OSDN Git Service

* gfortran.dg/underflow.f90: Use tiny(x)/huge(x).
[pf3gnuchains/gcc-fork.git] / gcc / tree-ssa-live.h
1 /* Routines for liveness in SSA trees.
2    Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3    Contributed by Andrew MacLeod  <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA.  */
21
22
23 #ifndef _TREE_SSA_LIVE_H
24 #define _TREE_SSA_LIVE_H 1
25
26 #include "partition.h"
27
28 /* Used to create the variable mapping when we go out of SSA form.  */
29 typedef struct _var_map
30 {
31   /* The partition of all variables.  */
32   partition var_partition;
33
34   /* Vector for compacting partitions.  */
35   int *partition_to_compact;
36   int *compact_to_partition;
37
38   /* Mapping of partition numbers to vars.  */
39   tree *partition_to_var;
40
41   /* Current number of partitions.  */
42   unsigned int num_partitions;
43
44   /* Original partition size.  */
45   unsigned int partition_size;
46
47   /* Reference count, if required.  */
48   int *ref_count;
49 } *var_map;
50
51 #define VAR_ANN_PARTITION(ann) (ann->partition)
52 #define VAR_ANN_ROOT_INDEX(ann) (ann->root_index)
53
54 #define NO_PARTITION            -1
55
56 /* Flags to pass to compact_var_map  */
57
58 #define VARMAP_NORMAL           0
59 #define VARMAP_NO_SINGLE_DEFS   1
60
61 extern var_map init_var_map (int);
62 extern void delete_var_map (var_map);
63 extern void dump_var_map (FILE *, var_map);
64 extern int var_union (var_map, tree, tree);
65 extern void change_partition_var (var_map, tree, int);
66 extern void compact_var_map (var_map, int);
67 #ifdef ENABLE_CHECKING
68 extern void register_ssa_partition_check (tree ssa_var);
69 #endif
70
71 static inline unsigned num_var_partitions (var_map);
72 static inline tree var_to_partition_to_var (var_map, tree);
73 static inline tree partition_to_var (var_map, int);
74 static inline int var_to_partition (var_map, tree);
75 static inline tree version_to_var (var_map, int);
76 static inline int version_ref_count (var_map, tree);
77 static inline void register_ssa_partition (var_map, tree, bool);
78
79 #define SSA_VAR_MAP_REF_COUNT    0x01
80 extern var_map create_ssa_var_map (int);
81
82 /* Number of partitions in MAP.  */
83
84 static inline unsigned
85 num_var_partitions (var_map map)
86 {
87   return map->num_partitions;
88 }
89
90
91 /* Return the reference count for SSA_VAR's partition in MAP.  */
92
93 static inline int
94 version_ref_count (var_map map, tree ssa_var)
95 {
96   int version = SSA_NAME_VERSION (ssa_var);
97   gcc_assert (map->ref_count);
98   return map->ref_count[version];
99 }
100  
101
102 /* Given partition index I from MAP, return the variable which represents that 
103    partition.  */
104  
105 static inline tree
106 partition_to_var (var_map map, int i)
107 {
108   if (map->compact_to_partition)
109     i = map->compact_to_partition[i];
110   i = partition_find (map->var_partition, i);
111   return map->partition_to_var[i];
112 }
113
114
115 /* Given ssa_name VERSION, if it has a partition in MAP,  return the var it 
116    is associated with.  Otherwise return NULL.  */
117
118 static inline tree version_to_var (var_map map, int version)
119 {
120   int part;
121   part = partition_find (map->var_partition, version);
122   if (map->partition_to_compact)
123     part = map->partition_to_compact[part];
124   if (part == NO_PARTITION)
125     return NULL_TREE;
126   
127   return partition_to_var (map, part);
128 }
129  
130
131 /* Given VAR, return the partition number in MAP which contains it.  
