OSDN Git Service

Daily bump.
[pf3gnuchains/gcc-fork.git] / gcc / tree-ssa-threadupdate.c
1 /* Thread edges through blocks and update the control flow and SSA graphs.
2    Copyright (C) 2004, 2005, 2006, 2007, 2008, 2010, 201
3    Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "function.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "tree-pass.h"
34 #include "cfgloop.h"
35
36 /* Given a block B, update the CFG and SSA graph to reflect redirecting
37    one or more in-edges to B to instead reach the destination of an
38    out-edge from B while preserving any side effects in B.
39
40    i.e., given A->B and B->C, change A->B to be A->C yet still preserve the
41    side effects of executing B.
42
43      1. Make a copy of B (including its outgoing edges and statements).  Call
44         the copy B'.  Note B' has no incoming edges or PHIs at this time.
45
46      2. Remove the control statement at the end of B' and all outgoing edges
47         except B'->C.
48
49      3. Add a new argument to each PHI in C with the same value as the existing
50         argument associated with edge B->C.  Associate the new PHI arguments
51         with the edge B'->C.
52
53      4. For each PHI in B, find or create a PHI in B' with an identical
54         PHI_RESULT.  Add an argument to the PHI in B' which has the same
55         value as the PHI in B associated with the edge A->B.  Associate
56         the new argument in the PHI in B' with the edge A->B.
57
58      5. Change the edge A->B to A->B'.
59
60         5a. This automatically deletes any PHI arguments associated with the
61             edge A->B in B.
62
63         5b. This automatically associates each new argument added in step 4
64             with the edge A->B'.
65
66      6. Repeat for other incoming edges into B.
67
68      7. Put the duplicated resources in B and all the B' blocks into SSA form.
69
70    Note that block duplication can be minimized by first collecting the
71    set of unique destination blocks that the incoming edges should
72    be threaded to.
73
74    Block duplication can be further minimized by using B instead of 
75    creating B' for one destination if all edges into B are going to be
76    threaded to a successor of B.  We had code to do this at one time, but
77    I'm not convinced it is correct with the changes to avoid mucking up
78    the loop structure (which may cancel threading requests, thus a block
79    which we thought was going to become unreachable may still be reachable).
80    This code was also going to get ugly with the introduction of the ability
81    for a single jump thread request to bypass multiple blocks. 
82
83    We further reduce the number of edges and statements we create by
84    not copying all the outgoing edges and the control statement in
85    step #1.  We instead create a template block without the outgoing
86    edges and duplicate the template.  */
87
88
89 /* Steps #5 and #6 of the above algorithm are best implemented by walking
90    all the incoming edges which thread to the same destination edge at
91    the same time.  That avoids lots of table lookups to get information
92    for the destination edge.
93
94    To realize that implementation we create a list of incoming edges
95    which thread to the same outgoing edge.  Thus to implement steps
96    #5 and #6 we traverse our hash table of outgoing edge information.
97    For each entry we walk the list of incoming edges which thread to
98    the current outgoing edge.  */
99
100 struct el
101 {
102   edge e;
103   struct el *next;
104 };
105
106 /* Main data structure recording information regarding B's duplicate
107    blocks.  */
108
109 /* We need to efficiently record the unique thread destinations of this
110    block and specific information associated with those destinations.  We
111    may have many incoming edges threaded to the same outgoing edge.  This
112    can be naturally implemented with a hash table.  */
113
114 struct redirection_data
115 {
116   /* A duplicate of B with the trailing control statement removed and which
117      targets a single successor of B.  */
118   basic_block dup_block;
119
120   /* An outgoing edge from B.  DUP_BLOCK will have OUTGOING_EDGE->dest as
121      its single successor.  */
122   edge outgoing_edge;
123
124   edge intermediate_edge;
125
126   /* A list of incoming edges which we want to thread to
127      OUTGOING_EDGE->dest.  */
128   struct el *incoming_edges;
129 };
130
131 /* Main data structure to hold information for duplicates of BB.  */
132 static htab_t redirection_data;
133
134 /* Data structure of information to pass to hash table traversal routines.  */
135 struct local_info
136 {
137   /* The current block we are working on.  */
138   basic_block bb;
139
140   /* A template copy of BB with no outgoing edges or control statement that
141      we use for creating copies.  */
142   basic_block template_block;
143
144   /* TRUE if we thread one or more jumps, FALSE otherwise.  */
145   bool jumps_threaded;
146 };
147
148 /* Passes which use the jump threading code register jump threading
149    opportunities as they are discovered.  We keep the registered
150    jump threading opportunities in this vector as edge pairs
151    (original_edge, target_edge).  */
152 static VEC(edge,heap) *threaded_edges;
153
154 /* When we start updating the CFG for threading, data necessary for jump
155    threading is attached to the AUX field for the incoming edge.  Use these
156    macros to access the underlying structure attached to the AUX field.  */
157 #define THREAD_TARGET(E) ((edge *)(E)->aux)[0]
158 #define THREAD_TARGET2(E) ((edge *)(E)->aux)[1]
159
160 /* Jump threading statistics.  */
161
162 struct thread_stats_d
163 {
164   unsigned long num_threaded_edges;
165 };
166
167 struct thread_stats_d thread_stats;
168
169
170 /* Remove the last statement in block BB if it is a control statement
171    Also remove all outgoing edges except the edge which reaches DEST_BB.
172    If DEST_BB is NULL, then remove all outgoing edges.  */
173
174 static void
175 remove_ctrl_stmt_and_useless_edges (basic_block bb, basic_block dest_bb)
176 {
177   gimple_stmt_iterator gsi;
178   edge e;
179   edge_iterator ei;
180
181   gsi = gsi_last_bb (bb);
182
183   /* If the duplicate ends with a control statement, then remove it.
