1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
4 Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
33 Both passes operate in four stages:
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
76 #include "coretypes.h"
77 #include "alloc-pool.h"
82 #include "tree-flow.h"
84 #include "diagnostic.h"
85 #include "statistics.h"
86 #include "tree-dump.h"
92 /* Enumeration of all aggregate reductions we can do. */
93 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
94 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
95 SRA_MODE_INTRA }; /* late intraprocedural SRA */
97 /* Global variable describing which aggregate reduction we are performing at
99 static enum sra_mode sra_mode;
103 /* ACCESS represents each access to an aggregate variable (as a whole or a
104 part). It can also represent a group of accesses that refer to exactly the
105 same fragment of an aggregate (i.e. those that have exactly the same offset
106 and size). Such representatives for a single aggregate, once determined,
107 are linked in a linked list and have the group fields set.
109 Moreover, when doing intraprocedural SRA, a tree is built from those
110 representatives (by the means of first_child and next_sibling pointers), in
111 which all items in a subtree are "within" the root, i.e. their offset is
112 greater or equal to offset of the root and offset+size is smaller or equal
113 to offset+size of the root. Children of an access are sorted by offset.
115 Note that accesses to parts of vector and complex number types always
116 represented by an access to the whole complex number or a vector. It is a
117 duty of the modifying functions to replace them appropriately. */
121 /* Values returned by `get_ref_base_and_extent' for each component reference
122 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
123 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
124 HOST_WIDE_INT offset;
128 /* Expression. It is context dependent so do not use it to create new
129 expressions to access the original aggregate. See PR 42154 for a
135 /* The statement this access belongs to. */
138 /* Next group representative for this aggregate. */
139 struct access *next_grp;
141 /* Pointer to the group representative. Pointer to itself if the struct is
142 the representative. */
143 struct access *group_representative;
145 /* If this access has any children (in terms of the definition above), this
146 points to the first one. */
147 struct access *first_child;
149 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
150 described above. In IPA-SRA this is a pointer to the next access
151 belonging to the same group (having the same representative). */
152 struct access *next_sibling;
154 /* Pointers to the first and last element in the linked list of assign
156 struct assign_link *first_link, *last_link;
158 /* Pointer to the next access in the work queue. */
159 struct access *next_queued;
161 /* Replacement variable for this access "region." Never to be accessed
162 directly, always only by the means of get_access_replacement() and only
163 when grp_to_be_replaced flag is set. */
164 tree replacement_decl;
166 /* Is this particular access write access? */
169 /* Is this access currently in the work queue? */
170 unsigned grp_queued : 1;
172 /* Does this group contain a write access? This flag is propagated down the
174 unsigned grp_write : 1;
176 /* Does this group contain a read access? This flag is propagated down the
178 unsigned grp_read : 1;
180 /* Other passes of the analysis use this bit to make function
181 analyze_access_subtree create scalar replacements for this group if
183 unsigned grp_hint : 1;
185 /* Is the subtree rooted in this access fully covered by scalar
187 unsigned grp_covered : 1;
189 /* If set to true, this access and all below it in an access tree must not be
191 unsigned grp_unscalarizable_region : 1;
193 /* Whether data have been written to parts of the aggregate covered by this
194 access which is not to be scalarized. This flag is propagated up in the
196 unsigned grp_unscalarized_data : 1;
198 /* Does this access and/or group contain a write access through a
200 unsigned grp_partial_lhs : 1;
202 /* Does this group contain accesses to different types? (I.e. through a union
203 or a similar mechanism). */
204 unsigned grp_different_types : 1;
206 /* Set when a scalar replacement should be created for this variable. We do
207 the decision and creation at different places because create_tmp_var
208 cannot be called from within FOR_EACH_REFERENCED_VAR. */
209 unsigned grp_to_be_replaced : 1;
211 /* Is it possible that the group refers to data which might be (directly or
212 otherwise) modified? */
213 unsigned grp_maybe_modified : 1;
215 /* Set when this is a representative of a pointer to scalar (i.e. by
216 reference) parameter which we consider for turning into a plain scalar
217 (i.e. a by value parameter). */
218 unsigned grp_scalar_ptr : 1;
220 /* Set when we discover that this pointer is not safe to dereference in the
222 unsigned grp_not_necessarilly_dereferenced : 1;
225 typedef struct access *access_p;
227 DEF_VEC_P (access_p);
228 DEF_VEC_ALLOC_P (access_p, heap);
230 /* Alloc pool for allocating access structures. */
231 static alloc_pool access_pool;
233 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
234 are used to propagate subaccesses from rhs to lhs as long as they don't
235 conflict with what is already there. */
238 struct access *lacc, *racc;
239 struct assign_link *next;
242 /* Alloc pool for allocating assign link structures. */
243 static alloc_pool link_pool;
245 /* Base (tree) -> Vector (VEC(access_p,heap) *) map. */
246 static struct pointer_map_t *base_access_vec;
248 /* Bitmap of candidates. */
249 static bitmap candidate_bitmap;
251 /* Obstack for creation of fancy names. */
252 static struct obstack name_obstack;
254 /* Head of a linked list of accesses that need to have its subaccesses
255 propagated to their assignment counterparts. */
256 static struct access *work_queue_head;
258 /* Number of parameters of the analyzed function when doing early ipa SRA. */
259 static int func_param_count;
261 /* scan_function sets the following to true if it encounters a call to
262 __builtin_apply_args. */
263 static bool encountered_apply_args;
265 /* This is a table in which for each basic block and parameter there is a
266 distance (offset + size) in that parameter which is dereferenced and
267 accessed in that BB. */
268 static HOST_WIDE_INT *bb_dereferences;
269 /* Bitmap of BBs that can cause the function to "stop" progressing by
270 returning, throwing externally, looping infinitely or calling a function
271 which might abort etc.. */
272 static bitmap final_bbs;
274 /* Representative of no accesses at all. */
275 static struct access no_accesses_representant;
277 /* Predicate to test the special value. */
280 no_accesses_p (struct access *access)
282 return access == &no_accesses_representant;
285 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
286 representative fields are dumped, otherwise those which only describe the
287 individual access are. */
291 /* Number of processed aggregates is readily available in
292 analyze_all_variable_accesses and so is not stored here. */
294 /* Number of created scalar replacements. */
297 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
301 /* Number of statements created by generate_subtree_copies. */
304 /* Number of statements created by load_assign_lhs_subreplacements. */
307 /* Number of times sra_modify_assign has deleted a statement. */
310 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
311 RHS reparately due to type conversions or nonexistent matching
313 int separate_lhs_rhs_handling;
315 /* Number of parameters that were removed because they were unused. */
316 int deleted_unused_parameters;
318 /* Number of scalars passed as parameters by reference that have been
319 converted to be passed by value. */
320 int scalar_by_ref_to_by_val;
322 /* Number of aggregate parameters that were replaced by one or more of their
324 int aggregate_params_reduced;
326 /* Numbber of components created when splitting aggregate parameters. */
327 int param_reductions_created;
331 dump_access (FILE *f, struct access *access, bool grp)
333 fprintf (f, "access { ");
334 fprintf (f, "base = (%d)'", DECL_UID (access->base));
335 print_generic_expr (f, access->base, 0);
336 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
337 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
338 fprintf (f, ", expr = ");
339 print_generic_expr (f, access->expr, 0);
340 fprintf (f, ", type = ");
341 print_generic_expr (f, access->type, 0);
343 fprintf (f, ", grp_write = %d, grp_read = %d, grp_hint = %d, "
344 "grp_covered = %d, grp_unscalarizable_region = %d, "
345 "grp_unscalarized_data = %d, grp_partial_lhs = %d, "
346 "grp_different_types = %d, grp_to_be_replaced = %d, "
347 "grp_maybe_modified = %d, "
348 "grp_not_necessarilly_dereferenced = %d\n",
349 access->grp_write, access->grp_read, access->grp_hint,
350 access->grp_covered, access->grp_unscalarizable_region,
351 access->grp_unscalarized_data, access->grp_partial_lhs,
352 access->grp_different_types, access->grp_to_be_replaced,
353 access->grp_maybe_modified,
354 access->grp_not_necessarilly_dereferenced);
356 fprintf (f, ", write = %d, grp_partial_lhs = %d\n", access->write,
357 access->grp_partial_lhs);
360 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
363 dump_access_tree_1 (FILE *f, struct access *access, int level)
369 for (i = 0; i < level; i++)
370 fputs ("* ", dump_file);
372 dump_access (f, access, true);
374 if (access->first_child)
375 dump_access_tree_1 (f, access->first_child, level + 1);
377 access = access->next_sibling;
382 /* Dump all access trees for a variable, given the pointer to the first root in
386 dump_access_tree (FILE *f, struct access *access)
388 for (; access; access = access->next_grp)
389 dump_access_tree_1 (f, access, 0);
392 /* Return true iff ACC is non-NULL and has subaccesses. */
395 access_has_children_p (struct access *acc)
397 return acc && acc->first_child;
400 /* Return a vector of pointers to accesses for the variable given in BASE or
401 NULL if there is none. */
403 static VEC (access_p, heap) *
404 get_base_access_vector (tree base)
408 slot = pointer_map_contains (base_access_vec, base);
412 return *(VEC (access_p, heap) **) slot;
415 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
416 in ACCESS. Return NULL if it cannot be found. */
418 static struct access *
419 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
422 while (access && (access->offset != offset || access->size != size))
424 struct access *child = access->first_child;
426 while (child && (child->offset + child->size <= offset))
427 child = child->next_sibling;
434 /* Return the first group representative for DECL or NULL if none exists. */
436 static struct access *
437 get_first_repr_for_decl (tree base)
