OSDN Git Service

fortran/
[pf3gnuchains/gcc-fork.git] / gcc / tree-ssa-propagate.c
1 /* Generic SSA value propagation engine.
2    Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>
4
5    This file is part of GCC.
6
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published by the
9    Free Software Foundation; either version 2, or (at your option) any
10    later version.
11
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15    for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING.  If not, write to the Free
19    Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20    02110-1301, USA.  */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "function.h"
35 #include "diagnostic.h"
36 #include "timevar.h"
37 #include "tree-dump.h"
38 #include "tree-flow.h"
39 #include "tree-pass.h"
40 #include "tree-ssa-propagate.h"
41 #include "langhooks.h"
42 #include "varray.h"
43 #include "vec.h"
44
45 /* This file implements a generic value propagation engine based on
46    the same propagation used by the SSA-CCP algorithm [1].
47
48    Propagation is performed by simulating the execution of every
49    statement that produces the value being propagated.  Simulation
50    proceeds as follows:
51
52    1- Initially, all edges of the CFG are marked not executable and
53       the CFG worklist is seeded with all the statements in the entry
54       basic block (block 0).
55
56    2- Every statement S is simulated with a call to the call-back
57       function SSA_PROP_VISIT_STMT.  This evaluation may produce 3
58       results:
59
60         SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
61             interest and does not affect any of the work lists.
62
63         SSA_PROP_VARYING: The value produced by S cannot be determined
64             at compile time.  Further simulation of S is not required.
65             If S is a conditional jump, all the outgoing edges for the
66             block are considered executable and added to the work
67             list.
68
69         SSA_PROP_INTERESTING: S produces a value that can be computed
70             at compile time.  Its result can be propagated into the
71             statements that feed from S.  Furthermore, if S is a
72             conditional jump, only the edge known to be taken is added
73             to the work list.  Edges that are known not to execute are
74             never simulated.
75
76    3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI.  The
77       return value from SSA_PROP_VISIT_PHI has the same semantics as
78       described in #2.
79
80    4- Three work lists are kept.  Statements are only added to these
81       lists if they produce one of SSA_PROP_INTERESTING or
82       SSA_PROP_VARYING.
83
84         CFG_BLOCKS contains the list of blocks to be simulated.
85             Blocks are added to this list if their incoming edges are
86             found executable.
87
88         VARYING_SSA_EDGES contains the list of statements that feed
89             from statements that produce an SSA_PROP_VARYING result.
90             These are simulated first to speed up processing.
91
92         INTERESTING_SSA_EDGES contains the list of statements that
93             feed from statements that produce an SSA_PROP_INTERESTING
94             result.
95
96    5- Simulation terminates when all three work lists are drained.
97
98    Before calling ssa_propagate, it is important to clear
99    DONT_SIMULATE_AGAIN for all the statements in the program that
100    should be simulated.  This initialization allows an implementation
101    to specify which statements should never be simulated.
102
103    It is also important to compute def-use information before calling
104    ssa_propagate.
105
106    References:
107
108      [1] Constant propagation with conditional branches,
109          Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
110
111      [2] Building an Optimizing Compiler,
112          Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
113
114      [3] Advanced Compiler Design and Implementation,
115          Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6  */
116
117 /* Function pointers used to parameterize the propagation engine.  */
118 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
119 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
120
121 /* Use the TREE_DEPRECATED bitflag to mark statements that have been
122    added to one of the SSA edges worklists.  This flag is used to
123    avoid visiting statements unnecessarily when draining an SSA edge
124    worklist.  If while simulating a basic block, we find a statement with
125    STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
126    processing from visiting it again.  */
127 #define STMT_IN_SSA_EDGE_WORKLIST(T)    TREE_DEPRECATED (T)
128
129 /* A bitmap to keep track of executable blocks in the CFG.  */
130 static sbitmap executable_blocks;
131
132 /* Array of control flow edges on the worklist.  */
133 static VEC(basic_block,heap) *cfg_blocks;
134
135 static unsigned int cfg_blocks_num = 0;
136 static int cfg_blocks_tail;
137 static int cfg_blocks_head;
138
139 static sbitmap bb_in_list;
140
141 /* Worklist of SSA edges which will need reexamination as their
142    definition has changed.  SSA edges are def-use edges in the SSA
143    web.  For each D-U edge, we store the target statement or PHI node
144    U.  */
145 static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
146
147 /* Identical to INTERESTING_SSA_EDGES.  For performance reasons, the
148    list of SSA edges is split into two.  One contains all SSA edges
149    who need to be reexamined because their lattice value changed to
150    varying (this worklist), and the other contains all other SSA edges
151    to be reexamined (INTERESTING_SSA_EDGES).
152
153    Since most values in the program are VARYING, the ideal situation
154    is to move them to that lattice value as quickly as possible.