184
185      Note that if we are duplicating the template block rather than the
186      original basic block, then the duplicate might not have any real
187      statements in it.  */
188   if (!gsi_end_p (gsi)
189       && gsi_stmt (gsi)
190       && (gimple_code (gsi_stmt (gsi)) == GIMPLE_COND
191           || gimple_code (gsi_stmt (gsi)) == GIMPLE_GOTO
192           || gimple_code (gsi_stmt (gsi)) == GIMPLE_SWITCH))
193     gsi_remove (&gsi, true);
194
195   for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
196     {
197       if (e->dest != dest_bb)
198         remove_edge (e);
199       else
200         ei_next (&ei);
201     }
202 }
203
204 /* Create a duplicate of BB.  Record the duplicate block in RD.  */
205
206 static void
207 create_block_for_threading (basic_block bb, struct redirection_data *rd)
208 {
209   edge_iterator ei;
210   edge e;
211
212   /* We can use the generic block duplication code and simply remove
213      the stuff we do not need.  */
214   rd->dup_block = duplicate_block (bb, NULL, NULL);
215
216   FOR_EACH_EDGE (e, ei, rd->dup_block->succs)
217     e->aux = NULL;
218
219   /* Zero out the profile, since the block is unreachable for now.  */
220   rd->dup_block->frequency = 0;
221   rd->dup_block->count = 0;
222 }
223
224 /* Hashing and equality routines for our hash table.  */
225 static hashval_t
226 redirection_data_hash (const void *p)
227 {
228   edge e = ((const struct redirection_data *)p)->outgoing_edge;
229   return e->dest->index;
230 }
231
232 static int
233 redirection_data_eq (const void *p1, const void *p2)
234 {
235   edge e1 = ((const struct redirection_data *)p1)->outgoing_edge;
236   edge e2 = ((const struct redirection_data *)p2)->outgoing_edge;
237   edge e3 = ((const struct redirection_data *)p1)->intermediate_edge;
238   edge e4 = ((const struct redirection_data *)p2)->intermediate_edge;
239
240   return e1 == e2 && e3 == e4;
241 }
242
243 /* Given an outgoing edge E lookup and return its entry in our hash table.
244
245    If INSERT is true, then we insert the entry into the hash table if
246    it is not already present.  INCOMING_EDGE is added to the list of incoming
247    edges associated with E in the hash table.  */
248
249 static struct redirection_data *
250 lookup_redirection_data (edge e, enum insert_option insert)
251 {
252   void **slot;
253   struct redirection_data *elt;
254
255  /* Build a hash table element so we can see if E is already
256      in the table.  */
257   elt = XNEW (struct redirection_data);
258   elt->intermediate_edge = THREAD_TARGET2 (e) ? THREAD_TARGET (e) : NULL;
259   elt->outgoing_edge = THREAD_TARGET2 (e) ? THREAD_TARGET2 (e) 
260                                           : THREAD_TARGET (e);
261   elt->dup_block = NULL;
262   elt->incoming_edges = NULL;
263
264   slot = htab_find_slot (redirection_data, elt, insert);
265
266   /* This will only happen if INSERT is false and the entry is not
267      in the hash table.  */
268   if (slot == NULL)
269     {
270       free (elt);
271       return NULL;
272     }
273
274   /* This will only happen if E was not in the hash table and
275      INSERT is true.  */
276   if (*slot == NULL)
277     {
278       *slot = (void *)elt;
279       elt->incoming_edges = XNEW (struct el);
280       elt->incoming_edges->e = e;
281       elt->incoming_edges->next = NULL;
282       return elt;
283     }
284   /* E was in the hash table.  */
285   else
286     {
287       /* Free ELT as we do not need it anymore, we will extract the
288          relevant entry from the hash table itself.  */
289       free (elt);
290
291       /* Get the entry stored in the hash table.  */
292       elt = (struct redirection_data *) *slot;
293
294       /* If insertion was requested, then we need to add INCOMING_EDGE
295          to the list of incoming edges associated with E.  */
296       if (insert)
297         {
298           struct el *el = XNEW (struct el);
299           el->next = elt->incoming_edges;
300           el->e = e;
301           elt->incoming_edges = el;
302         }
303
304       return elt;
305     }
306 }
307
308 /* For each PHI in BB, copy the argument associated with SRC_E to TGT_E.  */
309
310 static void
311 copy_phi_args (basic_block bb, edge src_e, edge tgt_e)
312 {
313   gimple_stmt_iterator gsi;
314   int src_indx = src_e->dest_idx;
315
316   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
317     {
318       gimple phi = gsi_stmt (gsi);
319       source_location locus = gimple_phi_arg_location (phi, src_indx);
320       add_phi_arg (phi, gimple_phi_arg_def (phi, src_indx), tgt_e, locus);
321     }
322 }
323
324 /* We have recently made a copy of ORIG_BB, including its outgoing
325    edges.  The copy is NEW_BB.  Every PHI node in every direct successor of
326    ORIG_BB has a new argument associated with edge from NEW_BB to the
327    successor.  Initialize the PHI argument so that it is equal to the PHI
328    argument associated with the edge from ORIG_BB to the successor.  */
329
330 static void
331 update_destination_phis (basic_block orig_bb, basic_block new_bb)
332 {
333   edge_iterator ei;
334   edge e;
335
336   FOR_EACH_EDGE (e, ei, orig_bb->succs)
337     {
338       edge e2 = find_edge (new_bb, e->dest);
339       copy_phi_args (e->dest, e, e2);
340     }
341 }
342
343 /* Given a duplicate block and its single destination (both stored
344    in RD).  Create an edge between the duplicate and its single
345    destination.
