1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
4 Copyright (C) 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
33 Both passes operate in four stages:
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
76 #include "coretypes.h"
77 #include "alloc-pool.h"
82 #include "tree-flow.h"
84 #include "tree-pretty-print.h"
85 #include "statistics.h"
86 #include "tree-dump.h"
92 #include "tree-inline.h"
93 #include "gimple-pretty-print.h"
94 #include "ipa-inline.h"
96 /* Enumeration of all aggregate reductions we can do. */
97 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
98 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
99 SRA_MODE_INTRA }; /* late intraprocedural SRA */
101 /* Global variable describing which aggregate reduction we are performing at
103 static enum sra_mode sra_mode;
107 /* ACCESS represents each access to an aggregate variable (as a whole or a
108 part). It can also represent a group of accesses that refer to exactly the
109 same fragment of an aggregate (i.e. those that have exactly the same offset
110 and size). Such representatives for a single aggregate, once determined,
111 are linked in a linked list and have the group fields set.
113 Moreover, when doing intraprocedural SRA, a tree is built from those
114 representatives (by the means of first_child and next_sibling pointers), in
115 which all items in a subtree are "within" the root, i.e. their offset is
116 greater or equal to offset of the root and offset+size is smaller or equal
117 to offset+size of the root. Children of an access are sorted by offset.
119 Note that accesses to parts of vector and complex number types always
120 represented by an access to the whole complex number or a vector. It is a
121 duty of the modifying functions to replace them appropriately. */
125 /* Values returned by `get_ref_base_and_extent' for each component reference
126 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
127 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
128 HOST_WIDE_INT offset;
132 /* Expression. It is context dependent so do not use it to create new
133 expressions to access the original aggregate. See PR 42154 for a
139 /* The statement this access belongs to. */
142 /* Next group representative for this aggregate. */
143 struct access *next_grp;
145 /* Pointer to the group representative. Pointer to itself if the struct is
146 the representative. */
147 struct access *group_representative;
149 /* If this access has any children (in terms of the definition above), this
150 points to the first one. */
151 struct access *first_child;
153 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
154 described above. In IPA-SRA this is a pointer to the next access
155 belonging to the same group (having the same representative). */
156 struct access *next_sibling;
158 /* Pointers to the first and last element in the linked list of assign
160 struct assign_link *first_link, *last_link;
162 /* Pointer to the next access in the work queue. */
163 struct access *next_queued;
165 /* Replacement variable for this access "region." Never to be accessed
166 directly, always only by the means of get_access_replacement() and only
167 when grp_to_be_replaced flag is set. */
168 tree replacement_decl;
170 /* Is this particular access write access? */
173 /* Is this access an access to a non-addressable field? */
174 unsigned non_addressable : 1;
176 /* Is this access currently in the work queue? */
177 unsigned grp_queued : 1;
179 /* Does this group contain a write access? This flag is propagated down the
181 unsigned grp_write : 1;
183 /* Does this group contain a read access? This flag is propagated down the
185 unsigned grp_read : 1;
187 /* Does this group contain a read access that comes from an assignment
188 statement? This flag is propagated down the access tree. */
189 unsigned grp_assignment_read : 1;
191 /* Does this group contain a write access that comes from an assignment
192 statement? This flag is propagated down the access tree. */
193 unsigned grp_assignment_write : 1;
195 /* Does this group contain a read access through a scalar type? This flag is
196 not propagated in the access tree in any direction. */
197 unsigned grp_scalar_read : 1;
199 /* Does this group contain a write access through a scalar type? This flag
200 is not propagated in the access tree in any direction. */
201 unsigned grp_scalar_write : 1;
203 /* Is this access an artificial one created to scalarize some record