155    Thus, it doesn't make sense to process any other type of lattice
156    value until all VARYING values are propagated fully, which is one
157    thing using the VARYING worklist achieves.  In addition, if we
158    don't use a separate worklist for VARYING edges, we end up with
159    situations where lattice values move from
160    UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING.  */
161 static GTY(()) VEC(tree,gc) *varying_ssa_edges;
162
163
164 /* Return true if the block worklist empty.  */
165
166 static inline bool
167 cfg_blocks_empty_p (void)
168 {
169   return (cfg_blocks_num == 0);
170 }
171
172
173 /* Add a basic block to the worklist.  The block must not be already
174    in the worklist, and it must not be the ENTRY or EXIT block.  */
175
176 static void 
177 cfg_blocks_add (basic_block bb)
178 {
179   gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
180   gcc_assert (!TEST_BIT (bb_in_list, bb->index));
181
182   if (cfg_blocks_empty_p ())
183     {
184       cfg_blocks_tail = cfg_blocks_head = 0;
185       cfg_blocks_num = 1;
186     }
187   else
188     {
189       cfg_blocks_num++;
190       if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
191         {
192           /* We have to grow the array now.  Adjust to queue to occupy
193              the full space of the original array.  We do not need to
194              initialize the newly allocated portion of the array
195              because we keep track of CFG_BLOCKS_HEAD and
196              CFG_BLOCKS_HEAD.  */
197           cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
198           cfg_blocks_head = 0;
199           VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
200         }
201       else
202         cfg_blocks_tail = ((cfg_blocks_tail + 1)
203                            % VEC_length (basic_block, cfg_blocks));
204     }
205
206   VEC_replace (basic_block, cfg_blocks, cfg_blocks_tail, bb);
207   SET_BIT (bb_in_list, bb->index);
208 }
209
210
211 /* Remove a block from the worklist.  */
212
213 static basic_block
214 cfg_blocks_get (void)
215 {
216   basic_block bb;
217
218   bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
219
220   gcc_assert (!cfg_blocks_empty_p ());
221   gcc_assert (bb);
222
223   cfg_blocks_head = ((cfg_blocks_head + 1)
224                      % VEC_length (basic_block, cfg_blocks));
225   --cfg_blocks_num;
226   RESET_BIT (bb_in_list, bb->index);
227
228   return bb;
229 }
230
231
232 /* We have just defined a new value for VAR.  If IS_VARYING is true,
233    add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
234    them to INTERESTING_SSA_EDGES.  */
235
236 static void
237 add_ssa_edge (tree var, bool is_varying)
238 {
239   imm_use_iterator iter;
240   use_operand_p use_p;
241
242   FOR_EACH_IMM_USE_FAST (use_p, iter, var)
243     {
244       tree use_stmt = USE_STMT (use_p);
245
246       if (!DONT_SIMULATE_AGAIN (use_stmt)
247           && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
248         {
249           STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
250           if (is_varying)
251             VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
252           else
253             VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
254         }
255     }
256 }
257
258
259 /* Add edge E to the control flow worklist.  */
260
261 static void
262 add_control_edge (edge e)
263 {
264   basic_block bb = e->dest;
265   if (bb == EXIT_BLOCK_PTR)
266     return;
267
268   /* If the edge had already been executed, skip it.  */
269   if (e->flags & EDGE_EXECUTABLE)
270     return;
271
272   e->flags |= EDGE_EXECUTABLE;
273
274   /* If the block is already in the list, we're done.  */
275   if (TEST_BIT (bb_in_list, bb->index))
276     return;
277
278   cfg_blocks_add (bb);
279
280   if (dump_file && (dump_flags & TDF_DETAILS))
281     fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
282         e->src->index, e->dest->index);
283 }
284
285
286 /* Simulate the execution of STMT and update the work lists accordingly.  */
287
288 static void
289 simulate_stmt (tree stmt)
290 {
291   enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
292   edge taken_edge = NULL;
293   tree output_name = NULL_TREE;
294
295   /* Don't bother visiting statements that are already
296      considered varying by the propagator.  */
297   if (DONT_SIMULATE_AGAIN (stmt))
298     return;
299
300   if (TREE_CODE (stmt) == PHI_NODE)
301     {
302       val = ssa_prop_visit_phi (stmt);
303       output_name = PHI_RESULT (stmt);
304     }
305   else
306     val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
307
308   if (val == SSA_PROP_VARYING)
309     {
310       DONT_SIMULATE_AGAIN (stmt) = 1;
311
312       /* If the statement produced a new varying value, add the SSA
313          edges coming out of OUTPUT_NAME.  */
314       if (output_name)
315         add_ssa_edge (output_name, true);
316
317       /* If STMT transfers control out of its basic block, add
318          all outgoing edges to the work list.  */
319       if (stmt_ends_bb_p (stmt))
320         {
321           edge e;
322           edge_iterator ei;
323           basic_block bb = bb_for_stmt (stmt);
324           FOR_EACH_EDGE (e, ei, bb->succs)
325             add_control_edge (e);
326         }
327     }
328   else if (val == SSA_PROP_INTERESTING)
329     {
330       /* If the statement produced new value, add the SSA edges coming
331          out of OUTPUT_NAME.  */
332       if (output_name)
333         add_ssa_edge (output_name, false);
334
335       /* If we know which edge is going to be taken out of this block,
336          add it to the CFG work list.  */
337       if (taken_edge)
338         add_control_edge (taken_edge);
339     }
340 }
341
342 /* Process an SSA edge worklist.  WORKLIST is the SSA edge worklist to
343    drain.  This pops statements off the given WORKLIST and processes
344    them until there are no more statements on WORKLIST.