346
347    Add an additional argument to any PHI nodes at the single
348    destination.  */
349
350 static void
351 create_edge_and_update_destination_phis (struct redirection_data *rd,
352                                          basic_block bb)
353 {
354   edge e = make_edge (bb, rd->outgoing_edge->dest, EDGE_FALLTHRU);
355
356   rescan_loop_exit (e, true, false);
357   e->probability = REG_BR_PROB_BASE;
358   e->count = bb->count;
359
360   if (rd->outgoing_edge->aux)
361     {
362       e->aux = (edge *) XNEWVEC (edge, 2);
363       THREAD_TARGET(e) = THREAD_TARGET (rd->outgoing_edge);
364       THREAD_TARGET2(e) = THREAD_TARGET2 (rd->outgoing_edge);
365     }
366   else
367     {
368       e->aux = NULL;
369     }
370
371   /* If there are any PHI nodes at the destination of the outgoing edge
372      from the duplicate block, then we will need to add a new argument
373      to them.  The argument should have the same value as the argument
374      associated with the outgoing edge stored in RD.  */
375   copy_phi_args (e->dest, rd->outgoing_edge, e);
376 }
377
378 /* Wire up the outgoing edges from the duplicate block and
379    update any PHIs as needed.  */
380 static void
381 fix_duplicate_block_edges (struct redirection_data *rd,
382                            struct local_info *local_info)
383 {
384   /* If we were threading through an joiner block, then we want
385      to keep its control statement and redirect an outgoing edge.
386      Else we want to remove the control statement & edges, then create
387      a new outgoing edge.  In both cases we may need to update PHIs.  */
388   if (THREAD_TARGET2 (rd->incoming_edges->e))
389     {
390       edge victim;
391       edge e2;
392       edge e = rd->incoming_edges->e;
393
394       /* This updates the PHIs at the destination of the duplicate
395          block.  */
396       update_destination_phis (local_info->bb, rd->dup_block);
397
398       /* Find the edge from the duplicate block to the block we're
399          threading through.  That's the edge we want to redirect.  */
400       victim = find_edge (rd->dup_block, THREAD_TARGET (e)->dest);
401       e2 = redirect_edge_and_branch (victim, THREAD_TARGET2 (e)->dest);
402
403       /* If we redirected the edge, then we need to copy PHI arguments
404          at the target.  If the edge already existed (e2 != victim case),
405          then the PHIs in the target already have the correct arguments.  */
406       if (e2 == victim)
407         copy_phi_args (e2->dest, THREAD_TARGET2 (e), e2);
408     }
409   else
410     {
411       remove_ctrl_stmt_and_useless_edges (rd->dup_block, NULL);
412       create_edge_and_update_destination_phis (rd, rd->dup_block);
413     }
414 }
415 /* Hash table traversal callback routine to create duplicate blocks.  */
416
417 static int
418 create_duplicates (void **slot, void *data)
419 {
420   struct redirection_data *rd = (struct redirection_data *) *slot;
421   struct local_info *local_info = (struct local_info *)data;
422
423   /* Create a template block if we have not done so already.  Otherwise
424      use the template to create a new block.  */
425   if (local_info->template_block == NULL)
426     {
427       create_block_for_threading (local_info->bb, rd);
428       local_info->template_block = rd->dup_block;
429
430       /* We do not create any outgoing edges for the template.  We will
431          take care of that in a later traversal.  That way we do not
432          create edges that are going to just be deleted.  */
433     }
434   else
435     {
436       create_block_for_threading (local_info->template_block, rd);
437
438       /* Go ahead and wire up outgoing edges and update PHIs for the duplicate
439          block.   */
440       fix_duplicate_block_edges (rd, local_info);
441     }
442
443   /* Keep walking the hash table.  */
444   return 1;
445 }
446
447 /* We did not create any outgoing edges for the template block during
448    block creation.  This hash table traversal callback creates the
449    outgoing edge for the template block.  */
450
451 static int
452 fixup_template_block (void **slot, void *data)
453 {
454   struct redirection_data *rd = (struct redirection_data *) *slot;
455   struct local_info *local_info = (struct local_info *)data;
456
457   /* If this is the template block halt the traversal after updating
458      it appropriately.
