1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
28 #include "basic-block.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
33 #include "diagnostic.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "tree-chrec.h"
42 /* Set of SSA names found live during the RPO traversal of the function
43 for still active basic-blocks. */
46 /* Return true if the SSA name NAME is live on the edge E. */
49 live_on_edge (edge e, tree name)
51 return (live[e->dest->index]
52 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
55 /* Local functions. */
56 static int compare_values (tree val1, tree val2);
57 static int compare_values_warnv (tree val1, tree val2, bool *);
58 static void vrp_meet (value_range_t *, value_range_t *);
59 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
60 tree, tree, bool, bool *,
63 /* Location information for ASSERT_EXPRs. Each instance of this
64 structure describes an ASSERT_EXPR for an SSA name. Since a single
65 SSA name may have more than one assertion associated with it, these
66 locations are kept in a linked list attached to the corresponding
70 /* Basic block where the assertion would be inserted. */
73 /* Some assertions need to be inserted on an edge (e.g., assertions
74 generated by COND_EXPRs). In those cases, BB will be NULL. */
77 /* Pointer to the statement that generated this assertion. */
78 gimple_stmt_iterator si;
80 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
81 enum tree_code comp_code;
83 /* Value being compared against. */
86 /* Expression to compare. */
89 /* Next node in the linked list. */
90 struct assert_locus_d *next;
93 typedef struct assert_locus_d *assert_locus_t;
95 /* If bit I is present, it means that SSA name N_i has a list of
96 assertions that should be inserted in the IL. */
97 static bitmap need_assert_for;
99 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
100 holds a list of ASSERT_LOCUS_T nodes that describe where
101 ASSERT_EXPRs for SSA name N_I should be inserted. */
102 static assert_locus_t *asserts_for;
104 /* Value range array. After propagation, VR_VALUE[I] holds the range
105 of values that SSA name N_I may take. */
106 static value_range_t **vr_value;
108 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
109 number of executable edges we saw the last time we visited the
111 static int *vr_phi_edge_counts;
118 static VEC (edge, heap) *to_remove_edges;
119 DEF_VEC_O(switch_update);
120 DEF_VEC_ALLOC_O(switch_update, heap);
121 static VEC (switch_update, heap) *to_update_switch_stmts;
124 /* Return the maximum value for TYPEs base type. */
127 vrp_val_max (const_tree type)
129 if (!INTEGRAL_TYPE_P (type))
132 /* For integer sub-types the values for the base type are relevant. */
133 if (TREE_TYPE (type))
134 type = TREE_TYPE (type);
136 return TYPE_MAX_VALUE (type);
139 /* Return the minimum value for TYPEs base type. */
142 vrp_val_min (const_tree type)
144 if (!INTEGRAL_TYPE_P (type))
147 /* For integer sub-types the values for the base type are relevant. */
148 if (TREE_TYPE (type))
149 type = TREE_TYPE (type);
151 return TYPE_MIN_VALUE (type);
154 /* Return whether VAL is equal to the maximum value of its type. This
155 will be true for a positive overflow infinity. We can't do a
156 simple equality comparison with TYPE_MAX_VALUE because C typedefs
157 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
158 to the integer constant with the same value in the type. */
161 vrp_val_is_max (const_tree val)
163 tree type_max = vrp_val_max (TREE_TYPE (val));
164 return (val == type_max
165 || (type_max != NULL_TREE
166 && operand_equal_p (val, type_max, 0)));
169 /* Return whether VAL is equal to the minimum value of its type. This
170 will be true for a negative overflow infinity. */
173 vrp_val_is_min (const_tree val)
175 tree type_min = vrp_val_min (TREE_TYPE (val));
176 return (val == type_min
177 || (type_min != NULL_TREE
178 && operand_equal_p (val, type_min, 0)));
182 /* Return whether TYPE should use an overflow infinity distinct from
183 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
184 represent a signed overflow during VRP computations. An infinity
185 is distinct from a half-range, which will go from some number to
186 TYPE_{MIN,MAX}_VALUE. */
189 needs_overflow_infinity (const_tree type)
191 return (INTEGRAL_TYPE_P (type)
192 && !TYPE_OVERFLOW_WRAPS (type)
193 /* Integer sub-types never overflow as they are never
194 operands of arithmetic operators. */
195 && !(TREE_TYPE (type) && TREE_TYPE (type) != type));
198 /* Return whether TYPE can support our overflow infinity
199 representation: we use the TREE_OVERFLOW flag, which only exists
200 for constants. If TYPE doesn't support this, we don't optimize
201 cases which would require signed overflow--we drop them to
205 supports_overflow_infinity (const_tree type)
207 tree min = vrp_val_min (type), max = vrp_val_max (type);
208 #ifdef ENABLE_CHECKING
209 gcc_assert (needs_overflow_infinity (type));
211 return (min != NULL_TREE
212 && CONSTANT_CLASS_P (min)
214 && CONSTANT_CLASS_P (max));
217 /* VAL is the maximum or minimum value of a type. Return a
218 corresponding overflow infinity. */
221 make_overflow_infinity (tree val)
223 #ifdef ENABLE_CHECKING
224 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
226 val = copy_node (val);
227 TREE_OVERFLOW (val) = 1;
231 /* Return a negative overflow infinity for TYPE. */
234 negative_overflow_infinity (tree type)
236 #ifdef ENABLE_CHECKING
237 gcc_assert (supports_overflow_infinity (type));
239 return make_overflow_infinity (vrp_val_min (type));
242 /* Return a positive overflow infinity for TYPE. */
245 positive_overflow_infinity (tree type)
247 #ifdef ENABLE_CHECKING
248 gcc_assert (supports_overflow_infinity (type));
250 return make_overflow_infinity (vrp_val_max (type));
253 /* Return whether VAL is a negative overflow infinity. */
256 is_negative_overflow_infinity (const_tree val)
258 return (needs_overflow_infinity (TREE_TYPE (val))
259 && CONSTANT_CLASS_P (val)
260 && TREE_OVERFLOW (val)
261 && vrp_val_is_min (val));
264 /* Return whether VAL is a positive overflow infinity. */
267 is_positive_overflow_infinity (const_tree val)
269 return (needs_overflow_infinity (TREE_TYPE (val))
270 && CONSTANT_CLASS_P (val)
271 && TREE_OVERFLOW (val)
272 && vrp_val_is_max (val));
275 /* Return whether VAL is a positive or negative overflow infinity. */
278 is_overflow_infinity (const_tree val)
280 return (needs_overflow_infinity (TREE_TYPE (val))
281 && CONSTANT_CLASS_P (val)
282 && TREE_OVERFLOW (val)
283 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
286 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
289 stmt_overflow_infinity (gimple stmt)
291 if (is_gimple_assign (stmt)
292 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
294 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
298 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
299 the same value with TREE_OVERFLOW clear. This can be used to avoid
300 confusing a regular value with an overflow value. */
303 avoid_overflow_infinity (tree val)
305 if (!is_overflow_infinity (val))
308 if (vrp_val_is_max (val))
309 return vrp_val_max (TREE_TYPE (val));
312 #ifdef ENABLE_CHECKING
313 gcc_assert (vrp_val_is_min (val));
315 return vrp_val_min (TREE_TYPE (val));
320 /* Return true if ARG is marked with the nonnull attribute in the
321 current function signature. */
324 nonnull_arg_p (const_tree arg)
326 tree t, attrs, fntype;
327 unsigned HOST_WIDE_INT arg_num;
329 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
331 /* The static chain decl is always non null. */
332 if (arg == cfun->static_chain_decl)
335 fntype = TREE_TYPE (current_function_decl);
336 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
338 /* If "nonnull" wasn't specified, we know nothing about the argument. */
339 if (attrs == NULL_TREE)
342 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
343 if (TREE_VALUE (attrs) == NULL_TREE)
346 /* Get the position number for ARG in the function signature. */
347 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
349 t = TREE_CHAIN (t), arg_num++)
355 gcc_assert (t == arg);
357 /* Now see if ARG_NUM is mentioned in the nonnull list. */
358 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
360 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
368 /* Set value range VR to VR_VARYING. */
371 set_value_range_to_varying (value_range_t *vr)
373 vr->type = VR_VARYING;
374 vr->min = vr->max = NULL_TREE;
376 bitmap_clear (vr->equiv);
380 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
383 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
384 tree max, bitmap equiv)
386 #if defined ENABLE_CHECKING
387 /* Check the validity of the range. */
388 if (t == VR_RANGE || t == VR_ANTI_RANGE)
392 gcc_assert (min && max);
394 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
395 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
397 cmp = compare_values (min, max);
398 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
400 if (needs_overflow_infinity (TREE_TYPE (min)))
401 gcc_assert (!is_overflow_infinity (min)
402 || !is_overflow_infinity (max));
405 if (t == VR_UNDEFINED || t == VR_VARYING)
406 gcc_assert (min == NULL_TREE && max == NULL_TREE);
408 if (t == VR_UNDEFINED || t == VR_VARYING)
409 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
416 /* Since updating the equivalence set involves deep copying the
417 bitmaps, only do it if absolutely necessary. */
418 if (vr->equiv == NULL
420 vr->equiv = BITMAP_ALLOC (NULL);
422 if (equiv != vr->equiv)
424 if (equiv && !bitmap_empty_p (equiv))
425 bitmap_copy (vr->equiv, equiv);
427 bitmap_clear (vr->equiv);
432 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
433 This means adjusting T, MIN and MAX representing the case of a
434 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
435 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
436 In corner cases where MAX+1 or MIN-1 wraps this will fall back
438 This routine exists to ease canonicalization in the case where we
439 extract ranges from var + CST op limit. */
442 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
443 tree min, tree max, bitmap equiv)
445 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
447 && t != VR_ANTI_RANGE)
448 || TREE_CODE (min) != INTEGER_CST
449 || TREE_CODE (max) != INTEGER_CST)
451 set_value_range (vr, t, min, max, equiv);
455 /* Wrong order for min and max, to swap them and the VR type we need
457 if (tree_int_cst_lt (max, min))
459 tree one = build_int_cst (TREE_TYPE (min), 1);
460 tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
461 max = int_const_binop (MINUS_EXPR, min, one, 0);
464 /* There's one corner case, if we had [C+1, C] before we now have
465 that again. But this represents an empty value range, so drop
466 to varying in this case. */
467 if (tree_int_cst_lt (max, min))
469 set_value_range_to_varying (vr);
473 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
476 /* Anti-ranges that can be represented as ranges should be so. */
477 if (t == VR_ANTI_RANGE)
479 bool is_min = vrp_val_is_min (min);
480 bool is_max = vrp_val_is_max (max);
482 if (is_min && is_max)
484 /* We cannot deal with empty ranges, drop to varying. */
485 set_value_range_to_varying (vr);
489 /* As a special exception preserve non-null ranges. */
490 && !(TYPE_UNSIGNED (TREE_TYPE (min))
491 && integer_zerop (max)))
493 tree one = build_int_cst (TREE_TYPE (max), 1);
494 min = int_const_binop (PLUS_EXPR, max, one, 0);
495 max = vrp_val_max (TREE_TYPE (max));
500 tree one = build_int_cst (TREE_TYPE (min), 1);
501 max = int_const_binop (MINUS_EXPR, min, one, 0);
502 min = vrp_val_min (TREE_TYPE (min));
507 set_value_range (vr, t, min, max, equiv);
510 /* Copy value range FROM into value range TO. */
513 copy_value_range (value_range_t *to, value_range_t *from)
515 set_value_range (to, from->type, from->min, from->max, from->equiv);
518 /* Set value range VR to a single value. This function is only called
519 with values we get from statements, and exists to clear the
520 TREE_OVERFLOW flag so that we don't think we have an overflow
521 infinity when we shouldn't. */
524 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
526 gcc_assert (is_gimple_min_invariant (val));
527 val = avoid_overflow_infinity (val);
528 set_value_range (vr, VR_RANGE, val, val, equiv);
531 /* Set value range VR to a non-negative range of type TYPE.