345    We take a pointer to WORKLIST because it may be reallocated when an
346    SSA edge is added to it in simulate_stmt.  */
347
348 static void
349 process_ssa_edge_worklist (VEC(tree,gc) **worklist)
350 {
351   /* Drain the entire worklist.  */
352   while (VEC_length (tree, *worklist) > 0)
353     {
354       basic_block bb;
355
356       /* Pull the statement to simulate off the worklist.  */
357       tree stmt = VEC_pop (tree, *worklist);
358
359       /* If this statement was already visited by simulate_block, then
360          we don't need to visit it again here.  */
361       if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
362         continue;
363
364       /* STMT is no longer in a worklist.  */
365       STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
366
367       if (dump_file && (dump_flags & TDF_DETAILS))
368         {
369           fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
370           print_generic_stmt (dump_file, stmt, dump_flags);
371         }
372
373       bb = bb_for_stmt (stmt);
374
375       /* PHI nodes are always visited, regardless of whether or not
376          the destination block is executable.  Otherwise, visit the
377          statement only if its block is marked executable.  */
378       if (TREE_CODE (stmt) == PHI_NODE
379           || TEST_BIT (executable_blocks, bb->index))
380         simulate_stmt (stmt);
381     }
382 }
383
384
385 /* Simulate the execution of BLOCK.  Evaluate the statement associated
386    with each variable reference inside the block.  */
387
388 static void
389 simulate_block (basic_block block)
390 {
391   tree phi;
392
393   /* There is nothing to do for the exit block.  */
394   if (block == EXIT_BLOCK_PTR)
395     return;
396
397   if (dump_file && (dump_flags & TDF_DETAILS))
398     fprintf (dump_file, "\nSimulating block %d\n", block->index);
399
400   /* Always simulate PHI nodes, even if we have simulated this block
401      before.  */
402   for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
403     simulate_stmt (phi);
404
405   /* If this is the first time we've simulated this block, then we
406      must simulate each of its statements.  */
407   if (!TEST_BIT (executable_blocks, block->index))
408     {
409       block_stmt_iterator j;
410       unsigned int normal_edge_count;
411       edge e, normal_edge;
412       edge_iterator ei;
413
414       /* Note that we have simulated this block.  */
415       SET_BIT (executable_blocks, block->index);
416
417       for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
418         {
419           tree stmt = bsi_stmt (j);
420
421           /* If this statement is already in the worklist then
422              "cancel" it.  The reevaluation implied by the worklist
423              entry will produce the same value we generate here and
424              thus reevaluating it again from the worklist is
425              pointless.  */
426           if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
427             STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
428
429           simulate_stmt (stmt);
430         }
431
432       /* We can not predict when abnormal edges will be executed, so
433          once a block is considered executable, we consider any
434          outgoing abnormal edges as executable.
435
436          At the same time, if this block has only one successor that is
437          reached by non-abnormal edges, then add that successor to the
438          worklist.  */
439       normal_edge_count = 0;
440       normal_edge = NULL;
441       FOR_EACH_EDGE (e, ei, block->succs)
442         {
443           if (e->flags & EDGE_ABNORMAL)
444             add_control_edge (e);
445           else
446             {
447               normal_edge_count++;
448               normal_edge = e;
449             }
450         }
451
452       if (normal_edge_count == 1)
453         add_control_edge (normal_edge);
454     }
455 }
456
457
458 /* Initialize local data structures and work lists.  */
459
460 static void
461 ssa_prop_init (void)
462 {
463   edge e;
464   edge_iterator ei;
465   basic_block bb;
466   size_t i;
467
468   /* Worklists of SSA edges.  */
469   interesting_ssa_edges = VEC_alloc (tree, gc, 20);
470   varying_ssa_edges = VEC_alloc (tree, gc, 20);
471
472   executable_blocks = sbitmap_alloc (last_basic_block);
473   sbitmap_zero (executable_blocks);
474
475   bb_in_list = sbitmap_alloc (last_basic_block);
476   sbitmap_zero (bb_in_list);
477
478   if (dump_file && (dump_flags & TDF_DETAILS))
479     dump_immediate_uses (dump_file);
480
481   cfg_blocks = VEC_alloc (basic_block, heap, 20);
482   VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
483
484   /* Initialize the values for every SSA_NAME.  */
485   for (i = 1; i < num_ssa_names; i++)
486     if (ssa_name (i))
487       SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
488
489   /* Initially assume that every edge in the CFG is not executable.
