_to_varying (vr_p);
817 /* If LIMIT is another SSA name and LIMIT has a range of its own,
818 try to use LIMIT's range to avoid creating symbolic ranges
820 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
822 /* LIMIT's range is only interesting if it has any useful information. */
824 && (limit_vr->type == VR_UNDEFINED
825 || limit_vr->type == VR_VARYING
826 || symbolic_range_p (limit_vr)))
829 /* Initially, the new range has the same set of equivalences of
830 VAR's range. This will be revised before returning the final
831 value. Since assertions may be chained via mutually exclusive
832 predicates, we will need to trim the set of equivalences before
834 gcc_assert (vr_p->equiv == NULL);
835 vr_p->equiv = BITMAP_ALLOC (NULL);
836 add_equivalence (vr_p->equiv, var);
838 /* Extract a new range based on the asserted comparison for VAR and
839 LIMIT's value range. Notice that if LIMIT has an anti-range, we
840 will only use it for equality comparisons (EQ_EXPR). For any
841 other kind of assertion, we cannot derive a range from LIMIT's
842 anti-range that can be used to describe the new range. For
843 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
844 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
845 no single range for x_2 that could describe LE_EXPR, so we might
846 as well build the range [b_4, +INF] for it. */
847 if (cond_code == EQ_EXPR)
849 enum value_range_type range_type;
853 range_type = limit_vr->type;
859 range_type = VR_RANGE;
864 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
866 /* When asserting the equality VAR == LIMIT and LIMIT is another
867 SSA name, the new range will also inherit the equivalence set
869 if (TREE_CODE (limit) == SSA_NAME)
870 add_equivalence (vr_p->equiv, limit);
872 else if (cond_code == NE_EXPR)
874 /* As described above, when LIMIT's range is an anti-range and
875 this assertion is an inequality (NE_EXPR), then we cannot
876 derive anything from the anti-range. For instance, if
877 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
878 not imply that VAR's range is [0, 0]. So, in the case of
879 anti-ranges, we just assert the inequality using LIMIT and
882 If LIMIT_VR is a range, we can only use it to build a new
883 anti-range if LIMIT_VR is a single-valued range. For
884 instance, if LIMIT_VR is [0, 1], the predicate
885 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
886 Rather, it means that for value 0 VAR should be ~[0, 0]
887 and for value 1, VAR should be ~[1, 1]. We cannot
888 represent these ranges.
890 The only situation in which we can build a valid
891 anti-range is when LIMIT_VR is a single-valued range
892 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
893 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
895 && limit_vr->type == VR_RANGE
896 && compare_values (limit_vr->min, limit_vr->max) == 0)
903 /* In any other case, we cannot use LIMIT's range to build a
908 /* If MIN and MAX cover the whole range for their type, then
909 just use the original LIMIT. */
910 if (INTEGRAL_TYPE_P (type)
911 && min == TYPE_MIN_VALUE (type)
912 && max == TYPE_MAX_VALUE (type))
915 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
917 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
919 min = TYPE_MIN_VALUE (type);
921 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
925 /* If LIMIT_VR is of the form [N1, N2], we need to build the
926 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
931 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
932 if (cond_code == LT_EXPR)
934 tree one = build_int_cst (type, 1);
935 max = fold_build2 (MINUS_EXPR, type, max, one);
938 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
940 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
942 max = TYPE_MAX_VALUE (type);
944 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
948 /* If LIMIT_VR is of the form [N1, N2], we need to build the
949 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
954 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
955 if (cond_code == GT_EXPR)
957 tree one = build_int_cst (type, 1);
958 min = fold_build2 (PLUS_EXPR, type, min, one);
961 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
966 /* If VAR already had a known range, it may happen that the new
967 range we have computed and VAR's range are not compatible. For
971 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
973 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
975 While the above comes from a faulty program, it will cause an ICE
976 later because p_8 and p_6 will have incompatible ranges and at
977 the same time will be considered equivalent. A similar situation
981 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
983 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
985 Again i_6 and i_7 will have incompatible ranges. It would be
986 pointless to try and do anything with i_7's range because
987 anything dominated by 'if (i_5 < 5)' will be optimized away.
988 Note, due to the wa in which simulation proceeds, the statement
989 i_7 = ASSERT_EXPR <...> we would never be visited because the
990 conditional 'if (i_5 < 5)' always evaluates to false. However,
991 this extra check does not hurt and may protect against future
992 changes to VRP that may get into a situation similar to the
993 NULL pointer dereference example.
995 Note that these compatibility tests are only needed when dealing
996 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
997 are both anti-ranges, they will always be compatible, because two
998 anti-ranges will always have a non-empty intersection. */
1000 var_vr = get_value_range (var);
1002 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1003 ranges or anti-ranges. */
1004 if (vr_p->type == VR_VARYING
1005 || vr_p->type == VR_UNDEFINED
1006 || var_vr->type == VR_VARYING
1007 || var_vr->type == VR_UNDEFINED
1008 || symbolic_range_p (vr_p)
1009 || symbolic_range_p (var_vr))
1012 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1014 /* If the two ranges have a non-empty intersection, we can
1015 refine the resulting range. Since the assert expression
1016 creates an equivalency and at the same time it asserts a
1017 predicate, we can take the intersection of the two ranges to
1018 get better precision. */
1019 if (value_ranges_intersect_p (var_vr, vr_p))
1021 /* Use the larger of the two minimums. */
1022 if (compare_values (vr_p->min, var_vr->min) == -1)
1027 /* Use the smaller of the two maximums. */
1028 if (compare_values (vr_p->max, var_vr->max) == 1)
1033 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1037 /* The two ranges do not intersect, set the new range to
1038 VARYING, because we will not be able to do anything
1039 meaningful with it. */
1040 set_value_range_to_varying (vr_p);
1043 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1044 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1046 /* A range and an anti-range will cancel each other only if
1047 their ends are the same. For instance, in the example above,
1048 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1049 so VR_P should be set to VR_VARYING. */
1050 if (compare_values (var_vr->min, vr_p->min) == 0
1051 && compare_values (var_vr->max, vr_p->max) == 0)
1052 set_value_range_to_varying (vr_p);
1055 tree min, max, anti_min, anti_max, real_min, real_max;
1057 /* We want to compute the logical AND of the two ranges;
1058 there are three cases to consider.
1061 1. The VR_ANTI_RANGE range is completely within the
1062 VR_RANGE and the endpoints of the ranges are
1063 different. In that case the resulting range
1064 should be whichever range is more precise.
1065 Typically that will be the VR_RANGE.
1067 2. The VR_ANTI_RANGE is completely disjoint from
1068 the VR_RANGE. In this case the resulting range
1069 should be the VR_RANGE.
1071 3. There is some overlap between the VR_ANTI_RANGE
1074 3a. If the high limit of the VR_ANTI_RANGE resides
1075 within the VR_RANGE, then the result is a new
1076 VR_RANGE starting at the high limit of the
1077 the VR_ANTI_RANGE + 1 and extending to the
1078 high limit of the original VR_RANGE.