532 OVERFLOW_INFINITY indicates whether to use an overflow infinity
533 rather than TYPE_MAX_VALUE; this should be true if we determine
534 that the range is nonnegative based on the assumption that signed
535 overflow does not occur. */
538 set_value_range_to_nonnegative (value_range_t *vr, tree type,
539 bool overflow_infinity)
543 if (overflow_infinity && !supports_overflow_infinity (type))
545 set_value_range_to_varying (vr);
549 zero = build_int_cst (type, 0);
550 set_value_range (vr, VR_RANGE, zero,
552 ? positive_overflow_infinity (type)
553 : TYPE_MAX_VALUE (type)),
557 /* Set value range VR to a non-NULL range of type TYPE. */
560 set_value_range_to_nonnull (value_range_t *vr, tree type)
562 tree zero = build_int_cst (type, 0);
563 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
567 /* Set value range VR to a NULL range of type TYPE. */
570 set_value_range_to_null (value_range_t *vr, tree type)
572 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
576 /* Set value range VR to a range of a truthvalue of type TYPE. */
579 set_value_range_to_truthvalue (value_range_t *vr, tree type)
581 if (TYPE_PRECISION (type) == 1)
582 set_value_range_to_varying (vr);
584 set_value_range (vr, VR_RANGE,
585 build_int_cst (type, 0), build_int_cst (type, 1),
590 /* Set value range VR to VR_UNDEFINED. */
593 set_value_range_to_undefined (value_range_t *vr)
595 vr->type = VR_UNDEFINED;
596 vr->min = vr->max = NULL_TREE;
598 bitmap_clear (vr->equiv);
602 /* If abs (min) < abs (max), set VR to [-max, max], if
603 abs (min) >= abs (max), set VR to [-min, min]. */
606 abs_extent_range (value_range_t *vr, tree min, tree max)
610 gcc_assert (TREE_CODE (min) == INTEGER_CST);
611 gcc_assert (TREE_CODE (max) == INTEGER_CST);
612 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
613 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
614 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
615 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
616 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
618 set_value_range_to_varying (vr);
621 cmp = compare_values (min, max);
623 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
624 else if (cmp == 0 || cmp == 1)
627 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
631 set_value_range_to_varying (vr);
634 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
638 /* Return value range information for VAR.
640 If we have no values ranges recorded (ie, VRP is not running), then
641 return NULL. Otherwise create an empty range if none existed for VAR. */
643 static value_range_t *
644 get_value_range (const_tree var)
648 unsigned ver = SSA_NAME_VERSION (var);
650 /* If we have no recorded ranges, then return NULL. */
658 /* Create a default value range. */
659 vr_value[ver] = vr = XCNEW (value_range_t);
661 /* Defer allocating the equivalence set. */
664 /* If VAR is a default definition, the variable can take any value
666 sym = SSA_NAME_VAR (var);
667 if (SSA_NAME_IS_DEFAULT_DEF (var))
669 /* Try to use the "nonnull" attribute to create ~[0, 0]
670 anti-ranges for pointers. Note that this is only valid with
671 default definitions of PARM_DECLs. */
672 if (TREE_CODE (sym) == PARM_DECL
673 && POINTER_TYPE_P (TREE_TYPE (sym))
674 && nonnull_arg_p (sym))
675 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
677 set_value_range_to_varying (vr);
683 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
686 vrp_operand_equal_p (const_tree val1, const_tree val2)
690 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
692 if (is_overflow_infinity (val1))
693 return is_overflow_infinity (val2);
697 /* Return true, if the bitmaps B1 and B2 are equal. */
700 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
704 && bitmap_equal_p (b1, b2)));
707 /* Update the value range and equivalence set for variable VAR to
708 NEW_VR. Return true if NEW_VR is different from VAR's previous
711 NOTE: This function assumes that NEW_VR is a temporary value range
712 object created for the sole purpose of updating VAR's range. The
713 storage used by the equivalence set from NEW_VR will be freed by
714 this function. Do not call update_value_range when NEW_VR
715 is the range object associated with another SSA name. */
718 update_value_range (const_tree var, value_range_t *new_vr)
720 value_range_t *old_vr;
723 /* Update the value range, if necessary. */
724 old_vr = get_value_range (var);
725 is_new = old_vr->type != new_vr->type
726 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
727 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
728 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
731 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
734 BITMAP_FREE (new_vr->equiv);
740 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
741 point where equivalence processing can be turned on/off. */
744 add_equivalence (bitmap *equiv, const_tree var)
746 unsigned ver = SSA_NAME_VERSION (var);
747 value_range_t *vr = vr_value[ver];
750 *equiv = BITMAP_ALLOC (NULL);
751 bitmap_set_bit (*equiv, ver);
753 bitmap_ior_into (*equiv, vr->equiv);
757 /* Return true if VR is ~[0, 0]. */
760 range_is_nonnull (value_range_t *vr)
762 return vr->type == VR_ANTI_RANGE
763 && integer_zerop (vr->min)
764 && integer_zerop (vr->max);
768 /* Return true if VR is [0, 0]. */
771 range_is_null (value_range_t *vr)
773 return vr->type == VR_RANGE
774 && integer_zerop (vr->min)
775 && integer_zerop (vr->max);
779 /* Return true if value range VR involves at least one symbol. */
782 symbolic_range_p (value_range_t *vr)
784 return (!is_gimple_min_invariant (vr->min)
785 || !is_gimple_min_invariant (vr->max));
788 /* Return true if value range VR uses an overflow infinity. */
791 overflow_infinity_range_p (value_range_t *vr)
793 return (vr->type == VR_RANGE
794 && (is_overflow_infinity (vr->min)
795 || is_overflow_infinity (vr->max)));
798 /* Return false if we can not make a valid comparison based on VR;
799 this will be the case if it uses an overflow infinity and overflow
800 is not undefined (i.e., -fno-strict-overflow is in effect).
801 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
802 uses an overflow infinity. */
805 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
807 gcc_assert (vr->type == VR_RANGE);
808 if (is_overflow_infinity (vr->min))
810 *strict_overflow_p = true;
811 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
814 if (is_overflow_infinity (vr->max))
816 *strict_overflow_p = true;
817 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
824 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
825 ranges obtained so far. */
828 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
830 return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
831 || (TREE_CODE (expr) == SSA_NAME
832 && ssa_name_nonnegative_p (expr)));
835 /* Return true if the result of assignment STMT is know to be non-negative.
836 If the return value is based on the assumption that signed overflow is
837 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
838 *STRICT_OVERFLOW_P.*/
841 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
843 enum tree_code code = gimple_assign_rhs_code (stmt);
844 switch (get_gimple_rhs_class (code))
846 case GIMPLE_UNARY_RHS:
847 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
848 gimple_expr_type (stmt),
849 gimple_assign_rhs1 (stmt),
851 case GIMPLE_BINARY_RHS:
852 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
853 gimple_expr_type (stmt),
854 gimple_assign_rhs1 (stmt),
855 gimple_assign_rhs2 (stmt),
857 case GIMPLE_SINGLE_RHS:
858 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
860 case GIMPLE_INVALID_RHS:
867 /* Return true if return value of call STMT is know to be non-negative.
868 If the return value is based on the assumption that signed overflow is
869 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
870 *STRICT_OVERFLOW_P.*/
873 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
875 tree arg0 = gimple_call_num_args (stmt) > 0 ?
876 gimple_call_arg (stmt, 0) : NULL_TREE;
877 tree arg1 = gimple_call_num_args (stmt) > 1 ?
878 gimple_call_arg (stmt, 1) : NULL_TREE;
880 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
881 gimple_call_fndecl (stmt),
887 /* Return true if STMT is know to to compute a non-negative value.
888 If the return value is based on the assumption that signed overflow is
889 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
890 *STRICT_OVERFLOW_P.*/
893 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
895 switch (gimple_code (stmt))
898 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
900 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
906 /* Return true if the result of assignment STMT is know to be non-zero.
907 If the return value is based on the assumption that signed overflow is
908 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
909 *STRICT_OVERFLOW_P.*/
912 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
914 enum tree_code code = gimple_assign_rhs_code (stmt);
915 switch (get_gimple_rhs_class (code))
917 case GIMPLE_UNARY_RHS:
918 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
919 gimple_expr_type (stmt),
920 gimple_assign_rhs1 (stmt),
922 case GIMPLE_BINARY_RHS:
923 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
924 gimple_expr_type (stmt),
925 gimple_assign_rhs1 (stmt),
926 gimple_assign_rhs2 (stmt),
928 case GIMPLE_SINGLE_RHS:
929 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
931 case GIMPLE_INVALID_RHS:
938 /* Return true if STMT is know to to compute a non-zero value.
939 If the return value is based on the assumption that signed overflow is
940 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
941 *STRICT_OVERFLOW_P.*/
944 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
946 switch (gimple_code (stmt))
949 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
951 return gimple_alloca_call_p (stmt);
957 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
961 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
963 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
966 /* If we have an expression of the form &X->a, then the expression
967 is nonnull if X is nonnull. */
968 if (is_gimple_assign (stmt)
969 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
971 tree expr = gimple_assign_rhs1 (stmt);
972 tree base = get_base_address (TREE_OPERAND (expr, 0));
974 if (base != NULL_TREE
975 && TREE_CODE (base) == INDIRECT_REF
976 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
978 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
979 if (range_is_nonnull (vr))
987 /* Returns true if EXPR is a valid value (as expected by compare_values) --
988 a gimple invariant, or SSA_NAME +- CST. */
991 valid_value_p (tree expr)
993 if (TREE_CODE (expr) == SSA_NAME)
996 if (TREE_CODE (expr) == PLUS_EXPR
997 || TREE_CODE (expr) == MINUS_EXPR)
998 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
999 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1001 return is_gimple_min_invariant (expr);
1007 -2 if those are incomparable. */
1009 operand_less_p (tree val, tree val2)
1011 /* LT is folded faster than GE and others. Inline the common case. */
1012 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1014 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1015 return INT_CST_LT_UNSIGNED (val, val2);
1018 if (INT_CST_LT (val, val2))
1026 fold_defer_overflow_warnings ();
1028 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1030 fold_undefer_and_ignore_overflow_warnings ();
1033 || TREE_CODE (tcmp) != INTEGER_CST)
1036 if (!integer_zerop (tcmp))
1040 /* val >= val2, not considering overflow infinity. */
1041 if (is_negative_overflow_infinity (val))
1042 return is_negative_overflow_infinity (val2) ? 0 : 1;
1043 else if (is_positive_overflow_infinity (val2))
1044 return is_positive_overflow_infinity (val) ? 0 : 1;
1049 /* Compare two values VAL1 and VAL2. Return
1051 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1054 +1 if VAL1 > VAL2, and
1057 This is similar to tree_int_cst_compare but supports pointer values
1058 and values that cannot be compared at compile time.
1060 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1061 true if the return value is only valid if we assume that signed
1062 overflow is undefined. */
1065 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1070 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1072 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1073 == POINTER_TYPE_P (TREE_TYPE (val2)));
1074 /* Convert the two values into the same type. This is needed because
1075 sizetype causes sign extension even for unsigned types. */
1076 val2 = fold_convert (TREE_TYPE (val1), val2);
1077 STRIP_USELESS_TYPE_CONVERSION (val2);
1079 if ((TREE_CODE (val1) == SSA_NAME
1080 || TREE_CODE (val1) == PLUS_EXPR
1081 || TREE_CODE (val1) == MINUS_EXPR)
1082 && (TREE_CODE (val2) == SSA_NAME
1083 || TREE_CODE (val2) == PLUS_EXPR
1084 || TREE_CODE (val2) == MINUS_EXPR))
1086 tree n1, c1, n2, c2;
1087 enum tree_code code1, code2;
1089 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1090 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1091 same name, return -2. */
1092 if (TREE_CODE (val1) == SSA_NAME)
1100 code1 = TREE_CODE (val1);
1101 n1 = TREE_OPERAND (val1, 0);
1102 c1 = TREE_OPERAND (val1, 1);
1103 if (tree_int_cst_sgn (c1) == -1)
1105 if (is_negative_overflow_infinity (c1))
1107 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1110 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1114 if (TREE_CODE (val2) == SSA_NAME)
1122 code2 = TREE_CODE (val2);
1123 n2 = TREE_OPERAND (val2, 0);
1124 c2 = TREE_OPERAND (val2, 1);
1125 if (tree_int_cst_sgn (c2) == -1)
1127 if (is_negative_overflow_infinity (c2))
1129 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1132 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1136 /* Both values must use the same name. */
1140 if (code1 == SSA_NAME
1141 && code2 == SSA_NAME)
1145 /* If overflow is defined we cannot simplify more. */
1146 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1149 if (strict_overflow_p != NULL
1150 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1151 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1152 *strict_overflow_p = true;
1154 if (code1 == SSA_NAME)
1156 if (code2 == PLUS_EXPR)
1157 /* NAME < NAME + CST */
1159 else if (code2 == MINUS_EXPR)
1160 /* NAME > NAME - CST */
1163 else if (code1 == PLUS_EXPR)
1165 if (code2 == SSA_NAME)
1166 /* NAME + CST > NAME */
1168 else if (code2 == PLUS_EXPR)
1169 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1170 return compare_values_warnv (c1, c2, strict_overflow_p);
1171 else if (code2 == MINUS_EXPR)
1172 /* NAME + CST1 > NAME - CST2 */
1175 else if (code1 == MINUS_EXPR)
1177 if (code2 == SSA_NAME)
1178 /* NAME - CST < NAME */
1180 else if (code2 == PLUS_EXPR)
1181 /* NAME - CST1 < NAME + CST2 */
1183 else if (code2 == MINUS_EXPR)
1184 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1185 C1 and C2 are swapped in the call to compare_values. */
1186 return compare_values_warnv (c2, c1, strict_overflow_p);
1192 /* We cannot compare non-constants. */
1193 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1196 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1198 /* We cannot compare overflowed values, except for overflow
1200 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1202 if (strict_overflow_p != NULL)
1203 *strict_overflow_p = true;
1204 if (is_negative_overflow_infinity (val1))
1205 return is_negative_overflow_infinity (val2) ? 0 : -1;
1206 else if (is_negative_overflow_infinity (val2))
1208 else if (is_positive_overflow_infinity (val1))
1209 return is_positive_overflow_infinity (val2) ? 0 : 1;
1210 else if (is_positive_overflow_infinity (val2))
1215 return tree_int_cst_compare (val1, val2);
1221 /* First see if VAL1 and VAL2 are not the same. */
1222 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1225 /* If VAL1 is a lower address than VAL2, return -1. */
1226 if (operand_less_p (val1, val2) == 1)
1229 /* If VAL1 is a higher address than VAL2, return +1. */
1230 if (operand_less_p (val2, val1) == 1)
1233 /* If VAL1 is different than VAL2, return +2.