459
460      If we were threading through an joiner block, then we want
461      to keep its control statement and redirect an outgoing edge.
462      Else we want to remove the control statement & edges, then create
463      a new outgoing edge.  In both cases we may need to update PHIs.  */
464   if (rd->dup_block && rd->dup_block == local_info->template_block)
465     {
466       fix_duplicate_block_edges (rd, local_info);
467       return 0;
468     }
469
470   return 1;
471 }
472
473 /* Hash table traversal callback to redirect each incoming edge
474    associated with this hash table element to its new destination.  */
475
476 static int
477 redirect_edges (void **slot, void *data)
478 {
479   struct redirection_data *rd = (struct redirection_data *) *slot;
480   struct local_info *local_info = (struct local_info *)data;
481   struct el *next, *el;
482
483   /* Walk over all the incoming edges associated associated with this
484      hash table entry.  */
485   for (el = rd->incoming_edges; el; el = next)
486     {
487       edge e = el->e;
488
489       /* Go ahead and free this element from the list.  Doing this now
490          avoids the need for another list walk when we destroy the hash
491          table.  */
492       next = el->next;
493       free (el);
494
495       thread_stats.num_threaded_edges++;
496       /* If we are threading through a joiner block, then we have to
497          find the edge we want to redirect and update some PHI nodes.  */
498       if (THREAD_TARGET2 (e))
499         {
500           edge e2;
501
502           /* We want to redirect the incoming edge to the joiner block (E)
503              to instead reach the duplicate of the joiner block.  */
504           e2 = redirect_edge_and_branch (e, rd->dup_block);
505           flush_pending_stmts (e2);
506         }
507       else if (rd->dup_block)
508         {
509           edge e2;
510
511           if (dump_file && (dump_flags & TDF_DETAILS))
512             fprintf (dump_file, "  Threaded jump %d --> %d to %d\n",
513                      e->src->index, e->dest->index, rd->dup_block->index);
514
515           rd->dup_block->count += e->count;
516
517           /* Excessive jump threading may make frequencies large enough so
518              the computation overflows.  */
519           if (rd->dup_block->frequency < BB_FREQ_MAX * 2)
520             rd->dup_block->frequency += EDGE_FREQUENCY (e);
521           EDGE_SUCC (rd->dup_block, 0)->count += e->count;
522           /* Redirect the incoming edge to the appropriate duplicate
523              block.  */
524           e2 = redirect_edge_and_branch (e, rd->dup_block);
525           gcc_assert (e == e2);
526           flush_pending_stmts (e2);
527         }
528
529       /* Go ahead and clear E->aux.  It's not needed anymore and failure
530          to clear it will cause all kinds of unpleasant problems later.  */
531       free (e->aux);
532       e->aux = NULL;
533
534     }
535
536   /* Indicate that we actually threaded one or more jumps.  */
537   if (rd->incoming_edges)
538     local_info->jumps_threaded = true;
539
540   return 1;
541 }
542
543 /* Return true if this block has no executable statements other than
544    a simple ctrl flow instruction.  When the number of outgoing edges
545    is one, this is equivalent to a "forwarder" block.  */
546
547 static bool
548 redirection_block_p (basic_block bb)
549 {
550   gimple_stmt_iterator gsi;
551
552   /* Advance to the first executable statement.  */
553   gsi = gsi_start_bb (bb);
554   while (!gsi_end_p (gsi)
555          && (gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL
556              || is_gimple_debug (gsi_stmt (gsi))
557              || gimple_nop_p (gsi_stmt (gsi))))
558     gsi_next (&gsi);
559
560   /* Check if this is an empty block.  */
561   if (gsi_end_p (gsi))
562     return true;
563
564   /* Test that we've reached the terminating control statement.  */
565   return gsi_stmt (gsi)
566          && (gimple_code (gsi_stmt (gsi)) == GIMPLE_COND
567              || gimple_code (gsi_stmt (gsi)) == GIMPLE_GOTO
568              || gimple_code (gsi_stmt (gsi)) == GIMPLE_SWITCH);
569 }
570
571 /* BB is a block which ends with a COND_EXPR or SWITCH_EXPR and when BB
572    is reached via one or more specific incoming edges, we know which
573    outgoing edge from BB will be traversed.
574
575    We want to redirect those incoming edges to the target of the
576    appropriate outgoing edge.  Doing so avoids a conditional branch
577    and may expose new optimization opportunities.  Note that we have
578    to update dominator tree and SSA graph after such changes.
579
580    The key to keeping the SSA graph update manageable is to duplicate
581    the side effects occurring in BB so that those side effects still
582    occur on the paths which bypass BB after redirecting edges.
583
584    We accomplish this by creating duplicates of BB and arranging for
585    the duplicates to unconditionally pass control to one specific
586    successor of BB.  We then revector the incoming edges into BB to
587    the appropriate duplicate of BB.