439 VEC (access_p, heap) *access_vec;
441 access_vec = get_base_access_vector (base);
445 return VEC_index (access_p, access_vec, 0);
448 /* Find an access representative for the variable BASE and given OFFSET and
449 SIZE. Requires that access trees have already been built. Return NULL if
450 it cannot be found. */
452 static struct access *
453 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
456 struct access *access;
458 access = get_first_repr_for_decl (base);
459 while (access && (access->offset + access->size <= offset))
460 access = access->next_grp;
464 return find_access_in_subtree (access, offset, size);
467 /* Add LINK to the linked list of assign links of RACC. */
469 add_link_to_rhs (struct access *racc, struct assign_link *link)
471 gcc_assert (link->racc == racc);
473 if (!racc->first_link)
475 gcc_assert (!racc->last_link);
476 racc->first_link = link;
479 racc->last_link->next = link;
481 racc->last_link = link;
485 /* Move all link structures in their linked list in OLD_RACC to the linked list
488 relink_to_new_repr (struct access *new_racc, struct access *old_racc)
490 if (!old_racc->first_link)
492 gcc_assert (!old_racc->last_link);
496 if (new_racc->first_link)
498 gcc_assert (!new_racc->last_link->next);
499 gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
501 new_racc->last_link->next = old_racc->first_link;
502 new_racc->last_link = old_racc->last_link;
506 gcc_assert (!new_racc->last_link);
508 new_racc->first_link = old_racc->first_link;
509 new_racc->last_link = old_racc->last_link;
511 old_racc->first_link = old_racc->last_link = NULL;
514 /* Add ACCESS to the work queue (which is actually a stack). */
517 add_access_to_work_queue (struct access *access)
519 if (!access->grp_queued)
521 gcc_assert (!access->next_queued);
522 access->next_queued = work_queue_head;
523 access->grp_queued = 1;
524 work_queue_head = access;
528 /* Pop an access from the work queue, and return it, assuming there is one. */
530 static struct access *
531 pop_access_from_work_queue (void)
533 struct access *access = work_queue_head;
535 work_queue_head = access->next_queued;
536 access->next_queued = NULL;
537 access->grp_queued = 0;
542 /* Allocate necessary structures. */
545 sra_initialize (void)
547 candidate_bitmap = BITMAP_ALLOC (NULL);
548 gcc_obstack_init (&name_obstack);
549 access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
550 link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
551 base_access_vec = pointer_map_create ();
552 memset (&sra_stats, 0, sizeof (sra_stats));
553 encountered_apply_args = false;
556 /* Hook fed to pointer_map_traverse, deallocate stored vectors. */
559 delete_base_accesses (const void *key ATTRIBUTE_UNUSED, void **value,
560 void *data ATTRIBUTE_UNUSED)
562 VEC (access_p, heap) *access_vec;
563 access_vec = (VEC (access_p, heap) *) *value;
564 VEC_free (access_p, heap, access_vec);
569 /* Deallocate all general structures. */
572 sra_deinitialize (void)
574 BITMAP_FREE (candidate_bitmap);
575 free_alloc_pool (access_pool);
576 free_alloc_pool (link_pool);
577 obstack_free (&name_obstack, NULL);
579 pointer_map_traverse (base_access_vec, delete_base_accesses, NULL);
580 pointer_map_destroy (base_access_vec);
583 /* Remove DECL from candidates for SRA and write REASON to the dump file if
586 disqualify_candidate (tree decl, const char *reason)
588 bitmap_clear_bit (candidate_bitmap, DECL_UID (decl));
590 if (dump_file && (dump_flags & TDF_DETAILS))
592 fprintf (dump_file, "! Disqualifying ");
593 print_generic_expr (dump_file, decl, 0);
594 fprintf (dump_file, " - %s\n", reason);
598 /* Return true iff the type contains a field or an element which does not allow
602 type_internals_preclude_sra_p (tree type)
607 switch (TREE_CODE (type))
611 case QUAL_UNION_TYPE:
612 for (fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
613 if (TREE_CODE (fld) == FIELD_DECL)
615 tree ft = TREE_TYPE (fld);
617 if (TREE_THIS_VOLATILE (fld)
618 || !DECL_FIELD_OFFSET (fld) || !DECL_SIZE (fld)
619 || !host_integerp (DECL_FIELD_OFFSET (fld), 1)
620 || !host_integerp (DECL_SIZE (fld), 1))
623 if (AGGREGATE_TYPE_P (ft)
624 && type_internals_preclude_sra_p (ft))
631 et = TREE_TYPE (type);
633 if (AGGREGATE_TYPE_P (et))
634 return type_internals_preclude_sra_p (et);
643 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
644 base variable if it is. Return T if it is not an SSA_NAME. */
647 get_ssa_base_param (tree t)
649 if (TREE_CODE (t) == SSA_NAME)
651 if (SSA_NAME_IS_DEFAULT_DEF (t))
652 return SSA_NAME_VAR (t);
659 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
660 belongs to, unless the BB has already been marked as a potentially
664 mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt)
666 basic_block bb = gimple_bb (stmt);
667 int idx, parm_index = 0;
670 if (bitmap_bit_p (final_bbs, bb->index))
673 for (parm = DECL_ARGUMENTS (current_function_decl);
674 parm && parm != base;
675 parm = TREE_CHAIN (parm))
678 gcc_assert (parm_index < func_param_count);
680 idx = bb->index * func_param_count + parm_index;
681 if (bb_dereferences[idx] < dist)
682 bb_dereferences[idx] = dist;
685 /* Create and insert access for EXPR. Return created access, or NULL if it is
688 static struct access *
689 create_access (tree expr, gimple stmt, bool write)
691 struct access *access;
693 VEC (access_p,heap) *vec;
694 HOST_WIDE_INT offset, size, max_size;
696 bool ptr, unscalarizable_region = false;
698 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
700 if (sra_mode == SRA_MODE_EARLY_IPA && INDIRECT_REF_P (base))
702 base = get_ssa_base_param (TREE_OPERAND (base, 0));
710 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
713 if (sra_mode == SRA_MODE_EARLY_IPA)
715 if (size < 0 || size != max_size)
717 disqualify_candidate (base, "Encountered a variable sized access.");
720 if ((offset % BITS_PER_UNIT) != 0 || (size % BITS_PER_UNIT) != 0)
722 disqualify_candidate (base,
723 "Encountered an acces not aligned to a byte.");
728 mark_parm_dereference (base, offset + size, stmt);
732 if (size != max_size)
735 unscalarizable_region = true;
739 disqualify_candidate (base, "Encountered an unconstrained access.");
744 access = (struct access *) pool_alloc (access_pool);
745 memset (access, 0, sizeof (struct access));
748 access->offset = offset;
751 access->type = TREE_TYPE (expr);
752 access->write = write;
753 access->grp_unscalarizable_region = unscalarizable_region;
756 slot = pointer_map_contains (base_access_vec, base);
758 vec = (VEC (access_p, heap) *) *slot;
760 vec = VEC_alloc (access_p, heap, 32);
762 VEC_safe_push (access_p, heap, vec, access);
764 *((struct VEC (access_p,heap) **)
765 pointer_map_insert (base_access_vec, base)) = vec;
771 /* Search the given tree for a declaration by skipping handled components and
772 exclude it from the candidates. */
775 disqualify_base_of_expr (tree t, const char *reason)
777 while (handled_component_p (t))
778 t = TREE_OPERAND (t, 0);
780 if (sra_mode == SRA_MODE_EARLY_IPA)
782 if (INDIRECT_REF_P (t))
783 t = TREE_OPERAND (t, 0);
784 t = get_ssa_base_param (t);
788 disqualify_candidate (t, reason);
791 /* Scan expression EXPR and create access structures for all accesses to
792 candidates for scalarization. Return the created access or NULL if none is
795 static struct access *
796 build_access_from_expr_1 (tree *expr_ptr, gimple stmt, bool write)
798 struct access *ret = NULL;
799 tree expr = *expr_ptr;
802 if (TREE_CODE (expr) == BIT_FIELD_REF
803 || TREE_CODE (expr) == IMAGPART_EXPR
804 || TREE_CODE (expr) == REALPART_EXPR)
806 expr = TREE_OPERAND (expr, 0);
812 /* We need to dive through V_C_Es in order to get the size of its parameter
813 and not the result type. Ada produces such statements. We are also
814 capable of handling the topmost V_C_E but not any of those buried in other
815 handled components. */
816 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
817 expr = TREE_OPERAND (expr, 0);
819 if (contains_view_convert_expr_p (expr))
821 disqualify_base_of_expr (expr, "V_C_E under a different handled "
826 switch (TREE_CODE (expr))
829 if (sra_mode != SRA_MODE_EARLY_IPA)
837 case ARRAY_RANGE_REF:
838 ret = create_access (expr, stmt, write);
845 if (write && partial_ref && ret)
846 ret->grp_partial_lhs = 1;
851 /* Callback of scan_function. Scan expression EXPR and create access
852 structures for all accesses to candidates for scalarization. Return true if
853 any access has been inserted. */
856 build_access_from_expr (tree *expr_ptr,
857 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED, bool write,
858 void *data ATTRIBUTE_UNUSED)
860 return build_access_from_expr_1 (expr_ptr, gsi_stmt (*gsi), write) != NULL;
863 /* Disqualify LHS and RHS for scalarization if STMT must end its basic block in
864 modes in which it matters, return true iff they have been disqualified. RHS
865 may be NULL, in that case ignore it. If we scalarize an aggregate in
866 intra-SRA we may need to add statements after each statement. This is not
867 possible if a statement unconditionally has to end the basic block. */
869 disqualify_ops_if_throwing_stmt (gimple stmt, tree lhs, tree rhs)
871 if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
872 && (stmt_can_throw_internal (stmt) || stmt_ends_bb_p (stmt)))
874 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
876 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
883 /* Result code for scan_assign callback for scan_function. */
884 enum scan_assign_result { SRA_SA_NONE, /* nothing done for the stmt */
885 SRA_SA_PROCESSED, /* stmt analyzed/changed */
886 SRA_SA_REMOVED }; /* stmt redundant and eliminated */
889 /* Callback of scan_function. Scan expressions occuring in the statement
890 pointed to by STMT_EXPR, create access structures for all accesses to
891 candidates for scalarization and remove those candidates which occur in
892 statements or expressions that prevent them from being split apart. Return
893 true if any access has been inserted. */
895 static enum scan_assign_result
896 build_accesses_from_assign (gimple *stmt_ptr,
897 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
898 void *data ATTRIBUTE_UNUSED)
900 gimple stmt = *stmt_ptr;
901 tree *lhs_ptr, *rhs_ptr;
902 struct access *lacc, *racc;
904 if (!gimple_assign_single_p (stmt))
907 lhs_ptr = gimple_assign_lhs_ptr (stmt);
908 rhs_ptr = gimple_assign_rhs1_ptr (stmt);
910 if (disqualify_ops_if_throwing_stmt (stmt, *lhs_ptr, *rhs_ptr))
913 racc = build_access_from_expr_1 (rhs_ptr, stmt, false);
914 lacc = build_access_from_expr_1 (lhs_ptr, stmt, true);
917 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
918 && !lacc->grp_unscalarizable_region
919 && !racc->grp_unscalarizable_region
920 && AGGREGATE_TYPE_P (TREE_TYPE (*lhs_ptr))
921 /* FIXME: Turn the following line into an assert after PR 40058 is
923 && lacc->size == racc->size
924 && useless_type_conversion_p (lacc->type, racc->type))
926 struct assign_link *link;
928 link = (struct assign_link *) pool_alloc (link_pool);