1234 For integer constants we either have already returned -1 or 1
1235 or they are equivalent. We still might succeed in proving
1236 something about non-trivial operands. */
1237 if (TREE_CODE (val1) != INTEGER_CST
1238 || TREE_CODE (val2) != INTEGER_CST)
1240 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1241 if (t && integer_onep (t))
1249 /* Compare values like compare_values_warnv, but treat comparisons of
1250 nonconstants which rely on undefined overflow as incomparable. */
1253 compare_values (tree val1, tree val2)
1259 ret = compare_values_warnv (val1, val2, &sop);
1261 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1267 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1268 0 if VAL is not inside VR,
1269 -2 if we cannot tell either way.
1271 FIXME, the current semantics of this functions are a bit quirky
1272 when taken in the context of VRP. In here we do not care
1273 about VR's type. If VR is the anti-range ~[3, 5] the call
1274 value_inside_range (4, VR) will return 1.
1276 This is counter-intuitive in a strict sense, but the callers
1277 currently expect this. They are calling the function
1278 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1279 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1282 This also applies to value_ranges_intersect_p and
1283 range_includes_zero_p. The semantics of VR_RANGE and
1284 VR_ANTI_RANGE should be encoded here, but that also means
1285 adapting the users of these functions to the new semantics.
1287 Benchmark compile/20001226-1.c compilation time after changing this
1291 value_inside_range (tree val, value_range_t * vr)
1295 cmp1 = operand_less_p (val, vr->min);
1301 cmp2 = operand_less_p (vr->max, val);
1309 /* Return true if value ranges VR0 and VR1 have a non-empty
1312 Benchmark compile/20001226-1.c compilation time after changing this
1317 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1319 /* The value ranges do not intersect if the maximum of the first range is
1320 less than the minimum of the second range or vice versa.
1321 When those relations are unknown, we can't do any better. */
1322 if (operand_less_p (vr0->max, vr1->min) != 0)
1324 if (operand_less_p (vr1->max, vr0->min) != 0)
1330 /* Return true if VR includes the value zero, false otherwise. FIXME,
1331 currently this will return false for an anti-range like ~[-4, 3].
1332 This will be wrong when the semantics of value_inside_range are
1333 modified (currently the users of this function expect these
1337 range_includes_zero_p (value_range_t *vr)
1341 gcc_assert (vr->type != VR_UNDEFINED
1342 && vr->type != VR_VARYING
1343 && !symbolic_range_p (vr));
1345 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1346 return (value_inside_range (zero, vr) == 1);
1349 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1350 false otherwise or if no value range information is available. */
1353 ssa_name_nonnegative_p (const_tree t)
1355 value_range_t *vr = get_value_range (t);
1360 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1361 which would return a useful value should be encoded as a VR_RANGE. */
1362 if (vr->type == VR_RANGE)
1364 int result = compare_values (vr->min, integer_zero_node);
1366 return (result == 0 || result == 1);
1371 /* If OP has a value range with a single constant value return that,
1372 otherwise return NULL_TREE. This returns OP itself if OP is a
1376 op_with_constant_singleton_value_range (tree op)
1380 if (is_gimple_min_invariant (op))
1383 if (TREE_CODE (op) != SSA_NAME)
1386 vr = get_value_range (op);
1387 if (vr->type == VR_RANGE
1388 && operand_equal_p (vr->min, vr->max, 0)
1389 && is_gimple_min_invariant (vr->min))
1396 /* Extract value range information from an ASSERT_EXPR EXPR and store
1400 extract_range_from_assert (value_range_t *vr_p, tree expr)
1402 tree var, cond, limit, min, max, type;
1403 value_range_t *var_vr, *limit_vr;
1404 enum tree_code cond_code;
1406 var = ASSERT_EXPR_VAR (expr);
1407 cond = ASSERT_EXPR_COND (expr);
1409 gcc_assert (COMPARISON_CLASS_P (cond));
1411 /* Find VAR in the ASSERT_EXPR conditional. */
1412 if (var == TREE_OPERAND (cond, 0)
1413 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1414 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1416 /* If the predicate is of the form VAR COMP LIMIT, then we just
1417 take LIMIT from the RHS and use the same comparison code. */
1418 cond_code = TREE_CODE (cond);
1419 limit = TREE_OPERAND (cond, 1);
1420 cond = TREE_OPERAND (cond, 0);
1424 /* If the predicate is of the form LIMIT COMP VAR, then we need
1425 to flip around the comparison code to create the proper range
1427 cond_code = swap_tree_comparison (TREE_CODE (cond));
1428 limit = TREE_OPERAND (cond, 0);
1429 cond = TREE_OPERAND (cond, 1);
1432 limit = avoid_overflow_infinity (limit);
1434 type = TREE_TYPE (limit);
1435 gcc_assert (limit != var);
1437 /* For pointer arithmetic, we only keep track of pointer equality
1439 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1441 set_value_range_to_varying (vr_p);
1445 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1446 try to use LIMIT's range to avoid creating symbolic ranges
1448 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1450 /* LIMIT's range is only interesting if it has any useful information. */
1452 && (limit_vr->type == VR_UNDEFINED
1453 || limit_vr->type == VR_VARYING
1454 || symbolic_range_p (limit_vr)))
1457 /* Initially, the new range has the same set of equivalences of
1458 VAR's range. This will be revised before returning the final
1459 value. Since assertions may be chained via mutually exclusive
1460 predicates, we will need to trim the set of equivalences before
1462 gcc_assert (vr_p->equiv == NULL);
1463 add_equivalence (&vr_p->equiv, var);
1465 /* Extract a new range based on the asserted comparison for VAR and
1466 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1467 will only use it for equality comparisons (EQ_EXPR). For any
1468 other kind of assertion, we cannot derive a range from LIMIT's
1469 anti-range that can be used to describe the new range. For
1470 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1471 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1472 no single range for x_2 that could describe LE_EXPR, so we might
1473 as well build the range [b_4, +INF] for it.
1474 One special case we handle is extracting a range from a
1475 range test encoded as (unsigned)var + CST <= limit. */
1476 if (TREE_CODE (cond) == NOP_EXPR
1477 || TREE_CODE (cond) == PLUS_EXPR)
1479 if (TREE_CODE (cond) == PLUS_EXPR)
1481 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1482 TREE_OPERAND (cond, 1));
1483 max = int_const_binop (PLUS_EXPR, limit, min, 0);
1484 cond = TREE_OPERAND (cond, 0);
1488 min = build_int_cst (TREE_TYPE (var), 0);
1492 /* Make sure to not set TREE_OVERFLOW on the final type
1493 conversion. We are willingly interpreting large positive
1494 unsigned values as negative singed values here. */
1495 min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
1496 TREE_INT_CST_HIGH (min), 0, false);
1497 max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
1498 TREE_INT_CST_HIGH (max), 0, false);
1500 /* We can transform a max, min range to an anti-range or
1501 vice-versa. Use set_and_canonicalize_value_range which does
1503 if (cond_code == LE_EXPR)
1504 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1505 min, max, vr_p->equiv);
1506 else if (cond_code == GT_EXPR)
1507 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1508 min, max, vr_p->equiv);
1512 else if (cond_code == EQ_EXPR)
1514 enum value_range_type range_type;
1518 range_type = limit_vr->type;
1519 min = limit_vr->min;
1520 max = limit_vr->max;
1524 range_type = VR_RANGE;
1529 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1531 /* When asserting the equality VAR == LIMIT and LIMIT is another
1532 SSA name, the new range will also inherit the equivalence set
1534 if (TREE_CODE (limit) == SSA_NAME)
1535 add_equivalence (&vr_p->equiv, limit);
1537 else if (cond_code == NE_EXPR)
1539 /* As described above, when LIMIT's range is an anti-range and
1540 this assertion is an inequality (NE_EXPR), then we cannot
1541 derive anything from the anti-range. For instance, if
1542 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1543 not imply that VAR's range is [0, 0]. So, in the case of
1544 anti-ranges, we just assert the inequality using LIMIT and
1547 If LIMIT_VR is a range, we can only use it to build a new
1548 anti-range if LIMIT_VR is a single-valued range. For
1549 instance, if LIMIT_VR is [0, 1], the predicate
1550 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1551 Rather, it means that for value 0 VAR should be ~[0, 0]
1552 and for value 1, VAR should be ~[1, 1]. We cannot
1553 represent these ranges.
1555 The only situation in which we can build a valid
1556 anti-range is when LIMIT_VR is a single-valued range
1557 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1558 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1560 && limit_vr->type == VR_RANGE
1561 && compare_values (limit_vr->min, limit_vr->max) == 0)
1563 min = limit_vr->min;
1564 max = limit_vr->max;
1568 /* In any other case, we cannot use LIMIT's range to build a
1569 valid anti-range. */
1573 /* If MIN and MAX cover the whole range for their type, then
1574 just use the original LIMIT. */
1575 if (INTEGRAL_TYPE_P (type)
1576 && vrp_val_is_min (min)
1577 && vrp_val_is_max (max))
1580 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1582 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1584 min = TYPE_MIN_VALUE (type);
1586 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1590 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1591 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1593 max = limit_vr->max;
1596 /* If the maximum value forces us to be out of bounds, simply punt.
1597 It would be pointless to try and do anything more since this
1598 all should be optimized away above us. */
1599 if ((cond_code == LT_EXPR
1600 && compare_values (max, min) == 0)
1601 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1602 set_value_range_to_varying (vr_p);
1605 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1606 if (cond_code == LT_EXPR)
1608 tree one = build_int_cst (type, 1);
1609 max = fold_build2 (MINUS_EXPR, type, max, one);
1611 TREE_NO_WARNING (max) = 1;
1614 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1617 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1619 max = TYPE_MAX_VALUE (type);
1621 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1625 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1626 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1628 min = limit_vr->min;
1631 /* If the minimum value forces us to be out of bounds, simply punt.
1632 It would be pointless to try and do anything more since this
1633 all should be optimized away above us. */
1634 if ((cond_code == GT_EXPR
1635 && compare_values (min, max) == 0)
1636 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1637 set_value_range_to_varying (vr_p);
1640 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1641 if (cond_code == GT_EXPR)
1643 tree one = build_int_cst (type, 1);
1644 min = fold_build2 (PLUS_EXPR, type, min, one);
1646 TREE_NO_WARNING (min) = 1;
1649 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1655 /* If VAR already had a known range, it may happen that the new
1656 range we have computed and VAR's range are not compatible. For
1660 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1662 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1664 While the above comes from a faulty program, it will cause an ICE
1665 later because p_8 and p_6 will have incompatible ranges and at
1666 the same time will be considered equivalent. A similar situation
1670 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1672 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1674 Again i_6 and i_7 will have incompatible ranges. It would be
1675 pointless to try and do anything with i_7's range because
1676 anything dominated by 'if (i_5 < 5)' will be optimized away.