588
589    If NOLOOP_ONLY is true, we only perform the threading as long as it
590    does not affect the structure of the loops in a nontrivial way.  */
591
592 static bool
593 thread_block (basic_block bb, bool noloop_only)
594 {
595   /* E is an incoming edge into BB that we may or may not want to
596      redirect to a duplicate of BB.  */
597   edge e, e2;
598   edge_iterator ei;
599   struct local_info local_info;
600   struct loop *loop = bb->loop_father;
601
602   /* To avoid scanning a linear array for the element we need we instead
603      use a hash table.  For normal code there should be no noticeable
604      difference.  However, if we have a block with a large number of
605      incoming and outgoing edges such linear searches can get expensive.  */
606   redirection_data = htab_create (EDGE_COUNT (bb->succs),
607                                   redirection_data_hash,
608                                   redirection_data_eq,
609                                   free);
610
611   /* If we thread the latch of the loop to its exit, the loop ceases to
612      exist.  Make sure we do not restrict ourselves in order to preserve
613      this loop.  */
614   if (loop->header == bb)
615     {
616       e = loop_latch_edge (loop);
617
618       if (e->aux)
619         e2 = THREAD_TARGET (e);
620       else
621         e2 = NULL;
622
623       if (e2 && loop_exit_edge_p (loop, e2))
624         {
625           loop->header = NULL;
626           loop->latch = NULL;
627         }
628     }
629
630   /* Record each unique threaded destination into a hash table for
631      efficient lookups.  */
632   FOR_EACH_EDGE (e, ei, bb->preds)
633     {
634       if (e->aux == NULL)
635         continue;
636
637       if (THREAD_TARGET2 (e))
638         e2 = THREAD_TARGET2 (e);
639       else
640         e2 = THREAD_TARGET (e);
641
642       if (!e2
643           /* If NOLOOP_ONLY is true, we only allow threading through the
644              header of a loop to exit edges.  */
645           || (noloop_only
646               && bb == bb->loop_father->header
647               && (!loop_exit_edge_p (bb->loop_father, e2)
648                   || THREAD_TARGET2 (e))))
649         continue;
650
651       if (e->dest == e2->src)
652         update_bb_profile_for_threading (e->dest, EDGE_FREQUENCY (e),
653                                          e->count, THREAD_TARGET (e));
654
655       /* Insert the outgoing edge into the hash table if it is not
656          already in the hash table.  */
657       lookup_redirection_data (e, INSERT);
658     }
659
660   /* We do not update dominance info.  */
661   free_dominance_info (CDI_DOMINATORS);
662
663   /* Now create duplicates of BB.
664
665      Note that for a block with a high outgoing degree we can waste
666      a lot of time and memory creating and destroying useless edges.
667
668      So we first duplicate BB and remove the control structure at the
669      tail of the duplicate as well as all outgoing edges from the
670      duplicate.  We then use that duplicate block as a template for
671      the rest of the duplicates.  */
672   local_info.template_block = NULL;
673   local_info.bb = bb;
674   local_info.jumps_threaded = false;
675   htab_traverse (redirection_data, create_duplicates, &local_info);
676
677   /* The template does not have an outgoing edge.  Create that outgoing
678      edge and update PHI nodes as the edge's target as necessary.
679
680      We do this after creating all the duplicates to avoid creating
681      unnecessary edges.  */
682   htab_traverse (redirection_data, fixup_template_block, &local_info);
683
684   /* The hash table traversals above created the duplicate blocks (and the
685      statements within the duplicate blocks).  This loop creates PHI nodes for
686      the duplicated blocks and redirects the incoming edges into BB to reach
687      the duplicates of BB.  */
688   htab_traverse (redirection_data, redirect_edges, &local_info);
689
690   /* Done with this block.  Clear REDIRECTION_DATA.  */
691   htab_delete (redirection_data);
692   redirection_data = NULL;
693
694   /* Indicate to our caller whether or not any jumps were threaded.  */
695   return local_info.jumps_threaded;
696 }
697
698 /* Threads edge E through E->dest to the edge THREAD_TARGET (E).  Returns the
699    copy of E->dest created during threading, or E->dest if it was not necessary
700    to copy it (E is its single predecessor).  */
701
702 static basic_block
703 thread_single_edge (edge e)
704 {
705   basic_block bb = e->dest;
706   edge eto = THREAD_TARGET (e);
707   struct redirection_data rd;
708
709   free (e->aux);
710   e->aux = NULL;
711
712   thread_stats.num_threaded_edges++;
713
714   if (single_pred_p (bb))
715     {
716       /* If BB has just a single predecessor, we should only remove the
717          control statements at its end, and successors except for ETO.  */
718       remove_ctrl_stmt_and_useless_edges (bb, eto->dest);
719
720       /* And fixup the flags on the single remaining edge.  */
721       eto->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE | EDGE_ABNORMAL);
722       eto->flags |= EDGE_FALLTHRU;
723
724       return bb;
725     }