1080 3b. If the low limit of the VR_ANTI_RANGE resides
1081 within the VR_RANGE, then the result is a new
1082 VR_RANGE starting at the low limit of the original
1083 VR_RANGE and extending to the low limit of the
1084 VR_ANTI_RANGE - 1. */
1085 if (vr_p->type == VR_ANTI_RANGE)
1087 anti_min = vr_p->min;
1088 anti_max = vr_p->max;
1089 real_min = var_vr->min;
1090 real_max = var_vr->max;
1094 anti_min = var_vr->min;
1095 anti_max = var_vr->max;
1096 real_min = vr_p->min;
1097 real_max = vr_p->max;
1101 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1102 not including any endpoints. */
1103 if (compare_values (anti_max, real_max) == -1
1104 && compare_values (anti_min, real_min) == 1)
1106 set_value_range (vr_p, VR_RANGE, real_min,
1107 real_max, vr_p->equiv);
1109 /* Case 2, VR_ANTI_RANGE completely disjoint from
1111 else if (compare_values (anti_min, real_max) == 1
1112 || compare_values (anti_max, real_min) == -1)
1114 set_value_range (vr_p, VR_RANGE, real_min,
1115 real_max, vr_p->equiv);
1117 /* Case 3a, the anti-range extends into the low
1118 part of the real range. Thus creating a new
1119 low for the real reange. */
1120 else if ((compare_values (anti_max, real_min) == 1
1121 || compare_values (anti_max, real_min) == 0)
1122 && compare_values (anti_max, real_max) == -1)
1124 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1126 build_int_cst (TREE_TYPE (var_vr->min), 1));
1128 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1130 /* Case 3b, the anti-range extends into the high
1131 part of the real range. Thus creating a new
1132 higher for the real reange. */
1133 else if (compare_values (anti_min, real_min) == 1
1134 && (compare_values (anti_min, real_max) == -1
1135 || compare_values (anti_min, real_max) == 0))
1137 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1139 build_int_cst (TREE_TYPE (var_vr->min), 1));
1141 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1146 /* Remove names from the equivalence set that have ranges
1147 incompatible with VR_P. */
1149 fix_equivalence_set (vr_p);
1153 /* Extract range information from SSA name VAR and store it in VR. If
1154 VAR has an interesting range, use it. Otherwise, create the
1155 range [VAR, VAR] and return it. This is useful in situations where
1156 we may have conditionals testing values of VARYING names. For
1163 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1167 extract_range_from_ssa_name (value_range_t *vr, tree var)
1169 value_range_t *var_vr = get_value_range (var);
1171 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1172 copy_value_range (vr, var_vr);
1174 set_value_range (vr, VR_RANGE, var, var, NULL);
1176 add_equivalence (vr->equiv, var);
1180 /* Wrapper around int_const_binop. If the operation overflows and we
1181 are not using wrapping arithmetic, then adjust the result to be
1182 -INF or +INF depending on CODE, VAL1 and VAL2. */
1185 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1190 return int_const_binop (code, val1, val2, 0);
1192 /* If we are not using wrapping arithmetic, operate symbolically
1193 on -INF and +INF. */
1194 res = int_const_binop (code, val1, val2, 0);
1196 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1198 int checkz = compare_values (res, val1);
1200 /* Ensure that res = val1 [+*] val2 >= val1
1201 or that res = val1 - val2 <= val1. */
1202 if (((code == PLUS_EXPR || code == MULT_EXPR)
1203 && !(checkz == 1 || checkz == 0))
1204 || (code == MINUS_EXPR
1205 && !(checkz == 0 || checkz == -1)))
1207 res = copy_node (res);
1208 TREE_OVERFLOW (res) = 1;
1211 else if (TREE_OVERFLOW (res)
1212 && !TREE_OVERFLOW (val1)
1213 && !TREE_OVERFLOW (val2))
1215 /* If the operation overflowed but neither VAL1 nor VAL2 are
1216 overflown, return -INF or +INF depending on the operation
1217 and the combination of signs of the operands. */
1218 int sgn1 = tree_int_cst_sgn (val1);
1219 int sgn2 = tree_int_cst_sgn (val2);
1221 /* Notice that we only need to handle the restricted set of
1222 operations handled by extract_range_from_binary_expr.
1223 Among them, only multiplication, addition and subtraction
1224 can yield overflow without overflown operands because we
1225 are working with integral types only... except in the
1226 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1227 for division too. */
1229 /* For multiplication, the sign of the overflow is given
1230 by the comparison of the signs of the operands. */
1231 if ((code == MULT_EXPR && sgn1 == sgn2)
1232 /* For addition, the operands must be of the same sign
1233 to yield an overflow. Its sign is therefore that
1234 of one of the operands, for example the first. */
1235 || (code == PLUS_EXPR && sgn1 > 0)
1236 /* For subtraction, the operands must be of different
1237 signs to yield an overflow. Its sign is therefore
1238 that of the first operand or the opposite of that
1239 of the second operand. A first operand of 0 counts
1240 as positive here, for the corner case 0 - (-INF),
1241 which overflows, but must yield +INF. */
1242 || (code == MINUS_EXPR && sgn1 >= 0)
1243 /* For division, the only case is -INF / -1 = +INF. */
1244 || code == TRUNC_DIV_EXPR
1245 || code == FLOOR_DIV_EXPR
1246 || code == CEIL_DIV_EXPR
1247 || code == EXACT_DIV_EXPR
1248 || code == ROUND_DIV_EXPR)
1249 return TYPE_MAX_VALUE (TREE_TYPE (res));
1251 return TYPE_MIN_VALUE (TREE_TYPE (res));
1258 /* Extract range information from a binary expression EXPR based on
1259 the ranges of each of its operands and the expression code. */
1262 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1264 enum tree_code code = TREE_CODE (expr);
1265 enum value_range_type type;
1266 tree op0, op1, min, max;
1268 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1269 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1271 /* Not all binary expressions can be applied to ranges in a
1272 meaningful way. Handle only arithmetic operations. */
1273 if (code != PLUS_EXPR
1274 && code != MINUS_EXPR
1275 && code != MULT_EXPR
1276 && code != TRUNC_DIV_EXPR
1277 && code != FLOOR_DIV_EXPR
1278 && code != CEIL_DIV_EXPR
1279 && code != EXACT_DIV_EXPR
1280 && code != ROUND_DIV_EXPR
1283 && code != BIT_AND_EXPR
1284 && code != TRUTH_ANDIF_EXPR
1285 && code != TRUTH_ORIF_EXPR
1286 && code != TRUTH_AND_EXPR
1287 && code != TRUTH_OR_EXPR)
1289 set_value_range_to_varying (vr);
1293 /* Get value ranges for each operand. For constant operands, create
1294 a new value range with the operand to simplify processing. */
1295 op0 = TREE_OPERAND (expr, 0);
1296 if (TREE_CODE (op0) == SSA_NAME)
1297 vr0 = *(get_value_range (op0));
1298 else if (is_gimple_min_invariant (op0))
1299 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1301 set_value_range_to_varying (&vr0);
1303 op1 = TREE_OPERAND (expr, 1);
1304 if (TREE_CODE (op1) == SSA_NAME)
1305 vr1 = *(get_value_range (op1));
1306 else if (is_gimple_min_invariant (op1))
1307 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1309 set_value_range_to_varying (&vr1);
1311 /* If either range is UNDEFINED, so is the result. */
1312 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1314 set_value_range_to_undefined (vr);
1318 /* The type of the resulting value range defaults to VR0.TYPE. */
1321 /* Refuse to operate on VARYING ranges, ranges of different kinds
1322 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1323 because we may be able to derive a useful range even if one of
1324 the operands is VR_VARYING or symbolic range. TODO, we may be
1325 able to derive anti-ranges in some cases. */
1326 if (code != BIT_AND_EXPR
1327 && code != TRUTH_AND_EXPR
1328 && code != TRUTH_OR_EXPR
1329 && (vr0.type == VR_VARYING
1330 || vr1.type == VR_VARYING
1331 || vr0.type != vr1.type
1332 || symbolic_range_p (&vr0)
1333 || symbolic_range_p (&vr1)))
1335 set_value_range_to_varying (vr);
1339 /* Now evaluate the expression to determine the new range. */
1340 if (POINTER_TYPE_P (TREE_TYPE (expr))
1341 || POINTER_TYPE_P (TREE_TYPE (op0))
1342 || POINTER_TYPE_P (TREE_TYPE (op1)))
1344 /* For pointer types, we are really only interested in asserting
1345 whether the expression evaluates to non-NULL. FIXME, we used
1346 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1347 ivopts is generating expressions with pointer multiplication
1349 if (code == PLUS_EXPR)
1351 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1352 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1353 else if (range_is_null (&vr0) && range_is_null (&vr1))
1354 set_value_range_to_null (vr, TREE_TYPE (expr));
1356 set_value_range_to_varying (vr);
1360 /* Subtracting from a pointer, may yield 0, so just drop the
1361 resulting range to varying. */
1362 set_value_range_to_varying (vr);
1368 /* For integer ranges, apply the operation to each end of the
1369 range and see what we end up with. */
1370 if (code == TRUTH_ANDIF_EXPR
1371 || code == TRUTH_ORIF_EXPR
1372 || code == TRUTH_AND_EXPR