1677 Note, due to the wa in which simulation proceeds, the statement
1678 i_7 = ASSERT_EXPR <...> we would never be visited because the
1679 conditional 'if (i_5 < 5)' always evaluates to false. However,
1680 this extra check does not hurt and may protect against future
1681 changes to VRP that may get into a situation similar to the
1682 NULL pointer dereference example.
1684 Note that these compatibility tests are only needed when dealing
1685 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1686 are both anti-ranges, they will always be compatible, because two
1687 anti-ranges will always have a non-empty intersection. */
1689 var_vr = get_value_range (var);
1691 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1692 ranges or anti-ranges. */
1693 if (vr_p->type == VR_VARYING
1694 || vr_p->type == VR_UNDEFINED
1695 || var_vr->type == VR_VARYING
1696 || var_vr->type == VR_UNDEFINED
1697 || symbolic_range_p (vr_p)
1698 || symbolic_range_p (var_vr))
1701 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1703 /* If the two ranges have a non-empty intersection, we can
1704 refine the resulting range. Since the assert expression
1705 creates an equivalency and at the same time it asserts a
1706 predicate, we can take the intersection of the two ranges to
1707 get better precision. */
1708 if (value_ranges_intersect_p (var_vr, vr_p))
1710 /* Use the larger of the two minimums. */
1711 if (compare_values (vr_p->min, var_vr->min) == -1)
1716 /* Use the smaller of the two maximums. */
1717 if (compare_values (vr_p->max, var_vr->max) == 1)
1722 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1726 /* The two ranges do not intersect, set the new range to
1727 VARYING, because we will not be able to do anything
1728 meaningful with it. */
1729 set_value_range_to_varying (vr_p);
1732 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1733 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1735 /* A range and an anti-range will cancel each other only if
1736 their ends are the same. For instance, in the example above,
1737 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1738 so VR_P should be set to VR_VARYING. */
1739 if (compare_values (var_vr->min, vr_p->min) == 0
1740 && compare_values (var_vr->max, vr_p->max) == 0)
1741 set_value_range_to_varying (vr_p);
1744 tree min, max, anti_min, anti_max, real_min, real_max;
1747 /* We want to compute the logical AND of the two ranges;
1748 there are three cases to consider.
1751 1. The VR_ANTI_RANGE range is completely within the
1752 VR_RANGE and the endpoints of the ranges are
1753 different. In that case the resulting range
1754 should be whichever range is more precise.
1755 Typically that will be the VR_RANGE.
1757 2. The VR_ANTI_RANGE is completely disjoint from
1758 the VR_RANGE. In this case the resulting range
1759 should be the VR_RANGE.
1761 3. There is some overlap between the VR_ANTI_RANGE
1764 3a. If the high limit of the VR_ANTI_RANGE resides
1765 within the VR_RANGE, then the result is a new
1766 VR_RANGE starting at the high limit of the
1767 VR_ANTI_RANGE + 1 and extending to the
1768 high limit of the original VR_RANGE.
1770 3b. If the low limit of the VR_ANTI_RANGE resides
1771 within the VR_RANGE, then the result is a new
1772 VR_RANGE starting at the low limit of the original
1773 VR_RANGE and extending to the low limit of the
1774 VR_ANTI_RANGE - 1. */
1775 if (vr_p->type == VR_ANTI_RANGE)
1777 anti_min = vr_p->min;
1778 anti_max = vr_p->max;
1779 real_min = var_vr->min;
1780 real_max = var_vr->max;
1784 anti_min = var_vr->min;
1785 anti_max = var_vr->max;
1786 real_min = vr_p->min;
1787 real_max = vr_p->max;
1791 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1792 not including any endpoints. */
1793 if (compare_values (anti_max, real_max) == -1
1794 && compare_values (anti_min, real_min) == 1)
1796 /* If the range is covering the whole valid range of
1797 the type keep the anti-range. */
1798 if (!vrp_val_is_min (real_min)
1799 || !vrp_val_is_max (real_max))
1800 set_value_range (vr_p, VR_RANGE, real_min,
1801 real_max, vr_p->equiv);
1803 /* Case 2, VR_ANTI_RANGE completely disjoint from
1805 else if (compare_values (anti_min, real_max) == 1
1806 || compare_values (anti_max, real_min) == -1)
1808 set_value_range (vr_p, VR_RANGE, real_min,
1809 real_max, vr_p->equiv);
1811 /* Case 3a, the anti-range extends into the low
1812 part of the real range. Thus creating a new
1813 low for the real range. */
1814 else if (((cmp = compare_values (anti_max, real_min)) == 1
1816 && compare_values (anti_max, real_max) == -1)
1818 gcc_assert (!is_positive_overflow_infinity (anti_max));
1819 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1820 && vrp_val_is_max (anti_max))
1822 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1824 set_value_range_to_varying (vr_p);
1827 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1829 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1830 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1832 build_int_cst (TREE_TYPE (var_vr->min), 1));
1834 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1835 anti_max, size_int (1));
1837 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1839 /* Case 3b, the anti-range extends into the high
1840 part of the real range. Thus creating a new
1841 higher for the real range. */
1842 else if (compare_values (anti_min, real_min) == 1
1843 && ((cmp = compare_values (anti_min, real_max)) == -1
1846 gcc_assert (!is_negative_overflow_infinity (anti_min));
1847 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1848 && vrp_val_is_min (anti_min))
1850 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1852 set_value_range_to_varying (vr_p);
1855 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1857 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1858 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1860 build_int_cst (TREE_TYPE (var_vr->min), 1));
1862 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1866 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1873 /* Extract range information from SSA name VAR and store it in VR. If
1874 VAR has an interesting range, use it. Otherwise, create the
1875 range [VAR, VAR] and return it. This is useful in situations where
1876 we may have conditionals testing values of VARYING names. For
1883 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1887 extract_range_from_ssa_name (value_range_t *vr, tree var)
1889 value_range_t *var_vr = get_value_range (var);
1891 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1892 copy_value_range (vr, var_vr);
1894 set_value_range (vr, VR_RANGE, var, var, NULL);
1896 add_equivalence (&vr->equiv, var);
1900 /* Wrapper around int_const_binop. If the operation overflows and we
1901 are not using wrapping arithmetic, then adjust the result to be
1902 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1903 NULL_TREE if we need to use an overflow infinity representation but
1904 the type does not support it. */
1907 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1911 res = int_const_binop (code, val1, val2, 0);
1913 /* If we are not using wrapping arithmetic, operate symbolically
1914 on -INF and +INF. */
1915 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1917 int checkz = compare_values (res, val1);
1918 bool overflow = false;
1920 /* Ensure that res = val1 [+*] val2 >= val1
1921 or that res = val1 - val2 <= val1. */
1922 if ((code == PLUS_EXPR
1923 && !(checkz == 1 || checkz == 0))
1924 || (code == MINUS_EXPR
1925 && !(checkz == 0 || checkz == -1)))
1929 /* Checking for multiplication overflow is done by dividing the
1930 output of the multiplication by the first input of the
1931 multiplication. If the result of that division operation is
1932 not equal to the second input of the multiplication, then the
1933 multiplication overflowed. */
1934 else if (code == MULT_EXPR && !integer_zerop (val1))
1936 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1939 int check = compare_values (tmp, val2);
1947 res = copy_node (res);
1948 TREE_OVERFLOW (res) = 1;
1952 else if ((TREE_OVERFLOW (res)
1953 && !TREE_OVERFLOW (val1)
1954 && !TREE_OVERFLOW (val2))
1955 || is_overflow_infinity (val1)
1956 || is_overflow_infinity (val2))
1958 /* If the operation overflowed but neither VAL1 nor VAL2 are
1959 overflown, return -INF or +INF depending on the operation
1960 and the combination of signs of the operands. */
1961 int sgn1 = tree_int_cst_sgn (val1);
1962 int sgn2 = tree_int_cst_sgn (val2);
1964 if (needs_overflow_infinity (TREE_TYPE (res))
1965 && !supports_overflow_infinity (TREE_TYPE (res)))
1968 /* We have to punt on adding infinities of different signs,
1969 since we can't tell what the sign of the result should be.
1970 Likewise for subtracting infinities of the same sign. */
1971 if (((code == PLUS_EXPR && sgn1 != sgn2)
1972 || (code == MINUS_EXPR && sgn1 == sgn2))
1973 && is_overflow_infinity (val1)
1974 && is_overflow_infinity (val2))
1977 /* Don't try to handle division or shifting of infinities. */
1978 if ((code == TRUNC_DIV_EXPR
1979 || code == FLOOR_DIV_EXPR
1980 || code == CEIL_DIV_EXPR
1981 || code == EXACT_DIV_EXPR
1982 || code == ROUND_DIV_EXPR
1983 || code == RSHIFT_EXPR)
1984 && (is_overflow_infinity (val1)
1985 || is_overflow_infinity (val2)))
1988 /* Notice that we only need to handle the restricted set of
1989 operations handled by extract_range_from_binary_expr.
1990 Among them, only multiplication, addition and subtraction
1991 can yield overflow without overflown operands because we
1992 are working with integral types only... except in the
1993 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1994 for division too. */
1996 /* For multiplication, the sign of the overflow is given
1997 by the comparison of the signs of the operands. */
1998 if ((code == MULT_EXPR && sgn1 == sgn2)
1999 /* For addition, the operands must be of the same sign
2000 to yield an overflow. Its sign is therefore that
2001 of one of the operands, for example the first. For
2002 infinite operands X + -INF is negative, not positive. */
2003 || (code == PLUS_EXPR
2005 ? !is_negative_overflow_infinity (val2)
2006 : is_positive_overflow_infinity (val2)))
2007 /* For subtraction, non-infinite operands must be of
2008 different signs to yield an overflow. Its sign is
2009 therefore that of the first operand or the opposite of
2010 that of the second operand. A first operand of 0 counts
2011 as positive here, for the corner case 0 - (-INF), which
2012 overflows, but must yield +INF. For infinite operands 0
2013 - INF is negative, not positive. */
2014 || (code == MINUS_EXPR
2016 ? !is_positive_overflow_infinity (val2)
2017 : is_negative_overflow_infinity (val2)))
2018 /* We only get in here with positive shift count, so the
2019 overflow direction is the same as the sign of val1.
2020 Actually rshift does not overflow at all, but we only
2021 handle the case of shifting overflowed -INF and +INF. */
2022 || (code == RSHIFT_EXPR
2024 /* For division, the only case is -INF / -1 = +INF. */
2025 || code == TRUNC_DIV_EXPR
2026 || code == FLOOR_DIV_EXPR
2027 || code == CEIL_DIV_EXPR
2028 || code == EXACT_DIV_EXPR
2029 || code == ROUND_DIV_EXPR)
2030 return (needs_overflow_infinity (TREE_TYPE (res))
2031 ? positive_overflow_infinity (TREE_TYPE (res))
2032 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2034 return (needs_overflow_infinity (TREE_TYPE (res))
2035 ? negative_overflow_infinity (TREE_TYPE (res))
2036 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2043 /* Extract range information from a binary expression EXPR based on
2044 the ranges of each of its operands and the expression code. */
2047 extract_range_from_binary_expr (value_range_t *vr,
2048 enum tree_code code,
2049 tree expr_type, tree op0, tree op1)
2051 enum value_range_type type;
2054 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2055 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2057 /* Not all binary expressions can be applied to ranges in a
2058 meaningful way. Handle only arithmetic operations. */
2059 if (code != PLUS_EXPR
2060 && code != MINUS_EXPR
2061 && code != POINTER_PLUS_EXPR
2062 && code != MULT_EXPR
2063 && code != TRUNC_DIV_EXPR
2064 && code != FLOOR_DIV_EXPR
2065 && code != CEIL_DIV_EXPR
2066 && code != EXACT_DIV_EXPR
2067 && code != ROUND_DIV_EXPR
2068 && code != RSHIFT_EXPR
2071 && code != BIT_AND_EXPR
2072 && code != BIT_IOR_EXPR
2073 && code != TRUTH_AND_EXPR
2074 && code != TRUTH_OR_EXPR)
2076 /* We can still do constant propagation here. */
2077 tree const_op0 = op_with_constant_singleton_value_range (op0);
2078 tree const_op1 = op_with_constant_singleton_value_range (op1);
2079 if (const_op0 || const_op1)
2081 tree tem = fold_binary (code, expr_type,
2082 const_op0 ? const_op0 : op0,
2083 const_op1 ? const_op1 : op1);
2085 && is_gimple_min_invariant (tem)
2086 && !is_overflow_infinity (tem))
2088 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2092 set_value_range_to_varying (vr);
2096 /* Get value ranges for each operand. For constant operands, create
2097 a new value range with the operand to simplify processing. */
2098 if (TREE_CODE (op0) == SSA_NAME)
2099 vr0 = *(get_value_range (op0));
2100 else if (is_gimple_min_invariant (op0))
2101 set_value_range_to_value (&vr0, op0, NULL);
2103 set_value_range_to_varying (&vr0);
2105 if (TREE_CODE (op1) == SSA_NAME)
2106 vr1 = *(get_value_range (op1));
2107 else if (is_gimple_min_invariant (op1))
2108 set_value_range_to_value (&vr1, op1, NULL);
2110 set_value_range_to_varying (&vr1);
2112 /* If either range is UNDEFINED, so is the result. */
2113 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
2115 set_value_range_to_undefined (vr);
2119 /* The type of the resulting value range defaults to VR0.TYPE. */
2122 /* Refuse to operate on VARYING ranges, ranges of different kinds
2123 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2124 because we may be able to derive a useful range even if one of
2125 the operands is VR_VARYING or symbolic range. Similarly for
2126 divisions. TODO, we may be able to derive anti-ranges in
2128 if (code != BIT_AND_EXPR
2129 && code != TRUTH_AND_EXPR
2130 && code != TRUTH_OR_EXPR
2131 && code != TRUNC_DIV_EXPR
2132 && code != FLOOR_DIV_EXPR
2133 && code != CEIL_DIV_EXPR
2134 && code != EXACT_DIV_EXPR
2135 && code != ROUND_DIV_EXPR
2136 && (vr0.type == VR_VARYING
2137 || vr1.type == VR_VARYING
2138 || vr0.type != vr1.type
2139 || symbolic_range_p (&vr0)
2140 || symbolic_range_p (&vr1)))
2142 set_value_range_to_varying (vr);
2146 /* Now evaluate the expression to determine the new range. */
2147 if (POINTER_TYPE_P (expr_type)
2148 || POINTER_TYPE_P (TREE_TYPE (op0))
2149 || POINTER_TYPE_P (TREE_TYPE (op1)))
2151 if (code == MIN_EXPR || code == MAX_EXPR)
2153 /* For MIN/MAX expressions with pointers, we only care about
2154 nullness, if both are non null, then the result is nonnull.