929 memset (link, 0, sizeof (struct assign_link));
934 add_link_to_rhs (racc, link);
937 return (lacc || racc) ? SRA_SA_PROCESSED : SRA_SA_NONE;
940 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
941 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
944 asm_visit_addr (gimple stmt ATTRIBUTE_UNUSED, tree op,
945 void *data ATTRIBUTE_UNUSED)
948 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
954 /* Scan function and look for interesting statements. Return true if any has
955 been found or processed, as indicated by callbacks. SCAN_EXPR is a callback
956 called on all expressions within statements except assign statements and
957 those deemed entirely unsuitable for some reason (all operands in such
958 statements and expression are removed from candidate_bitmap). SCAN_ASSIGN
959 is a callback called on all assign statements, HANDLE_SSA_DEFS is a callback
960 called on assign statements and those call statements which have a lhs, it
961 can be NULL. ANALYSIS_STAGE is true when running in the analysis stage of a
962 pass and thus no statement is being modified. DATA is a pointer passed to
963 all callbacks. If any single callback returns true, this function also
964 returns true, otherwise it returns false. */
967 scan_function (bool (*scan_expr) (tree *, gimple_stmt_iterator *, bool, void *),
968 enum scan_assign_result (*scan_assign) (gimple *,
969 gimple_stmt_iterator *,
971 bool (*handle_ssa_defs)(gimple, void *),
972 bool analysis_stage, void *data)
974 gimple_stmt_iterator gsi;
982 bool bb_changed = false;
985 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
986 ret |= handle_ssa_defs (gsi_stmt (gsi), data);
988 gsi = gsi_start_bb (bb);
989 while (!gsi_end_p (gsi))
991 gimple stmt = gsi_stmt (gsi);
992 enum scan_assign_result assign_result;
993 bool any = false, deleted = false;
995 if (analysis_stage && final_bbs && stmt_can_throw_external (stmt))
996 bitmap_set_bit (final_bbs, bb->index);
997 switch (gimple_code (stmt))
1000 t = gimple_return_retval_ptr (stmt);
1001 if (*t != NULL_TREE)
1002 any |= scan_expr (t, &gsi, false, data);
1003 if (analysis_stage && final_bbs)
1004 bitmap_set_bit (final_bbs, bb->index);
1008 assign_result = scan_assign (&stmt, &gsi, data);
1009 any |= assign_result == SRA_SA_PROCESSED;
1010 deleted = assign_result == SRA_SA_REMOVED;
1011 if (handle_ssa_defs && assign_result != SRA_SA_REMOVED)
1012 any |= handle_ssa_defs (stmt, data);
1016 /* Operands must be processed before the lhs. */
1017 for (i = 0; i < gimple_call_num_args (stmt); i++)
1019 tree *argp = gimple_call_arg_ptr (stmt, i);
1020 any |= scan_expr (argp, &gsi, false, data);
1025 tree dest = gimple_call_fndecl (stmt);
1026 int flags = gimple_call_flags (stmt);
1029 && DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
1030 && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
1031 encountered_apply_args = true;
1034 && (flags & (ECF_CONST | ECF_PURE)) == 0)
1035 bitmap_set_bit (final_bbs, bb->index);
1038 if (gimple_call_lhs (stmt))
1040 tree *lhs_ptr = gimple_call_lhs_ptr (stmt);
1042 || !disqualify_ops_if_throwing_stmt (stmt,
1045 any |= scan_expr (lhs_ptr, &gsi, true, data);
1046 if (handle_ssa_defs)
1047 any |= handle_ssa_defs (stmt, data);
1055 walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
1058 bitmap_set_bit (final_bbs, bb->index);
1060 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1062 tree *op = &TREE_VALUE (gimple_asm_input_op (stmt, i));
1063 any |= scan_expr (op, &gsi, false, data);
1065 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
1067 tree *op = &TREE_VALUE (gimple_asm_output_op (stmt, i));
1068 any |= scan_expr (op, &gsi, true, data);
1080 if (!analysis_stage)
1084 maybe_clean_eh_stmt (stmt);
1095 if (!analysis_stage && bb_changed && sra_mode == SRA_MODE_EARLY_IPA)
1096 gimple_purge_dead_eh_edges (bb);
1102 /* Helper of QSORT function. There are pointers to accesses in the array. An
1103 access is considered smaller than another if it has smaller offset or if the
1104 offsets are the same but is size is bigger. */
1107 compare_access_positions (const void *a, const void *b)
1109 const access_p *fp1 = (const access_p *) a;
1110 const access_p *fp2 = (const access_p *) b;
1111 const access_p f1 = *fp1;
1112 const access_p f2 = *fp2;
1114 if (f1->offset != f2->offset)
1115 return f1->offset < f2->offset ? -1 : 1;
1117 if (f1->size == f2->size)
1119 /* Put any non-aggregate type before any aggregate type. */
1120 if (!is_gimple_reg_type (f1->type)
1121 && is_gimple_reg_type (f2->type))
1123 else if (is_gimple_reg_type (f1->type)
1124 && !is_gimple_reg_type (f2->type))
1126 /* Put any complex or vector type before any other scalar type. */
1127 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1128 && TREE_CODE (f1->type) != VECTOR_TYPE
1129 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1130 || TREE_CODE (f2->type) == VECTOR_TYPE))
1132 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1133 || TREE_CODE (f1->type) == VECTOR_TYPE)
1134 && TREE_CODE (f2->type) != COMPLEX_TYPE
1135 && TREE_CODE (f2->type) != VECTOR_TYPE)
1137 /* Put the integral type with the bigger precision first. */
1138 else if (INTEGRAL_TYPE_P (f1->type)
1139 && INTEGRAL_TYPE_P (f2->type))
1140 return TYPE_PRECISION (f1->type) > TYPE_PRECISION (f2->type) ? -1 : 1;
1141 /* Put any integral type with non-full precision last. */
1142 else if (INTEGRAL_TYPE_P (f1->type)
1143 && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
1144 != TYPE_PRECISION (f1->type)))
1146 else if (INTEGRAL_TYPE_P (f2->type)
1147 && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
1148 != TYPE_PRECISION (f2->type)))
1150 /* Stabilize the sort. */
1151 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1154 /* We want the bigger accesses first, thus the opposite operator in the next
1156 return f1->size > f2->size ? -1 : 1;
1160 /* Append a name of the declaration to the name obstack. A helper function for
1164 make_fancy_decl_name (tree decl)
1168 tree name = DECL_NAME (decl);
1170 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1171 IDENTIFIER_LENGTH (name));
1174 sprintf (buffer, "D%u", DECL_UID (decl));
1175 obstack_grow (&name_obstack, buffer, strlen (buffer));
1179 /* Helper for make_fancy_name. */
1182 make_fancy_name_1 (tree expr)
1189 make_fancy_decl_name (expr);
1193 switch (TREE_CODE (expr))
1196 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1197 obstack_1grow (&name_obstack, '$');
1198 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1202 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1203 obstack_1grow (&name_obstack, '$');
1204 /* Arrays with only one element may not have a constant as their
1206 index = TREE_OPERAND (expr, 1);
1207 if (TREE_CODE (index) != INTEGER_CST)
1209 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1210 obstack_grow (&name_obstack, buffer, strlen (buffer));
1217 gcc_unreachable (); /* we treat these as scalars. */
1224 /* Create a human readable name for replacement variable of ACCESS. */
1227 make_fancy_name (tree expr)
1229 make_fancy_name_1 (expr);
1230 obstack_1grow (&name_obstack, '\0');
1231 return XOBFINISH (&name_obstack, char *);
1234 /* Helper function for build_ref_for_offset. */
1237 build_ref_for_offset_1 (tree *res, tree type, HOST_WIDE_INT offset,
1243 tree tr_size, index, minidx;
1244 HOST_WIDE_INT el_size;
1246 if (offset == 0 && exp_type
1247 && types_compatible_p (exp_type, type))
1250 switch (TREE_CODE (type))
1253 case QUAL_UNION_TYPE:
1255 for (fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
1257 HOST_WIDE_INT pos, size;
1258 tree expr, *expr_ptr;
1260 if (TREE_CODE (fld) != FIELD_DECL)
1263 pos = int_bit_position (fld);
1264 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1265 tr_size = DECL_SIZE (fld);
1266 if (!tr_size || !host_integerp (tr_size, 1))
1268 size = tree_low_cst (tr_size, 1);
1269 if (pos > offset || (pos + size) <= offset)
1274 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1280 if (build_ref_for_offset_1 (expr_ptr, TREE_TYPE (fld),
1281 offset - pos, exp_type))
1291 tr_size = TYPE_SIZE (TREE_TYPE (type));
1292 if (!tr_size || !host_integerp (tr_size, 1))
1294 el_size = tree_low_cst (tr_size, 1);
1296 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1297 if (TREE_CODE (minidx) != INTEGER_CST)
1301 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1302 if (!integer_zerop (minidx))
1303 index = int_const_binop (PLUS_EXPR, index, minidx, 0);
1304 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1305 NULL_TREE, NULL_TREE);
1307 offset = offset % el_size;
1308 type = TREE_TYPE (type);
1323 /* Construct an expression that would reference a part of aggregate *EXPR of
1324 type TYPE at the given OFFSET of the type EXP_TYPE. If EXPR is NULL, the
1325 function only determines whether it can build such a reference without
1326 actually doing it, otherwise, the tree it points to is unshared first and
1327 then used as a base for furhter sub-references.
1329 FIXME: Eventually this should be replaced with
1330 maybe_fold_offset_to_reference() from tree-ssa-ccp.c but that requires a
1331 minor rewrite of fold_stmt.
1335 build_ref_for_offset (tree *expr, tree type, HOST_WIDE_INT offset,
1336 tree exp_type, bool allow_ptr)
1338 location_t loc = expr ? EXPR_LOCATION (*expr) : UNKNOWN_LOCATION;
1341 *expr = unshare_expr (*expr);
1343 if (allow_ptr && POINTER_TYPE_P (type))
1345 type = TREE_TYPE (type);
1347 *expr = fold_build1_loc (loc, INDIRECT_REF, type, *expr);
1350 return build_ref_for_offset_1 (expr, type, offset, exp_type);
1353 /* Return true iff TYPE is stdarg va_list type. */
1356 is_va_list_type (tree type)
1358 return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
1361 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1362 those with type which is suitable for scalarization. */
1365 find_var_candidates (void)
1368 referenced_var_iterator rvi;
1371 FOR_EACH_REFERENCED_VAR (var, rvi)
1373 if (TREE_CODE (var) != VAR_DECL && TREE_CODE (var) != PARM_DECL)
1375 type = TREE_TYPE (var);
1377 if (!AGGREGATE_TYPE_P (type)
1378 || needs_to_live_in_memory (var)
1379 || TREE_THIS_VOLATILE (var)
1380 || !COMPLETE_TYPE_P (type)
1381 || !host_integerp (TYPE_SIZE (type), 1)
1382 || tree_low_cst (TYPE_SIZE (type), 1) == 0
1383 || type_internals_preclude_sra_p (type)
1384 /* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1385 we also want to schedule it rather late. Thus we ignore it in
1387 || (sra_mode == SRA_MODE_EARLY_INTRA
1388 && is_va_list_type (type)))
1391 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1393 if (dump_file && (dump_flags & TDF_DETAILS))
1395 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1396 print_generic_expr (dump_file, var, 0);
1397 fprintf (dump_file, "\n");
1405 /* Sort all accesses for the given variable, check for partial overlaps and
1406 return NULL if there are any. If there are none, pick a representative for
1407 each combination of offset and size and create a linked list out of them.