132    NO_PARTITION is returned if it's not in any partition.  */
133
134 static inline int
135 var_to_partition (var_map map, tree var)
136 {
137   var_ann_t ann;
138   int part;
139
140   if (TREE_CODE (var) == SSA_NAME)
141     {
142       part = partition_find (map->var_partition, SSA_NAME_VERSION (var));
143       if (map->partition_to_compact)
144         part = map->partition_to_compact[part];
145     }
146   else
147     {
148       ann = var_ann (var);
149       if (ann->out_of_ssa_tag)
150         part = VAR_ANN_PARTITION (ann);
151       else
152         part = NO_PARTITION;
153     }
154   return part;
155 }
156
157
158 /* Given VAR, return the variable which represents the entire partition
159    it is a member of in MAP.  NULL is returned if it is not in a partition.  */
160
161 static inline tree
162 var_to_partition_to_var (var_map map, tree var)
163 {
164   int part;
165
166   part = var_to_partition (map, var);
167   if (part == NO_PARTITION)
168     return NULL_TREE;
169   return partition_to_var (map, part);
170 }
171
172
173 /* This routine registers a partition for SSA_VAR with MAP.  IS_USE is used 
174    to count references.  Any unregistered partitions may be compacted out 
175    later.  */ 
176
177 static inline void
178 register_ssa_partition (var_map map, tree ssa_var, bool is_use)
179 {
180   int version;
181
182 #if defined ENABLE_CHECKING
183   register_ssa_partition_check (ssa_var);
184 #endif
185
186   version = SSA_NAME_VERSION (ssa_var);
187   if (is_use && map->ref_count)
188     map->ref_count[version]++;
189
190   if (map->partition_to_var[version] == NULL_TREE)
191     map->partition_to_var[SSA_NAME_VERSION (ssa_var)] = ssa_var;
192 }
193
194
195 /*  ---------------- live on entry/exit info ------------------------------  
196
197     This structure is used to represent live range information on SSA based
198     trees. A partition map must be provided, and based on the active partitions,
199     live-on-entry information and live-on-exit information can be calculated.
200     As well, partitions are marked as to whether they are global (live 
201     outside the basic block they are defined in).
202
203     The live-on-entry information is per variable. It provide a bitmap for 
204     each variable which has a bit set for each basic block that the variable
205     is live on entry to that block.
206
207     The live-on-exit information is per block. It provides a bitmap for each
208     block indicating which partitions are live on exit from the block.
209
210     For the purposes of this implementation, we treat the elements of a PHI 
211     as follows:
212
213        Uses in a PHI are considered LIVE-ON-EXIT to the block from which they
214        originate. They are *NOT* considered live on entry to the block
215        containing the PHI node.
216
217        The Def of a PHI node is *not* considered live on entry to the block.
218        It is considered to be "define early" in the block. Picture it as each
219        block having a stmt (or block-preheader) before the first real stmt in 
220        the block which defines all the variables that are defined by PHIs.
221    
222     -----------------------------------------------------------------------  */
223
224
225 typedef struct tree_live_info_d
226 {
227   /* Var map this relates to.  */
228   var_map map;
229
230   /* Bitmap indicating which partitions are global.  */
231   bitmap global;
232
233   /* Bitmap of live on entry blocks for partition elements.  */
234   bitmap *livein;
235
236   /* Number of basic blocks when live on exit calculated.  */
237   int num_blocks;
238
239   /* Bitmap of what variables are live on exit for a basic blocks.  */
240   bitmap *liveout;
241 } *tree_live_info_p;
242
243
244 extern tree_live_info_p calculate_live_on_entry (var_map);
245 extern void calculate_live_on_exit (tree_live_info_p);
246 extern void delete_tree_live_info (tree_live_info_p);
247
248 #define LIVEDUMP_ENTRY  0x01
249 #define LIVEDUMP_EXIT   0x02
250 #define LIVEDUMP_ALL    (LIVEDUMP_ENTRY | LIVEDUMP_EXIT)
251 extern void dump_live_info (FILE *, tree_live_info_p, int);
252
253 static inline int partition_is_global (tree_live_info_p, int);
254 static inline bitmap live_entry_blocks (tree_live_info_p, int);
255 static inline bitmap live_on_exit (tree_live_info_p, basic_block);
256 static inline var_map live_var_map (tree_live_info_p);
257 static inline void live_merge_and_clear (tree_live_info_p, int, int);
258 static inline void make_live_on_entry (tree_live_info_p, basic_block, int);
259
260
261 /*  Return TRUE if P is marked as a global in LIVE.  */
262
263 static inline int
264 partition_is_global (tree_live_info_p live, int p)
265 {
266   gcc_assert (live->global);
267   return bitmap_bit_p (live->global, p);
268 }
269
270