2155 If both are null, then the result is null. Otherwise they
2157 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2158 set_value_range_to_nonnull (vr, expr_type);
2159 else if (range_is_null (&vr0) && range_is_null (&vr1))
2160 set_value_range_to_null (vr, expr_type);
2162 set_value_range_to_varying (vr);
2166 gcc_assert (code == POINTER_PLUS_EXPR);
2167 /* For pointer types, we are really only interested in asserting
2168 whether the expression evaluates to non-NULL. */
2169 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2170 set_value_range_to_nonnull (vr, expr_type);
2171 else if (range_is_null (&vr0) && range_is_null (&vr1))
2172 set_value_range_to_null (vr, expr_type);
2174 set_value_range_to_varying (vr);
2179 /* For integer ranges, apply the operation to each end of the
2180 range and see what we end up with. */
2181 if (code == TRUTH_AND_EXPR
2182 || code == TRUTH_OR_EXPR)
2184 /* If one of the operands is zero, we know that the whole
2185 expression evaluates zero. */
2186 if (code == TRUTH_AND_EXPR
2187 && ((vr0.type == VR_RANGE
2188 && integer_zerop (vr0.min)
2189 && integer_zerop (vr0.max))
2190 || (vr1.type == VR_RANGE
2191 && integer_zerop (vr1.min)
2192 && integer_zerop (vr1.max))))
2195 min = max = build_int_cst (expr_type, 0);
2197 /* If one of the operands is one, we know that the whole
2198 expression evaluates one. */
2199 else if (code == TRUTH_OR_EXPR
2200 && ((vr0.type == VR_RANGE
2201 && integer_onep (vr0.min)
2202 && integer_onep (vr0.max))
2203 || (vr1.type == VR_RANGE
2204 && integer_onep (vr1.min)
2205 && integer_onep (vr1.max))))
2208 min = max = build_int_cst (expr_type, 1);
2210 else if (vr0.type != VR_VARYING
2211 && vr1.type != VR_VARYING
2212 && vr0.type == vr1.type
2213 && !symbolic_range_p (&vr0)
2214 && !overflow_infinity_range_p (&vr0)
2215 && !symbolic_range_p (&vr1)
2216 && !overflow_infinity_range_p (&vr1))
2218 /* Boolean expressions cannot be folded with int_const_binop. */
2219 min = fold_binary (code, expr_type, vr0.min, vr1.min);
2220 max = fold_binary (code, expr_type, vr0.max, vr1.max);
2224 /* The result of a TRUTH_*_EXPR is always true or false. */
2225 set_value_range_to_truthvalue (vr, expr_type);
2229 else if (code == PLUS_EXPR
2231 || code == MAX_EXPR)
2233 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2234 VR_VARYING. It would take more effort to compute a precise
2235 range for such a case. For example, if we have op0 == 1 and
2236 op1 == -1 with their ranges both being ~[0,0], we would have
2237 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2238 Note that we are guaranteed to have vr0.type == vr1.type at
2240 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
2242 set_value_range_to_varying (vr);
2246 /* For operations that make the resulting range directly
2247 proportional to the original ranges, apply the operation to
2248 the same end of each range. */
2249 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2250 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2252 /* If both additions overflowed the range kind is still correct.
2253 This happens regularly with subtracting something in unsigned
2255 ??? See PR30318 for all the cases we do not handle. */
2256 if (code == PLUS_EXPR
2257 && (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2258 && (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2260 min = build_int_cst_wide (TREE_TYPE (min),
2261 TREE_INT_CST_LOW (min),
2262 TREE_INT_CST_HIGH (min));
2263 max = build_int_cst_wide (TREE_TYPE (max),
2264 TREE_INT_CST_LOW (max),
2265 TREE_INT_CST_HIGH (max));
2268 else if (code == MULT_EXPR
2269 || code == TRUNC_DIV_EXPR
2270 || code == FLOOR_DIV_EXPR
2271 || code == CEIL_DIV_EXPR
2272 || code == EXACT_DIV_EXPR
2273 || code == ROUND_DIV_EXPR
2274 || code == RSHIFT_EXPR)
2280 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2281 drop to VR_VARYING. It would take more effort to compute a
2282 precise range for such a case. For example, if we have
2283 op0 == 65536 and op1 == 65536 with their ranges both being
2284 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2285 we cannot claim that the product is in ~[0,0]. Note that we
2286 are guaranteed to have vr0.type == vr1.type at this
2288 if (code == MULT_EXPR
2289 && vr0.type == VR_ANTI_RANGE
2290 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
2292 set_value_range_to_varying (vr);
2296 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2297 then drop to VR_VARYING. Outside of this range we get undefined
2298 behavior from the shift operation. We cannot even trust
2299 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2300 shifts, and the operation at the tree level may be widened. */
2301 if (code == RSHIFT_EXPR)
2303 if (vr1.type == VR_ANTI_RANGE
2304 || !vrp_expr_computes_nonnegative (op1, &sop)
2306 (build_int_cst (TREE_TYPE (vr1.max),
2307 TYPE_PRECISION (expr_type) - 1),
2310 set_value_range_to_varying (vr);
2315 else if ((code == TRUNC_DIV_EXPR
2316 || code == FLOOR_DIV_EXPR
2317 || code == CEIL_DIV_EXPR
2318 || code == EXACT_DIV_EXPR
2319 || code == ROUND_DIV_EXPR)
2320 && (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
2322 /* For division, if op1 has VR_RANGE but op0 does not, something
2323 can be deduced just from that range. Say [min, max] / [4, max]
2324 gives [min / 4, max / 4] range. */
2325 if (vr1.type == VR_RANGE
2326 && !symbolic_range_p (&vr1)
2327 && !range_includes_zero_p (&vr1))
2329 vr0.type = type = VR_RANGE;
2330 vr0.min = vrp_val_min (TREE_TYPE (op0));
2331 vr0.max = vrp_val_max (TREE_TYPE (op1));
2335 set_value_range_to_varying (vr);
2340 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2341 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2343 if ((code == TRUNC_DIV_EXPR
2344 || code == FLOOR_DIV_EXPR
2345 || code == CEIL_DIV_EXPR
2346 || code == EXACT_DIV_EXPR
2347 || code == ROUND_DIV_EXPR)
2348 && vr0.type == VR_RANGE
2349 && (vr1.type != VR_RANGE
2350 || symbolic_range_p (&vr1)
2351 || range_includes_zero_p (&vr1)))
2353 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2359 if (vrp_expr_computes_nonnegative (op1, &sop) && !sop)
2361 /* For unsigned division or when divisor is known
2362 to be non-negative, the range has to cover
2363 all numbers from 0 to max for positive max
2364 and all numbers from min to 0 for negative min. */
2365 cmp = compare_values (vr0.max, zero);
2368 else if (cmp == 0 || cmp == 1)
2372 cmp = compare_values (vr0.min, zero);
2375 else if (cmp == 0 || cmp == -1)
2382 /* Otherwise the range is -max .. max or min .. -min
2383 depending on which bound is bigger in absolute value,
2384 as the division can change the sign. */
2385 abs_extent_range (vr, vr0.min, vr0.max);
2388 if (type == VR_VARYING)
2390 set_value_range_to_varying (vr);
2395 /* Multiplications and divisions are a bit tricky to handle,
2396 depending on the mix of signs we have in the two ranges, we
2397 need to operate on different values to get the minimum and
2398 maximum values for the new range. One approach is to figure
2399 out all the variations of range combinations and do the
2402 However, this involves several calls to compare_values and it
2403 is pretty convoluted. It's simpler to do the 4 operations
2404 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2405 MAX1) and then figure the smallest and largest values to form
2409 gcc_assert ((vr0.type == VR_RANGE
2410 || (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
2411 && vr0.type == vr1.type);
2413 /* Compute the 4 cross operations. */
2415 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2416 if (val[0] == NULL_TREE)
2419 if (vr1.max == vr1.min)
2423 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2424 if (val[1] == NULL_TREE)
2428 if (vr0.max == vr0.min)
2432 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2433 if (val[2] == NULL_TREE)
2437 if (vr0.min == vr0.max || vr1.min == vr1.max)
2441 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2442 if (val[3] == NULL_TREE)
2448 set_value_range_to_varying (vr);
2452 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2456 for (i = 1; i < 4; i++)
2458 if (!is_gimple_min_invariant (min)
2459 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2460 || !is_gimple_min_invariant (max)
2461 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2466 if (!is_gimple_min_invariant (val[i])
2467 || (TREE_OVERFLOW (val[i])
2468 && !is_overflow_infinity (val[i])))
2470 /* If we found an overflowed value, set MIN and MAX
2471 to it so that we set the resulting range to
2477 if (compare_values (val[i], min) == -1)
2480 if (compare_values (val[i], max) == 1)
2486 else if (code == MINUS_EXPR)
2488 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2489 VR_VARYING. It would take more effort to compute a precise
2490 range for such a case. For example, if we have op0 == 1 and
2491 op1 == 1 with their ranges both being ~[0,0], we would have
2492 op0 - op1 == 0, so we cannot claim that the difference is in
2493 ~[0,0]. Note that we are guaranteed to have
2494 vr0.type == vr1.type at this point. */
2495 if (vr0.type == VR_ANTI_RANGE)
2497 set_value_range_to_varying (vr);
2501 /* For MINUS_EXPR, apply the operation to the opposite ends of
2503 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2504 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2506 else if (code == BIT_AND_EXPR)
2508 if (vr0.type == VR_RANGE
2509 && vr0.min == vr0.max
2510 && TREE_CODE (vr0.max) == INTEGER_CST
2511 && !TREE_OVERFLOW (vr0.max)
2512 && tree_int_cst_sgn (vr0.max) >= 0)
2514 min = build_int_cst (expr_type, 0);
2517 else if (vr1.type == VR_RANGE
2518 && vr1.min == vr1.max
2519 && TREE_CODE (vr1.max) == INTEGER_CST
2520 && !TREE_OVERFLOW (vr1.max)
2521 && tree_int_cst_sgn (vr1.max) >= 0)
2524 min = build_int_cst (expr_type, 0);
2529 set_value_range_to_varying (vr);
2533 else if (code == BIT_IOR_EXPR)
2535 if (vr0.type == VR_RANGE
2536 && vr1.type == VR_RANGE
2537 && TREE_CODE (vr0.min) == INTEGER_CST
2538 && TREE_CODE (vr1.min) == INTEGER_CST
2539 && TREE_CODE (vr0.max) == INTEGER_CST
2540 && TREE_CODE (vr1.max) == INTEGER_CST
2541 && tree_int_cst_sgn (vr0.min) >= 0
2542 && tree_int_cst_sgn (vr1.min) >= 0)
2544 double_int vr0_max = tree_to_double_int (vr0.max);
2545 double_int vr1_max = tree_to_double_int (vr1.max);
2548 /* Set all bits to the right of the most significant one to 1.