1408 Return the pointer to the first representative and make sure it is the first
1409 one in the vector of accesses. */
1411 static struct access *
1412 sort_and_splice_var_accesses (tree var)
1414 int i, j, access_count;
1415 struct access *res, **prev_acc_ptr = &res;
1416 VEC (access_p, heap) *access_vec;
1418 HOST_WIDE_INT low = -1, high = 0;
1420 access_vec = get_base_access_vector (var);
1423 access_count = VEC_length (access_p, access_vec);
1425 /* Sort by <OFFSET, SIZE>. */
1426 qsort (VEC_address (access_p, access_vec), access_count, sizeof (access_p),
1427 compare_access_positions);
1430 while (i < access_count)
1432 struct access *access = VEC_index (access_p, access_vec, i);
1433 bool grp_write = access->write;
1434 bool grp_read = !access->write;
1435 bool multiple_reads = false;
1436 bool grp_partial_lhs = access->grp_partial_lhs;
1437 bool grp_different_types = false;
1438 bool first_scalar = is_gimple_reg_type (access->type);
1439 bool unscalarizable_region = access->grp_unscalarizable_region;
1441 if (first || access->offset >= high)
1444 low = access->offset;
1445 high = access->offset + access->size;
1447 else if (access->offset > low && access->offset + access->size > high)
1450 gcc_assert (access->offset >= low
1451 && access->offset + access->size <= high);
1454 while (j < access_count)
1456 struct access *ac2 = VEC_index (access_p, access_vec, j);
1457 if (ac2->offset != access->offset || ac2->size != access->size)
1464 multiple_reads = true;
1468 grp_partial_lhs |= ac2->grp_partial_lhs;
1469 grp_different_types |= !types_compatible_p (access->type, ac2->type);
1470 unscalarizable_region |= ac2->grp_unscalarizable_region;
1471 relink_to_new_repr (access, ac2);
1473 /* If there are both aggregate-type and scalar-type accesses with
1474 this combination of size and offset, the comparison function
1475 should have put the scalars first. */
1476 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
1477 ac2->group_representative = access;
1483 access->group_representative = access;
1484 access->grp_write = grp_write;
1485 access->grp_read = grp_read;
1486 access->grp_hint = multiple_reads;
1487 access->grp_partial_lhs = grp_partial_lhs;
1488 access->grp_different_types = grp_different_types;
1489 access->grp_unscalarizable_region = unscalarizable_region;
1490 if (access->first_link)
1491 add_access_to_work_queue (access);
1493 *prev_acc_ptr = access;
1494 prev_acc_ptr = &access->next_grp;
1497 gcc_assert (res == VEC_index (access_p, access_vec, 0));
1501 /* Create a variable for the given ACCESS which determines the type, name and a
1502 few other properties. Return the variable declaration and store it also to
1503 ACCESS->replacement. */
1506 create_access_replacement (struct access *access)
1510 repl = create_tmp_var (access->type, "SR");
1512 add_referenced_var (repl);
1513 mark_sym_for_renaming (repl);
1515 if (!access->grp_partial_lhs
1516 && (TREE_CODE (access->type) == COMPLEX_TYPE
1517 || TREE_CODE (access->type) == VECTOR_TYPE))
1518 DECL_GIMPLE_REG_P (repl) = 1;
1520 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
1521 DECL_ARTIFICIAL (repl) = 1;
1523 if (DECL_NAME (access->base)
1524 && !DECL_IGNORED_P (access->base)
1525 && !DECL_ARTIFICIAL (access->base))
1527 char *pretty_name = make_fancy_name (access->expr);
1529 DECL_NAME (repl) = get_identifier (pretty_name);
1530 obstack_free (&name_obstack, pretty_name);
1532 SET_DECL_DEBUG_EXPR (repl, access->expr);
1533 DECL_DEBUG_EXPR_IS_FROM (repl) = 1;
1534 DECL_IGNORED_P (repl) = 0;
1537 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
1538 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
1542 fprintf (dump_file, "Created a replacement for ");
1543 print_generic_expr (dump_file, access->base, 0);
1544 fprintf (dump_file, " offset: %u, size: %u: ",
1545 (unsigned) access->offset, (unsigned) access->size);
1546 print_generic_expr (dump_file, repl, 0);
1547 fprintf (dump_file, "\n");
1549 sra_stats.replacements++;
1554 /* Return ACCESS scalar replacement, create it if it does not exist yet. */
1557 get_access_replacement (struct access *access)
1559 gcc_assert (access->grp_to_be_replaced);
1561 if (!access->replacement_decl)
1562 access->replacement_decl = create_access_replacement (access);
1563 return access->replacement_decl;
1566 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
1567 linked list along the way. Stop when *ACCESS is NULL or the access pointed
1568 to it is not "within" the root. */
1571 build_access_subtree (struct access **access)
1573 struct access *root = *access, *last_child = NULL;
1574 HOST_WIDE_INT limit = root->offset + root->size;
1576 *access = (*access)->next_grp;
1577 while (*access && (*access)->offset + (*access)->size <= limit)
1580 root->first_child = *access;
1582 last_child->next_sibling = *access;
1583 last_child = *access;
1585 build_access_subtree (access);
1589 /* Build a tree of access representatives, ACCESS is the pointer to the first
1590 one, others are linked in a list by the next_grp field. Decide about scalar
1591 replacements on the way, return true iff any are to be created. */
1594 build_access_trees (struct access *access)
1598 struct access *root = access;
1600 build_access_subtree (&access);
1601 root->next_grp = access;
1605 /* Return true if expr contains some ARRAY_REFs into a variable bounded
1609 expr_with_var_bounded_array_refs_p (tree expr)
1611 while (handled_component_p (expr))
1613 if (TREE_CODE (expr) == ARRAY_REF
1614 && !host_integerp (array_ref_low_bound (expr), 0))
1616 expr = TREE_OPERAND (expr, 0);
1621 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
1622 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set
1623 all sorts of access flags appropriately along the way, notably always ser
1624 grp_read when MARK_READ is true and grp_write when MARK_WRITE is true. */
1627 analyze_access_subtree (struct access *root, bool allow_replacements,
1628 bool mark_read, bool mark_write)
1630 struct access *child;
1631 HOST_WIDE_INT limit = root->offset + root->size;
1632 HOST_WIDE_INT covered_to = root->offset;
1633 bool scalar = is_gimple_reg_type (root->type);
1634 bool hole = false, sth_created = false;
1635 bool direct_read = root->grp_read;
1638 root->grp_read = true;
1639 else if (root->grp_read)
1643 root->grp_write = true;
1644 else if (root->grp_write)
1647 if (root->grp_unscalarizable_region)
1648 allow_replacements = false;
1650 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
1651 allow_replacements = false;
1653 for (child = root->first_child; child; child = child->next_sibling)
1655 if (!hole && child->offset < covered_to)
1658 covered_to += child->size;
1660 sth_created |= analyze_access_subtree (child, allow_replacements,
1661 mark_read, mark_write);
1663 root->grp_unscalarized_data |= child->grp_unscalarized_data;
1664 hole |= !child->grp_covered;
1667 if (allow_replacements && scalar && !root->first_child
1669 || (direct_read && root->grp_write)))
1671 if (dump_file && (dump_flags & TDF_DETAILS))
1673 fprintf (dump_file, "Marking ");
1674 print_generic_expr (dump_file, root->base, 0);
1675 fprintf (dump_file, " offset: %u, size: %u: ",
1676 (unsigned) root->offset, (unsigned) root->size);
1677 fprintf (dump_file, " to be replaced.\n");
1680 root->grp_to_be_replaced = 1;
1684 else if (covered_to < limit)
1687 if (sth_created && !hole)
1689 root->grp_covered = 1;
1692 if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
1693 root->grp_unscalarized_data = 1; /* not covered and written to */
1699 /* Analyze all access trees linked by next_grp by the means of
1700 analyze_access_subtree. */
1702 analyze_access_trees (struct access *access)
1708 if (analyze_access_subtree (access, true, false, false))
1710 access = access->next_grp;
1716 /* Return true iff a potential new child of LACC at offset OFFSET and with size
1717 SIZE would conflict with an already existing one. If exactly such a child
1718 already exists in LACC, store a pointer to it in EXACT_MATCH. */
1721 child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
1722 HOST_WIDE_INT size, struct access **exact_match)
1724 struct access *child;
1726 for (child = lacc->first_child; child; child = child->next_sibling)
1728 if (child->offset == norm_offset && child->size == size)
1730 *exact_match = child;
1734 if (child->offset < norm_offset + size
1735 && child->offset + child->size > norm_offset)
1742 /* Create a new child access of PARENT, with all properties just like MODEL
1743 except for its offset and with its grp_write false and grp_read true.
1744 Return the new access or NULL if it cannot be created. Note that this access
1745 is created long after all splicing and sorting, it's not located in any
1746 access vector and is automatically a representative of its group. */
1748 static struct access *
1749 create_artificial_child_access (struct access *parent, struct access *model,
1750 HOST_WIDE_INT new_offset)
1752 struct access *access;
1753 struct access **child;
1754 tree expr = parent->base;;
1756 gcc_assert (!model->grp_unscalarizable_region);
1758 if (!build_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
1759 model->type, false))
1762 access = (struct access *) pool_alloc (access_pool);
1763 memset (access, 0, sizeof (struct access));
1764 access->base = parent->base;
1765 access->expr = expr;
1766 access->offset = new_offset;
1767 access->size = model->size;
1768 access->type = model->type;
1769 access->grp_write = true;
1770 access->grp_read = false;
1772 child = &parent->first_child;
1773 while (*child && (*child)->offset < new_offset)
1774 child = &(*child)->next_sibling;
1776 access->next_sibling = *child;
1783 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
1784 true if any new subaccess was created. Additionally, if RACC is a scalar
1785 access but LACC is not, change the type of the latter, if possible. */
1788 propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
1790 struct access *rchild;
1791 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
1794 if (is_gimple_reg_type (lacc->type)
1795 || lacc->grp_unscalarizable_region
1796 || racc->grp_unscalarizable_region)
1799 if (!lacc->first_child && !racc->first_child
1800 && is_gimple_reg_type (racc->type))
1802 tree t = lacc->base;
1804 if (build_ref_for_offset (&t, TREE_TYPE (t), lacc->offset, racc->type,
1808 lacc->type = racc->type;
1813 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
1815 struct access *new_acc = NULL;
1816 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
1818 if (rchild->grp_unscalarizable_region)
1821 if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
1826 rchild->grp_hint = 1;
1827 new_acc->grp_hint |= new_acc->grp_read;
1828 if (rchild->first_child)
1829 ret |= propagate_subaccesses_across_link (new_acc, rchild);
1834 /* If a (part of) a union field is on the RHS of an assignment, it can
1835 have sub-accesses which do not make sense on the LHS (PR 40351).