490      (including the edges coming out of ENTRY_BLOCK_PTR).  */
491   FOR_ALL_BB (bb)
492     {
493       block_stmt_iterator si;
494
495       for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
496         STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
497
498       FOR_EACH_EDGE (e, ei, bb->succs)
499         e->flags &= ~EDGE_EXECUTABLE;
500     }
501
502   /* Seed the algorithm by adding the successors of the entry block to the
503      edge worklist.  */
504   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
505     add_control_edge (e);
506 }
507
508
509 /* Free allocated storage.  */
510
511 static void
512 ssa_prop_fini (void)
513 {
514   VEC_free (tree, gc, interesting_ssa_edges);
515   VEC_free (tree, gc, varying_ssa_edges);
516   VEC_free (basic_block, heap, cfg_blocks);
517   cfg_blocks = NULL;
518   sbitmap_free (bb_in_list);
519   sbitmap_free (executable_blocks);
520 }
521
522
523 /* Get the main expression from statement STMT.  */
524
525 tree
526 get_rhs (tree stmt)
527 {
528   enum tree_code code = TREE_CODE (stmt);
529
530   switch (code)
531     {
532     case RETURN_EXPR:
533       stmt = TREE_OPERAND (stmt, 0);
534       if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
535         return stmt;
536       /* FALLTHRU */
537
538     case MODIFY_EXPR:
539       stmt = TREE_OPERAND (stmt, 1);
540       if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
541         return TREE_OPERAND (stmt, 0);
542       else
543         return stmt;
544
545     case COND_EXPR:
546       return COND_EXPR_COND (stmt);
547     case SWITCH_EXPR:
548       return SWITCH_COND (stmt);
549     case GOTO_EXPR:
550       return GOTO_DESTINATION (stmt);
551     case LABEL_EXPR:
552       return LABEL_EXPR_LABEL (stmt);
553
554     default:
555       return stmt;
556     }
557 }
558
559
560 /* Set the main expression of *STMT_P to EXPR.  If EXPR is not a valid
561    GIMPLE expression no changes are done and the function returns
562    false.  */
563
564 bool
565 set_rhs (tree *stmt_p, tree expr)
566 {
567   tree stmt = *stmt_p, op;
568   enum tree_code code = TREE_CODE (expr);
569   stmt_ann_t ann;
570   tree var;
571   ssa_op_iter iter;
572
573   /* Verify the constant folded result is valid gimple.  */
574   if (TREE_CODE_CLASS (code) == tcc_binary)
575     {
576       if (!is_gimple_val (TREE_OPERAND (expr, 0))
577           || !is_gimple_val (TREE_OPERAND (expr, 1)))
578         return false;
579     }
580   else if (TREE_CODE_CLASS (code) == tcc_unary)
581     {
582       if (!is_gimple_val (TREE_OPERAND (expr, 0)))
583         return false;
584     }
585   else if (code == ADDR_EXPR)
586     {
587       if (TREE_CODE (TREE_OPERAND (expr, 0)) == ARRAY_REF
588           && !is_gimple_val (TREE_OPERAND (TREE_OPERAND (expr, 0), 1)))
589         return false;
590     }
591   else if (code == COMPOUND_EXPR
592            || code == MODIFY_EXPR)
593     return false;
594
595   if (EXPR_HAS_LOCATION (stmt)
596       && EXPR_P (expr)
597       && ! EXPR_HAS_LOCATION (expr)
598       && TREE_SIDE_EFFECTS (expr)
599       && TREE_CODE (expr) != LABEL_EXPR)
600     SET_EXPR_LOCATION (expr, EXPR_LOCATION (stmt));
601
602   switch (TREE_CODE (stmt))
603     {
604     case RETURN_EXPR:
605       op = TREE_OPERAND (stmt, 0);
606       if (TREE_CODE (op) != MODIFY_EXPR)
607         {
608           TREE_OPERAND (stmt, 0) = expr;
609           break;
610         }
611       stmt = op;
612       /* FALLTHRU */
613
614     case MODIFY_EXPR:
615       op = TREE_OPERAND (stmt, 1);
616       if (TREE_CODE (op) == WITH_SIZE_EXPR)
617         stmt = op;
618       TREE_OPERAND (stmt, 1) = expr;
619       break;
620
621     case COND_EXPR:
622       if (!is_gimple_condexpr (expr))
623         return false;
624       COND_EXPR_COND (stmt) = expr;
625       break;
626     case SWITCH_EXPR:
627       SWITCH_COND (stmt) = expr;
628       break;
629     case GOTO_EXPR:
630       GOTO_DESTINATION (stmt) = expr;
631       break;
632     case LABEL_EXPR:
633       LABEL_EXPR_LABEL (stmt) = expr;
634       break;
635
636     default:
637       /* Replace the whole statement with EXPR.  If EXPR has no side
638          effects, then replace *STMT_P with an empty statement.  */
639       ann = stmt_ann (stmt);
640       *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
641       (*stmt_p)->common.ann = (tree_ann_t) ann;
642
643       if (in_ssa_p
644           && TREE_SIDE_EFFECTS (expr))
645         {
646           /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
647              replacement.  */
648           FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
649             {
650               if (TREE_CODE (var) == SSA_NAME)
651                 SSA_NAME_DEF_STMT (var) = *stmt_p;
652             }
653         }
654       break;
655     }
656
657   return true;
658 }
659
660
661 /* Entry point to the propagation engine.