2549 For example, [0, 4] | [4, 4] = [4, 7]. */
2550 ior_max.low = vr0_max.low | vr1_max.low;
2551 ior_max.high = vr0_max.high | vr1_max.high;
2552 if (ior_max.high != 0)
2554 ior_max.low = ~(unsigned HOST_WIDE_INT)0u;
2555 ior_max.high |= ((HOST_WIDE_INT) 1
2556 << floor_log2 (ior_max.high)) - 1;
2558 else if (ior_max.low != 0)
2559 ior_max.low |= ((unsigned HOST_WIDE_INT) 1u
2560 << floor_log2 (ior_max.low)) - 1;
2562 /* Both of these endpoints are conservative. */
2563 min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2564 max = double_int_to_tree (expr_type, ior_max);
2568 set_value_range_to_varying (vr);
2575 /* If either MIN or MAX overflowed, then set the resulting range to
2576 VARYING. But we do accept an overflow infinity
2578 if (min == NULL_TREE
2579 || !is_gimple_min_invariant (min)
2580 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2582 || !is_gimple_min_invariant (max)
2583 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2585 set_value_range_to_varying (vr);
2591 2) [-INF, +-INF(OVF)]
2592 3) [+-INF(OVF), +INF]
2593 4) [+-INF(OVF), +-INF(OVF)]
2594 We learn nothing when we have INF and INF(OVF) on both sides.
2595 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2597 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2598 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2600 set_value_range_to_varying (vr);
2604 cmp = compare_values (min, max);
2605 if (cmp == -2 || cmp == 1)
2607 /* If the new range has its limits swapped around (MIN > MAX),
2608 then the operation caused one of them to wrap around, mark
2609 the new range VARYING. */
2610 set_value_range_to_varying (vr);
2613 set_value_range (vr, type, min, max, NULL);
2617 /* Extract range information from a unary expression EXPR based on
2618 the range of its operand and the expression code. */
2621 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
2622 tree type, tree op0)
2626 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2628 /* Refuse to operate on certain unary expressions for which we
2629 cannot easily determine a resulting range. */
2630 if (code == FIX_TRUNC_EXPR
2631 || code == FLOAT_EXPR
2632 || code == BIT_NOT_EXPR
2633 || code == CONJ_EXPR)
2635 /* We can still do constant propagation here. */
2636 if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
2638 tree tem = fold_unary (code, type, op0);
2640 && is_gimple_min_invariant (tem)
2641 && !is_overflow_infinity (tem))
2643 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2647 set_value_range_to_varying (vr);
2651 /* Get value ranges for the operand. For constant operands, create
2652 a new value range with the operand to simplify processing. */
2653 if (TREE_CODE (op0) == SSA_NAME)
2654 vr0 = *(get_value_range (op0));
2655 else if (is_gimple_min_invariant (op0))
2656 set_value_range_to_value (&vr0, op0, NULL);
2658 set_value_range_to_varying (&vr0);
2660 /* If VR0 is UNDEFINED, so is the result. */
2661 if (vr0.type == VR_UNDEFINED)
2663 set_value_range_to_undefined (vr);
2667 /* Refuse to operate on symbolic ranges, or if neither operand is
2668 a pointer or integral type. */
2669 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2670 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2671 || (vr0.type != VR_VARYING
2672 && symbolic_range_p (&vr0)))
2674 set_value_range_to_varying (vr);
2678 /* If the expression involves pointers, we are only interested in
2679 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2680 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
2685 if (range_is_nonnull (&vr0)
2686 || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
2688 set_value_range_to_nonnull (vr, type);
2689 else if (range_is_null (&vr0))
2690 set_value_range_to_null (vr, type);
2692 set_value_range_to_varying (vr);
2697 /* Handle unary expressions on integer ranges. */
2698 if (CONVERT_EXPR_CODE_P (code)
2699 && INTEGRAL_TYPE_P (type)
2700 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2702 tree inner_type = TREE_TYPE (op0);
2703 tree outer_type = type;
2705 /* Always use base-types here. This is important for the
2706 correct signedness. */
2707 if (TREE_TYPE (inner_type))
2708 inner_type = TREE_TYPE (inner_type);
2709 if (TREE_TYPE (outer_type))
2710 outer_type = TREE_TYPE (outer_type);
2712 /* If VR0 is varying and we increase the type precision, assume
2713 a full range for the following transformation. */
2714 if (vr0.type == VR_VARYING
2715 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2717 vr0.type = VR_RANGE;
2718 vr0.min = TYPE_MIN_VALUE (inner_type);
2719 vr0.max = TYPE_MAX_VALUE (inner_type);
2722 /* If VR0 is a constant range or anti-range and the conversion is
2723 not truncating we can convert the min and max values and
2724 canonicalize the resulting range. Otherwise we can do the
2725 conversion if the size of the range is less than what the
2726 precision of the target type can represent and the range is
2727 not an anti-range. */
2728 if ((vr0.type == VR_RANGE
2729 || vr0.type == VR_ANTI_RANGE)
2730 && TREE_CODE (vr0.min) == INTEGER_CST
2731 && TREE_CODE (vr0.max) == INTEGER_CST
2732 && !is_overflow_infinity (vr0.min)
2733 && !is_overflow_infinity (vr0.max)
2734 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2735 || (vr0.type == VR_RANGE
2736 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2737 int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
2738 size_int (TYPE_PRECISION (outer_type)), 0)))))
2740 tree new_min, new_max;
2741 new_min = force_fit_type_double (outer_type,
2742 TREE_INT_CST_LOW (vr0.min),
2743 TREE_INT_CST_HIGH (vr0.min), 0, 0);
2744 new_max = force_fit_type_double (outer_type,
2745 TREE_INT_CST_LOW (vr0.max),
2746 TREE_INT_CST_HIGH (vr0.max), 0, 0);
2747 set_and_canonicalize_value_range (vr, vr0.type,
2748 new_min, new_max, NULL);
2752 set_value_range_to_varying (vr);
2756 /* Conversion of a VR_VARYING value to a wider type can result
2757 in a usable range. So wait until after we've handled conversions
2758 before dropping the result to VR_VARYING if we had a source
2759 operand that is VR_VARYING. */
2760 if (vr0.type == VR_VARYING)
2762 set_value_range_to_varying (vr);
2766 /* Apply the operation to each end of the range and see what we end
2768 if (code == NEGATE_EXPR
2769 && !TYPE_UNSIGNED (type))
2771 /* NEGATE_EXPR flips the range around. We need to treat
2772 TYPE_MIN_VALUE specially. */
2773 if (is_positive_overflow_infinity (vr0.max))
2774 min = negative_overflow_infinity (type);
2775 else if (is_negative_overflow_infinity (vr0.max))
2776 min = positive_overflow_infinity (type);
2777 else if (!vrp_val_is_min (vr0.max))
2778 min = fold_unary_to_constant (code, type, vr0.max);
2779 else if (needs_overflow_infinity (type))
2781 if (supports_overflow_infinity (type)
2782 && !is_overflow_infinity (vr0.min)
2783 && !vrp_val_is_min (vr0.min))
2784 min = positive_overflow_infinity (type);
2787 set_value_range_to_varying (vr);
2792 min = TYPE_MIN_VALUE (type);
2794 if (is_positive_overflow_infinity (vr0.min))
2795 max = negative_overflow_infinity (type);
2796 else if (is_negative_overflow_infinity (vr0.min))
2797 max = positive_overflow_infinity (type);
2798 else if (!vrp_val_is_min (vr0.min))
2799 max = fold_unary_to_constant (code, type, vr0.min);
2800 else if (needs_overflow_infinity (type))
2802 if (supports_overflow_infinity (type))
2803 max = positive_overflow_infinity (type);
2806 set_value_range_to_varying (vr);
2811 max = TYPE_MIN_VALUE (type);
2813 else if (code == NEGATE_EXPR
2814 && TYPE_UNSIGNED (type))
2816 if (!range_includes_zero_p (&vr0))
2818 max = fold_unary_to_constant (code, type, vr0.min);
2819 min = fold_unary_to_constant (code, type, vr0.max);
2823 if (range_is_null (&vr0))
2824 set_value_range_to_null (vr, type);
2826 set_value_range_to_varying (vr);
2830 else if (code == ABS_EXPR
2831 && !TYPE_UNSIGNED (type))
2833 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2835 if (!TYPE_OVERFLOW_UNDEFINED (type)
2836 && ((vr0.type == VR_RANGE
2837 && vrp_val_is_min (vr0.min))
2838 || (vr0.type == VR_ANTI_RANGE
2839 && !vrp_val_is_min (vr0.min)
2840 && !range_includes_zero_p (&vr0))))
2842 set_value_range_to_varying (vr);
2846 /* ABS_EXPR may flip the range around, if the original range
2847 included negative values. */
2848 if (is_overflow_infinity (vr0.min))
2849 min = positive_overflow_infinity (type);
2850 else if (!vrp_val_is_min (vr0.min))
2851 min = fold_unary_to_constant (code, type, vr0.min);
2852 else if (!needs_overflow_infinity (type))
2853 min = TYPE_MAX_VALUE (type);
2854 else if (supports_overflow_infinity (type))
2855 min = positive_overflow_infinity (type);
2858 set_value_range_to_varying (vr);
2862 if (is_overflow_infinity (vr0.max))
2863 max = positive_overflow_infinity (type);
2864 else if (!vrp_val_is_min (vr0.max))
2865 max = fold_unary_to_constant (code, type, vr0.max);
2866 else if (!needs_overflow_infinity (type))
2867 max = TYPE_MAX_VALUE (type);
2868 else if (supports_overflow_infinity (type)
2869 /* We shouldn't generate [+INF, +INF] as set_value_range
2870 doesn't like this and ICEs. */
2871 && !is_positive_overflow_infinity (min))
2872 max = positive_overflow_infinity (type);
2875 set_value_range_to_varying (vr);
2879 cmp = compare_values (min, max);
2881 /* If a VR_ANTI_RANGEs contains zero, then we have
2882 ~[-INF, min(MIN, MAX)]. */
2883 if (vr0.type == VR_ANTI_RANGE)
2885 if (range_includes_zero_p (&vr0))
2887 /* Take the lower of the two values. */
2891 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2892 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2893 flag_wrapv is set and the original anti-range doesn't include
2894 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2895 if (TYPE_OVERFLOW_WRAPS (type))
2897 tree type_min_value = TYPE_MIN_VALUE (type);
2899 min = (vr0.min != type_min_value
2900 ? int_const_binop (PLUS_EXPR, type_min_value,
2901 integer_one_node, 0)
2906 if (overflow_infinity_range_p (&vr0))
2907 min = negative_overflow_infinity (type);
2909 min = TYPE_MIN_VALUE (type);
2914 /* All else has failed, so create the range [0, INF], even for
2915 flag_wrapv since TYPE_MIN_VALUE is in the original
2917 vr0.type = VR_RANGE;
2918 min = build_int_cst (type, 0);
2919 if (needs_overflow_infinity (type))
2921 if (supports_overflow_infinity (type))
2922 max = positive_overflow_infinity (type);
2925 set_value_range_to_varying (vr);
2930 max = TYPE_MAX_VALUE (type);
2934 /* If the range contains zero then we know that the minimum value in the
2935 range will be zero. */
2936 else if (range_includes_zero_p (&vr0))
2940 min = build_int_cst (type, 0);
2944 /* If the range was reversed, swap MIN and MAX. */
2955 /* Otherwise, operate on each end of the range. */
2956 min = fold_unary_to_constant (code, type, vr0.min);
2957 max = fold_unary_to_constant (code, type, vr0.max);
2959 if (needs_overflow_infinity (type))
2961 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2963 /* If both sides have overflowed, we don't know
2965 if ((is_overflow_infinity (vr0.min)
2966 || TREE_OVERFLOW (min))
2967 && (is_overflow_infinity (vr0.max)
2968 || TREE_OVERFLOW (max)))
2970 set_value_range_to_varying (vr);
2974 if (is_overflow_infinity (vr0.min))
2976 else if (TREE_OVERFLOW (min))
2978 if (supports_overflow_infinity (type))
2979 min = (tree_int_cst_sgn (min) >= 0
2980 ? positive_overflow_infinity (TREE_TYPE (min))
2981 : negative_overflow_infinity (TREE_TYPE (min)));
2984 set_value_range_to_varying (vr);
2989 if (is_overflow_infinity (vr0.max))
2991 else if (TREE_OVERFLOW (max))
2993 if (supports_overflow_infinity (type))
2994 max = (tree_int_cst_sgn (max) >= 0
2995 ? positive_overflow_infinity (TREE_TYPE (max))
2996 : negative_overflow_infinity (TREE_TYPE (max)));
2999 set_value_range_to_varying (vr);
3006 cmp = compare_values (min, max);
3007 if (cmp == -2 || cmp == 1)
3009 /* If the new range has its limits swapped around (MIN > MAX),
3010 then the operation caused one of them to wrap around, mark
3011 the new range VARYING. */
3012 set_value_range_to_varying (vr);
3015 set_value_range (vr, vr0.type, min, max, NULL);
3019 /* Extract range information from a conditional expression EXPR based on
3020 the ranges of each of its operands and the expression code. */
3023 extract_range_from_cond_expr (value_range_t *vr, tree expr)
3026 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3027 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3029 /* Get value ranges for each operand. For constant operands, create
3030 a new value range with the operand to simplify processing. */
3031 op0 = COND_EXPR_THEN (expr);
3032 if (TREE_CODE (op0) == SSA_NAME)
3033 vr0 = *(get_value_range (op0));
3034 else if (is_gimple_min_invariant (op0))
3035 set_value_range_to_value (&vr0, op0, NULL);
3037 set_value_range_to_varying (&vr0);
3039 op1 = COND_EXPR_ELSE (expr);
3040 if (TREE_CODE (op1) == SSA_NAME)
3041 vr1 = *(get_value_range (op1));
3042 else if (is_gimple_min_invariant (op1))
3043 set_value_range_to_value (&vr1, op1, NULL);
3045 set_value_range_to_varying (&vr1);
3047 /* The resulting value range is the union of the operand ranges */
3048 vrp_meet (&vr0, &vr1);
3049 copy_value_range (vr, &vr0);
3053 /* Extract range information from a comparison expression EXPR based
3054 on the range of its operand and the expression code. */
3057 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3058 tree type, tree op0, tree op1)
3063 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3066 /* A disadvantage of using a special infinity as an overflow
3067 representation is that we lose the ability to record overflow
3068 when we don't have an infinity. So we have to ignore a result
3069 which relies on overflow. */
3071 if (val && !is_overflow_infinity (val) && !sop)
3073 /* Since this expression was found on the RHS of an assignment,
3074 its type may be different from _Bool. Convert VAL to EXPR's
3076 val = fold_convert (type, val);
3077 if (is_gimple_min_invariant (val))
3078 set_value_range_to_value (vr, val, vr->equiv);
3080 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3083 /* The result of a comparison is always true or false. */
3084 set_value_range_to_truthvalue (vr, type);
3087 /* Try to derive a nonnegative or nonzero range out of STMT relying
3088 primarily on generic routines in fold in conjunction with range data.