1373 || code == TRUTH_OR_EXPR)
1375 /* If one of the operands is zero, we know that the whole
1376 expression evaluates zero. */
1377 if (code == TRUTH_AND_EXPR
1378 && ((vr0.type == VR_RANGE
1379 && integer_zerop (vr0.min)
1380 && integer_zerop (vr0.max))
1381 || (vr1.type == VR_RANGE
1382 && integer_zerop (vr1.min)
1383 && integer_zerop (vr1.max))))
1386 min = max = build_int_cst (TREE_TYPE (expr), 0);
1388 /* If one of the operands is one, we know that the whole
1389 expression evaluates one. */
1390 else if (code == TRUTH_OR_EXPR
1391 && ((vr0.type == VR_RANGE
1392 && integer_onep (vr0.min)
1393 && integer_onep (vr0.max))
1394 || (vr1.type == VR_RANGE
1395 && integer_onep (vr1.min)
1396 && integer_onep (vr1.max))))
1399 min = max = build_int_cst (TREE_TYPE (expr), 1);
1401 else if (vr0.type != VR_VARYING
1402 && vr1.type != VR_VARYING
1403 && vr0.type == vr1.type
1404 && !symbolic_range_p (&vr0)
1405 && !symbolic_range_p (&vr1))
1407 /* Boolean expressions cannot be folded with int_const_binop. */
1408 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1409 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1413 set_value_range_to_varying (vr);
1417 else if (code == PLUS_EXPR
1419 || code == MAX_EXPR)
1421 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1422 VR_VARYING. It would take more effort to compute a precise
1423 range for such a case. For example, if we have op0 == 1 and
1424 op1 == -1 with their ranges both being ~[0,0], we would have
1425 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1426 Note that we are guaranteed to have vr0.type == vr1.type at
1428 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1430 set_value_range_to_varying (vr);
1434 /* For operations that make the resulting range directly
1435 proportional to the original ranges, apply the operation to
1436 the same end of each range. */
1437 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1438 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1440 else if (code == MULT_EXPR
1441 || code == TRUNC_DIV_EXPR
1442 || code == FLOOR_DIV_EXPR
1443 || code == CEIL_DIV_EXPR
1444 || code == EXACT_DIV_EXPR
1445 || code == ROUND_DIV_EXPR)
1450 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1451 drop to VR_VARYING. It would take more effort to compute a
1452 precise range for such a case. For example, if we have
1453 op0 == 65536 and op1 == 65536 with their ranges both being
1454 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1455 we cannot claim that the product is in ~[0,0]. Note that we
1456 are guaranteed to have vr0.type == vr1.type at this
1458 if (code == MULT_EXPR
1459 && vr0.type == VR_ANTI_RANGE
1460 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1462 set_value_range_to_varying (vr);
1466 /* Multiplications and divisions are a bit tricky to handle,
1467 depending on the mix of signs we have in the two ranges, we
1468 need to operate on different values to get the minimum and
1469 maximum values for the new range. One approach is to figure
1470 out all the variations of range combinations and do the
1473 However, this involves several calls to compare_values and it
1474 is pretty convoluted. It's simpler to do the 4 operations
1475 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1476 MAX1) and then figure the smallest and largest values to form
1479 /* Divisions by zero result in a VARYING value. */
1480 if (code != MULT_EXPR
1481 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1483 set_value_range_to_varying (vr);
1487 /* Compute the 4 cross operations. */
1488 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1490 val[1] = (vr1.max != vr1.min)
1491 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1494 val[2] = (vr0.max != vr0.min)
1495 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1498 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1499 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1502 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1506 for (i = 1; i < 4; i++)
1508 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1509 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1514 if (!is_gimple_min_invariant (val[i]) || TREE_OVERFLOW (val[i]))
1516 /* If we found an overflowed value, set MIN and MAX
1517 to it so that we set the resulting range to
1523 if (compare_values (val[i], min) == -1)
1526 if (compare_values (val[i], max) == 1)
1531 else if (code == MINUS_EXPR)
1533 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1534 VR_VARYING. It would take more effort to compute a precise
1535 range for such a case. For example, if we have op0 == 1 and
1536 op1 == 1 with their ranges both being ~[0,0], we would have
1537 op0 - op1 == 0, so we cannot claim that the difference is in
1538 ~[0,0]. Note that we are guaranteed to have
1539 vr0.type == vr1.type at this point. */
1540 if (vr0.type == VR_ANTI_RANGE)
1542 set_value_range_to_varying (vr);
1546 /* For MINUS_EXPR, apply the operation to the opposite ends of
1548 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1549 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1551 else if (code == BIT_AND_EXPR)
1553 if (vr0.type == VR_RANGE
1554 && vr0.min == vr0.max
1555 && tree_expr_nonnegative_p (vr0.max)
1556 && TREE_CODE (vr0.max) == INTEGER_CST)
1558 min = build_int_cst (TREE_TYPE (expr), 0);
1561 else if (vr1.type == VR_RANGE
1562 && vr1.min == vr1.max
1563 && tree_expr_nonnegative_p (vr1.max)
1564 && TREE_CODE (vr1.max) == INTEGER_CST)
1567 min = build_int_cst (TREE_TYPE (expr), 0);
1572 set_value_range_to_varying (vr);
1579 /* If either MIN or MAX overflowed, then set the resulting range to
1581 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1582 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1584 set_value_range_to_varying (vr);
1588 cmp = compare_values (min, max);
1589 if (cmp == -2 || cmp == 1)
1591 /* If the new range has its limits swapped around (MIN > MAX),
1592 then the operation caused one of them to wrap around, mark
1593 the new range VARYING. */
1594 set_value_range_to_varying (vr);
1597 set_value_range (vr, type, min, max, NULL);
1601 /* Extract range information from a unary expression EXPR based on
1602 the range of its operand and the expression code. */
1605 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1607 enum tree_code code = TREE_CODE (expr);
1610 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1612 /* Refuse to operate on certain unary expressions for which we
1613 cannot easily determine a resulting range. */
1614 if (code == FIX_TRUNC_EXPR
1615 || code == FIX_CEIL_EXPR
1616 || code == FIX_FLOOR_EXPR
1617 || code == FIX_ROUND_EXPR
1618 || code == FLOAT_EXPR
1619 || code == BIT_NOT_EXPR
1620 || code == NON_LVALUE_EXPR
1621 || code == CONJ_EXPR)
1623 set_value_range_to_varying (vr);
1627 /* Get value ranges for the operand. For constant operands, create
1628 a new value range with the operand to simplify processing. */
1629 op0 = TREE_OPERAND (expr, 0);
1630 if (TREE_CODE (op0) == SSA_NAME)
1631 vr0 = *(get_value_range (op0));
1632 else if (is_gimple_min_invariant (op0))
1633 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1635 set_value_range_to_varying (&vr0);
1637 /* If VR0 is UNDEFINED, so is the result. */
1638 if (vr0.type == VR_UNDEFINED)
1640 set_value_range_to_undefined (vr);
1644 /* Refuse to operate on varying and symbolic ranges. Also, if the
1645 operand is neither a pointer nor an integral type, set the
1646 resulting range to VARYING. TODO, in some cases we may be able
1647 to derive anti-ranges (like nonzero values). */
1648 if (vr0.type == VR_VARYING
1649 || (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1650 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1651 || symbolic_range_p (&vr0))
1653 set_value_range_to_varying (vr);
1657 /* If the expression involves pointers, we are only interested in
1658 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1659 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1661 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1662 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1663 else if (range_is_null (&vr0))
1664 set_value_range_to_null (vr, TREE_TYPE (expr));
1666 set_value_range_to_varying (vr);
1671 /* Handle unary expressions on integer ranges. */
1672 if (code == NOP_EXPR || code == CONVERT_EXPR)
1674 tree inner_type = TREE_TYPE (op0);
1675 tree outer_type = TREE_TYPE (expr);
1677 /* If VR0 represents a simple range, then try to convert
1678 the min and max values for the range to the same type
1679 as OUTER_TYPE. If the results compare equal to VR0's
1680 min and max values and the new min is still less than
1681 or equal to the new max, then we can safely use the newly
1682 computed range for EXPR. This allows us to compute
1683 accurate ranges through many casts. */
1684 if (vr0.type == VR_RANGE)
1686 tree new_min, new_max;
1688 /* Convert VR0's min/max to OUTER_TYPE. */