662
663    VISIT_STMT is called for every statement visited.
664    VISIT_PHI is called for every PHI node visited.  */
665
666 void
667 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
668                ssa_prop_visit_phi_fn visit_phi)
669 {
670   ssa_prop_visit_stmt = visit_stmt;
671   ssa_prop_visit_phi = visit_phi;
672
673   ssa_prop_init ();
674
675   /* Iterate until the worklists are empty.  */
676   while (!cfg_blocks_empty_p () 
677          || VEC_length (tree, interesting_ssa_edges) > 0
678          || VEC_length (tree, varying_ssa_edges) > 0)
679     {
680       if (!cfg_blocks_empty_p ())
681         {
682           /* Pull the next block to simulate off the worklist.  */
683           basic_block dest_block = cfg_blocks_get ();
684           simulate_block (dest_block);
685         }
686
687       /* In order to move things to varying as quickly as
688          possible,process the VARYING_SSA_EDGES worklist first.  */
689       process_ssa_edge_worklist (&varying_ssa_edges);
690
691       /* Now process the INTERESTING_SSA_EDGES worklist.  */
692       process_ssa_edge_worklist (&interesting_ssa_edges);
693     }
694
695   ssa_prop_fini ();
696 }
697
698
699 /* Return the first V_MAY_DEF or V_MUST_DEF operand for STMT.  */
700
701 tree
702 first_vdef (tree stmt)
703 {
704   ssa_op_iter iter;
705   tree op;
706
707   /* Simply return the first operand we arrive at.  */
708   FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
709     return (op);
710
711   gcc_unreachable ();
712 }
713
714
715 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
716    is a non-volatile pointer dereference, a structure reference or a
717    reference to a single _DECL.  Ignore volatile memory references
718    because they are not interesting for the optimizers.  */
719
720 bool
721 stmt_makes_single_load (tree stmt)
722 {
723   tree rhs;
724
725   if (TREE_CODE (stmt) != MODIFY_EXPR)
726     return false;
727
728   if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VUSE))
729     return false;
730
731   rhs = TREE_OPERAND (stmt, 1);
732   STRIP_NOPS (rhs);
733
734   return (!TREE_THIS_VOLATILE (rhs)
735           && (DECL_P (rhs)
736               || REFERENCE_CLASS_P (rhs)));
737 }
738
739
740 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
741    is a non-volatile pointer dereference, a structure reference or a
742    reference to a single _DECL.  Ignore volatile memory references
743    because they are not interesting for the optimizers.  */
744
745 bool
746 stmt_makes_single_store (tree stmt)
747 {
748   tree lhs;
749
750   if (TREE_CODE (stmt) != MODIFY_EXPR)
751     return false;
752
753   if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF))
754     return false;
755
756   lhs = TREE_OPERAND (stmt, 0);
757   STRIP_NOPS (lhs);
758
759   return (!TREE_THIS_VOLATILE (lhs)
760           && (DECL_P (lhs)
761               || REFERENCE_CLASS_P (lhs)));
762 }
763
764
765 /* If STMT makes a single memory load and all the virtual use operands
766    have the same value in array VALUES, return it.  Otherwise, return
767    NULL.  */
768
769 prop_value_t *
770 get_value_loaded_by (tree stmt, prop_value_t *values)
771 {
772   ssa_op_iter i;
773   tree vuse;
774   prop_value_t *prev_val = NULL;
775   prop_value_t *val = NULL;
776
777   FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
778     {
779       val = &values[SSA_NAME_VERSION (vuse)];
780       if (prev_val && prev_val->value != val->value)
781         return NULL;
782       prev_val = val;
783     }
784
785   return val;
786 }
787
788
789 /* Propagation statistics.  */
790 struct prop_stats_d
791 {
792   long num_const_prop;
793   long num_copy_prop;
794   long num_pred_folded;
795 };
796
797 static struct prop_stats_d prop_stats;
798
799 /* Replace USE references in statement STMT with the values stored in
800    PROP_VALUE. Return true if at least one reference was replaced.  If
801    REPLACED_ADDRESSES_P is given, it will be set to true if an address
802    constant was replaced.  */
803
804 bool
805 replace_uses_in (tree stmt, bool *replaced_addresses_p,
806                  prop_value_t *prop_value)
807 {
808   bool replaced = false;
809   use_operand_p use;
810   ssa_op_iter iter;
811
812   FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
813     {
814       tree tuse = USE_FROM_PTR (use);
815       tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