3089 Store the result in *VR */
3092 extract_range_basic (value_range_t *vr, gimple stmt)
3095 tree type = gimple_expr_type (stmt);
3097 if (INTEGRAL_TYPE_P (type)
3098 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3099 set_value_range_to_nonnegative (vr, type,
3100 sop || stmt_overflow_infinity (stmt));
3101 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3103 set_value_range_to_nonnull (vr, type);
3105 set_value_range_to_varying (vr);
3109 /* Try to compute a useful range out of assignment STMT and store it
3113 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3115 enum tree_code code = gimple_assign_rhs_code (stmt);
3117 if (code == ASSERT_EXPR)
3118 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3119 else if (code == SSA_NAME)
3120 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3121 else if (TREE_CODE_CLASS (code) == tcc_binary
3122 || code == TRUTH_AND_EXPR
3123 || code == TRUTH_OR_EXPR
3124 || code == TRUTH_XOR_EXPR)
3125 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3126 gimple_expr_type (stmt),
3127 gimple_assign_rhs1 (stmt),
3128 gimple_assign_rhs2 (stmt));
3129 else if (TREE_CODE_CLASS (code) == tcc_unary)
3130 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3131 gimple_expr_type (stmt),
3132 gimple_assign_rhs1 (stmt));
3133 else if (code == COND_EXPR)
3134 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
3135 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3136 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3137 gimple_expr_type (stmt),
3138 gimple_assign_rhs1 (stmt),
3139 gimple_assign_rhs2 (stmt));
3140 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3141 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3142 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3144 set_value_range_to_varying (vr);
3146 if (vr->type == VR_VARYING)
3147 extract_range_basic (vr, stmt);
3150 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3151 would be profitable to adjust VR using scalar evolution information
3152 for VAR. If so, update VR with the new limits. */
3155 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3156 gimple stmt, tree var)
3158 tree init, step, chrec, tmin, tmax, min, max, type;
3159 enum ev_direction dir;
3161 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3162 better opportunities than a regular range, but I'm not sure. */
3163 if (vr->type == VR_ANTI_RANGE)
3166 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3168 /* Like in PR19590, scev can return a constant function. */
3169 if (is_gimple_min_invariant (chrec))
3171 set_value_range_to_value (vr, chrec, vr->equiv);
3175 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3178 init = initial_condition_in_loop_num (chrec, loop->num);
3179 step = evolution_part_in_loop_num (chrec, loop->num);
3181 /* If STEP is symbolic, we can't know whether INIT will be the
3182 minimum or maximum value in the range. Also, unless INIT is
3183 a simple expression, compare_values and possibly other functions
3184 in tree-vrp won't be able to handle it. */
3185 if (step == NULL_TREE
3186 || !is_gimple_min_invariant (step)
3187 || !valid_value_p (init))
3190 dir = scev_direction (chrec);
3191 if (/* Do not adjust ranges if we do not know whether the iv increases
3192 or decreases, ... */
3193 dir == EV_DIR_UNKNOWN
3194 /* ... or if it may wrap. */
3195 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3199 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3200 negative_overflow_infinity and positive_overflow_infinity,
3201 because we have concluded that the loop probably does not
3204 type = TREE_TYPE (var);
3205 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3206 tmin = lower_bound_in_type (type, type);
3208 tmin = TYPE_MIN_VALUE (type);
3209 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3210 tmax = upper_bound_in_type (type, type);
3212 tmax = TYPE_MAX_VALUE (type);
3214 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3219 /* For VARYING or UNDEFINED ranges, just about anything we get
3220 from scalar evolutions should be better. */
3222 if (dir == EV_DIR_DECREASES)
3227 /* If we would create an invalid range, then just assume we
3228 know absolutely nothing. This may be over-conservative,
3229 but it's clearly safe, and should happen only in unreachable
3230 parts of code, or for invalid programs. */
3231 if (compare_values (min, max) == 1)
3234 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3236 else if (vr->type == VR_RANGE)
3241 if (dir == EV_DIR_DECREASES)
3243 /* INIT is the maximum value. If INIT is lower than VR->MAX
3244 but no smaller than VR->MIN, set VR->MAX to INIT. */
3245 if (compare_values (init, max) == -1)
3249 /* If we just created an invalid range with the minimum
3250 greater than the maximum, we fail conservatively.
3251 This should happen only in unreachable
3252 parts of code, or for invalid programs. */
3253 if (compare_values (min, max) == 1)
3257 /* According to the loop information, the variable does not
3258 overflow. If we think it does, probably because of an
3259 overflow due to arithmetic on a different INF value,
3261 if (is_negative_overflow_infinity (min))
3266 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3267 if (compare_values (init, min) == 1)
3271 /* Again, avoid creating invalid range by failing. */
3272 if (compare_values (min, max) == 1)
3276 if (is_positive_overflow_infinity (max))
3280 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3284 /* Return true if VAR may overflow at STMT. This checks any available
3285 loop information to see if we can determine that VAR does not
3289 vrp_var_may_overflow (tree var, gimple stmt)
3292 tree chrec, init, step;
3294 if (current_loops == NULL)
3297 l = loop_containing_stmt (stmt);
3301 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3302 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3305 init = initial_condition_in_loop_num (chrec, l->num);
3306 step = evolution_part_in_loop_num (chrec, l->num);
3308 if (step == NULL_TREE
3309 || !is_gimple_min_invariant (step)
3310 || !valid_value_p (init))
3313 /* If we get here, we know something useful about VAR based on the
3314 loop information. If it wraps, it may overflow. */
3316 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3320 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3322 print_generic_expr (dump_file, var, 0);
3323 fprintf (dump_file, ": loop information indicates does not overflow\n");
3330 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3332 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3333 all the values in the ranges.
3335 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3337 - Return NULL_TREE if it is not always possible to determine the
3338 value of the comparison.
3340 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3341 overflow infinity was used in the test. */
3345 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3346 bool *strict_overflow_p)
3348 /* VARYING or UNDEFINED ranges cannot be compared. */
3349 if (vr0->type == VR_VARYING
3350 || vr0->type == VR_UNDEFINED
3351 || vr1->type == VR_VARYING
3352 || vr1->type == VR_UNDEFINED)
3355 /* Anti-ranges need to be handled separately. */
3356 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3358 /* If both are anti-ranges, then we cannot compute any
3360 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3363 /* These comparisons are never statically computable. */
3370 /* Equality can be computed only between a range and an
3371 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3372 if (vr0->type == VR_RANGE)
3374 /* To simplify processing, make VR0 the anti-range. */
3375 value_range_t *tmp = vr0;
3380 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3382 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3383 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3384 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3389 if (!usable_range_p (vr0, strict_overflow_p)
3390 || !usable_range_p (vr1, strict_overflow_p))
3393 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3394 operands around and change the comparison code. */
3395 if (comp == GT_EXPR || comp == GE_EXPR)
3398 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3404 if (comp == EQ_EXPR)
3406 /* Equality may only be computed if both ranges represent
3407 exactly one value. */
3408 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3409 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3411 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3413 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3415 if (cmp_min == 0 && cmp_max == 0)
3416 return boolean_true_node;
3417 else if (cmp_min != -2 && cmp_max != -2)
3418 return boolean_false_node;
3420 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3421 else if (compare_values_warnv (vr0->min, vr1->max,
3422 strict_overflow_p) == 1
3423 || compare_values_warnv (vr1->min, vr0->max,
3424 strict_overflow_p) == 1)
3425 return boolean_false_node;
3429 else if (comp == NE_EXPR)
3433 /* If VR0 is completely to the left or completely to the right
3434 of VR1, they are always different. Notice that we need to
3435 make sure that both comparisons yield similar results to
3436 avoid comparing values that cannot be compared at
3438 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3439 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3440 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3441 return boolean_true_node;
3443 /* If VR0 and VR1 represent a single value and are identical,
3445 else if (compare_values_warnv (vr0->min, vr0->max,
3446 strict_overflow_p) == 0
3447 && compare_values_warnv (vr1->min, vr1->max,
3448 strict_overflow_p) == 0
3449 && compare_values_warnv (vr0->min, vr1->min,
3450 strict_overflow_p) == 0
3451 && compare_values_warnv (vr0->max, vr1->max,
3452 strict_overflow_p) == 0)
3453 return boolean_false_node;
3455 /* Otherwise, they may or may not be different. */
3459 else if (comp == LT_EXPR || comp == LE_EXPR)
3463 /* If VR0 is to the left of VR1, return true. */
3464 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3465 if ((comp == LT_EXPR && tst == -1)
3466 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3468 if (overflow_infinity_range_p (vr0)
3469 || overflow_infinity_range_p (vr1))
3470 *strict_overflow_p = true;
3471 return boolean_true_node;
3474 /* If VR0 is to the right of VR1, return false. */
3475 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3476 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3477 || (comp == LE_EXPR && tst == 1))
3479 if (overflow_infinity_range_p (vr0)
3480 || overflow_infinity_range_p (vr1))
3481 *strict_overflow_p = true;
3482 return boolean_false_node;
3485 /* Otherwise, we don't know. */
3493 /* Given a value range VR, a value VAL and a comparison code COMP, return
3494 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3495 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3496 always returns false. Return NULL_TREE if it is not always
3497 possible to determine the value of the comparison. Also set
3498 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3499 infinity was used in the test. */
3502 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3503 bool *strict_overflow_p)
3505 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3508 /* Anti-ranges need to be handled separately. */
3509 if (vr->type == VR_ANTI_RANGE)
3511 /* For anti-ranges, the only predicates that we can compute at
3512 compile time are equality and inequality. */
3519 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3520 if (value_inside_range (val, vr) == 1)
3521 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3526 if (!usable_range_p (vr, strict_overflow_p))
3529 if (comp == EQ_EXPR)
3531 /* EQ_EXPR may only be computed if VR represents exactly
3533 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3535 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3537 return boolean_true_node;
3538 else if (cmp == -1 || cmp == 1 || cmp == 2)
3539 return boolean_false_node;
3541 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3542 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3543 return boolean_false_node;
3547 else if (comp == NE_EXPR)
3549 /* If VAL is not inside VR, then they are always different. */
3550 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3551 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3552 return boolean_true_node;
3554 /* If VR represents exactly one value equal to VAL, then return
3556 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3557 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3558 return boolean_false_node;
3560 /* Otherwise, they may or may not be different. */
3563 else if (comp == LT_EXPR || comp == LE_EXPR)
3567 /* If VR is to the left of VAL, return true. */
3568 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3569 if ((comp == LT_EXPR && tst == -1)