1836 Check that this is not the case. */
1837 if (!build_ref_for_offset (NULL, TREE_TYPE (lacc->base), norm_offset,
1838 rchild->type, false))
1841 rchild->grp_hint = 1;
1842 new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
1846 if (racc->first_child)
1847 propagate_subaccesses_across_link (new_acc, rchild);
1854 /* Propagate all subaccesses across assignment links. */
1857 propagate_all_subaccesses (void)
1859 while (work_queue_head)
1861 struct access *racc = pop_access_from_work_queue ();
1862 struct assign_link *link;
1864 gcc_assert (racc->first_link);
1866 for (link = racc->first_link; link; link = link->next)
1868 struct access *lacc = link->lacc;
1870 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
1872 lacc = lacc->group_representative;
1873 if (propagate_subaccesses_across_link (lacc, racc)
1874 && lacc->first_link)
1875 add_access_to_work_queue (lacc);
1880 /* Go through all accesses collected throughout the (intraprocedural) analysis
1881 stage, exclude overlapping ones, identify representatives and build trees
1882 out of them, making decisions about scalarization on the way. Return true
1883 iff there are any to-be-scalarized variables after this stage. */
1886 analyze_all_variable_accesses (void)
1889 bitmap tmp = BITMAP_ALLOC (NULL);
1893 bitmap_copy (tmp, candidate_bitmap);
1894 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
1896 tree var = referenced_var (i);
1897 struct access *access;
1899 access = sort_and_splice_var_accesses (var);
1901 build_access_trees (access);
1903 disqualify_candidate (var,
1904 "No or inhibitingly overlapping accesses.");
1907 propagate_all_subaccesses ();
1909 bitmap_copy (tmp, candidate_bitmap);
1910 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
1912 tree var = referenced_var (i);
1913 struct access *access = get_first_repr_for_decl (var);
1915 if (analyze_access_trees (access))
1918 if (dump_file && (dump_flags & TDF_DETAILS))
1920 fprintf (dump_file, "\nAccess trees for ");
1921 print_generic_expr (dump_file, var, 0);
1922 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
1923 dump_access_tree (dump_file, access);
1924 fprintf (dump_file, "\n");
1928 disqualify_candidate (var, "No scalar replacements to be created.");
1935 statistics_counter_event (cfun, "Scalarized aggregates", res);
1942 /* Return true iff a reference statement into aggregate AGG can be built for
1943 every single to-be-replaced accesses that is a child of ACCESS, its sibling
1944 or a child of its sibling. TOP_OFFSET is the offset from the processed
1945 access subtree that has to be subtracted from offset of each access. */
1948 ref_expr_for_all_replacements_p (struct access *access, tree agg,
1949 HOST_WIDE_INT top_offset)
1953 if (access->grp_to_be_replaced
1954 && !build_ref_for_offset (NULL, TREE_TYPE (agg),
1955 access->offset - top_offset,
1956 access->type, false))
1959 if (access->first_child
1960 && !ref_expr_for_all_replacements_p (access->first_child, agg,
1964 access = access->next_sibling;
1971 /* Generate statements copying scalar replacements of accesses within a subtree
1972 into or out of AGG. ACCESS is the first child of the root of the subtree to
1973 be processed. AGG is an aggregate type expression (can be a declaration but
1974 does not have to be, it can for example also be an indirect_ref).
1975 TOP_OFFSET is the offset of the processed subtree which has to be subtracted
1976 from offsets of individual accesses to get corresponding offsets for AGG.
1977 If CHUNK_SIZE is non-null, copy only replacements in the interval
1978 <start_offset, start_offset + chunk_size>, otherwise copy all. GSI is a
1979 statement iterator used to place the new statements. WRITE should be true
1980 when the statements should write from AGG to the replacement and false if
1981 vice versa. if INSERT_AFTER is true, new statements will be added after the
1982 current statement in GSI, they will be added before the statement
1986 generate_subtree_copies (struct access *access, tree agg,
1987 HOST_WIDE_INT top_offset,
1988 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
1989 gimple_stmt_iterator *gsi, bool write,
1996 if (chunk_size && access->offset >= start_offset + chunk_size)
1999 if (access->grp_to_be_replaced
2001 || access->offset + access->size > start_offset))
2003 tree repl = get_access_replacement (access);
2007 ref_found = build_ref_for_offset (&expr, TREE_TYPE (agg),
2008 access->offset - top_offset,
2009 access->type, false);
2010 gcc_assert (ref_found);
2014 if (access->grp_partial_lhs)
2015 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
2017 insert_after ? GSI_NEW_STMT
2019 stmt = gimple_build_assign (repl, expr);
2023 TREE_NO_WARNING (repl) = 1;
2024 if (access->grp_partial_lhs)
2025 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2027 insert_after ? GSI_NEW_STMT
2029 stmt = gimple_build_assign (expr, repl);
2033 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2035 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2037 sra_stats.subtree_copies++;
2040 if (access->first_child)
2041 generate_subtree_copies (access->first_child, agg, top_offset,
2042 start_offset, chunk_size, gsi,
2043 write, insert_after);
2045 access = access->next_sibling;
2050 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2051 the root of the subtree to be processed. GSI is the statement iterator used
2052 for inserting statements which are added after the current statement if
2053 INSERT_AFTER is true or before it otherwise. */
2056 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
2060 struct access *child;
2062 if (access->grp_to_be_replaced)
2066 stmt = gimple_build_assign (get_access_replacement (access),
2067 fold_convert (access->type,
2068 integer_zero_node));
2070 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2072 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2076 for (child = access->first_child; child; child = child->next_sibling)
2077 init_subtree_with_zero (child, gsi, insert_after);
2080 /* Search for an access representative for the given expression EXPR and
2081 return it or NULL if it cannot be found. */
2083 static struct access *
2084 get_access_for_expr (tree expr)
2086 HOST_WIDE_INT offset, size, max_size;
2089 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2090 a different size than the size of its argument and we need the latter
2092 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2093 expr = TREE_OPERAND (expr, 0);
2095 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
2096 if (max_size == -1 || !DECL_P (base))
2099 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
2102 return get_var_base_offset_size_access (base, offset, max_size);
2105 /* Callback for scan_function. Replace the expression EXPR with a scalar
2106 replacement if there is one and generate other statements to do type
2107 conversion or subtree copying if necessary. GSI is used to place newly
2108 created statements, WRITE is true if the expression is being written to (it
2109 is on a LHS of a statement or output in an assembly statement). */
2112 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write,
2113 void *data ATTRIBUTE_UNUSED)
2115 struct access *access;
2118 if (TREE_CODE (*expr) == BIT_FIELD_REF)
2121 expr = &TREE_OPERAND (*expr, 0);
2126 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
2127 expr = &TREE_OPERAND (*expr, 0);
2128 access = get_access_for_expr (*expr);
2131 type = TREE_TYPE (*expr);
2133 if (access->grp_to_be_replaced)
2135 tree repl = get_access_replacement (access);
2136 /* If we replace a non-register typed access simply use the original
2137 access expression to extract the scalar component afterwards.
2138 This happens if scalarizing a function return value or parameter
2139 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2140 gcc.c-torture/compile/20011217-1.c.
2142 We also want to use this when accessing a complex or vector which can
2143 be accessed as a different type too, potentially creating a need for
2144 type conversion (see PR42196). */
2145 if (!is_gimple_reg_type (type)
2146 || (access->grp_different_types
2147 && (TREE_CODE (type) == COMPLEX_TYPE
2148 || TREE_CODE (type) == VECTOR_TYPE)))
2150 tree ref = access->base;
2153 ok = build_ref_for_offset (&ref, TREE_TYPE (ref),
2154 access->offset, access->type, false);
2161 if (access->grp_partial_lhs)
2162 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
2163 false, GSI_NEW_STMT);
2164 stmt = gimple_build_assign (repl, ref);
2165 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2171 if (access->grp_partial_lhs)
2172 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2173 true, GSI_SAME_STMT);
2174 stmt = gimple_build_assign (ref, repl);
2175 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2180 gcc_assert (useless_type_conversion_p (type, access->type));
2186 if (access->first_child)
2188 HOST_WIDE_INT start_offset, chunk_size;
2190 && host_integerp (TREE_OPERAND (bfr, 1), 1)
2191 && host_integerp (TREE_OPERAND (bfr, 2), 1))
2193 chunk_size = tree_low_cst (TREE_OPERAND (bfr, 1), 1);
2194 start_offset = access->offset
2195 + tree_low_cst (TREE_OPERAND (bfr, 2), 1);
2198 start_offset = chunk_size = 0;
2200 generate_subtree_copies (access->first_child, access->base, 0,
2201 start_offset, chunk_size, gsi, write, write);
2206 /* Where scalar replacements of the RHS have been written to when a replacement
2207 of a LHS of an assigments cannot be direclty loaded from a replacement of
2209 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
2210 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
2211 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
2213 /* Store all replacements in the access tree rooted in TOP_RACC either to their
2214 base aggregate if there are unscalarized data or directly to LHS
2217 static enum unscalarized_data_handling
2218 handle_unscalarized_data_in_subtree (struct access *top_racc, tree lhs,
2219 gimple_stmt_iterator *gsi)
2221 if (top_racc->grp_unscalarized_data)
2223 generate_subtree_copies (top_racc->first_child, top_racc->base, 0, 0, 0,
2225 return SRA_UDH_RIGHT;
2229 generate_subtree_copies (top_racc->first_child, lhs, top_racc->offset,
2230 0, 0, gsi, false, false);
2231 return SRA_UDH_LEFT;
2236 /* Try to generate statements to load all sub-replacements in an access
2237 (sub)tree (LACC is the first child) from scalar replacements in the TOP_RACC
2238 (sub)tree. If that is not possible, refresh the TOP_RACC base aggregate and
2239 load the accesses from it. LEFT_OFFSET is the offset of the left whole
2240 subtree being copied, RIGHT_OFFSET is the same thing for the right subtree.