1689 new_min = fold_convert (outer_type, vr0.min);
1690 new_max = fold_convert (outer_type, vr0.max);
1692 /* Verify the new min/max values are gimple values and
1693 that they compare equal to VR0's min/max values. */
1694 if (is_gimple_val (new_min)
1695 && is_gimple_val (new_max)
1696 && tree_int_cst_equal (new_min, vr0.min)
1697 && tree_int_cst_equal (new_max, vr0.max)
1698 && compare_values (new_min, new_max) <= 0
1699 && compare_values (new_min, new_max) >= -1)
1701 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1706 /* When converting types of different sizes, set the result to
1707 VARYING. Things like sign extensions and precision loss may
1708 change the range. For instance, if x_3 is of type 'long long
1709 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1710 is impossible to know at compile time whether y_5 will be
1712 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1713 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1715 set_value_range_to_varying (vr);
1720 /* Apply the operation to each end of the range and see what we end
1722 if (code == NEGATE_EXPR
1723 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1725 /* NEGATE_EXPR flips the range around. */
1726 min = (vr0.max == TYPE_MAX_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1727 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1728 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1730 max = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1731 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1732 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1735 else if (code == NEGATE_EXPR
1736 && TYPE_UNSIGNED (TREE_TYPE (expr)))
1738 if (!range_includes_zero_p (&vr0))
1740 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1741 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1745 if (range_is_null (&vr0))
1746 set_value_range_to_null (vr, TREE_TYPE (expr));
1748 set_value_range_to_varying (vr);
1752 else if (code == ABS_EXPR
1753 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1755 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1758 && ((vr0.type == VR_RANGE
1759 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1760 || (vr0.type == VR_ANTI_RANGE
1761 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
1762 && !range_includes_zero_p (&vr0))))
1764 set_value_range_to_varying (vr);
1768 /* ABS_EXPR may flip the range around, if the original range
1769 included negative values. */
1770 min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1771 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1772 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1774 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1776 cmp = compare_values (min, max);
1778 /* If a VR_ANTI_RANGEs contains zero, then we have
1779 ~[-INF, min(MIN, MAX)]. */
1780 if (vr0.type == VR_ANTI_RANGE)
1782 if (range_includes_zero_p (&vr0))
1784 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1786 /* Take the lower of the two values. */
1790 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1791 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1792 flag_wrapv is set and the original anti-range doesn't include
1793 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1794 min = (flag_wrapv && vr0.min != type_min_value
1795 ? int_const_binop (PLUS_EXPR,
1797 integer_one_node, 0)
1802 /* All else has failed, so create the range [0, INF], even for
1803 flag_wrapv since TYPE_MIN_VALUE is in the original
1805 vr0.type = VR_RANGE;
1806 min = build_int_cst (TREE_TYPE (expr), 0);
1807 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1811 /* If the range contains zero then we know that the minimum value in the
1812 range will be zero. */
1813 else if (range_includes_zero_p (&vr0))
1817 min = build_int_cst (TREE_TYPE (expr), 0);
1821 /* If the range was reversed, swap MIN and MAX. */
1832 /* Otherwise, operate on each end of the range. */
1833 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1834 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1837 cmp = compare_values (min, max);
1838 if (cmp == -2 || cmp == 1)
1840 /* If the new range has its limits swapped around (MIN > MAX),
1841 then the operation caused one of them to wrap around, mark
1842 the new range VARYING. */
1843 set_value_range_to_varying (vr);
1846 set_value_range (vr, vr0.type, min, max, NULL);
1850 /* Extract range information from a comparison expression EXPR based
1851 on the range of its operand and the expression code. */
1854 extract_range_from_comparison (value_range_t *vr, tree expr)
1856 tree val = vrp_evaluate_conditional (expr, false);
1859 /* Since this expression was found on the RHS of an assignment,
1860 its type may be different from _Bool. Convert VAL to EXPR's
1862 val = fold_convert (TREE_TYPE (expr), val);
1863 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1866 set_value_range_to_varying (vr);
1870 /* Try to compute a useful range out of expression EXPR and store it
1874 extract_range_from_expr (value_range_t *vr, tree expr)
1876 enum tree_code code = TREE_CODE (expr);
1878 if (code == ASSERT_EXPR)
1879 extract_range_from_assert (vr, expr);
1880 else if (code == SSA_NAME)
1881 extract_range_from_ssa_name (vr, expr);
1882 else if (TREE_CODE_CLASS (code) == tcc_binary
1883 || code == TRUTH_ANDIF_EXPR
1884 || code == TRUTH_ORIF_EXPR
1885 || code == TRUTH_AND_EXPR
1886 || code == TRUTH_OR_EXPR
1887 || code == TRUTH_XOR_EXPR)
1888 extract_range_from_binary_expr (vr, expr);
1889 else if (TREE_CODE_CLASS (code) == tcc_unary)
1890 extract_range_from_unary_expr (vr, expr);
1891 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1892 extract_range_from_comparison (vr, expr);
1893 else if (is_gimple_min_invariant (expr))
1894 set_value_range (vr, VR_RANGE, expr, expr, NULL);
1896 set_value_range_to_varying (vr);
1898 /* If we got a varying range from the tests above, try a final
1899 time to derive a nonnegative or nonzero range. This time
1900 relying primarily on generic routines in fold in conjunction
1902 if (vr->type == VR_VARYING)
1904 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
1905 && vrp_expr_computes_nonnegative (expr))
1906 set_value_range_to_nonnegative (vr, TREE_TYPE (expr));
1907 else if (vrp_expr_computes_nonzero (expr))
1908 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1912 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1913 would be profitable to adjust VR using scalar evolution information
1914 for VAR. If so, update VR with the new limits. */
1917 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
1920 tree init, step, chrec;
1921 bool init_is_max, unknown_max;
1923 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1924 better opportunities than a regular range, but I'm not sure. */
1925 if (vr->type == VR_ANTI_RANGE)
1928 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
1929 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1932 init = initial_condition_in_loop_num (chrec, loop->num);
1933 step = evolution_part_in_loop_num (chrec, loop->num);
1935 /* If STEP is symbolic, we can't know whether INIT will be the
1936 minimum or maximum value in the range. */
1937 if (step == NULL_TREE
1938 || !is_gimple_min_invariant (step))
1941 /* Do not adjust ranges when chrec may wrap. */
1942 if (scev_probably_wraps_p (chrec_type (chrec), init, step, stmt,
1943 current_loops->parray[CHREC_VARIABLE (chrec)],
1944 &init_is_max, &unknown_max)
1948 if (!POINTER_TYPE_P (TREE_TYPE (init))
1949 && (vr->type == VR_VARYING || vr->type == VR_UNDEFINED))
1951 /* For VARYING or UNDEFINED ranges, just about anything we get
1952 from scalar evolutions should be better. */
1953 tree min = TYPE_MIN_VALUE (TREE_TYPE (init));
1954 tree max = TYPE_MAX_VALUE (TREE_TYPE (init));
1961 /* If we would create an invalid range, then just assume we
1962 know absolutely nothing. This may be over-conservative,
1963 but it's clearly safe. */
1964 if (compare_values (min, max) == 1)
1967 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
1969 else if (vr->type == VR_RANGE)
1976 /* INIT is the maximum value. If INIT is lower than VR->MAX
1977 but no smaller than VR->MIN, set VR->MAX to INIT. */
1978 if (compare_values (init, max) == -1)
1982 /* If we just created an invalid range with the minimum
1983 greater than the maximum, take the minimum all the
1985 if (compare_values (min, max) == 1)
1986 min = TYPE_MIN_VALUE (TREE_TYPE (min));
1991 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
1992 if (compare_values (init, min) == 1)
1996 /* If we just created an invalid range with the minimum
1997 greater than the maximum, take the maximum all the
1999 if (compare_values (min, max) == 1)
2000 max = TYPE_MAX_VALUE (TREE_TYPE (max));
2004 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2009 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2011 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2012 all the values in the ranges.