271 /* Return the bitmap from LIVE representing the live on entry blocks for 
272    partition P.  */
273
274 static inline bitmap
275 live_entry_blocks (tree_live_info_p live, int p)
276 {
277   gcc_assert (live->livein);
278   return live->livein[p];
279 }
280
281
282 /* Return the bitmap from LIVE representing the live on exit partitions from
283    block BB.  */
284
285 static inline bitmap
286 live_on_exit (tree_live_info_p live, basic_block bb)
287 {
288   gcc_assert (live->liveout);
289   gcc_assert (bb != ENTRY_BLOCK_PTR);
290   gcc_assert (bb != EXIT_BLOCK_PTR);
291
292   return live->liveout[bb->index];
293 }
294
295
296 /* Return the partition map which the information in LIVE utilizes.  */
297
298 static inline var_map 
299 live_var_map (tree_live_info_p live)
300 {
301   return live->map;
302 }
303
304
305 /* Merge the live on entry information in LIVE for partitions P1 and P2. Place
306    the result into P1.  Clear P2.  */
307
308 static inline void 
309 live_merge_and_clear (tree_live_info_p live, int p1, int p2)
310 {
311   bitmap_ior_into (live->livein[p1], live->livein[p2]);
312   bitmap_zero (live->livein[p2]);
313 }
314
315
316 /* Mark partition P as live on entry to basic block BB in LIVE.  */
317
318 static inline void 
319 make_live_on_entry (tree_live_info_p live, basic_block bb , int p)
320 {
321   bitmap_set_bit (live->livein[p], bb->index);
322   bitmap_set_bit (live->global, p);
323 }
324
325
326 /* A tree_partition_associator (TPA)object is a base structure which allows
327    partitions to be associated with a tree object.
328
329    A varray of tree elements represent each distinct tree item.
330    A parallel int array represents the first partition number associated with 
331    the tree.
332    This partition number is then used as in index into the next_partition
333    array, which returns the index of the next partition which is associated
334    with the tree. TPA_NONE indicates the end of the list.  
335    A varray paralleling the partition list 'partition_to_tree_map' is used
336    to indicate which tree index the partition is in.  */
337
338 typedef struct tree_partition_associator_d
339 {
340   varray_type trees;
341   varray_type first_partition;
342   int *next_partition;
343   int *partition_to_tree_map;
344   int num_trees;
345   int uncompressed_num;
346   var_map map;
347 } *tpa_p;
348
349 /* Value returned when there are no more partitions associated with a tree.  */
350 #define TPA_NONE                -1
351
352 static inline tree tpa_tree (tpa_p, int);
353 static inline int tpa_first_partition (tpa_p, int);
354 static inline int tpa_next_partition (tpa_p, int);
355 static inline int tpa_num_trees (tpa_p);
356 static inline int tpa_find_tree (tpa_p, int);
357 static inline void tpa_decompact (tpa_p);
358 extern void tpa_delete (tpa_p);
359 extern void tpa_dump (FILE *, tpa_p);
360 extern void tpa_remove_partition (tpa_p, int, int);
361 extern int tpa_compact (tpa_p);
362
363
364 /* Return the number of distinct tree nodes in TPA.  */
365
366 static inline int
367 tpa_num_trees (tpa_p tpa)
368 {
369   return tpa->num_trees;
370 }
371
372
373 /* Return the tree node for index I in TPA.  */
374
375 static inline tree
376 tpa_tree (tpa_p tpa, int i)
377 {
378   return VARRAY_TREE (tpa->trees, i);
379 }
380
381
382 /* Return the first partition associated with tree list I in TPA.  */
383
384 static inline int
385 tpa_first_partition (tpa_p tpa, int i)
386 {
387   return VARRAY_INT (tpa->first_partition, i);
388 }
389
390
391 /* Return the next partition after partition I in TPA's list.  */
392
393 static inline int
394 tpa_next_partition (tpa_p tpa, int i)
395 {
396   return tpa->next_partition[i];
397 }
398
399
400 /* Return the tree index from TPA whose list contains partition I.  
401    TPA_NONE is returned if I is not associated with any list.  */
402
403 static inline int 
404 tpa_find_tree (tpa_p tpa, int i)
405 {
406   int index;
407
408   index = tpa->partition_to_tree_map[i];
409   /* When compressed, any index higher than the number of tree elements is 
410      a compressed element, so return TPA_NONE.  */
411   if (index != TPA_NONE && index >= tpa_num_trees (tpa))
412     {
413       gcc_assert (tpa->uncompressed_num != -1);
414       index = TPA_NONE;
415     }
416
417   return index;
418 }
419
420
421 /* This function removes any compaction which was performed on TPA.  */
422
423 static inline void 
424 tpa_decompact(tpa_p tpa)
425 {
426   gcc_assert (tpa->uncompressed_num != -1);
427   tpa->num_trees = tpa->uncompressed_num;
428 }
429
430
431 /* Once a var_map has been created and compressed, a complementary root_var
432    object can be built.  This creates a list of all the root variables from
433    which ssa version names are derived.  Each root variable has a list of 
434    which partitions are versions of that root.  