205 unsigned grp_total_scalarization : 1;
207 /* Other passes of the analysis use this bit to make function
208 analyze_access_subtree create scalar replacements for this group if
210 unsigned grp_hint : 1;
212 /* Is the subtree rooted in this access fully covered by scalar
214 unsigned grp_covered : 1;
216 /* If set to true, this access and all below it in an access tree must not be
218 unsigned grp_unscalarizable_region : 1;
220 /* Whether data have been written to parts of the aggregate covered by this
221 access which is not to be scalarized. This flag is propagated up in the
223 unsigned grp_unscalarized_data : 1;
225 /* Does this access and/or group contain a write access through a
227 unsigned grp_partial_lhs : 1;
229 /* Set when a scalar replacement should be created for this variable. We do
230 the decision and creation at different places because create_tmp_var
231 cannot be called from within FOR_EACH_REFERENCED_VAR. */
232 unsigned grp_to_be_replaced : 1;
234 /* Should TREE_NO_WARNING of a replacement be set? */
235 unsigned grp_no_warning : 1;
237 /* Is it possible that the group refers to data which might be (directly or
238 otherwise) modified? */
239 unsigned grp_maybe_modified : 1;
241 /* Set when this is a representative of a pointer to scalar (i.e. by
242 reference) parameter which we consider for turning into a plain scalar
243 (i.e. a by value parameter). */
244 unsigned grp_scalar_ptr : 1;
246 /* Set when we discover that this pointer is not safe to dereference in the
248 unsigned grp_not_necessarilly_dereferenced : 1;
251 typedef struct access *access_p;
253 DEF_VEC_P (access_p);
254 DEF_VEC_ALLOC_P (access_p, heap);
256 /* Alloc pool for allocating access structures. */
257 static alloc_pool access_pool;
259 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
260 are used to propagate subaccesses from rhs to lhs as long as they don't
261 conflict with what is already there. */
264 struct access *lacc, *racc;
265 struct assign_link *next;
268 /* Alloc pool for allocating assign link structures. */
269 static alloc_pool link_pool;
271 /* Base (tree) -> Vector (VEC(access_p,heap) *) map. */
272 static struct pointer_map_t *base_access_vec;
274 /* Bitmap of candidates. */
275 static bitmap candidate_bitmap;
277 /* Bitmap of candidates which we should try to entirely scalarize away and
278 those which cannot be (because they are and need be used as a whole). */
279 static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
281 /* Obstack for creation of fancy names. */
282 static struct obstack name_obstack;
284 /* Head of a linked list of accesses that need to have its subaccesses
285 propagated to their assignment counterparts. */
286 static struct access *work_queue_head;
288 /* Number of parameters of the analyzed function when doing early ipa SRA. */
289 static int func_param_count;
291 /* scan_function sets the following to true if it encounters a call to
292 __builtin_apply_args. */
293 static bool encountered_apply_args;
295 /* Set by scan_function when it finds a recursive call. */
296 static bool encountered_recursive_call;
298 /* Set by scan_function when it finds a recursive call with less actual
299 arguments than formal parameters.. */
300 static bool encountered_unchangable_recursive_call;
302 /* This is a table in which for each basic block and parameter there is a
303 distance (offset + size) in that parameter which is dereferenced and
304 accessed in that BB. */
305 static HOST_WIDE_INT *bb_dereferences;
306 /* Bitmap of BBs that can cause the function to "stop" progressing by
307 returning, throwing externally, looping infinitely or calling a function
308 which might abort etc.. */
309 static bitmap final_bbs;
311 /* Representative of no accesses at all. */
312 static struct access no_accesses_representant;
314 /* Predicate to test the special value. */
317 no_accesses_p (struct access *access)
319 return access == &no_accesses_representant;
322 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
323 representative fields are dumped, otherwise those which only describe the
324 individual access are. */
328 /* Number of processed aggregates is readily available in
329 analyze_all_variable_accesses and so is not stored here. */
331 /* Number of created scalar replacements. */
334 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
338 /* Number of statements created by generate_subtree_copies. */