816
817       if (val == tuse || val == NULL_TREE)
818         continue;
819
820       if (TREE_CODE (stmt) == ASM_EXPR
821           && !may_propagate_copy_into_asm (tuse))
822         continue;
823
824       if (!may_propagate_copy (tuse, val))
825         continue;
826
827       if (TREE_CODE (val) != SSA_NAME)
828         prop_stats.num_const_prop++;
829       else
830         prop_stats.num_copy_prop++;
831
832       propagate_value (use, val);
833
834       replaced = true;
835       if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
836         *replaced_addresses_p = true;
837     }
838
839   return replaced;
840 }
841
842
843 /* Replace the VUSE references in statement STMT with the values
844    stored in PROP_VALUE.  Return true if a reference was replaced.  If
845    REPLACED_ADDRESSES_P is given, it will be set to true if an address
846    constant was replaced.
847
848    Replacing VUSE operands is slightly more complex than replacing
849    regular USEs.  We are only interested in two types of replacements
850    here:
851    
852    1- If the value to be replaced is a constant or an SSA name for a
853       GIMPLE register, then we are making a copy/constant propagation
854       from a memory store.  For instance,
855
856         # a_3 = V_MAY_DEF <a_2>
857         a.b = x_1;
858         ...
859         # VUSE <a_3>
860         y_4 = a.b;
861
862       This replacement is only possible iff STMT is an assignment
863       whose RHS is identical to the LHS of the statement that created
864       the VUSE(s) that we are replacing.  Otherwise, we may do the
865       wrong replacement:
866
867         # a_3 = V_MAY_DEF <a_2>
868         # b_5 = V_MAY_DEF <b_4>
869         *p = 10;
870         ...
871         # VUSE <b_5>
872         x_8 = b;
873
874       Even though 'b_5' acquires the value '10' during propagation,
875       there is no way for the propagator to tell whether the
876       replacement is correct in every reached use, because values are
877       computed at definition sites.  Therefore, when doing final
878       substitution of propagated values, we have to check each use
879       site.  Since the RHS of STMT ('b') is different from the LHS of
880       the originating statement ('*p'), we cannot replace 'b' with
881       '10'.
882
883       Similarly, when merging values from PHI node arguments,
884       propagators need to take care not to merge the same values
885       stored in different locations:
886
887                 if (...)
888                   # a_3 = V_MAY_DEF <a_2>
889                   a.b = 3;
890                 else
891                   # a_4 = V_MAY_DEF <a_2>
892                   a.c = 3;
893                 # a_5 = PHI <a_3, a_4>
894
895       It would be wrong to propagate '3' into 'a_5' because that
896       operation merges two stores to different memory locations.
897
898
899    2- If the value to be replaced is an SSA name for a virtual
900       register, then we simply replace each VUSE operand with its
901       value from PROP_VALUE.  This is the same replacement done by
902       replace_uses_in.  */
903
904 static bool
905 replace_vuses_in (tree stmt, bool *replaced_addresses_p,
906                   prop_value_t *prop_value)
907 {
908   bool replaced = false;
909   ssa_op_iter iter;
910   use_operand_p vuse;
911
912   if (stmt_makes_single_load (stmt))
913     {
914       /* If STMT is an assignment whose RHS is a single memory load,
915          see if we are trying to propagate a constant or a GIMPLE
916          register (case #1 above).  */
917       prop_value_t *val = get_value_loaded_by (stmt, prop_value);
918       tree rhs = TREE_OPERAND (stmt, 1);
919
920       if (val
921           && val->value
922           && (is_gimple_reg (val->value)
923               || is_gimple_min_invariant (val->value))
924           && simple_cst_equal (rhs, val->mem_ref) == 1)
925
926         {
927           /* If we are replacing a constant address, inform our
928              caller.  */
929           if (TREE_CODE (val->value) != SSA_NAME
930               && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1)))
931               && replaced_addresses_p)
932             *replaced_addresses_p = true;
933
934           /* We can only perform the substitution if the load is done
935              from the same memory location as the original store.