2241 GSI is stmt iterator used for statement insertions. *REFRESHED is true iff
2242 the rhs top aggregate has already been refreshed by contents of its scalar
2243 reductions and is set to true if this function has to do it. */
2246 load_assign_lhs_subreplacements (struct access *lacc, struct access *top_racc,
2247 HOST_WIDE_INT left_offset,
2248 HOST_WIDE_INT right_offset,
2249 gimple_stmt_iterator *old_gsi,
2250 gimple_stmt_iterator *new_gsi,
2251 enum unscalarized_data_handling *refreshed,
2254 location_t loc = EXPR_LOCATION (lacc->expr);
2257 if (lacc->grp_to_be_replaced)
2259 struct access *racc;
2260 HOST_WIDE_INT offset = lacc->offset - left_offset + right_offset;
2264 racc = find_access_in_subtree (top_racc, offset, lacc->size);
2265 if (racc && racc->grp_to_be_replaced)
2267 rhs = get_access_replacement (racc);
2268 if (!useless_type_conversion_p (lacc->type, racc->type))
2269 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, lacc->type, rhs);
2273 /* No suitable access on the right hand side, need to load from
2274 the aggregate. See if we have to update it first... */
2275 if (*refreshed == SRA_UDH_NONE)
2276 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2279 if (*refreshed == SRA_UDH_LEFT)
2284 repl_found = build_ref_for_offset (&rhs, TREE_TYPE (rhs),
2285 lacc->offset, lacc->type,
2287 gcc_assert (repl_found);
2293 rhs = top_racc->base;
2294 repl_found = build_ref_for_offset (&rhs,
2295 TREE_TYPE (top_racc->base),
2296 offset, lacc->type, false);
2297 gcc_assert (repl_found);
2301 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
2302 gsi_insert_after (new_gsi, stmt, GSI_NEW_STMT);
2304 sra_stats.subreplacements++;
2306 else if (*refreshed == SRA_UDH_NONE
2307 && lacc->grp_read && !lacc->grp_covered)
2308 *refreshed = handle_unscalarized_data_in_subtree (top_racc, lhs,
2311 if (lacc->first_child)
2312 load_assign_lhs_subreplacements (lacc->first_child, top_racc,
2313 left_offset, right_offset,
2314 old_gsi, new_gsi, refreshed, lhs);
2315 lacc = lacc->next_sibling;
2320 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
2321 to the assignment and GSI is the statement iterator pointing at it. Returns
2322 the same values as sra_modify_assign. */
2324 static enum scan_assign_result
2325 sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2327 tree lhs = gimple_assign_lhs (*stmt);
2330 acc = get_access_for_expr (lhs);
2334 if (VEC_length (constructor_elt,
2335 CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt))) > 0)
2337 /* I have never seen this code path trigger but if it can happen the
2338 following should handle it gracefully. */
2339 if (access_has_children_p (acc))
2340 generate_subtree_copies (acc->first_child, acc->base, 0, 0, 0, gsi,
2342 return SRA_SA_PROCESSED;
2345 if (acc->grp_covered)
2347 init_subtree_with_zero (acc, gsi, false);
2348 unlink_stmt_vdef (*stmt);
2349 gsi_remove (gsi, true);
2350 return SRA_SA_REMOVED;
2354 init_subtree_with_zero (acc, gsi, true);
2355 return SRA_SA_PROCESSED;
2360 /* Callback of scan_function to process assign statements. It examines both
2361 sides of the statement, replaces them with a scalare replacement if there is
2362 one and generating copying of replacements if scalarized aggregates have been
2363 used in the assignment. STMT is a pointer to the assign statement, GSI is
2364 used to hold generated statements for type conversions and subtree
2367 static enum scan_assign_result
2368 sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi,
2369 void *data ATTRIBUTE_UNUSED)
2371 struct access *lacc, *racc;
2373 bool modify_this_stmt = false;
2374 bool force_gimple_rhs = false;
2375 location_t loc = gimple_location (*stmt);
2377 if (!gimple_assign_single_p (*stmt))
2379 lhs = gimple_assign_lhs (*stmt);
2380 rhs = gimple_assign_rhs1 (*stmt);
2382 if (TREE_CODE (rhs) == CONSTRUCTOR)
2383 return sra_modify_constructor_assign (stmt, gsi);
2385 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
2386 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
2387 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
2389 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (*stmt),
2391 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (*stmt),
2393 return modify_this_stmt ? SRA_SA_PROCESSED : SRA_SA_NONE;
2396 lacc = get_access_for_expr (lhs);
2397 racc = get_access_for_expr (rhs);
2401 if (lacc && lacc->grp_to_be_replaced)
2403 lhs = get_access_replacement (lacc);
2404 gimple_assign_set_lhs (*stmt, lhs);
2405 modify_this_stmt = true;
2406 if (lacc->grp_partial_lhs)
2407 force_gimple_rhs = true;
2411 if (racc && racc->grp_to_be_replaced)
2413 rhs = get_access_replacement (racc);
2414 modify_this_stmt = true;
2415 if (racc->grp_partial_lhs)
2416 force_gimple_rhs = true;
2420 if (modify_this_stmt)
2422 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2424 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
2425 ??? This should move to fold_stmt which we simply should
2426 call after building a VIEW_CONVERT_EXPR here. */
2427 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
2428 && !access_has_children_p (lacc))
2431 if (build_ref_for_offset (&expr, TREE_TYPE (lhs), 0,
2432 TREE_TYPE (rhs), false))
2435 gimple_assign_set_lhs (*stmt, expr);
2438 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
2439 && !access_has_children_p (racc))
2442 if (build_ref_for_offset (&expr, TREE_TYPE (rhs), 0,
2443 TREE_TYPE (lhs), false))
2446 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2448 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2449 if (is_gimple_reg_type (TREE_TYPE (lhs))
2450 && TREE_CODE (lhs) != SSA_NAME)
2451 force_gimple_rhs = true;
2455 if (force_gimple_rhs)
2456 rhs = force_gimple_operand_gsi (gsi, rhs, true, NULL_TREE,
2457 true, GSI_SAME_STMT);
2458 if (gimple_assign_rhs1 (*stmt) != rhs)
2460 gimple_assign_set_rhs_from_tree (gsi, rhs);
2461 gcc_assert (*stmt == gsi_stmt (*gsi));
2465 /* From this point on, the function deals with assignments in between
2466 aggregates when at least one has scalar reductions of some of its
2467 components. There are three possible scenarios: Both the LHS and RHS have
2468 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
2470 In the first case, we would like to load the LHS components from RHS
2471 components whenever possible. If that is not possible, we would like to
2472 read it directly from the RHS (after updating it by storing in it its own
2473 components). If there are some necessary unscalarized data in the LHS,
2474 those will be loaded by the original assignment too. If neither of these
2475 cases happen, the original statement can be removed. Most of this is done
2476 by load_assign_lhs_subreplacements.
2478 In the second case, we would like to store all RHS scalarized components
2479 directly into LHS and if they cover the aggregate completely, remove the
2480 statement too. In the third case, we want the LHS components to be loaded
2481 directly from the RHS (DSE will remove the original statement if it
2484 This is a bit complex but manageable when types match and when unions do
2485 not cause confusion in a way that we cannot really load a component of LHS
2486 from the RHS or vice versa (the access representing this level can have
2487 subaccesses that are accessible only through a different union field at a
2488 higher level - different from the one used in the examined expression).
2491 Therefore, I specially handle a fourth case, happening when there is a
2492 specific type cast or it is impossible to locate a scalarized subaccess on
2493 the other side of the expression. If that happens, I simply "refresh" the
2494 RHS by storing in it is scalarized components leave the original statement
2495 there to do the copying and then load the scalar replacements of the LHS.
2496 This is what the first branch does. */
2498 if (contains_view_convert_expr_p (rhs) || contains_view_convert_expr_p (lhs)
2499 || (access_has_children_p (racc)
2500 && !ref_expr_for_all_replacements_p (racc, lhs, racc->offset))
2501 || (access_has_children_p (lacc)
2502 && !ref_expr_for_all_replacements_p (lacc, rhs, lacc->offset)))
2504 if (access_has_children_p (racc))
2505 generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
2507 if (access_has_children_p (lacc))
2508 generate_subtree_copies (lacc->first_child, lacc->base, 0, 0, 0,
2510 sra_stats.separate_lhs_rhs_handling++;
2514 if (access_has_children_p (lacc) && access_has_children_p (racc))
2516 gimple_stmt_iterator orig_gsi = *gsi;
2517 enum unscalarized_data_handling refreshed;
2519 if (lacc->grp_read && !lacc->grp_covered)
2520 refreshed = handle_unscalarized_data_in_subtree (racc, lhs, gsi);
2522 refreshed = SRA_UDH_NONE;
2524 load_assign_lhs_subreplacements (lacc->first_child, racc,
2525 lacc->offset, racc->offset,
2526 &orig_gsi, gsi, &refreshed, lhs);
2527 if (refreshed != SRA_UDH_RIGHT)
2529 if (*stmt == gsi_stmt (*gsi))
2532 unlink_stmt_vdef (*stmt);
2533 gsi_remove (&orig_gsi, true);
2534 sra_stats.deleted++;
2535 return SRA_SA_REMOVED;
2540 if (access_has_children_p (racc))
2542 if (!racc->grp_unscalarized_data)
2544 generate_subtree_copies (racc->first_child, lhs,
2545 racc->offset, 0, 0, gsi,
2547 gcc_assert (*stmt == gsi_stmt (*gsi));
2548 unlink_stmt_vdef (*stmt);
2549 gsi_remove (gsi, true);