341 /* Number of statements created by load_assign_lhs_subreplacements. */
344 /* Number of times sra_modify_assign has deleted a statement. */
347 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
348 RHS reparately due to type conversions or nonexistent matching
350 int separate_lhs_rhs_handling;
352 /* Number of parameters that were removed because they were unused. */
353 int deleted_unused_parameters;
355 /* Number of scalars passed as parameters by reference that have been
356 converted to be passed by value. */
357 int scalar_by_ref_to_by_val;
359 /* Number of aggregate parameters that were replaced by one or more of their
361 int aggregate_params_reduced;
363 /* Numbber of components created when splitting aggregate parameters. */
364 int param_reductions_created;
368 dump_access (FILE *f, struct access *access, bool grp)
370 fprintf (f, "access { ");
371 fprintf (f, "base = (%d)'", DECL_UID (access->base));
372 print_generic_expr (f, access->base, 0);
373 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
374 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
375 fprintf (f, ", expr = ");
376 print_generic_expr (f, access->expr, 0);
377 fprintf (f, ", type = ");
378 print_generic_expr (f, access->type, 0);
380 fprintf (f, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
381 "grp_assignment_write = %d, grp_scalar_read = %d, "
382 "grp_scalar_write = %d, grp_total_scalarization = %d, "
383 "grp_hint = %d, grp_covered = %d, "
384 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
385 "grp_partial_lhs = %d, grp_to_be_replaced = %d, "
386 "grp_maybe_modified = %d, "
387 "grp_not_necessarilly_dereferenced = %d\n",
388 access->grp_read, access->grp_write, access->grp_assignment_read,
389 access->grp_assignment_write, access->grp_scalar_read,
390 access->grp_scalar_write, access->grp_total_scalarization,
391 access->grp_hint, access->grp_covered,
392 access->grp_unscalarizable_region, access->grp_unscalarized_data,
393 access->grp_partial_lhs, access->grp_to_be_replaced,
394 access->grp_maybe_modified,
395 access->grp_not_necessarilly_dereferenced);
397 fprintf (f, ", write = %d, grp_total_scalarization = %d, "
398 "grp_partial_lhs = %d\n",
399 access->write, access->grp_total_scalarization,
400 access->grp_partial_lhs);
403 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
406 dump_access_tree_1 (FILE *f, struct access *access, int level)
412 for (i = 0; i < level; i++)
413 fputs ("* ", dump_file);
415 dump_access (f, access, true);
417 if (access->first_child)
418 dump_access_tree_1 (f, access->first_child, level + 1);
420 access = access->next_sibling;
425 /* Dump all access trees for a variable, given the pointer to the first root in
429 dump_access_tree (FILE *f, struct access *access)
431 for (; access; access = access->next_grp)
432 dump_access_tree_1 (f, access, 0);
435 /* Return true iff ACC is non-NULL and has subaccesses. */
438 access_has_children_p (struct access *acc)
440 return acc && acc->first_child;
443 /* Return true iff ACC is (partly) covered by at least one replacement. */
446 access_has_replacements_p (struct access *acc)
448 struct access *child;
449 if (acc->grp_to_be_replaced)
451 for (child = acc->first_child; child; child = child->next_sibling)
452 if (access_has_replacements_p (child))
457 /* Return a vector of pointers to accesses for the variable given in BASE or
458 NULL if there is none. */
460 static VEC (access_p, heap) *
461 get_base_access_vector (tree base)
465 slot = pointer_map_contains (base_access_vec, base);
469 return *(VEC (access_p, heap) **) slot;
472 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
473 in ACCESS. Return NULL if it cannot be found. */
475 static struct access *
476 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
479 while (access && (access->offset != offset || access->size != size))
481 struct access *child = access->first_child;
483 while (child && (child->offset + child->size <= offset))
484 child = child->next_sibling;
491 /* Return the first group representative for DECL or NULL if none exists. */
493 static struct access *
494 get_first_repr_for_decl (tree base)
496 VEC (access_p, heap) *access_vec;
498 access_vec = get_base_access_vector (base);
502 return VEC_index (access_p, access_vec, 0);
505 /* Find an access representative for the variable BASE and given OFFSET and
506 SIZE. Requires that access trees have already been built. Return NULL if
507 it cannot be found. */