435
436    This is implemented using the tree_partition_associator.
437
438    The tree vector is used to represent the root variable.
439    The list of partitions represent SSA versions of the root variable.  */
440
441 typedef tpa_p root_var_p;
442
443 static inline tree root_var (root_var_p, int);
444 static inline int root_var_first_partition (root_var_p, int);
445 static inline int root_var_next_partition (root_var_p, int);
446 static inline int root_var_num (root_var_p);
447 static inline void root_var_dump (FILE *, root_var_p);
448 static inline void root_var_remove_partition (root_var_p, int, int);
449 static inline void root_var_delete (root_var_p);
450 static inline int root_var_find (root_var_p, int);
451 static inline int root_var_compact (root_var_p);
452 static inline void root_var_decompact (tpa_p);
453
454 extern root_var_p root_var_init (var_map);
455
456 /* Value returned when there are no more partitions associated with a root
457    variable.  */
458 #define ROOT_VAR_NONE           TPA_NONE
459
460
461 /* Return the number of distinct root variables in RV.  */
462
463 static inline int 
464 root_var_num (root_var_p rv)
465 {
466   return tpa_num_trees (rv);
467 }
468
469
470 /* Return root variable I from RV.  */
471
472 static inline tree
473 root_var (root_var_p rv, int i)
474 {
475   return tpa_tree (rv, i);
476 }
477
478
479 /* Return the first partition in RV belonging to root variable list I.  */
480
481 static inline int
482 root_var_first_partition (root_var_p rv, int i)
483 {
484   return tpa_first_partition (rv, i);
485 }
486
487
488 /* Return the next partition after partition I in a root list from RV.  */
489
490 static inline int
491 root_var_next_partition (root_var_p rv, int i)
492 {
493   return tpa_next_partition (rv, i);
494 }
495
496
497 /* Send debug info for root_var list RV to file F.  */
498
499 static inline void
500 root_var_dump (FILE *f, root_var_p rv)
501 {
502   fprintf (f, "\nRoot Var dump\n");
503   tpa_dump (f, rv);
504   fprintf (f, "\n");
505 }
506
507
508 /* Destroy root_var object RV.  */
509
510 static inline void
511 root_var_delete (root_var_p rv)
512 {
513   tpa_delete (rv);
514 }
515
516
517 /* Remove partition PARTITION_INDEX from root_var list ROOT_INDEX in RV.  */
518
519 static inline void
520 root_var_remove_partition (root_var_p rv, int root_index, int partition_index)
521 {
522   tpa_remove_partition (rv, root_index, partition_index);
523 }
524
525
526 /* Return the root_var list index for partition I in RV.  */
527
528 static inline int
529 root_var_find (root_var_p rv, int i)
530 {
531   return tpa_find_tree (rv, i);
532 }
533
534
535 /* Hide single element lists in RV.  */
536
537 static inline int 
538 root_var_compact (root_var_p rv)
539 {
540   return tpa_compact (rv);
541 }
542
543
544 /* Expose the single element lists in RV.  */
545
546 static inline void
547 root_var_decompact (root_var_p rv)
548 {
549   tpa_decompact (rv);
550 }
551
552
553 /* A TYPE_VAR object is similar to a root_var object, except this associates 
554    partitions with their type rather than their root variable.  This is used to 
555    coalesce memory locations based on type.  */
556
557 typedef tpa_p type_var_p;
558
559 static inline tree type_var (type_var_p, int);
560 static inline int type_var_first_partition (type_var_p, int);
561 static inline int type_var_next_partition (type_var_p, int);
562 static inline int type_var_num (type_var_p);
563 static inline void type_var_dump (FILE *, type_var_p);
564 static inline void type_var_remove_partition (type_var_p, int, int);
565 static inline void type_var_delete (type_var_p);
566 static inline int type_var_find (type_var_p, int);
567 static inline int type_var_compact (type_var_p);
568 static inline void type_var_decompact (type_var_p);
569
570 extern type_var_p type_var_init (var_map);
571
572 /* Value returned when there is no partitions associated with a list.  */
573 #define TYPE_VAR_NONE           TPA_NONE
574
575