2014 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2016 - Return NULL_TREE if it is not always possible to determine the
2017 value of the comparison. */
2021 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
2023 /* VARYING or UNDEFINED ranges cannot be compared. */
2024 if (vr0->type == VR_VARYING
2025 || vr0->type == VR_UNDEFINED
2026 || vr1->type == VR_VARYING
2027 || vr1->type == VR_UNDEFINED)
2030 /* Anti-ranges need to be handled separately. */
2031 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2033 /* If both are anti-ranges, then we cannot compute any
2035 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2038 /* These comparisons are never statically computable. */
2045 /* Equality can be computed only between a range and an
2046 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2047 if (vr0->type == VR_RANGE)
2049 /* To simplify processing, make VR0 the anti-range. */
2050 value_range_t *tmp = vr0;
2055 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2057 if (compare_values (vr0->min, vr1->min) == 0
2058 && compare_values (vr0->max, vr1->max) == 0)
2059 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2064 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2065 operands around and change the comparison code. */
2066 if (comp == GT_EXPR || comp == GE_EXPR)
2069 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2075 if (comp == EQ_EXPR)
2077 /* Equality may only be computed if both ranges represent
2078 exactly one value. */
2079 if (compare_values (vr0->min, vr0->max) == 0
2080 && compare_values (vr1->min, vr1->max) == 0)
2082 int cmp_min = compare_values (vr0->min, vr1->min);
2083 int cmp_max = compare_values (vr0->max, vr1->max);
2084 if (cmp_min == 0 && cmp_max == 0)
2085 return boolean_true_node;
2086 else if (cmp_min != -2 && cmp_max != -2)
2087 return boolean_false_node;
2089 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2090 else if (compare_values (vr0->min, vr1->max) == 1
2091 || compare_values (vr1->min, vr0->max) == 1)
2092 return boolean_false_node;
2096 else if (comp == NE_EXPR)
2100 /* If VR0 is completely to the left or completely to the right
2101 of VR1, they are always different. Notice that we need to
2102 make sure that both comparisons yield similar results to
2103 avoid comparing values that cannot be compared at
2105 cmp1 = compare_values (vr0->max, vr1->min);
2106 cmp2 = compare_values (vr0->min, vr1->max);
2107 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2108 return boolean_true_node;
2110 /* If VR0 and VR1 represent a single value and are identical,
2112 else if (compare_values (vr0->min, vr0->max) == 0
2113 && compare_values (vr1->min, vr1->max) == 0
2114 && compare_values (vr0->min, vr1->min) == 0
2115 && compare_values (vr0->max, vr1->max) == 0)
2116 return boolean_false_node;
2118 /* Otherwise, they may or may not be different. */
2122 else if (comp == LT_EXPR || comp == LE_EXPR)
2126 /* If VR0 is to the left of VR1, return true. */
2127 tst = compare_values (vr0->max, vr1->min);
2128 if ((comp == LT_EXPR && tst == -1)
2129 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2130 return boolean_true_node;
2132 /* If VR0 is to the right of VR1, return false. */
2133 tst = compare_values (vr0->min, vr1->max);
2134 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2135 || (comp == LE_EXPR && tst == 1))
2136 return boolean_false_node;
2138 /* Otherwise, we don't know. */
2146 /* Given a value range VR, a value VAL and a comparison code COMP, return
2147 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2148 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2149 always returns false. Return NULL_TREE if it is not always
2150 possible to determine the value of the comparison. */
2153 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
2155 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2158 /* Anti-ranges need to be handled separately. */
2159 if (vr->type == VR_ANTI_RANGE)
2161 /* For anti-ranges, the only predicates that we can compute at
2162 compile time are equality and inequality. */
2169 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2170 if (value_inside_range (val, vr) == 1)
2171 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2176 if (comp == EQ_EXPR)
2178 /* EQ_EXPR may only be computed if VR represents exactly
2180 if (compare_values (vr->min, vr->max) == 0)
2182 int cmp = compare_values (vr->min, val);
2184 return boolean_true_node;
2185 else if (cmp == -1 || cmp == 1 || cmp == 2)
2186 return boolean_false_node;
2188 else if (compare_values (val, vr->min) == -1
2189 || compare_values (vr->max, val) == -1)
2190 return boolean_false_node;
2194 else if (comp == NE_EXPR)
2196 /* If VAL is not inside VR, then they are always different. */
2197 if (compare_values (vr->max, val) == -1
2198 || compare_values (vr->min, val) == 1)
2199 return boolean_true_node;
2201 /* If VR represents exactly one value equal to VAL, then return
2203 if (compare_values (vr->min, vr->max) == 0
2204 && compare_values (vr->min, val) == 0)
2205 return boolean_false_node;
2207 /* Otherwise, they may or may not be different. */
2210 else if (comp == LT_EXPR || comp == LE_EXPR)
2214 /* If VR is to the left of VAL, return true. */
2215 tst = compare_values (vr->max, val);
2216 if ((comp == LT_EXPR && tst == -1)
2217 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2218 return boolean_true_node;
2220 /* If VR is to the right of VAL, return false. */
2221 tst = compare_values (vr->min, val);
2222 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2223 || (comp == LE_EXPR && tst == 1))
2224 return boolean_false_node;
2226 /* Otherwise, we don't know. */
2229 else if (comp == GT_EXPR || comp == GE_EXPR)
2233 /* If VR is to the right of VAL, return true. */
2234 tst = compare_values (vr->min, val);
2235 if ((comp == GT_EXPR && tst == 1)
2236 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2237 return boolean_true_node;
2239 /* If VR is to the left of VAL, return false. */
2240 tst = compare_values (vr->max, val);
2241 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2242 || (comp == GE_EXPR && tst == -1))
2243 return boolean_false_node;
2245 /* Otherwise, we don't know. */
2253 /* Debugging dumps. */
2255 void dump_value_range (FILE *, value_range_t *);
2256 void debug_value_range (value_range_t *);
2257 void dump_all_value_ranges (FILE *);
2258 void debug_all_value_ranges (void);
2259 void dump_vr_equiv (FILE *, bitmap);
2260 void debug_vr_equiv (bitmap);
2263 /* Dump value range VR to FILE. */
2266 dump_value_range (FILE *file, value_range_t *vr)
2269 fprintf (file, "[]");
2270 else if (vr->type == VR_UNDEFINED)
2271 fprintf (file, "UNDEFINED");
2272 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2274 tree type = TREE_TYPE (vr->min);
2276 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2278 if (INTEGRAL_TYPE_P (type)
2279 && !TYPE_UNSIGNED (type)
2280 && vr->min == TYPE_MIN_VALUE (type))
2281 fprintf (file, "-INF");
2283 print_generic_expr (file, vr->min, 0);
2285 fprintf (file, ", ");
2287 if (INTEGRAL_TYPE_P (type)
2288 && vr->max == TYPE_MAX_VALUE (type))
2289 fprintf (file, "+INF");
2291 print_generic_expr (file, vr->max, 0);
2293 fprintf (file, "]");
2300 fprintf (file, " EQUIVALENCES: { ");
2302 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2304 print_generic_expr (file, ssa_name (i), 0);
2305 fprintf (file, " ");
2309 fprintf (file, "} (%u elements)", c);
2312 else if (vr->type == VR_VARYING)
2313 fprintf (file, "VARYING");
2315 fprintf (file, "INVALID RANGE");
2319 /* Dump value range VR to stderr. */
2322 debug_value_range (value_range_t *vr)
2324 dump_value_range (stderr, vr);
2328 /* Dump value ranges of all SSA_NAMEs to FILE. */
2331 dump_all_value_ranges (FILE *file)
2335 for (i = 0; i < num_ssa_names; i++)
2339 print_generic_expr (file, ssa_name (i), 0);
2340 fprintf (file, ": ");
2341 dump_value_range (file, vr_value[i]);
2342 fprintf (file, "\n");
2346 fprintf (file, "\n");
2350 /* Dump all value ranges to stderr. */
2353 debug_all_value_ranges (void)
2355 dump_all_value_ranges (stderr);
2359 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2360 create a new SSA name N and return the assertion assignment
2361 'V = ASSERT_EXPR <V, V OP W>'. */
2364 build_assert_expr_for (tree cond, tree v)
2368 gcc_assert (TREE_CODE (v) == SSA_NAME);
2369 n = duplicate_ssa_name (v, NULL_TREE);
2371 if (COMPARISON_CLASS_P (cond))
2373 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2374 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, a);
2376 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2378 /* Given !V, build the assignment N = false. */
2379 tree op0 = TREE_OPERAND (cond, 0);
2380 gcc_assert (op0 == v);
2381 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
2383 else if (TREE_CODE (cond) == SSA_NAME)
2385 /* Given V, build the assignment N = true. */
2386 gcc_assert (v == cond);
2387 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
2392 SSA_NAME_DEF_STMT (n) = assertion;
2394 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2395 operand of the ASSERT_EXPR. Register the new name and the old one
2396 in the replacement table so that we can fix the SSA web after
2397 adding all the ASSERT_EXPRs. */
2398 register_new_name_mapping (n, v);
2404 /* Return false if EXPR is a predicate expression involving floating
2408 fp_predicate (tree expr)
2410 return (COMPARISON_CLASS_P (expr)
2411 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2415 /* If the range of values taken by OP can be inferred after STMT executes,
2416 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2417 describes the inferred range. Return true if a range could be
2421 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2424 *comp_code_p = ERROR_MARK;
2426 /* Do not attempt to infer anything in names that flow through
2428 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2431 /* Similarly, don't infer anything from statements that may throw
2433 if (tree_could_throw_p (stmt))
2436 /* If STMT is the last statement of a basic block with no
2437 successors, there is no point inferring anything about any of its
2438 operands. We would not be able to find a proper insertion point
2439 for the assertion, anyway. */
2440 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
2443 /* We can only assume that a pointer dereference will yield
2444 non-NULL if -fdelete-null-pointer-checks is enabled. */
2445 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
2448 unsigned num_uses, num_derefs;
2450 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2453 *val_p = build_int_cst (TREE_TYPE (op), 0);
2454 *comp_code_p = NE_EXPR;
2463 void dump_asserts_for (FILE *, tree);
2464 void debug_asserts_for (tree);
2465 void dump_all_asserts (FILE *);
2466 void debug_all_asserts (void);
2468 /* Dump all the registered assertions for NAME to FILE. */
2471 dump_asserts_for (FILE *file, tree name)
2475 fprintf (file, "Assertions to be inserted for ");
2476 print_generic_expr (file, name, 0);
2477 fprintf (file, "\n");
2479 loc = asserts_for[SSA_NAME_VERSION (name)];
2482 fprintf (file, "\t");
2483 print_generic_expr (file, bsi_stmt (loc->si), 0);
2484 fprintf (file, "\n\tBB #%d", loc->bb->index);
2487 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2488 loc->e->dest->index);
2489 dump_edge_info (file, loc->e, 0);
2491 fprintf (file, "\n\tPREDICATE: ");
2492 print_generic_expr (file, name, 0);
2493 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2494 print_generic_expr (file, loc->val, 0);
2495 fprintf (file, "\n\n");
2499 fprintf (file, "\n");
2503 /* Dump all the registered assertions for NAME to stderr. */
2506 debug_asserts_for (tree name)
2508 dump_asserts_for (stderr, name);
2512 /* Dump all the registered assertions for all the names to FILE. */
2515 dump_all_asserts (FILE *file)
2520 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2521 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2522 dump_asserts_for (file, ssa_name (i));
2523 fprintf (file, "\n");
2527 /* Dump all the registered assertions for all the names to stderr. */
2530 debug_all_asserts (void)
2532 dump_all_asserts (stderr);
2536 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2537 'NAME COMP_CODE VAL' at a location that dominates block BB or
2538 E->DEST, then register this location as a possible insertion point
2539 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2541 BB, E and SI provide the exact insertion point for the new
2542 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2543 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2544 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2545 must not be NULL. */
2548 register_new_assert_for (tree name,
2549 enum tree_code comp_code,
2553 block_stmt_iterator si)
2555 assert_locus_t n, loc, last_loc;
2557 basic_block dest_bb;
2559 #if defined ENABLE_CHECKING
2560 gcc_assert (bb == NULL || e == NULL);
2563 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2564 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2567 /* The new assertion A will be inserted at BB or E. We need to
2568 determine if the new location is dominated by a previously
2569 registered location for A. If we are doing an edge insertion,
2570 assume that A will be inserted at E->DEST. Note that this is not
2573 If E is a critical edge, it will be split. But even if E is
2574 split, the new block will dominate the same set of blocks that
2577 The reverse, however, is not true, blocks dominated by E->DEST
2578 will not be dominated by the new block created to split E. So,
2579 if the insertion location is on a critical edge, we will not use
2580 the new location to move another assertion previously registered
2581 at a block dominated by E->DEST. */
2582 dest_bb = (bb) ? bb : e->dest;
2584 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2585 VAL at a block dominating DEST_BB, then we don't need to insert a new
2586 one. Similarly, if the same assertion already exists at a block
2587 dominated by DEST_BB and the new location is not on a critical
2588 edge, then update the existing location for the assertion (i.e.,
2589 move the assertion up in the dominance tree).