509 static struct access *
510 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
513 struct access *access;
515 access = get_first_repr_for_decl (base);
516 while (access && (access->offset + access->size <= offset))
517 access = access->next_grp;
521 return find_access_in_subtree (access, offset, size);
524 /* Add LINK to the linked list of assign links of RACC. */
526 add_link_to_rhs (struct access *racc, struct assign_link *link)
528 gcc_assert (link->racc == racc);
530 if (!racc->first_link)
532 gcc_assert (!racc->last_link);
533 racc->first_link = link;
536 racc->last_link->next = link;
538 racc->last_link = link;
542 /* Move all link structures in their linked list in OLD_RACC to the linked list
545 relink_to_new_repr (struct access *new_racc, struct access *old_racc)
547 if (!old_racc->first_link)
549 gcc_assert (!old_racc->last_link);
553 if (new_racc->first_link)
555 gcc_assert (!new_racc->last_link->next);
556 gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
558 new_racc->last_link->next = old_racc->first_link;
559 new_racc->last_link = old_racc->last_link;
563 gcc_assert (!new_racc->last_link);
565 new_racc->first_link = old_racc->first_link;
566 new_racc->last_link = old_racc->last_link;
568 old_racc->first_link = old_racc->last_link = NULL;
571 /* Add ACCESS to the work queue (which is actually a stack). */
574 add_access_to_work_queue (struct access *access)
576 if (!access->grp_queued)
578 gcc_assert (!access->next_queued);
579 access->next_queued = work_queue_head;
580 access->grp_queued = 1;
581 work_queue_head = access;
585 /* Pop an access from the work queue, and return it, assuming there is one. */
587 static struct access *
588 pop_access_from_work_queue (void)
590 struct access *access = work_queue_head;
592 work_queue_head = access->next_queued;
593 access->next_queued = NULL;
594 access->grp_queued = 0;
599 /* Allocate necessary structures. */
602 sra_initialize (void)
604 candidate_bitmap = BITMAP_ALLOC (NULL);
605 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
606 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
607 gcc_obstack_init (&name_obstack);
608 access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
609 link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
610 base_access_vec = pointer_map_create ();
611 memset (&sra_stats, 0, sizeof (sra_stats));
612 encountered_apply_args = false;
613 encountered_recursive_call = false;
614 encountered_unchangable_recursive_call = false;
617 /* Hook fed to pointer_map_traverse, deallocate stored vectors. */
620 delete_base_accesses (const void *key ATTRIBUTE_UNUSED, void **value,
621 void *data ATTRIBUTE_UNUSED)
623 VEC (access_p, heap) *access_vec;
624 access_vec = (VEC (access_p, heap) *) *value;
625 VEC_free (access_p, heap, access_vec);
630 /* Deallocate all general structures. */
633 sra_deinitialize (void)
635 BITMAP_FREE (candidate_bitmap);
636 BITMAP_FREE (should_scalarize_away_bitmap);
637 BITMAP_FREE (cannot_scalarize_away_bitmap);
638 free_alloc_pool (access_pool);
639 free_alloc_pool (link_pool);
640 obstack_free (&name_obstack, NULL);
642 pointer_map_traverse (base_access_vec, delete_base_accesses, NULL);
643 pointer_map_destroy (base_access_vec);
646 /* Remove DECL from candidates for SRA and write REASON to the dump file if
649 disqualify_candidate (tree decl, const char *reason)
651 bitmap_clear_bit (candidate_bitmap, DECL_UID (decl));
653 if (dump_file && (dump_flags & TDF_DETAILS))
655 fprintf (dump_file, "! Disqualifying ");
656 print_generic_expr (dump_file, decl, 0);
657 fprintf (dump_file, " - %s\n", reason);
661 /* Return true iff the type contains a field or an element which does not allow
665 type_internals_preclude_sra_p (tree type, const char **msg)
670 switch (TREE_CODE (type))
674 case QUAL_UNION_TYPE:
675 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
676 if (TREE_CODE (fld) == FIELD_DECL)
678 tree ft = TREE_TYPE (fld);
680 if (TREE_THIS_VOLATILE (fld))
682 *msg = "volatile structure field";
685 if (!DECL_FIELD_OFFSET (fld))
687 *msg = "no structure field offset";
690 if (!DECL_SIZE (fld))
692 *msg = "zero structure field size";
695 if (!host_integerp (DECL_FIELD_OFFSET (fld), 1))
697 *msg = "structure field offset not fixed";
700 if (!host_integerp (DECL_SIZE (fld), 1))
702 *msg = "structure field size not fixed";
705 if (AGGREGATE_TYPE_P (ft)
706 && int_bit_position (fld) % BITS_PER_UNIT != 0)
708 *msg = "structure field is bit field";