2550 sra_stats.deleted++;
2551 return SRA_SA_REMOVED;
2554 generate_subtree_copies (racc->first_child, lhs,
2555 racc->offset, 0, 0, gsi, false, true);
2557 else if (access_has_children_p (lacc))
2558 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
2559 0, 0, gsi, true, true);
2562 return modify_this_stmt ? SRA_SA_PROCESSED : SRA_SA_NONE;
2565 /* Generate statements initializing scalar replacements of parts of function
2569 initialize_parameter_reductions (void)
2571 gimple_stmt_iterator gsi;
2572 gimple_seq seq = NULL;
2575 for (parm = DECL_ARGUMENTS (current_function_decl);
2577 parm = TREE_CHAIN (parm))
2579 VEC (access_p, heap) *access_vec;
2580 struct access *access;
2582 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
2584 access_vec = get_base_access_vector (parm);
2590 seq = gimple_seq_alloc ();
2591 gsi = gsi_start (seq);
2594 for (access = VEC_index (access_p, access_vec, 0);
2596 access = access->next_grp)
2597 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true);
2601 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR), seq);
2604 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
2605 it reveals there are components of some aggregates to be scalarized, it runs
2606 the required transformations. */
2608 perform_intra_sra (void)
2613 if (!find_var_candidates ())
2616 if (!scan_function (build_access_from_expr, build_accesses_from_assign, NULL,
2620 if (!analyze_all_variable_accesses ())
2623 scan_function (sra_modify_expr, sra_modify_assign, NULL, false, NULL);
2624 initialize_parameter_reductions ();
2626 statistics_counter_event (cfun, "Scalar replacements created",
2627 sra_stats.replacements);
2628 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
2629 statistics_counter_event (cfun, "Subtree copy stmts",
2630 sra_stats.subtree_copies);
2631 statistics_counter_event (cfun, "Subreplacement stmts",
2632 sra_stats.subreplacements);
2633 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
2634 statistics_counter_event (cfun, "Separate LHS and RHS handling",
2635 sra_stats.separate_lhs_rhs_handling);
2637 ret = TODO_update_ssa;
2640 sra_deinitialize ();
2644 /* Perform early intraprocedural SRA. */
2646 early_intra_sra (void)
2648 sra_mode = SRA_MODE_EARLY_INTRA;
2649 return perform_intra_sra ();
2652 /* Perform "late" intraprocedural SRA. */
2654 late_intra_sra (void)
2656 sra_mode = SRA_MODE_INTRA;
2657 return perform_intra_sra ();
2662 gate_intra_sra (void)
2664 return flag_tree_sra != 0;
2668 struct gimple_opt_pass pass_sra_early =
2673 gate_intra_sra, /* gate */
2674 early_intra_sra, /* execute */
2677 0, /* static_pass_number */
2678 TV_TREE_SRA, /* tv_id */
2679 PROP_cfg | PROP_ssa, /* properties_required */
2680 0, /* properties_provided */
2681 0, /* properties_destroyed */
2682 0, /* todo_flags_start */
2686 | TODO_verify_ssa /* todo_flags_finish */
2690 struct gimple_opt_pass pass_sra =
2695 gate_intra_sra, /* gate */
2696 late_intra_sra, /* execute */
2699 0, /* static_pass_number */
2700 TV_TREE_SRA, /* tv_id */
2701 PROP_cfg | PROP_ssa, /* properties_required */
2702 0, /* properties_provided */
2703 0, /* properties_destroyed */
2704 TODO_update_address_taken, /* todo_flags_start */
2708 | TODO_verify_ssa /* todo_flags_finish */
2713 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
2717 is_unused_scalar_param (tree parm)
2720 return (is_gimple_reg (parm)
2721 && (!(name = gimple_default_def (cfun, parm))
2722 || has_zero_uses (name)));
2725 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
2726 examine whether there are any direct or otherwise infeasible ones. If so,
2727 return true, otherwise return false. PARM must be a gimple register with a
2728 non-NULL default definition. */
2731 ptr_parm_has_direct_uses (tree parm)
2733 imm_use_iterator ui;
2735 tree name = gimple_default_def (cfun, parm);
2738 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
2740 if (gimple_assign_single_p (stmt))
2742 tree rhs = gimple_assign_rhs1 (stmt);
2745 else if (TREE_CODE (rhs) == ADDR_EXPR)
2749 rhs = TREE_OPERAND (rhs, 0);
2751 while (handled_component_p (rhs));
2752 if (INDIRECT_REF_P (rhs) && TREE_OPERAND (rhs, 0) == name)
2756 else if (gimple_code (stmt) == GIMPLE_RETURN)
2758 tree t = gimple_return_retval (stmt);
2762 else if (is_gimple_call (stmt))
2765 for (i = 0; i < gimple_call_num_args (stmt); i++)
2767 tree arg = gimple_call_arg (stmt, i);
2775 else if (!is_gimple_debug (stmt))
2779 BREAK_FROM_IMM_USE_STMT (ui);
2785 /* Identify candidates for reduction for IPA-SRA based on their type and mark
2786 them in candidate_bitmap. Note that these do not necessarily include
2787 parameter which are unused and thus can be removed. Return true iff any
2788 such candidate has been found. */
2791 find_param_candidates (void)
2797 for (parm = DECL_ARGUMENTS (current_function_decl);
2799 parm = TREE_CHAIN (parm))
2801 tree type = TREE_TYPE (parm);
2805 if (TREE_THIS_VOLATILE (parm)
2806 || TREE_ADDRESSABLE (parm)
2807 || is_va_list_type (type))
2810 if (is_unused_scalar_param (parm))
2816 if (POINTER_TYPE_P (type))
2818 type = TREE_TYPE (type);
2820 if (TREE_CODE (type) == FUNCTION_TYPE
2821 || TYPE_VOLATILE (type)
2822 || !is_gimple_reg (parm)
2823 || is_va_list_type (type)
2824 || ptr_parm_has_direct_uses (parm))
2827 else if (!AGGREGATE_TYPE_P (type))
2830 if (!COMPLETE_TYPE_P (type)
2831 || !host_integerp (TYPE_SIZE (type), 1)
2832 || tree_low_cst (TYPE_SIZE (type), 1) == 0
2833 || (AGGREGATE_TYPE_P (type)
2834 && type_internals_preclude_sra_p (type)))
2837 bitmap_set_bit (candidate_bitmap, DECL_UID (parm));
2839 if (dump_file && (dump_flags & TDF_DETAILS))
2841 fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm));
2842 print_generic_expr (dump_file, parm, 0);
2843 fprintf (dump_file, "\n");
2847 func_param_count = count;
2851 /* Callback of walk_aliased_vdefs, marks the access passed as DATA as
2855 mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
2858 struct access *repr = (struct access *) data;
2860 repr->grp_maybe_modified = 1;
2864 /* Analyze what representatives (in linked lists accessible from
2865 REPRESENTATIVES) can be modified by side effects of statements in the
2866 current function. */
2869 analyze_modified_params (VEC (access_p, heap) *representatives)
2873 for (i = 0; i < func_param_count; i++)
2875 struct access *repr;
2877 for (repr = VEC_index (access_p, representatives, i);
2879 repr = repr->next_grp)
2881 struct access *access;
2885 if (no_accesses_p (repr))
2887 if (!POINTER_TYPE_P (TREE_TYPE (repr->base))
2888 || repr->grp_maybe_modified)
2891 ao_ref_init (&ar, repr->expr);
2892 visited = BITMAP_ALLOC (NULL);
2893 for (access = repr; access; access = access->next_sibling)
2895 /* All accesses are read ones, otherwise grp_maybe_modified would
2896 be trivially set. */
2897 walk_aliased_vdefs (&ar, gimple_vuse (access->stmt),
2898 mark_maybe_modified, repr, &visited);
2899 if (repr->grp_maybe_modified)
2902 BITMAP_FREE (visited);
2907 /* Propagate distances in bb_dereferences in the opposite direction than the
2908 control flow edges, in each step storing the maximum of the current value
2909 and the minimum of all successors. These steps are repeated until the table
2910 stabilizes. Note that BBs which might terminate the functions (according to
2911 final_bbs bitmap) never updated in this way. */
2914 propagate_dereference_distances (void)
2916 VEC (basic_block, heap) *queue;
2919 queue = VEC_alloc (basic_block, heap, last_basic_block_for_function (cfun));
2920 VEC_quick_push (basic_block, queue, ENTRY_BLOCK_PTR);
2923 VEC_quick_push (basic_block, queue, bb);
2927 while (!VEC_empty (basic_block, queue))
2931 bool change = false;
2934 bb = VEC_pop (basic_block, queue);
2937 if (bitmap_bit_p (final_bbs, bb->index))
2940 for (i = 0; i < func_param_count; i++)
2942 int idx = bb->index * func_param_count + i;
2944 HOST_WIDE_INT inh = 0;
2946 FOR_EACH_EDGE (e, ei, bb->succs)
2948 int succ_idx = e->dest->index * func_param_count + i;
2950 if (e->src == EXIT_BLOCK_PTR)
2956 inh = bb_dereferences [succ_idx];
2958 else if (bb_dereferences [succ_idx] < inh)
2959 inh = bb_dereferences [succ_idx];
2962 if (!first && bb_dereferences[idx] < inh)
2964 bb_dereferences[idx] = inh;
2969 if (change && !bitmap_bit_p (final_bbs, bb->index))
2970 FOR_EACH_EDGE (e, ei, bb->preds)
2975 e->src->aux = e->src;
2976 VEC_quick_push (basic_block, queue, e->src);
2980 VEC_free (basic_block, heap, queue);
2983 /* Dump a dereferences TABLE with heading STR to file F. */
2986 dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table)
2990 fprintf (dump_file, str);
2991 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
2993 fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
2994 if (bb != EXIT_BLOCK_PTR)
2997 for (i = 0; i < func_param_count; i++)
2999 int idx = bb->index * func_param_count + i;
3000 fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]);
3005 fprintf (dump_file, "\n");
3008 /* Determine what (parts of) parameters passed by reference that are not
3009 assigned to are not certainly dereferenced in this function and thus the
3010 dereferencing cannot be safely moved to the caller without potentially
3011 introducing a segfault. Mark such REPRESENTATIVES as
3012 grp_not_necessarilly_dereferenced.