936              Since we already know that there are no intervening
937              stores between DEF_STMT and STMT, we only need to check
938              that the RHS of STMT is the same as the memory reference
939              propagated together with the value.  */
940           TREE_OPERAND (stmt, 1) = val->value;
941
942           if (TREE_CODE (val->value) != SSA_NAME)
943             prop_stats.num_const_prop++;
944           else
945             prop_stats.num_copy_prop++;
946
947           /* Since we have replaced the whole RHS of STMT, there
948              is no point in checking the other VUSEs, as they will
949              all have the same value.  */
950           return true;
951         }
952     }
953
954   /* Otherwise, the values for every VUSE operand must be other
955      SSA_NAMEs that can be propagated into STMT.  */
956   FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
957     {
958       tree var = USE_FROM_PTR (vuse);
959       tree val = prop_value[SSA_NAME_VERSION (var)].value;
960
961       if (val == NULL_TREE || var == val)
962         continue;
963
964       /* Constants and copies propagated between real and virtual
965          operands are only possible in the cases handled above.  They
966          should be ignored in any other context.  */
967       if (is_gimple_min_invariant (val) || is_gimple_reg (val))
968         continue;
969
970       propagate_value (vuse, val);
971       prop_stats.num_copy_prop++;
972       replaced = true;
973     }
974
975   return replaced;
976 }
977
978
979 /* Replace propagated values into all the arguments for PHI using the
980    values from PROP_VALUE.  */
981
982 static void
983 replace_phi_args_in (tree phi, prop_value_t *prop_value)
984 {
985   int i;
986   bool replaced = false;
987   tree prev_phi = NULL;
988
989   if (dump_file && (dump_flags & TDF_DETAILS))
990     prev_phi = unshare_expr (phi);
991
992   for (i = 0; i < PHI_NUM_ARGS (phi); i++)
993     {
994       tree arg = PHI_ARG_DEF (phi, i);
995
996       if (TREE_CODE (arg) == SSA_NAME)
997         {
998           tree val = prop_value[SSA_NAME_VERSION (arg)].value;
999
1000           if (val && val != arg && may_propagate_copy (arg, val))
1001             {
1002               if (TREE_CODE (val) != SSA_NAME)
1003                 prop_stats.num_const_prop++;
1004               else
1005                 prop_stats.num_copy_prop++;
1006
1007               propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
1008               replaced = true;
1009
1010               /* If we propagated a copy and this argument flows
1011                  through an abnormal edge, update the replacement
1012                  accordingly.  */
1013               if (TREE_CODE (val) == SSA_NAME
1014                   && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
1015                 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1016             }
1017         }
1018     }
1019   
1020   if (replaced && dump_file && (dump_flags & TDF_DETAILS))
1021     {
1022       fprintf (dump_file, "Folded PHI node: ");
1023       print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
1024       fprintf (dump_file, "           into: ");
1025       print_generic_stmt (dump_file, phi, TDF_SLIM);
1026       fprintf (dump_file, "\n");
1027     }
1028 }
1029
1030
1031 /* If STMT has a predicate whose value can be computed using the value
1032    range information computed by VRP, compute its value and return true.
1033    Otherwise, return false.  */
1034
1035 static bool
1036 fold_predicate_in (tree stmt)
1037 {
1038   tree *pred_p = NULL;
1039   bool modify_expr_p = false;
1040   tree val;
1041
1042   if (TREE_CODE (stmt) == MODIFY_EXPR
1043       && COMPARISON_CLASS_P (TREE_OPERAND (stmt, 1)))
1044     {
1045       modify_expr_p = true;
1046       pred_p = &TREE_OPERAND (stmt, 1);
1047     }
1048   else if (TREE_CODE (stmt) == COND_EXPR)
1049     pred_p = &COND_EXPR_COND (stmt);
1050   else
1051     return false;
1052
1053   val = vrp_evaluate_conditional (*pred_p, true);
1054   if (val)
1055     {
1056       if (modify_expr_p)
1057         val = fold_convert (TREE_TYPE (*pred_p), val);
1058       
1059       if (dump_file)
1060         {
1061           fprintf (dump_file, "Folding predicate ");
1062           print_generic_expr (dump_file, *pred_p, 0);
1063           fprintf (dump_file, " to ");
1064           print_generic_expr (dump_file, val, 0);
1065           fprintf (dump_file, "\n");
1066         }
1067
1068       prop_stats.num_pred_folded++;
1069       *pred_p = val;
1070       return true;
1071     }
1072
1073   return false;
1074 }
1075
1076
1077 /* Perform final substitution and folding of propagated values.