712 if (AGGREGATE_TYPE_P (ft) && type_internals_preclude_sra_p (ft, msg))
719 et = TREE_TYPE (type);
721 if (TYPE_VOLATILE (et))
723 *msg = "element type is volatile";
727 if (AGGREGATE_TYPE_P (et) && type_internals_preclude_sra_p (et, msg))
737 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
738 base variable if it is. Return T if it is not an SSA_NAME. */
741 get_ssa_base_param (tree t)
743 if (TREE_CODE (t) == SSA_NAME)
745 if (SSA_NAME_IS_DEFAULT_DEF (t))
746 return SSA_NAME_VAR (t);
753 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
754 belongs to, unless the BB has already been marked as a potentially
758 mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt)
760 basic_block bb = gimple_bb (stmt);
761 int idx, parm_index = 0;
764 if (bitmap_bit_p (final_bbs, bb->index))
767 for (parm = DECL_ARGUMENTS (current_function_decl);
768 parm && parm != base;
769 parm = DECL_CHAIN (parm))
772 gcc_assert (parm_index < func_param_count);
774 idx = bb->index * func_param_count + parm_index;
775 if (bb_dereferences[idx] < dist)
776 bb_dereferences[idx] = dist;
779 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
780 the three fields. Also add it to the vector of accesses corresponding to
781 the base. Finally, return the new access. */
783 static struct access *
784 create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
786 VEC (access_p, heap) *vec;
787 struct access *access;
790 access = (struct access *) pool_alloc (access_pool);
791 memset (access, 0, sizeof (struct access));
793 access->offset = offset;
796 slot = pointer_map_contains (base_access_vec, base);
798 vec = (VEC (access_p, heap) *) *slot;
800 vec = VEC_alloc (access_p, heap, 32);
802 VEC_safe_push (access_p, heap, vec, access);
804 *((struct VEC (access_p,heap) **)
805 pointer_map_insert (base_access_vec, base)) = vec;
810 /* Create and insert access for EXPR. Return created access, or NULL if it is
813 static struct access *
814 create_access (tree expr, gimple stmt, bool write)
816 struct access *access;
817 HOST_WIDE_INT offset, size, max_size;
819 bool ptr, unscalarizable_region = false;
821 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
823 if (sra_mode == SRA_MODE_EARLY_IPA
824 && TREE_CODE (base) == MEM_REF)
826 base = get_ssa_base_param (TREE_OPERAND (base, 0));
834 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
837 if (sra_mode == SRA_MODE_EARLY_IPA)
839 if (size < 0 || size != max_size)
841 disqualify_candidate (base, "Encountered a variable sized access.");
844 if (TREE_CODE (expr) == COMPONENT_REF
845 && DECL_BIT_FIELD (TREE_OPERAND (expr, 1)))
847 disqualify_candidate (base, "Encountered a bit-field access.");
850 gcc_checking_assert ((offset % BITS_PER_UNIT) == 0);
853 mark_parm_dereference (base, offset + size, stmt);
857 if (size != max_size)
860 unscalarizable_region = true;
864 disqualify_candidate (base, "Encountered an unconstrained access.");
869 access = create_access_1 (base, offset, size);
871 access->type = TREE_TYPE (expr);
872 access->write = write;
873 access->grp_unscalarizable_region = unscalarizable_region;
876 if (TREE_CODE (expr) == COMPONENT_REF
877 && DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1)))
878 access->non_addressable = 1;
884 /* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
885 register types or (recursively) records with only these two kinds of fields.
886 It also returns false if any of these records contains a bit-field. */
889 type_consists_of_records_p (tree type)
893 if (TREE_CODE (type) != RECORD_TYPE)
896 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
897 if (TREE_CODE (fld) == FIELD_DECL)
899 tree ft = TREE_TYPE (fld);
901 if (DECL_BIT_FIELD (fld))
904 if (!is_gimple_reg_type (ft)
905 && !type_consists_of_records_p (ft))
912 /* Create total_scalarization accesses for all scalar type fields in DECL that
913 must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
914 must be the top-most VAR_DECL representing the variable, OFFSET must be the
915 offset of DECL within BASE. REF must be the memory reference expression for
919 completely_scalarize_record (tree base, tree decl, HOST_WIDE_INT offset,
922 tree fld, decl_type = TREE_TYPE (decl);
924 for (fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld))
925 if (TREE_CODE (fld) == FIELD_DECL)
927 HOST_WIDE_INT pos = offset + int_bit_position (fld);
928 tree ft = TREE_TYPE (fld);
929 tree nref = build3 (COMPONENT_REF, TREE_TYPE (fld), ref, fld,