2591 Note, this is implemented as a simple linked list because there
2592 should not be more than a handful of assertions registered per
2593 name. If this becomes a performance problem, a table hashed by
2594 COMP_CODE and VAL could be implemented. */
2595 loc = asserts_for[SSA_NAME_VERSION (name)];
2600 if (loc->comp_code == comp_code
2602 || operand_equal_p (loc->val, val, 0)))
2604 /* If the assertion NAME COMP_CODE VAL has already been
2605 registered at a basic block that dominates DEST_BB, then
2606 we don't need to insert the same assertion again. Note
2607 that we don't check strict dominance here to avoid
2608 replicating the same assertion inside the same basic
2609 block more than once (e.g., when a pointer is
2610 dereferenced several times inside a block).
2612 An exception to this rule are edge insertions. If the
2613 new assertion is to be inserted on edge E, then it will
2614 dominate all the other insertions that we may want to
2615 insert in DEST_BB. So, if we are doing an edge
2616 insertion, don't do this dominance check. */
2618 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2621 /* Otherwise, if E is not a critical edge and DEST_BB
2622 dominates the existing location for the assertion, move
2623 the assertion up in the dominance tree by updating its
2624 location information. */
2625 if ((e == NULL || !EDGE_CRITICAL_P (e))
2626 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2635 /* Update the last node of the list and move to the next one. */
2640 /* If we didn't find an assertion already registered for
2641 NAME COMP_CODE VAL, add a new one at the end of the list of
2642 assertions associated with NAME. */
2643 n = XNEW (struct assert_locus_d);
2647 n->comp_code = comp_code;
2654 asserts_for[SSA_NAME_VERSION (name)] = n;
2656 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2660 /* Try to register an edge assertion for SSA name NAME on edge E for
2661 the conditional jump pointed to by SI. Return true if an assertion
2662 for NAME could be registered. */
2665 register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
2668 enum tree_code comp_code;
2670 stmt = bsi_stmt (si);
2672 /* Do not attempt to infer anything in names that flow through
2674 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2677 /* If NAME was not found in the sub-graph reachable from E, then
2678 there's nothing to do. */
2679 if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2682 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2683 Register an assertion for NAME according to the value that NAME
2685 if (TREE_CODE (stmt) == COND_EXPR)
2687 /* If BB ends in a COND_EXPR then NAME then we should insert
2688 the original predicate on EDGE_TRUE_VALUE and the
2689 opposite predicate on EDGE_FALSE_VALUE. */
2690 tree cond = COND_EXPR_COND (stmt);
2691 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2693 /* Predicates may be a single SSA name or NAME OP VAL. */
2696 /* If the predicate is a name, it must be NAME, in which
2697 case we create the predicate NAME == true or
2698 NAME == false accordingly. */
2699 comp_code = EQ_EXPR;
2700 val = (is_else_edge) ? boolean_false_node : boolean_true_node;
2704 /* Otherwise, we have a comparison of the form NAME COMP VAL
2705 or VAL COMP NAME. */
2706 if (name == TREE_OPERAND (cond, 1))
2708 /* If the predicate is of the form VAL COMP NAME, flip
2709 COMP around because we need to register NAME as the
2710 first operand in the predicate. */
2711 comp_code = swap_tree_comparison (TREE_CODE (cond));
2712 val = TREE_OPERAND (cond, 0);
2716 /* The comparison is of the form NAME COMP VAL, so the
2717 comparison code remains unchanged. */
2718 comp_code = TREE_CODE (cond);
2719 val = TREE_OPERAND (cond, 1);
2722 /* If we are inserting the assertion on the ELSE edge, we
2723 need to invert the sign comparison. */
2725 comp_code = invert_tree_comparison (comp_code, 0);
2727 /* Do not register always-false predicates. FIXME, this
2728 works around a limitation in fold() when dealing with
2729 enumerations. Given 'enum { N1, N2 } x;', fold will not
2730 fold 'if (x > N2)' to 'if (0)'. */
2731 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2732 && (INTEGRAL_TYPE_P (TREE_TYPE (val))
2733 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
2735 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2736 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2738 if (comp_code == GT_EXPR && compare_values (val, max) == 0)
2741 if (comp_code == LT_EXPR && compare_values (val, min) == 0)
2748 /* FIXME. Handle SWITCH_EXPR. */
2752 register_new_assert_for (name, comp_code, val, NULL, e, si);
2757 static bool find_assert_locations (basic_block bb);
2759 /* Determine whether the outgoing edges of BB should receive an
2760 ASSERT_EXPR for each of the operands of BB's last statement. The
2761 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2763 If any of the sub-graphs rooted at BB have an interesting use of
2764 the predicate operands, an assert location node is added to the
2765 list of assertions for the corresponding operands. */
2768 find_conditional_asserts (basic_block bb)
2771 block_stmt_iterator last_si;
2777 need_assert = false;
2778 last_si = bsi_last (bb);
2779 last = bsi_stmt (last_si);
2781 /* Look for uses of the operands in each of the sub-graphs
2782 rooted at BB. We need to check each of the outgoing edges
2783 separately, so that we know what kind of ASSERT_EXPR to
2785 FOR_EACH_EDGE (e, ei, bb->succs)
2790 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2791 Otherwise, when we finish traversing each of the sub-graphs, we
2792 won't know whether the variables were found in the sub-graphs or
2793 if they had been found in a block upstream from BB.
2795 This is actually a bad idea is some cases, particularly jump
2796 threading. Consider a CFG like the following:
2806 Assume that one or more operands in the conditional at the
2807 end of block 0 are used in a conditional in block 2, but not
2808 anywhere in block 1. In this case we will not insert any
2809 assert statements in block 1, which may cause us to miss
2810 opportunities to optimize, particularly for jump threading. */
2811 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2812 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2814 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2815 to determine if any of the operands in the conditional
2816 predicate are used. */
2818 need_assert |= find_assert_locations (e->dest);
2820 /* Register the necessary assertions for each operand in the
2821 conditional predicate. */
2822 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2823 need_assert |= register_edge_assert_for (op, e, last_si);
2826 /* Finally, indicate that we have found the operands in the
2828 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2829 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2835 /* Traverse all the statements in block BB looking for statements that
2836 may generate useful assertions for the SSA names in their operand.