3014 The dereferenced maximum "distance," i.e. the offset + size of the accessed
3015 part is calculated rather than simple booleans are calculated for each
3016 pointer parameter to handle cases when only a fraction of the whole
3017 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
3020 The maximum dereference distances for each pointer parameter and BB are
3021 already stored in bb_dereference. This routine simply propagates these
3022 values upwards by propagate_dereference_distances and then compares the
3023 distances of individual parameters in the ENTRY BB to the equivalent
3024 distances of each representative of a (fraction of a) parameter. */
3027 analyze_caller_dereference_legality (VEC (access_p, heap) *representatives)
3031 if (dump_file && (dump_flags & TDF_DETAILS))
3032 dump_dereferences_table (dump_file,
3033 "Dereference table before propagation:\n",
3036 propagate_dereference_distances ();
3038 if (dump_file && (dump_flags & TDF_DETAILS))
3039 dump_dereferences_table (dump_file,
3040 "Dereference table after propagation:\n",
3043 for (i = 0; i < func_param_count; i++)
3045 struct access *repr = VEC_index (access_p, representatives, i);
3046 int idx = ENTRY_BLOCK_PTR->index * func_param_count + i;
3048 if (!repr || no_accesses_p (repr))
3053 if ((repr->offset + repr->size) > bb_dereferences[idx])
3054 repr->grp_not_necessarilly_dereferenced = 1;
3055 repr = repr->next_grp;
3061 /* Return the representative access for the parameter declaration PARM if it is
3062 a scalar passed by reference which is not written to and the pointer value
3063 is not used directly. Thus, if it is legal to dereference it in the caller
3064 and we can rule out modifications through aliases, such parameter should be
3065 turned into one passed by value. Return NULL otherwise. */
3067 static struct access *
3068 unmodified_by_ref_scalar_representative (tree parm)
3070 int i, access_count;
3071 struct access *repr;
3072 VEC (access_p, heap) *access_vec;
3074 access_vec = get_base_access_vector (parm);
3075 gcc_assert (access_vec);
3076 repr = VEC_index (access_p, access_vec, 0);
3079 repr->group_representative = repr;
3081 access_count = VEC_length (access_p, access_vec);
3082 for (i = 1; i < access_count; i++)
3084 struct access *access = VEC_index (access_p, access_vec, i);
3087 access->group_representative = repr;
3088 access->next_sibling = repr->next_sibling;
3089 repr->next_sibling = access;
3093 repr->grp_scalar_ptr = 1;
3097 /* Return true iff this access precludes IPA-SRA of the parameter it is
3101 access_precludes_ipa_sra_p (struct access *access)
3103 /* Avoid issues such as the second simple testcase in PR 42025. The problem
3104 is incompatible assign in a call statement (and possibly even in asm
3105 statements). This can be relaxed by using a new temporary but only for
3106 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
3107 intraprocedural SRA we deal with this by keeping the old aggregate around,
3108 something we cannot do in IPA-SRA.) */
3110 && (is_gimple_call (access->stmt)
3111 || gimple_code (access->stmt) == GIMPLE_ASM))
3118 /* Sort collected accesses for parameter PARM, identify representatives for
3119 each accessed region and link them together. Return NULL if there are
3120 different but overlapping accesses, return the special ptr value meaning
3121 there are no accesses for this parameter if that is the case and return the
3122 first representative otherwise. Set *RO_GRP if there is a group of accesses
3123 with only read (i.e. no write) accesses. */
3125 static struct access *
3126 splice_param_accesses (tree parm, bool *ro_grp)
3128 int i, j, access_count, group_count;
3129 int agg_size, total_size = 0;
3130 struct access *access, *res, **prev_acc_ptr = &res;
3131 VEC (access_p, heap) *access_vec;
3133 access_vec = get_base_access_vector (parm);
3135 return &no_accesses_representant;
3136 access_count = VEC_length (access_p, access_vec);
3138 qsort (VEC_address (access_p, access_vec), access_count, sizeof (access_p),
3139 compare_access_positions);
3144 while (i < access_count)
3147 access = VEC_index (access_p, access_vec, i);
3148 modification = access->write;
3149 if (access_precludes_ipa_sra_p (access))
3152 /* Access is about to become group representative unless we find some
3153 nasty overlap which would preclude us from breaking this parameter
3157 while (j < access_count)
3159 struct access *ac2 = VEC_index (access_p, access_vec, j);
3160 if (ac2->offset != access->offset)
3162 /* All or nothing law for parameters. */
3163 if (access->offset + access->size > ac2->offset)
3168 else if (ac2->size != access->size)
3171 if (access_precludes_ipa_sra_p (ac2))
3174 modification |= ac2->write;
3175 ac2->group_representative = access;
3176 ac2->next_sibling = access->next_sibling;
3177 access->next_sibling = ac2;
3182 access->grp_maybe_modified = modification;
3185 *prev_acc_ptr = access;
3186 prev_acc_ptr = &access->next_grp;
3187 total_size += access->size;
3191 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3192 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3194 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3195 if (total_size >= agg_size)
3198 gcc_assert (group_count > 0);
3202 /* Decide whether parameters with representative accesses given by REPR should
3203 be reduced into components. */
3206 decide_one_param_reduction (struct access *repr)
3208 int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit;
3213 cur_parm_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3214 gcc_assert (cur_parm_size > 0);
3216 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3219 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3224 agg_size = cur_parm_size;
3230 fprintf (dump_file, "Evaluating PARAM group sizes for ");
3231 print_generic_expr (dump_file, parm, 0);
3232 fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm));
3233 for (acc = repr; acc; acc = acc->next_grp)
3234 dump_access (dump_file, acc, true);
3238 new_param_count = 0;
3240 for (; repr; repr = repr->next_grp)
3242 gcc_assert (parm == repr->base);
3245 if (!by_ref || (!repr->grp_maybe_modified
3246 && !repr->grp_not_necessarilly_dereferenced))
3247 total_size += repr->size;
3249 total_size += cur_parm_size;
3252 gcc_assert (new_param_count > 0);
3254 if (optimize_function_for_size_p (cfun))
3255 parm_size_limit = cur_parm_size;
3257 parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR)
3260 if (total_size < agg_size
3261 && total_size <= parm_size_limit)
3264 fprintf (dump_file, " ....will be split into %i components\n",
3266 return new_param_count;
3272 /* The order of the following enums is important, we need to do extra work for
3273 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
3274 enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES,
3275 MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES };
3277 /* Identify representatives of all accesses to all candidate parameters for
3278 IPA-SRA. Return result based on what representatives have been found. */
3280 static enum ipa_splicing_result
3281 splice_all_param_accesses (VEC (access_p, heap) **representatives)
3283 enum ipa_splicing_result result = NO_GOOD_ACCESS;
3285 struct access *repr;
3287 *representatives = VEC_alloc (access_p, heap, func_param_count);
3289 for (parm = DECL_ARGUMENTS (current_function_decl);
3291 parm = TREE_CHAIN (parm))
3293 if (is_unused_scalar_param (parm))
3295 VEC_quick_push (access_p, *representatives,
3296 &no_accesses_representant);
3297 if (result == NO_GOOD_ACCESS)
3298 result = UNUSED_PARAMS;
3300 else if (POINTER_TYPE_P (TREE_TYPE (parm))
3301 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm)))
3302 && bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3304 repr = unmodified_by_ref_scalar_representative (parm);
3305 VEC_quick_push (access_p, *representatives, repr);
3307 result = UNMODIF_BY_REF_ACCESSES;
3309 else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3311 bool ro_grp = false;
3312 repr = splice_param_accesses (parm, &ro_grp);
3313 VEC_quick_push (access_p, *representatives, repr);
3315 if (repr && !no_accesses_p (repr))
3317 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3320 result = UNMODIF_BY_REF_ACCESSES;
3321 else if (result < MODIF_BY_REF_ACCESSES)
3322 result = MODIF_BY_REF_ACCESSES;
3324 else if (result < BY_VAL_ACCESSES)
3325 result = BY_VAL_ACCESSES;
3327 else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS))
3328 result = UNUSED_PARAMS;
3331 VEC_quick_push (access_p, *representatives, NULL);
3334 if (result == NO_GOOD_ACCESS)
3336 VEC_free (access_p, heap, *representatives);
3337 *representatives = NULL;
3338 return NO_GOOD_ACCESS;
3344 /* Return the index of BASE in PARMS. Abort if it is not found. */
3347 get_param_index (tree base, VEC(tree, heap) *parms)
3351 len = VEC_length (tree, parms);
3352 for (i = 0; i < len; i++)
3353 if (VEC_index (tree, parms, i) == base)
3358 /* Convert the decisions made at the representative level into compact
3359 parameter adjustments. REPRESENTATIVES are pointers to first
3360 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
3361 final number of adjustments. */
3363 static ipa_parm_adjustment_vec
3364 turn_representatives_into_adjustments (VEC (access_p, heap) *representatives,
3365 int adjustments_count)
3367 VEC (tree, heap) *parms;
3368 ipa_parm_adjustment_vec adjustments;
3372 gcc_assert (adjustments_count > 0);
3373 parms = ipa_get_vector_of_formal_parms (current_function_decl);
3374 adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, adjustments_count);
3375 parm = DECL_ARGUMENTS (current_function_decl);
3376 for (i = 0; i < func_param_count; i++, parm = TREE_CHAIN (parm))
3378 struct access *repr = VEC_index (access_p, representatives, i);
3380 if (!repr || no_accesses_p (repr))
3382 struct ipa_parm_adjustment *adj;
3384 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
3385 memset (adj, 0, sizeof (*adj));
3386 adj->base_index = get_param_index (parm, parms);
3389 adj->copy_param = 1;
3391 adj->remove_param = 1;
3395 struct ipa_parm_adjustment *adj;
3396 int index = get_param_index (parm, parms);
3398 for (; repr; repr = repr->next_grp)
3400 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
3401 memset (adj, 0, sizeof (*adj));
3402 gcc_assert (repr->base == parm);
3403 adj->base_index = index;
3404 adj->base = repr->base;
3405 adj->type = repr->type;
3406 adj->offset = repr->offset;
3407 adj->by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base))
3408 && (repr->grp_maybe_modified
3409 || repr->grp_not_necessarilly_dereferenced));
3414 VEC_free (tree, heap, parms);
3418 /* Analyze the collected accesses and produce a plan what to do with the
3419 parameters in the form of adjustments, NULL meaning nothing. */
3421 static ipa_parm_adjustment_vec
3422 analyze_all_param_acesses (void)
3424 enum ipa_splicing_result repr_state;
3425 bool proceed = false;
3426 int i, adjustments_count = 0;
3427 VEC (access_p, heap) *representatives;
3428 ipa_parm_adjustment_vec adjustments;
3430 repr_state = splice_all_param_accesses (&representatives);
3431 if (repr_state == NO_GOOD_ACCESS)
3434 /* If there are any parameters passed by reference which are not modified
3435 directly, we need to check whether they can be modified indirectly. */
3436 if (repr_state == UNMODIF_BY_REF_ACCESSES)
3438 analyze_caller_dereference_legality (representatives);
3439 analyze_modified_params (representatives);
3442 for (i = 0; i < func_param_count; i++)
3444 struct access *repr = VEC_index (access_p, representatives, i);
3446 if (repr && !no_accesses_p (repr))
3448 if (repr->grp_scalar_ptr)
3450 adjustments_count++;
3451 if (repr->grp_not_necessarilly_dereferenced
3452 || repr->grp_maybe_modified)
3453 VEC_replace (access_p, representatives, i, NULL);
3457 sra_stats.scalar_by_ref_to_by_val++;
3462 int new_components = decide_one_param_reduction (repr);
3464 if (new_components == 0)
3466 VEC_replace (access_p, representatives, i, NULL);
3467 adjustments_count++;
3471 adjustments_count += new_components;
3472 sra_stats.aggregate_params_reduced++;
3473 sra_stats.param_reductions_created += new_components;
3480 if (no_accesses_p (repr))
3483 sra_stats.deleted_unused_parameters++;
3485 adjustments_count++;
3489 if (!proceed && dump_file)
3490 fprintf (dump_file, "NOT proceeding to change params.\n");
3493 adjustments = turn_representatives_into_adjustments (representatives,
3498 VEC_free (access_p, heap, representatives);
3502 /* If a parameter replacement identified by ADJ does not yet exist in the form
3503 of declaration, create it and record it, otherwise return the previously
3507 get_replaced_param_substitute (struct ipa_parm_adjustment *adj)
3510 if (!adj->new_ssa_base)
3512 char *pretty_name = make_fancy_name (adj->base);
3514 repl = create_tmp_var (TREE_TYPE (adj->base), "ISR");
3515 if (TREE_CODE (TREE_TYPE (repl)) == COMPLEX_TYPE
3516 || TREE_CODE (TREE_TYPE (repl)) == VECTOR_TYPE)
3517 DECL_GIMPLE_REG_P (repl) = 1;
3518 DECL_NAME (repl) = get_identifier (pretty_name);
3519 obstack_free (&name_obstack, pretty_name);
3522 add_referenced_var (repl);
3523 adj->new_ssa_base = repl;
3526 repl = adj->new_ssa_base;
3530 /* Find the first adjustment for a particular parameter BASE in a vector of
3531 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
3534 static struct ipa_parm_adjustment *
3535 get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base)
3539 len = VEC_length (ipa_parm_adjustment_t, adjustments);
3540 for (i = 0; i < len; i++)
3542 struct ipa_parm_adjustment *adj;
3544 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
3545 if (!adj->copy_param && adj->base == base)