932 if (is_gimple_reg_type (ft))
934 struct access *access;
937 size = tree_low_cst (DECL_SIZE (fld), 1);
938 access = create_access_1 (base, pos, size);
941 access->grp_total_scalarization = 1;
942 /* Accesses for intraprocedural SRA can have their stmt NULL. */
945 completely_scalarize_record (base, fld, pos, nref);
949 /* Create total_scalarization accesses for all scalar type fields in VAR and
950 for VAR a a whole. VAR must be of a RECORD_TYPE conforming to
951 type_consists_of_records_p. */
954 completely_scalarize_var (tree var)
956 HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (var), 1);
957 struct access *access;
959 access = create_access_1 (var, 0, size);
961 access->type = TREE_TYPE (var);
962 access->grp_total_scalarization = 1;
964 completely_scalarize_record (var, var, 0, var);
967 /* Search the given tree for a declaration by skipping handled components and
968 exclude it from the candidates. */
971 disqualify_base_of_expr (tree t, const char *reason)
973 t = get_base_address (t);
974 if (sra_mode == SRA_MODE_EARLY_IPA
975 && TREE_CODE (t) == MEM_REF)
976 t = get_ssa_base_param (TREE_OPERAND (t, 0));
979 disqualify_candidate (t, reason);
982 /* Scan expression EXPR and create access structures for all accesses to
983 candidates for scalarization. Return the created access or NULL if none is
986 static struct access *
987 build_access_from_expr_1 (tree expr, gimple stmt, bool write)
989 struct access *ret = NULL;
992 if (TREE_CODE (expr) == BIT_FIELD_REF
993 || TREE_CODE (expr) == IMAGPART_EXPR
994 || TREE_CODE (expr) == REALPART_EXPR)
996 expr = TREE_OPERAND (expr, 0);
1000 partial_ref = false;
1002 /* We need to dive through V_C_Es in order to get the size of its parameter
1003 and not the result type. Ada produces such statements. We are also
1004 capable of handling the topmost V_C_E but not any of those buried in other
1005 handled components. */
1006 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
1007 expr = TREE_OPERAND (expr, 0);
1009 if (contains_view_convert_expr_p (expr))
1011 disqualify_base_of_expr (expr, "V_C_E under a different handled "
1016 switch (TREE_CODE (expr))
1019 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR
1020 && sra_mode != SRA_MODE_EARLY_IPA)
1028 case ARRAY_RANGE_REF:
1029 ret = create_access (expr, stmt, write);
1036 if (write && partial_ref && ret)
1037 ret->grp_partial_lhs = 1;
1042 /* Scan expression EXPR and create access structures for all accesses to
1043 candidates for scalarization. Return true if any access has been inserted.
1044 STMT must be the statement from which the expression is taken, WRITE must be
1045 true if the expression is a store and false otherwise. */
1048 build_access_from_expr (tree expr, gimple stmt, bool write)
1050 struct access *access;
1052 access = build_access_from_expr_1 (expr, stmt, write);
1055 /* This means the aggregate is accesses as a whole in a way other than an
1056 assign statement and thus cannot be removed even if we had a scalar
1057 replacement for everything. */
1058 if (cannot_scalarize_away_bitmap)
1059 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
1065 /* Disqualify LHS and RHS for scalarization if STMT must end its basic block in
1066 modes in which it matters, return true iff they have been disqualified. RHS
1067 may be NULL, in that case ignore it. If we scalarize an aggregate in
1068 intra-SRA we may need to add statements after each statement. This is not
1069 possible if a statement unconditionally has to end the basic block. */
1071 disqualify_ops_if_throwing_stmt (gimple stmt, tree lhs, tree rhs)
1073 if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1074 && (stmt_can_throw_internal (stmt) || stmt_ends_bb_p (stmt)))
1076 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
1078 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
1084 /* Return true if EXP is a memory reference less aligned than ALIGN. This is
1085 invoked only on strict-alignment targets. */
1088 tree_non_aligned_mem_p (tree exp, unsigned int align)
1090 unsigned int exp_align;
1092 if (TREE_CODE (exp) == VIEW_CONVERT_EXPR)
1093 exp = TREE_OPERAND (exp, 0);
1095 if (TREE_CODE (exp) == SSA_NAME || is_gimple_min_invariant (exp))
1098 /* get_object_alignment will fall back to BITS_PER_UNIT if it cannot
1099 compute an explicit alignment. Pretend that dereferenced pointers
1100 are always aligned on strict-alignment targets. */