2837 If a statement produces a useful assertion A for name N_i, then the
2838 list of assertions already generated for N_i is scanned to
2839 determine if A is actually needed.
2841 If N_i already had the assertion A at a location dominating the
2842 current location, then nothing needs to be done. Otherwise, the
2843 new location for A is recorded instead.
2845 1- For every statement S in BB, all the variables used by S are
2846 added to bitmap FOUND_IN_SUBGRAPH.
2848 2- If statement S uses an operand N in a way that exposes a known
2849 value range for N, then if N was not already generated by an
2850 ASSERT_EXPR, create a new assert location for N. For instance,
2851 if N is a pointer and the statement dereferences it, we can
2852 assume that N is not NULL.
2854 3- COND_EXPRs are a special case of #2. We can derive range
2855 information from the predicate but need to insert different
2856 ASSERT_EXPRs for each of the sub-graphs rooted at the
2857 conditional block. If the last statement of BB is a conditional
2858 expression of the form 'X op Y', then
2860 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2862 b) If the conditional is the only entry point to the sub-graph
2863 corresponding to the THEN_CLAUSE, recurse into it. On
2864 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2865 an ASSERT_EXPR is added for the corresponding variable.
2867 c) Repeat step (b) on the ELSE_CLAUSE.
2869 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2878 In this case, an assertion on the THEN clause is useful to
2879 determine that 'a' is always 9 on that edge. However, an assertion
2880 on the ELSE clause would be unnecessary.
2882 4- If BB does not end in a conditional expression, then we recurse
2883 into BB's dominator children.
2885 At the end of the recursive traversal, every SSA name will have a
2886 list of locations where ASSERT_EXPRs should be added. When a new
2887 location for name N is found, it is registered by calling
2888 register_new_assert_for. That function keeps track of all the
2889 registered assertions to prevent adding unnecessary assertions.
2890 For instance, if a pointer P_4 is dereferenced more than once in a
2891 dominator tree, only the location dominating all the dereference of
2892 P_4 will receive an ASSERT_EXPR.
2894 If this function returns true, then it means that there are names
2895 for which we need to generate ASSERT_EXPRs. Those assertions are
2896 inserted by process_assert_insertions.
2898 TODO. Handle SWITCH_EXPR. */
2901 find_assert_locations (basic_block bb)
2903 block_stmt_iterator si;
2908 if (TEST_BIT (blocks_visited, bb->index))
2911 SET_BIT (blocks_visited, bb->index);
2913 need_assert = false;
2915 /* Traverse all PHI nodes in BB marking used operands. */
2916 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2918 use_operand_p arg_p;
2921 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
2923 tree arg = USE_FROM_PTR (arg_p);
2924 if (TREE_CODE (arg) == SSA_NAME)
2926 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
2927 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
2932 /* Traverse all the statements in BB marking used names and looking
2933 for statements that may infer assertions for their used operands. */
2935 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2940 stmt = bsi_stmt (si);
2942 /* See if we can derive an assertion for any of STMT's operands. */
2943 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
2946 enum tree_code comp_code;
2948 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
2949 the sub-graph of a conditional block, when we return from
2950 this recursive walk, our parent will use the
2951 FOUND_IN_SUBGRAPH bitset to determine if one of the
2952 operands it was looking for was present in the sub-graph. */
2953 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2955 /* If OP is used in such a way that we can infer a value
2956 range for it, and we don't find a previous assertion for
2957 it, create a new assertion location node for OP. */
2958 if (infer_value_range (stmt, op, &comp_code, &value))
2960 /* If we are able to infer a non-zero value range for OP,
2961 then walk backwards through the use-def chain to see if OP
2962 was set via a typecast.
2964 If so, then we can also infer a nonzero value range
2965 for the operand of the NOP_EXPR. */
2966 if (comp_code == NE_EXPR && integer_zerop (value))
2969 tree def_stmt = SSA_NAME_DEF_STMT (t);
2971 while (TREE_CODE (def_stmt) == MODIFY_EXPR
2972 && TREE_CODE (TREE_OPERAND (def_stmt, 1)) == NOP_EXPR
2973 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0)) == SSA_NAME
2974 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0))))
2976 t = TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0);
2977 def_stmt = SSA_NAME_DEF_STMT (t);
2979 /* Note we want to register the assert for the
2980 operand of the NOP_EXPR after SI, not after the
2982 if (! has_single_use (t))
2984 register_new_assert_for (t, comp_code, value,
2991 /* If OP is used only once, namely in this STMT, don't
2992 bother creating an ASSERT_EXPR for it. Such an
2993 ASSERT_EXPR would do nothing but increase compile time. */
2994 if (!has_single_use (op))
2996 register_new_assert_for (op, comp_code, value, bb, NULL, si);
3002 /* Remember the last statement of the block. */
3006 /* If BB's last statement is a conditional expression
3007 involving integer operands, recurse into each of the sub-graphs
3008 rooted at BB to determine if we need to add ASSERT_EXPRs. */
3010 && TREE_CODE (last) == COND_EXPR
3011 && !fp_predicate (COND_EXPR_COND (last))
3012 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3013 need_assert |= find_conditional_asserts (bb);
3015 /* Recurse into the dominator children of BB. */
3016 for (son = first_dom_son (CDI_DOMINATORS, bb);
3018 son = next_dom_son (CDI_DOMINATORS, son))
3019 need_assert |= find_assert_locations (son);
3025 /* Create an ASSERT_EXPR for NAME and insert it in the location
3026 indicated by LOC. Return true if we made any edge insertions. */
3029 process_assert_insertions_for (tree name, assert_locus_t loc)
3031 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3032 tree stmt, cond, assert_expr;
3036 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
3037 assert_expr = build_assert_expr_for (cond, name);
3041 /* We have been asked to insert the assertion on an edge. This
3042 is used only by COND_EXPR and SWITCH_EXPR assertions. */
3043 #if defined ENABLE_CHECKING
3044 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
3045 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
3048 bsi_insert_on_edge (loc->e, assert_expr);
3052 /* Otherwise, we can insert right after LOC->SI iff the
3053 statement must not be the last statement in the block. */
3054 stmt = bsi_stmt (loc->si);
3055 if (!stmt_ends_bb_p (stmt))
3057 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
3061 /* If STMT must be the last statement in BB, we can only insert new
3062 assertions on the non-abnormal edge out of BB. Note that since
3063 STMT is not control flow, there may only be one non-abnormal edge
3065 FOR_EACH_EDGE (e, ei, loc->bb->succs)
3066 if (!(e->flags & EDGE_ABNORMAL))
3068 bsi_insert_on_edge (e, assert_expr);
3076 /* Process all the insertions registered for every name N_i registered
3077 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3078 found in ASSERTS_FOR[i]. */
3081 process_assert_insertions (void)
3085 bool update_edges_p = false;
3086 int num_asserts = 0;
3088 if (dump_file && (dump_flags & TDF_DETAILS))
3089 dump_all_asserts (dump_file);
3091 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3093 assert_locus_t loc = asserts_for[i];
3098 assert_locus_t next = loc->next;
3099 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3107 bsi_commit_edge_inserts ();
3109 if (dump_file && (dump_flags & TDF_STATS))
3110 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3115 /* Traverse the flowgraph looking for conditional jumps to insert range
3116 expressions. These range expressions are meant to provide information
3117 to optimizations that need to reason in terms of value ranges. They
3118 will not be expanded into RTL. For instance, given:
3127 this pass will transform the code into:
3133 x = ASSERT_EXPR <x, x < y>
3138 y = ASSERT_EXPR <y, x <= y>
3142 The idea is that once copy and constant propagation have run, other
3143 optimizations will be able to determine what ranges of values can 'x'
3144 take in different paths of the code, simply by checking the reaching
3145 definition of 'x'. */
3148 insert_range_assertions (void)
3154 found_in_subgraph = sbitmap_alloc (num_ssa_names);
3155 sbitmap_zero (found_in_subgraph);
3157 blocks_visited = sbitmap_alloc (last_basic_block);
3158 sbitmap_zero (blocks_visited);
3160 need_assert_for = BITMAP_ALLOC (NULL);
3161 asserts_for = XNEWVEC (assert_locus_t, num_ssa_names);
3162 memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
3164 calculate_dominance_info (CDI_DOMINATORS);
3166 update_ssa_p = false;
3167 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3168 if (find_assert_locations (e->dest))
3169 update_ssa_p = true;
3173 process_assert_insertions ();
3174 update_ssa (TODO_update_ssa_no_phi);
3177 if (dump_file && (dump_flags & TDF_DETAILS))
3179 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3180 dump_function_to_file (current_function_decl, dump_file, dump_flags);
3183 sbitmap_free (found_in_subgraph);
3185 BITMAP_FREE (need_assert_for);
3189 /* Convert range assertion expressions into the implied copies and
3190 copy propagate away the copies. Doing the trivial copy propagation
3191 here avoids the need to run the full copy propagation pass after
3194 FIXME, this will eventually lead to copy propagation removing the
3195 names that had useful range information attached to them. For
3196 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3197 then N_i will have the range [3, +INF].