726
727   /* Otherwise, we need to create a copy.  */
728   if (e->dest == eto->src)
729     update_bb_profile_for_threading (bb, EDGE_FREQUENCY (e), e->count, eto);
730
731   rd.outgoing_edge = eto;
732
733   create_block_for_threading (bb, &rd);
734   remove_ctrl_stmt_and_useless_edges (rd.dup_block, NULL);
735   create_edge_and_update_destination_phis (&rd, rd.dup_block);
736
737   if (dump_file && (dump_flags & TDF_DETAILS))
738     fprintf (dump_file, "  Threaded jump %d --> %d to %d\n",
739              e->src->index, e->dest->index, rd.dup_block->index);
740
741   rd.dup_block->count = e->count;
742   rd.dup_block->frequency = EDGE_FREQUENCY (e);
743   single_succ_edge (rd.dup_block)->count = e->count;
744   redirect_edge_and_branch (e, rd.dup_block);
745   flush_pending_stmts (e);
746
747   return rd.dup_block;
748 }
749
750 /* Callback for dfs_enumerate_from.  Returns true if BB is different
751    from STOP and DBDS_CE_STOP.  */
752
753 static basic_block dbds_ce_stop;
754 static bool
755 dbds_continue_enumeration_p (const_basic_block bb, const void *stop)
756 {
757   return (bb != (const_basic_block) stop
758           && bb != dbds_ce_stop);
759 }
760
761 /* Evaluates the dominance relationship of latch of the LOOP and BB, and
762    returns the state.  */
763
764 enum bb_dom_status
765 {
766   /* BB does not dominate latch of the LOOP.  */
767   DOMST_NONDOMINATING,
768   /* The LOOP is broken (there is no path from the header to its latch.  */
769   DOMST_LOOP_BROKEN,
770   /* BB dominates the latch of the LOOP.  */
771   DOMST_DOMINATING
772 };
773
774 static enum bb_dom_status
775 determine_bb_domination_status (struct loop *loop, basic_block bb)
776 {
777   basic_block *bblocks;
778   unsigned nblocks, i;
779   bool bb_reachable = false;
780   edge_iterator ei;
781   edge e;
782
783   /* This function assumes BB is a successor of LOOP->header.
784      If that is not the case return DOMST_NONDOMINATING which
785      is always safe.  */
786     {
787       bool ok = false;
788
789       FOR_EACH_EDGE (e, ei, bb->preds)
790         {
791           if (e->src == loop->header)
792             {
793               ok = true;
794               break;
795             }
796         }
797
798       if (!ok)
799         return DOMST_NONDOMINATING;
800     }
801
802   if (bb == loop->latch)
803     return DOMST_DOMINATING;
804
805   /* Check that BB dominates LOOP->latch, and that it is back-reachable
806      from it.  */
807
808   bblocks = XCNEWVEC (basic_block, loop->num_nodes);
809   dbds_ce_stop = loop->header;
810   nblocks = dfs_enumerate_from (loop->latch, 1, dbds_continue_enumeration_p,
811                                 bblocks, loop->num_nodes, bb);
812   for (i = 0; i < nblocks; i++)
813     FOR_EACH_EDGE (e, ei, bblocks[i]->preds)
814       {
815         if (e->src == loop->header)
816           {
817             free (bblocks);
818             return DOMST_NONDOMINATING;
819           }
820         if (e->src == bb)
821           bb_reachable = true;
822       }
823
824   free (bblocks);
825   return (bb_reachable ? DOMST_DOMINATING : DOMST_LOOP_BROKEN);
826 }
827
828 /* Thread jumps through the header of LOOP.  Returns true if cfg changes.
829    If MAY_PEEL_LOOP_HEADERS is false, we avoid threading from entry edges
830    to the inside of the loop.  */
831
832 static bool
833 thread_through_loop_header (struct loop *loop, bool may_peel_loop_headers)
834 {
835   basic_block header = loop->header;
836   edge e, tgt_edge, latch = loop_latch_edge (loop);
837   edge_iterator ei;
838   basic_block tgt_bb, atgt_bb;
839   enum bb_dom_status domst;
840
841   /* We have already threaded through headers to exits, so all the threading
842      requests now are to the inside of the loop.  We need to avoid creating
843      irreducible regions (i.e., loops with more than one entry block), and
844      also loop with several latch edges, or new subloops of the loop (although
845      there are cases where it might be appropriate, it is difficult to decide,
846      and doing it wrongly may confuse other optimizers).
847
848      We could handle more general cases here.  However, the intention is to
849      preserve some information about the loop, which is impossible if its
850      structure changes significantly, in a way that is not well understood.
851      Thus we only handle few important special cases, in which also updating
852      of the loop-carried information should be feasible:
853
854      1) Propagation of latch edge to a block that dominates the latch block
855         of a loop.  This aims to handle the following idiom:
856
857         first = 1;
858         while (1)
859           {
860             if (first)
861               initialize;
862             first = 0;
863             body;
864           }
865
866         After threading the latch edge, this becomes
867
868         first = 1;
869         if (first)
870           initialize;
871         while (1)
872           {
873             first = 0;
874             body;
875           }
876
877         The original header of the loop is moved out of it, and we may thread
878         the remaining edges through it without further constraints.