1101 if (TREE_CODE (exp) == MEM_REF || TREE_CODE (exp) == TARGET_MEM_REF)
1102 exp_align = get_object_or_type_alignment (exp);
1104 exp_align = get_object_alignment (exp);
1106 if (exp_align < align)
1112 /* Return true if EXP is a memory reference less aligned than what the access
1113 ACC would require. This is invoked only on strict-alignment targets. */
1116 tree_non_aligned_mem_for_access_p (tree exp, struct access *acc)
1118 unsigned int acc_align;
1120 /* The alignment of the access is that of its expression. However, it may
1121 have been artificially increased, e.g. by a local alignment promotion,
1122 so we cap it to the alignment of the type of the base, on the grounds
1123 that valid sub-accesses cannot be more aligned than that. */
1124 acc_align = get_object_alignment (acc->expr);
1125 if (acc->base && acc_align > TYPE_ALIGN (TREE_TYPE (acc->base)))
1126 acc_align = TYPE_ALIGN (TREE_TYPE (acc->base));
1128 return tree_non_aligned_mem_p (exp, acc_align);
1131 /* Scan expressions occuring in STMT, create access structures for all accesses
1132 to candidates for scalarization and remove those candidates which occur in
1133 statements or expressions that prevent them from being split apart. Return
1134 true if any access has been inserted. */
1137 build_accesses_from_assign (gimple stmt)
1140 struct access *lacc, *racc;
1142 if (!gimple_assign_single_p (stmt)
1143 /* Scope clobbers don't influence scalarization. */
1144 || gimple_clobber_p (stmt))
1147 lhs = gimple_assign_lhs (stmt);
1148 rhs = gimple_assign_rhs1 (stmt);
1150 if (disqualify_ops_if_throwing_stmt (stmt, lhs, rhs))
1153 racc = build_access_from_expr_1 (rhs, stmt, false);
1154 lacc = build_access_from_expr_1 (lhs, stmt, true);
1158 lacc->grp_assignment_write = 1;
1159 if (STRICT_ALIGNMENT && tree_non_aligned_mem_for_access_p (rhs, lacc))
1160 lacc->grp_unscalarizable_region = 1;
1165 racc->grp_assignment_read = 1;
1166 if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
1167 && !is_gimple_reg_type (racc->type))
1168 bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
1169 if (STRICT_ALIGNMENT && tree_non_aligned_mem_for_access_p (lhs, racc))
1170 racc->grp_unscalarizable_region = 1;
1174 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1175 && !lacc->grp_unscalarizable_region
1176 && !racc->grp_unscalarizable_region
1177 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
1178 /* FIXME: Turn the following line into an assert after PR 40058 is
1180 && lacc->size == racc->size
1181 && useless_type_conversion_p (lacc->type, racc->type))
1183 struct assign_link *link;
1185 link = (struct assign_link *) pool_alloc (link_pool);
1186 memset (link, 0, sizeof (struct assign_link));
1191 add_link_to_rhs (racc, link);
1194 return lacc || racc;
1197 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1198 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1201 asm_visit_addr (gimple stmt ATTRIBUTE_UNUSED, tree op,
1202 void *data ATTRIBUTE_UNUSED)
1204 op = get_base_address (op);
1207 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
1212 /* Return true iff callsite CALL has at least as many actual arguments as there
1213 are formal parameters of the function currently processed by IPA-SRA. */
1216 callsite_has_enough_arguments_p (gimple call)
1218 return gimple_call_num_args (call) >= (unsigned) func_param_count;
1221 /* Scan function and look for interesting expressions and create access
1222 structures for them. Return true iff any access is created. */
1225 scan_function (void)
1232 gimple_stmt_iterator gsi;
1233 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1235 gimple stmt = gsi_stmt (gsi);
1239 if (final_bbs && stmt_can_throw_external (stmt))
1240 bitmap_set_bit (final_bbs, bb->index);
1241 switch (gimple_code (stmt))
1244 t = gimple_return_retval (stmt);
1246 ret |= build_access_from_expr (t, stmt, false);
1248 bitmap_set_bit (final_bbs, bb->index);
1252 ret |= build_accesses_from_assign (stmt);
1256 for (i = 0; i < gimple_call_num_args (stmt); i++)
1257 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1260 if (sra_mode == SRA_MODE_EARLY_IPA)
1262 tree dest = gimple_call_fndecl (stmt);
1263 int flags = gimple_call_flags (stmt);
1267 if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
1268 && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
1269 encountered_apply_args = true;
1270 if (cgraph_get_node (dest)
1271 == cgraph_get_node (current_function_decl))
1273 encountered_recursive_call = true;