3199 However, by converting the assertion into the implied copy
3200 operation N_i = N_j, we will then copy-propagate N_j into the uses
3201 of N_i and lose the range information. We may want to hold on to
3202 ASSERT_EXPRs a little while longer as the ranges could be used in
3203 things like jump threading.
3205 The problem with keeping ASSERT_EXPRs around is that passes after
3206 VRP need to handle them appropriately.
3208 Another approach would be to make the range information a first
3209 class property of the SSA_NAME so that it can be queried from
3210 any pass. This is made somewhat more complex by the need for
3211 multiple ranges to be associated with one SSA_NAME. */
3214 remove_range_assertions (void)
3217 block_stmt_iterator si;
3219 /* Note that the BSI iterator bump happens at the bottom of the
3220 loop and no bump is necessary if we're removing the statement
3221 referenced by the current BSI. */
3223 for (si = bsi_start (bb); !bsi_end_p (si);)
3225 tree stmt = bsi_stmt (si);
3227 if (TREE_CODE (stmt) == MODIFY_EXPR
3228 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
3230 tree rhs = TREE_OPERAND (stmt, 1), var;
3231 tree cond = fold (ASSERT_EXPR_COND (rhs));
3232 use_operand_p use_p;
3233 imm_use_iterator iter;
3235 gcc_assert (cond != boolean_false_node);
3237 /* Propagate the RHS into every use of the LHS. */
3238 var = ASSERT_EXPR_VAR (rhs);
3239 FOR_EACH_IMM_USE_SAFE (use_p, iter, TREE_OPERAND (stmt, 0))
3241 SET_USE (use_p, var);
3242 gcc_assert (TREE_CODE (var) == SSA_NAME);
3245 /* And finally, remove the copy, it is not needed. */
3246 bsi_remove (&si, true);
3252 sbitmap_free (blocks_visited);
3256 /* Return true if STMT is interesting for VRP. */
3259 stmt_interesting_for_vrp (tree stmt)
3261 if (TREE_CODE (stmt) == PHI_NODE
3262 && is_gimple_reg (PHI_RESULT (stmt))
3263 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3264 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3266 else if (TREE_CODE (stmt) == MODIFY_EXPR)
3268 tree lhs = TREE_OPERAND (stmt, 0);
3269 tree rhs = TREE_OPERAND (stmt, 1);
3271 /* In general, assignments with virtual operands are not useful
3272 for deriving ranges, with the obvious exception of calls to
3273 builtin functions. */
3274 if (TREE_CODE (lhs) == SSA_NAME
3275 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3276 || POINTER_TYPE_P (TREE_TYPE (lhs)))
3277 && ((TREE_CODE (rhs) == CALL_EXPR
3278 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3279 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3280 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3281 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
3284 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3291 /* Initialize local data structures for VRP. */
3294 vrp_initialize (void)
3298 vr_value = XNEWVEC (value_range_t *, num_ssa_names);
3299 memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
3303 block_stmt_iterator si;
3306 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3308 if (!stmt_interesting_for_vrp (phi))
3310 tree lhs = PHI_RESULT (phi);
3311 set_value_range_to_varying (get_value_range (lhs));
3312 DONT_SIMULATE_AGAIN (phi) = true;
3315 DONT_SIMULATE_AGAIN (phi) = false;
3318 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3320 tree stmt = bsi_stmt (si);
3322 if (!stmt_interesting_for_vrp (stmt))
3326 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
3327 set_value_range_to_varying (get_value_range (def));
3328 DONT_SIMULATE_AGAIN (stmt) = true;
3332 DONT_SIMULATE_AGAIN (stmt) = false;
3339 /* Visit assignment STMT. If it produces an interesting range, record
3340 the SSA name in *OUTPUT_P. */
3342 static enum ssa_prop_result
3343 vrp_visit_assignment (tree stmt, tree *output_p)
3348 lhs = TREE_OPERAND (stmt, 0);
3349 rhs = TREE_OPERAND (stmt, 1);
3351 /* We only keep track of ranges in integral and pointer types. */
3352 if (TREE_CODE (lhs) == SSA_NAME
3353 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3354 /* It is valid to have NULL MIN/MAX values on a type. See
3355 build_range_type. */
3356 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
3357 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
3358 || POINTER_TYPE_P (TREE_TYPE (lhs))))
3361 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3363 extract_range_from_expr (&new_vr, rhs);
3365 /* If STMT is inside a loop, we may be able to know something
3366 else about the range of LHS by examining scalar evolution
3368 if (current_loops && (l = loop_containing_stmt (stmt)))
3369 adjust_range_with_scev (&new_vr, l, stmt, lhs);
3371 if (update_value_range (lhs, &new_vr))
3375 if (dump_file && (dump_flags & TDF_DETAILS))
3377 fprintf (dump_file, "Found new range for ");
3378 print_generic_expr (dump_file, lhs, 0);
3379 fprintf (dump_file, ": ");
3380 dump_value_range (dump_file, &new_vr);
3381 fprintf (dump_file, "\n\n");
3384 if (new_vr.type == VR_VARYING)
3385 return SSA_PROP_VARYING;
3387 return SSA_PROP_INTERESTING;
3390 return SSA_PROP_NOT_INTERESTING;
3393 /* Every other statement produces no useful ranges. */
3394 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3395 set_value_range_to_varying (get_value_range (def));
3397 return SSA_PROP_VARYING;
3401 /* Compare all the value ranges for names equivalent to VAR with VAL
3402 using comparison code COMP. Return the same value returned by
3403 compare_range_with_value. */
3406 compare_name_with_value (enum tree_code comp, tree var, tree val)
3413 t = retval = NULL_TREE;
3415 /* Get the set of equivalences for VAR. */
3416 e = get_value_range (var)->equiv;
3418 /* Add VAR to its own set of equivalences so that VAR's value range
3419 is processed by this loop (otherwise, we would have to replicate
3420 the body of the loop just to check VAR's value range). */
3421 bitmap_set_bit (e, SSA_NAME_VERSION (var));
3423 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
3425 value_range_t equiv_vr = *(vr_value[i]);
3427 /* If name N_i does not have a valid range, use N_i as its own
3428 range. This allows us to compare against names that may
3429 have N_i in their ranges. */
3430 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
3432 equiv_vr.type = VR_RANGE;
3433 equiv_vr.min = ssa_name (i);
3434 equiv_vr.max = ssa_name (i);
3437 t = compare_range_with_value (comp, &equiv_vr, val);
3440 /* All the ranges should compare the same against VAL. */
3441 gcc_assert (retval == NULL || t == retval);
3446 /* Remove VAR from its own equivalence set. */
3447 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
3452 /* We couldn't find a non-NULL value for the predicate. */
3457 /* Given a comparison code COMP and names N1 and N2, compare all the
3458 ranges equivalent to N1 against all the ranges equivalent to N2
3459 to determine the value of N1 COMP N2. Return the same value
3460 returned by compare_ranges. */
3463 compare_names (enum tree_code comp, tree n1, tree n2)
3467 bitmap_iterator bi1, bi2;
3470 /* Compare the ranges of every name equivalent to N1 against the
3471 ranges of every name equivalent to N2. */
3472 e1 = get_value_range (n1)->equiv;
3473 e2 = get_value_range (n2)->equiv;
3475 /* Add N1 and N2 to their own set of equivalences to avoid
3476 duplicating the body of the loop just to check N1 and N2
3478 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
3479 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3481 /* If the equivalence sets have a common intersection, then the two
3482 names can be compared without checking their ranges. */
3483 if (bitmap_intersect_p (e1, e2))
3485 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3486 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3488 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3490 : boolean_false_node;
3493 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3494 N2 to their own set of equivalences to avoid duplicating the body
3495 of the loop just to check N1 and N2 ranges. */
3496 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3498 value_range_t vr1 = *(vr_value[i1]);
3500 /* If the range is VARYING or UNDEFINED, use the name itself. */
3501 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3503 vr1.type = VR_RANGE;
3504 vr1.min = ssa_name (i1);
3505 vr1.max = ssa_name (i1);
3508 t = retval = NULL_TREE;
3509 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3511 value_range_t vr2 = *(vr_value[i2]);
3513 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3515 vr2.type = VR_RANGE;
3516 vr2.min = ssa_name (i2);
3517 vr2.max = ssa_name (i2);
3520 t = compare_ranges (comp, &vr1, &vr2);