879
880      2) All entry edges are propagated to a single basic block that dominates
881         the latch block of the loop.  This aims to handle the following idiom
882         (normally created for "for" loops):
883
884         i = 0;
885         while (1)
886           {
887             if (i >= 100)
888               break;
889             body;
890             i++;
891           }
892
893         This becomes
894
895         i = 0;
896         while (1)
897           {
898             body;
899             i++;
900             if (i >= 100)
901               break;
902           }
903      */
904
905   /* Threading through the header won't improve the code if the header has just
906      one successor.  */
907   if (single_succ_p (header))
908     goto fail;
909
910   if (latch->aux)
911     {
912       if (THREAD_TARGET2 (latch))
913         goto fail;
914       tgt_edge = THREAD_TARGET (latch);
915       tgt_bb = tgt_edge->dest;
916     }
917   else if (!may_peel_loop_headers
918            && !redirection_block_p (loop->header))
919     goto fail;
920   else
921     {
922       tgt_bb = NULL;
923       tgt_edge = NULL;
924       FOR_EACH_EDGE (e, ei, header->preds)
925         {
926           if (!e->aux)
927             {
928               if (e == latch)
929                 continue;
930
931               /* If latch is not threaded, and there is a header
932                  edge that is not threaded, we would create loop
933                  with multiple entries.  */
934               goto fail;
935             }
936
937           if (THREAD_TARGET2 (e))
938             goto fail;
939           tgt_edge = THREAD_TARGET (e);
940           atgt_bb = tgt_edge->dest;
941           if (!tgt_bb)
942             tgt_bb = atgt_bb;
943           /* Two targets of threading would make us create loop
944              with multiple entries.  */
945           else if (tgt_bb != atgt_bb)
946             goto fail;
947         }
948
949       if (!tgt_bb)
950         {
951           /* There are no threading requests.  */
952           return false;
953         }
954
955       /* Redirecting to empty loop latch is useless.  */
956       if (tgt_bb == loop->latch
957           && empty_block_p (loop->latch))
958         goto fail;
959     }
960
961   /* The target block must dominate the loop latch, otherwise we would be
962      creating a subloop.  */
963   domst = determine_bb_domination_status (loop, tgt_bb);
964   if (domst == DOMST_NONDOMINATING)
965     goto fail;
966   if (domst == DOMST_LOOP_BROKEN)
967     {
968       /* If the loop ceased to exist, mark it as such, and thread through its
969          original header.  */
970       loop->header = NULL;
971       loop->latch = NULL;
972       return thread_block (header, false);
973     }
974
975   if (tgt_bb->loop_father->header == tgt_bb)
976     {
977       /* If the target of the threading is a header of a subloop, we need
978          to create a preheader for it, so that the headers of the two loops
979          do not merge.  */
980       if (EDGE_COUNT (tgt_bb->preds) > 2)
981         {
982           tgt_bb = create_preheader (tgt_bb->loop_father, 0);
983           gcc_assert (tgt_bb != NULL);
984         }
985       else
986         tgt_bb = split_edge (tgt_edge);
987     }
988
989   if (latch->aux)
990     {
991       /* First handle the case latch edge is redirected.  */
992       loop->latch = thread_single_edge (latch);
993       gcc_assert (single_succ (loop->latch) == tgt_bb);
994       loop->header = tgt_bb;
995
996       /* Thread the remaining edges through the former header.  */
997       thread_block (header, false);
998     }
999   else
1000     {
1001       basic_block new_preheader;
1002
1003       /* Now consider the case entry edges are redirected to the new entry
1004          block.  Remember one entry edge, so that we can find the new
1005          preheader (its destination after threading).  */
1006       FOR_EACH_EDGE (e, ei, header->preds)
1007         {
1008           if (e->aux)
1009             break;
1010         }
1011
1012       /* The duplicate of the header is the new preheader of the loop.  Ensure
1013          that it is placed correctly in the loop hierarchy.  */
1014       set_loop_copy (loop, loop_outer (loop));
1015
1016       thread_block (header, false);
1017       set_loop_copy (loop, NULL);
1018       new_preheader = e->dest;
1019
1020       /* Create the new latch block.  This is always necessary, as the latch
1021          must have only a single successor, but the original header had at
1022          least two successors.  */
1023       loop->latch = NULL;
1024       mfb_kj_edge = single_succ_edge (new_preheader);
1025       loop->header = mfb_kj_edge->dest;
1026       latch = make_forwarder_block (tgt_bb, mfb_keep_just, NULL);
1027       loop->header = latch->dest;
1028       loop->latch = latch->src;
1029     }
1030
1031   return true;
1032
1033 fail:
1034   /* We failed to thread anything.  Cancel the requests.  */
1035   FOR_EACH_EDGE (e, ei, header->preds)
1036     {
1037       free (e->aux);
1038       e->aux = NULL;
1039     }
1040   return false;
1041 }
1042
1043 /* Walk through the registered jump threads and convert them into a
1044    form convenient for this pass.
1045
1046    Any block which has incoming edges threaded to outgoing edges
1047    will have its entry in THREADED_BLOCK set.
1048
1049    Any threaded edge will have its new outgoing edge stored in the
1050    original edge's AUX field.