1078
1079    PROP_VALUE[I] contains the single value that should be substituted
1080    at every use of SSA name N_I.  If PROP_VALUE is NULL, no values are
1081    substituted.
1082
1083    If USE_RANGES_P is true, statements that contain predicate
1084    expressions are evaluated with a call to vrp_evaluate_conditional.
1085    This will only give meaningful results when called from tree-vrp.c
1086    (the information used by vrp_evaluate_conditional is built by the
1087    VRP pass).  */
1088
1089 void
1090 substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1091 {
1092   basic_block bb;
1093
1094   if (prop_value == NULL && !use_ranges_p)
1095     return;
1096
1097   if (dump_file && (dump_flags & TDF_DETAILS))
1098     fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
1099
1100   memset (&prop_stats, 0, sizeof (prop_stats));
1101
1102   /* Substitute values in every statement of every basic block.  */
1103   FOR_EACH_BB (bb)
1104     {
1105       block_stmt_iterator i;
1106       tree phi;
1107
1108       /* Propagate known values into PHI nodes.  */
1109       if (prop_value)
1110         for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1111           replace_phi_args_in (phi, prop_value);
1112
1113       for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
1114         {
1115           bool replaced_address, did_replace;
1116           tree prev_stmt = NULL;
1117           tree stmt = bsi_stmt (i);
1118
1119           /* Ignore ASSERT_EXPRs.  They are used by VRP to generate
1120              range information for names and they are discarded
1121              afterwards.  */
1122           if (TREE_CODE (stmt) == MODIFY_EXPR
1123               && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
1124             continue;
1125
1126           /* Replace the statement with its folded version and mark it
1127              folded.  */
1128           did_replace = false;
1129           replaced_address = false;
1130           if (dump_file && (dump_flags & TDF_DETAILS))
1131             prev_stmt = unshare_expr (stmt);
1132
1133           /* If we have range information, see if we can fold
1134              predicate expressions.  */
1135           if (use_ranges_p)
1136             did_replace = fold_predicate_in (stmt);
1137
1138           if (prop_value)
1139             {
1140               /* Only replace real uses if we couldn't fold the
1141                  statement using value range information (value range
1142                  information is not collected on virtuals, so we only
1143                  need to check this for real uses).  */
1144               if (!did_replace)
1145                 did_replace |= replace_uses_in (stmt, &replaced_address,
1146                                                 prop_value);
1147
1148               did_replace |= replace_vuses_in (stmt, &replaced_address,
1149                                                prop_value);
1150             }
1151
1152           /* If we made a replacement, fold and cleanup the statement.  */
1153           if (did_replace)
1154             {
1155               tree old_stmt = stmt;
1156               tree rhs;
1157
1158               fold_stmt (bsi_stmt_ptr (i));
1159               stmt = bsi_stmt (i);
1160
1161               /* If we folded a builtin function, we'll likely
1162                  need to rename VDEFs.  */
1163               mark_new_vars_to_rename (stmt);
1164
1165               /* If we cleaned up EH information from the statement,
1166                  remove EH edges.  */
1167               if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1168                 tree_purge_dead_eh_edges (bb);
1169
1170               rhs = get_rhs (stmt);
1171               if (TREE_CODE (rhs) == ADDR_EXPR)
1172                 recompute_tree_invariant_for_addr_expr (rhs);
1173
1174               if (dump_file && (dump_flags & TDF_DETAILS))
1175                 {
1176                   fprintf (dump_file, "Folded statement: ");
1177                   print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
1178                   fprintf (dump_file, "            into: ");
1179                   print_generic_stmt (dump_file, stmt, TDF_SLIM);
1180                   fprintf (dump_file, "\n");
1181                 }
1182             }
1183
1184           /* Some statements may be simplified using ranges.  For
1185              example, division may be replaced by shifts, modulo
1186              replaced with bitwise and, etc.   Do this after 
1187              substituting constants, folding, etc so that we're
1188              presented with a fully propagated, canonicalized
1189              statement.  */
1190           if (use_ranges_p)
1191             simplify_stmt_using_ranges (stmt);
1192
1193         }
1194     }
1195
1196   if (dump_file && (dump_flags & TDF_STATS))
1197     {
1198       fprintf (dump_file, "Constants propagated: %6ld\n",
1199                prop_stats.num_const_prop);
1200       fprintf (dump_file, "Copies propagated:    %6ld\n",
1201                prop_stats.num_copy_prop);
1202       fprintf (dump_file, "Predicates folded:    %6ld\n",
1203                prop_stats.num_pred_folded);
1204     }
1205 }
1206
1207 #include "gt-tree-ssa-propagate.h"