576 /* Return the number of distinct type lists in TV.  */
577
578 static inline int 
579 type_var_num (type_var_p tv)
580 {
581   return tpa_num_trees (tv);
582 }
583
584
585 /* Return the type of list I in TV.  */
586
587 static inline tree
588 type_var (type_var_p tv, int i)
589 {
590   return tpa_tree (tv, i);
591 }
592
593
594 /* Return the first partition belonging to type list I in TV.  */
595
596 static inline int
597 type_var_first_partition (type_var_p tv, int i)
598 {
599   return tpa_first_partition (tv, i);
600 }
601
602
603 /* Return the next partition after partition I in a type list within TV.  */
604
605 static inline int
606 type_var_next_partition (type_var_p tv, int i)
607 {
608   return tpa_next_partition (tv, i);
609 }
610
611
612 /* Send debug info for type_var object TV to file F.  */
613
614 static inline void
615 type_var_dump (FILE *f, type_var_p tv)
616 {
617   fprintf (f, "\nType Var dump\n");
618   tpa_dump (f, tv);
619   fprintf (f, "\n");
620 }
621
622
623 /* Delete type_var object TV.  */
624
625 static inline void
626 type_var_delete (type_var_p tv)
627 {
628   tpa_delete (tv);
629 }
630
631
632 /* Remove partition PARTITION_INDEX from type list TYPE_INDEX in TV.  */
633
634 static inline void
635 type_var_remove_partition (type_var_p tv, int type_index, int partition_index)
636 {
637   tpa_remove_partition (tv, type_index, partition_index);
638 }
639
640
641 /* Return the type index in TV for the list partition I is in.  */
642
643 static inline int
644 type_var_find (type_var_p tv, int i)
645 {
646   return tpa_find_tree (tv, i);
647 }
648
649
650 /* Hide single element lists in TV.  */
651
652 static inline int 
653 type_var_compact (type_var_p tv)
654 {
655   return tpa_compact (tv);
656 }
657
658
659 /* Expose single element lists in TV.  */
660
661 static inline void
662 type_var_decompact (type_var_p tv)
663 {
664   tpa_decompact (tv);
665 }
666
667 /* This set of routines implements a coalesce_list. This is an object which
668    is used to track pairs of partitions which are desirable to coalesce
669    together at some point.  Costs are associated with each pair, and when 
670    all desired information has been collected, the object can be used to 
671    order the pairs for processing.  */
672
673 /* This structure defines a pair for coalescing.  */
674
675 typedef struct partition_pair_d
676 {
677   int first_partition;
678   int second_partition;
679   int cost;
680   struct partition_pair_d *next;
681 } *partition_pair_p;
682
683 /* This structure maintains the list of coalesce pairs.  
684    When add_mode is true, list is a triangular shaped list of coalesce pairs.
685    The smaller partition number is used to index the list, and the larger is
686    index is located in a partition_pair_p object. These lists are sorted from 
687    smallest to largest by 'second_partition'.  New coalesce pairs are allowed
688    to be added in this mode.
689    When add_mode is false, the lists have all been merged into list[0]. The
690    rest of the lists are not used. list[0] is ordered from most desirable
691    coalesce to least desirable. pop_best_coalesce() retrieves the pairs
692    one at a time.  */
693
694 typedef struct coalesce_list_d 
695 {
696   var_map map;
697   partition_pair_p *list;
698   bool add_mode;
699 } *coalesce_list_p;
700
701 extern coalesce_list_p create_coalesce_list (var_map);
702 extern void add_coalesce (coalesce_list_p, int, int, int);
703 extern void sort_coalesce_list (coalesce_list_p);
704 extern void dump_coalesce_list (FILE *, coalesce_list_p);
705 extern void delete_coalesce_list (coalesce_list_p);
706
707 #define NO_BEST_COALESCE        -1
708
709 extern conflict_graph build_tree_conflict_graph (tree_live_info_p, tpa_p,
710                                                  coalesce_list_p);
711 extern void coalesce_tpa_members (tpa_p tpa, conflict_graph graph, var_map map,
712                                   coalesce_list_p cl, FILE *);
713
714
715 #endif /* _TREE_SSA_LIVE_H  */