1051
1052    This form avoids the need to walk all the edges in the CFG to
1053    discover blocks which need processing and avoids unnecessary
1054    hash table lookups to map from threaded edge to new target.  */
1055
1056 static void
1057 mark_threaded_blocks (bitmap threaded_blocks)
1058 {
1059   unsigned int i;
1060   bitmap_iterator bi;
1061   bitmap tmp = BITMAP_ALLOC (NULL);
1062   basic_block bb;
1063   edge e;
1064   edge_iterator ei;
1065
1066   for (i = 0; i < VEC_length (edge, threaded_edges); i += 3)
1067     {
1068       edge e = VEC_index (edge, threaded_edges, i);
1069       edge *x = (edge *) XNEWVEC (edge, 2);
1070
1071       e->aux = x;
1072       THREAD_TARGET (e) = VEC_index (edge, threaded_edges, i + 1);
1073       THREAD_TARGET2 (e) = VEC_index (edge, threaded_edges, i + 2);
1074       bitmap_set_bit (tmp, e->dest->index);
1075     }
1076
1077   /* If optimizing for size, only thread through block if we don't have
1078      to duplicate it or it's an otherwise empty redirection block.  */
1079   if (optimize_function_for_size_p (cfun))
1080     {
1081       EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
1082         {
1083           bb = BASIC_BLOCK (i);
1084           if (EDGE_COUNT (bb->preds) > 1
1085               && !redirection_block_p (bb))
1086             {
1087               FOR_EACH_EDGE (e, ei, bb->preds)
1088                 {
1089                   free (e->aux);
1090                   e->aux = NULL;
1091                 }
1092             }
1093           else
1094             bitmap_set_bit (threaded_blocks, i);
1095         }
1096     }
1097   else
1098     bitmap_copy (threaded_blocks, tmp);
1099
1100   BITMAP_FREE(tmp);
1101 }
1102
1103
1104 /* Walk through all blocks and thread incoming edges to the appropriate
1105    outgoing edge for each edge pair recorded in THREADED_EDGES.
1106
1107    It is the caller's responsibility to fix the dominance information
1108    and rewrite duplicated SSA_NAMEs back into SSA form.
1109
1110    If MAY_PEEL_LOOP_HEADERS is false, we avoid threading edges through
1111    loop headers if it does not simplify the loop.
1112
1113    Returns true if one or more edges were threaded, false otherwise.  */
1114
1115 bool
1116 thread_through_all_blocks (bool may_peel_loop_headers)
1117 {
1118   bool retval = false;
1119   unsigned int i;
1120   bitmap_iterator bi;
1121   bitmap threaded_blocks;
1122   struct loop *loop;
1123   loop_iterator li;
1124
1125   /* We must know about loops in order to preserve them.  */
1126   gcc_assert (current_loops != NULL);
1127
1128   if (threaded_edges == NULL)
1129     return false;
1130
1131   threaded_blocks = BITMAP_ALLOC (NULL);
1132   memset (&thread_stats, 0, sizeof (thread_stats));
1133
1134   mark_threaded_blocks (threaded_blocks);
1135
1136   initialize_original_copy_tables ();
1137
1138   /* First perform the threading requests that do not affect
1139      loop structure.  */
1140   EXECUTE_IF_SET_IN_BITMAP (threaded_blocks, 0, i, bi)
1141     {
1142       basic_block bb = BASIC_BLOCK (i);
1143
1144       if (EDGE_COUNT (bb->preds) > 0)
1145         retval |= thread_block (bb, true);
1146     }
1147
1148   /* Then perform the threading through loop headers.  We start with the
1149      innermost loop, so that the changes in cfg we perform won't affect
1150      further threading.  */
1151   FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1152     {
1153       if (!loop->header
1154           || !bitmap_bit_p (threaded_blocks, loop->header->index))
1155         continue;
1156
1157       retval |= thread_through_loop_header (loop, may_peel_loop_headers);
1158     }
1159
1160   statistics_counter_event (cfun, "Jumps threaded",
1161                             thread_stats.num_threaded_edges);
1162
1163   free_original_copy_tables ();
1164
1165   BITMAP_FREE (threaded_blocks);
1166   threaded_blocks = NULL;
1167   VEC_free (edge, heap, threaded_edges);
1168   threaded_edges = NULL;
1169
1170   if (retval)
1171     loops_state_set (LOOPS_NEED_FIXUP);
1172
1173   return retval;
1174 }
1175
1176 /* Register a jump threading opportunity.  We queue up all the jump
1177    threading opportunities discovered by a pass and update the CFG
1178    and SSA form all at once.
1179
1180    E is the edge we can thread, E2 is the new target edge, i.e., we
1181    are effectively recording that E->dest can be changed to E2->dest
1182    after fixing the SSA graph.  */
1183
1184 void
1185 register_jump_thread (edge e, edge e2, edge e3)
1186 {
1187   /* This can occur if we're jumping to a constant address or
1188      or something similar.  Just get out now.  */
1189   if (e2 == NULL)
1190     return;
1191
1192   if (threaded_edges == NULL)
1193     threaded_edges = VEC_alloc (edge, heap, 15);
1194
1195   if (dump_file && (dump_flags & TDF_DETAILS)
1196       && e->dest != e2->src)
1197     fprintf (dump_file,
1198              "  Registering jump thread around one or more intermediate blocks\n");
1199
1200   VEC_safe_push (edge, heap, threaded_edges, e);
1201   VEC_safe_push (edge, heap, threaded_edges, e2);
1202   VEC_safe_push (edge, heap, threaded_edges, e3);
1203 }