3570 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3572 if (overflow_infinity_range_p (vr))
3573 *strict_overflow_p = true;
3574 return boolean_true_node;
3577 /* If VR is to the right of VAL, return false. */
3578 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3579 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3580 || (comp == LE_EXPR && tst == 1))
3582 if (overflow_infinity_range_p (vr))
3583 *strict_overflow_p = true;
3584 return boolean_false_node;
3587 /* Otherwise, we don't know. */
3590 else if (comp == GT_EXPR || comp == GE_EXPR)
3594 /* If VR is to the right of VAL, return true. */
3595 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3596 if ((comp == GT_EXPR && tst == 1)
3597 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3599 if (overflow_infinity_range_p (vr))
3600 *strict_overflow_p = true;
3601 return boolean_true_node;
3604 /* If VR is to the left of VAL, return false. */
3605 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3606 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3607 || (comp == GE_EXPR && tst == -1))
3609 if (overflow_infinity_range_p (vr))
3610 *strict_overflow_p = true;
3611 return boolean_false_node;
3614 /* Otherwise, we don't know. */
3622 /* Debugging dumps. */
3624 void dump_value_range (FILE *, value_range_t *);
3625 void debug_value_range (value_range_t *);
3626 void dump_all_value_ranges (FILE *);
3627 void debug_all_value_ranges (void);
3628 void dump_vr_equiv (FILE *, bitmap);
3629 void debug_vr_equiv (bitmap);
3632 /* Dump value range VR to FILE. */
3635 dump_value_range (FILE *file, value_range_t *vr)
3638 fprintf (file, "[]");
3639 else if (vr->type == VR_UNDEFINED)
3640 fprintf (file, "UNDEFINED");
3641 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3643 tree type = TREE_TYPE (vr->min);
3645 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3647 if (is_negative_overflow_infinity (vr->min))
3648 fprintf (file, "-INF(OVF)");
3649 else if (INTEGRAL_TYPE_P (type)
3650 && !TYPE_UNSIGNED (type)
3651 && vrp_val_is_min (vr->min))
3652 fprintf (file, "-INF");
3654 print_generic_expr (file, vr->min, 0);
3656 fprintf (file, ", ");
3658 if (is_positive_overflow_infinity (vr->max))
3659 fprintf (file, "+INF(OVF)");
3660 else if (INTEGRAL_TYPE_P (type)
3661 && vrp_val_is_max (vr->max))
3662 fprintf (file, "+INF");
3664 print_generic_expr (file, vr->max, 0);
3666 fprintf (file, "]");
3673 fprintf (file, " EQUIVALENCES: { ");
3675 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3677 print_generic_expr (file, ssa_name (i), 0);
3678 fprintf (file, " ");
3682 fprintf (file, "} (%u elements)", c);
3685 else if (vr->type == VR_VARYING)
3686 fprintf (file, "VARYING");
3688 fprintf (file, "INVALID RANGE");
3692 /* Dump value range VR to stderr. */
3695 debug_value_range (value_range_t *vr)
3697 dump_value_range (stderr, vr);
3698 fprintf (stderr, "\n");
3702 /* Dump value ranges of all SSA_NAMEs to FILE. */
3705 dump_all_value_ranges (FILE *file)
3709 for (i = 0; i < num_ssa_names; i++)
3713 print_generic_expr (file, ssa_name (i), 0);
3714 fprintf (file, ": ");
3715 dump_value_range (file, vr_value[i]);
3716 fprintf (file, "\n");
3720 fprintf (file, "\n");
3724 /* Dump all value ranges to stderr. */
3727 debug_all_value_ranges (void)
3729 dump_all_value_ranges (stderr);
3733 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3734 create a new SSA name N and return the assertion assignment
3735 'V = ASSERT_EXPR <V, V OP W>'. */
3738 build_assert_expr_for (tree cond, tree v)
3743 gcc_assert (TREE_CODE (v) == SSA_NAME);
3744 n = duplicate_ssa_name (v, NULL);
3746 if (COMPARISON_CLASS_P (cond))
3748 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3749 assertion = gimple_build_assign (n, a);
3751 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3753 /* Given !V, build the assignment N = false. */
3754 tree op0 = TREE_OPERAND (cond, 0);
3755 gcc_assert (op0 == v);
3756 assertion = gimple_build_assign (n, boolean_false_node);
3758 else if (TREE_CODE (cond) == SSA_NAME)
3760 /* Given V, build the assignment N = true. */
3761 gcc_assert (v == cond);
3762 assertion = gimple_build_assign (n, boolean_true_node);
3767 SSA_NAME_DEF_STMT (n) = assertion;
3769 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3770 operand of the ASSERT_EXPR. Register the new name and the old one
3771 in the replacement table so that we can fix the SSA web after
3772 adding all the ASSERT_EXPRs. */
3773 register_new_name_mapping (n, v);
3779 /* Return false if EXPR is a predicate expression involving floating
3783 fp_predicate (gimple stmt)
3785 GIMPLE_CHECK (stmt, GIMPLE_COND);
3787 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
3791 /* If the range of values taken by OP can be inferred after STMT executes,
3792 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3793 describes the inferred range. Return true if a range could be
3797 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3800 *comp_code_p = ERROR_MARK;
3802 /* Do not attempt to infer anything in names that flow through
3804 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3807 /* Similarly, don't infer anything from statements that may throw
3809 if (stmt_could_throw_p (stmt))
3812 /* If STMT is the last statement of a basic block with no
3813 successors, there is no point inferring anything about any of its
3814 operands. We would not be able to find a proper insertion point
3815 for the assertion, anyway. */
3816 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
3819 /* We can only assume that a pointer dereference will yield
3820 non-NULL if -fdelete-null-pointer-checks is enabled. */
3821 if (flag_delete_null_pointer_checks
3822 && POINTER_TYPE_P (TREE_TYPE (op))
3823 && gimple_code (stmt) != GIMPLE_ASM)
3825 unsigned num_uses, num_loads, num_stores;
3827 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3828 if (num_loads + num_stores > 0)
3830 *val_p = build_int_cst (TREE_TYPE (op), 0);
3831 *comp_code_p = NE_EXPR;
3840 void dump_asserts_for (FILE *, tree);
3841 void debug_asserts_for (tree);
3842 void dump_all_asserts (FILE *);
3843 void debug_all_asserts (void);
3845 /* Dump all the registered assertions for NAME to FILE. */
3848 dump_asserts_for (FILE *file, tree name)
3852 fprintf (file, "Assertions to be inserted for ");
3853 print_generic_expr (file, name, 0);
3854 fprintf (file, "\n");
3856 loc = asserts_for[SSA_NAME_VERSION (name)];
3859 fprintf (file, "\t");
3860 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
3861 fprintf (file, "\n\tBB #%d", loc->bb->index);
3864 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3865 loc->e->dest->index);
3866 dump_edge_info (file, loc->e, 0);
3868 fprintf (file, "\n\tPREDICATE: ");
3869 print_generic_expr (file, name, 0);
3870 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3871 print_generic_expr (file, loc->val, 0);
3872 fprintf (file, "\n\n");
3876 fprintf (file, "\n");
3880 /* Dump all the registered assertions for NAME to stderr. */
3883 debug_asserts_for (tree name)
3885 dump_asserts_for (stderr, name);
3889 /* Dump all the registered assertions for all the names to FILE. */
3892 dump_all_asserts (FILE *file)
3897 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3898 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3899 dump_asserts_for (file, ssa_name (i));
3900 fprintf (file, "\n");
3904 /* Dump all the registered assertions for all the names to stderr. */
3907 debug_all_asserts (void)
3909 dump_all_asserts (stderr);
3913 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3914 'EXPR COMP_CODE VAL' at a location that dominates block BB or
3915 E->DEST, then register this location as a possible insertion point
3916 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
3918 BB, E and SI provide the exact insertion point for the new
3919 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3920 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3921 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3922 must not be NULL. */
3925 register_new_assert_for (tree name, tree expr,
3926 enum tree_code comp_code,
3930 gimple_stmt_iterator si)
3932 assert_locus_t n, loc, last_loc;
3934 basic_block dest_bb;
3936 #if defined ENABLE_CHECKING
3937 gcc_assert (bb == NULL || e == NULL);
3940 gcc_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
3941 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
3944 /* Never build an assert comparing against an integer constant with
3945 TREE_OVERFLOW set. This confuses our undefined overflow warning
3947 if (TREE_CODE (val) == INTEGER_CST
3948 && TREE_OVERFLOW (val))
3949 val = build_int_cst_wide (TREE_TYPE (val),
3950 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
3952 /* The new assertion A will be inserted at BB or E. We need to
3953 determine if the new location is dominated by a previously
3954 registered location for A. If we are doing an edge insertion,
3955 assume that A will be inserted at E->DEST. Note that this is not
3958 If E is a critical edge, it will be split. But even if E is
3959 split, the new block will dominate the same set of blocks that
3962 The reverse, however, is not true, blocks dominated by E->DEST
3963 will not be dominated by the new block created to split E. So,
3964 if the insertion location is on a critical edge, we will not use
3965 the new location to move another assertion previously registered
3966 at a block dominated by E->DEST. */
3967 dest_bb = (bb) ? bb : e->dest;
3969 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3970 VAL at a block dominating DEST_BB, then we don't need to insert a new
3971 one. Similarly, if the same assertion already exists at a block
3972 dominated by DEST_BB and the new location is not on a critical
3973 edge, then update the existing location for the assertion (i.e.,
3974 move the assertion up in the dominance tree).
3976 Note, this is implemented as a simple linked list because there
3977 should not be more than a handful of assertions registered per
3978 name. If this becomes a performance problem, a table hashed by
3979 COMP_CODE and VAL could be implemented. */
3980 loc = asserts_for[SSA_NAME_VERSION (name)];
3985 if (loc->comp_code == comp_code
3987 || operand_equal_p (loc->val, val, 0))
3988 && (loc->expr == expr
3989 || operand_equal_p (loc->expr, expr, 0)))
3991 /* If the assertion NAME COMP_CODE VAL has already been
3992 registered at a basic block that dominates DEST_BB, then
3993 we don't need to insert the same assertion again. Note
3994 that we don't check strict dominance here to avoid
3995 replicating the same assertion inside the same basic
3996 block more than once (e.g., when a pointer is
3997 dereferenced several times inside a block).
3999 An exception to this rule are edge insertions. If the
4000 new assertion is to be inserted on edge E, then it will
4001 dominate all the other insertions that we may want to
4002 insert in DEST_BB. So, if we are doing an edge
4003 insertion, don't do this dominance check. */
4005 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
4008 /* Otherwise, if E is not a critical edge and DEST_BB
4009 dominates the existing location for the assertion, move
4010 the assertion up in the dominance tree by updating its
4011 location information. */
4012 if ((e == NULL || !EDGE_CRITICAL_P (e))
4013 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4022 /* Update the last node of the list and move to the next one. */
4027 /* If we didn't find an assertion already registered for
4028 NAME COMP_CODE VAL, add a new one at the end of the list of
4029 assertions associated with NAME. */
4030 n = XNEW (struct assert_locus_d);
4034 n->comp_code = comp_code;
4042 asserts_for[SSA_NAME_VERSION (name)] = n;
4044 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4047 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4048 Extract a suitable test code and value and store them into *CODE_P and
4049 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4051 If no extraction was possible, return FALSE, otherwise return TRUE.
4053 If INVERT is true, then we invert the result stored into *CODE_P. */
4056 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4057 tree cond_op0, tree cond_op1,
4058 bool invert, enum tree_code *code_p,
4061 enum tree_code comp_code;
4064 /* Otherwise, we have a comparison of the form NAME COMP VAL
4065 or VAL COMP NAME. */
4066 if (name == cond_op1)
4068 /* If the predicate is of the form VAL COMP NAME, flip
4069 COMP around because we need to register NAME as the
4070 first operand in the predicate. */
4071 comp_code = swap_tree_comparison (cond_code);
4076 /* The comparison is of the form NAME COMP VAL, so the
4077 comparison code remains unchanged. */
4078 comp_code = cond_code;
4082 /* Invert the comparison code as necessary. */
4084 comp_code = invert_tree_comparison (comp_code, 0);