1274 if (!callsite_has_enough_arguments_p (stmt))
1275 encountered_unchangable_recursive_call = true;
1280 && (flags & (ECF_CONST | ECF_PURE)) == 0)
1281 bitmap_set_bit (final_bbs, bb->index);
1284 t = gimple_call_lhs (stmt);
1285 if (t && !disqualify_ops_if_throwing_stmt (stmt, t, NULL))
1286 ret |= build_access_from_expr (t, stmt, true);
1290 walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
1293 bitmap_set_bit (final_bbs, bb->index);
1295 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1297 t = TREE_VALUE (gimple_asm_input_op (stmt, i));
1298 ret |= build_access_from_expr (t, stmt, false);
1300 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
1302 t = TREE_VALUE (gimple_asm_output_op (stmt, i));
1303 ret |= build_access_from_expr (t, stmt, true);
1316 /* Helper of QSORT function. There are pointers to accesses in the array. An
1317 access is considered smaller than another if it has smaller offset or if the
1318 offsets are the same but is size is bigger. */
1321 compare_access_positions (const void *a, const void *b)
1323 const access_p *fp1 = (const access_p *) a;
1324 const access_p *fp2 = (const access_p *) b;
1325 const access_p f1 = *fp1;
1326 const access_p f2 = *fp2;
1328 if (f1->offset != f2->offset)
1329 return f1->offset < f2->offset ? -1 : 1;
1331 if (f1->size == f2->size)
1333 if (f1->type == f2->type)
1335 /* Put any non-aggregate type before any aggregate type. */
1336 else if (!is_gimple_reg_type (f1->type)
1337 && is_gimple_reg_type (f2->type))
1339 else if (is_gimple_reg_type (f1->type)
1340 && !is_gimple_reg_type (f2->type))
1342 /* Put any complex or vector type before any other scalar type. */
1343 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1344 && TREE_CODE (f1->type) != VECTOR_TYPE
1345 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1346 || TREE_CODE (f2->type) == VECTOR_TYPE))
1348 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1349 || TREE_CODE (f1->type) == VECTOR_TYPE)
1350 && TREE_CODE (f2->type) != COMPLEX_TYPE
1351 && TREE_CODE (f2->type) != VECTOR_TYPE)
1353 /* Put the integral type with the bigger precision first. */
1354 else if (INTEGRAL_TYPE_P (f1->type)
1355 && INTEGRAL_TYPE_P (f2->type))
1356 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
1357 /* Put any integral type with non-full precision last. */
1358 else if (INTEGRAL_TYPE_P (f1->type)
1359 && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
1360 != TYPE_PRECISION (f1->type)))
1362 else if (INTEGRAL_TYPE_P (f2->type)
1363 && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
1364 != TYPE_PRECISION (f2->type)))
1366 /* Stabilize the sort. */
1367 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1370 /* We want the bigger accesses first, thus the opposite operator in the next
1372 return f1->size > f2->size ? -1 : 1;
1376 /* Append a name of the declaration to the name obstack. A helper function for
1380 make_fancy_decl_name (tree decl)
1384 tree name = DECL_NAME (decl);
1386 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1387 IDENTIFIER_LENGTH (name));
1390 sprintf (buffer, "D%u", DECL_UID (decl));
1391 obstack_grow (&name_obstack, buffer, strlen (buffer));
1395 /* Helper for make_fancy_name. */
1398 make_fancy_name_1 (tree expr)
1405 make_fancy_decl_name (expr);
1409 switch (TREE_CODE (expr))
1412 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1413 obstack_1grow (&name_obstack, '$');
1414 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1418 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1419 obstack_1grow (&name_obstack, '$');
1420 /* Arrays with only one element may not have a constant as their
1422 index = TREE_OPERAND (expr, 1);
1423 if (TREE_CODE (index) != INTEGER_CST)
1425 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1426 obstack_grow (&name_obstack, buffer, strlen (buffer));
1430 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1434 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1435 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1437 obstack_1grow (&name_obstack, '$');
1438 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1439 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1440 obstack_grow (&name_obstack, buffer, strlen (buffer));
1447 gcc_unreachable (); /* we treat these as scalars. */
1454 /* Create a human readable name for replacement variable of ACCESS. */
1457 make_fancy_name (tree expr)
1459 make_fancy_name_1 (expr);
1460 obstack_1grow (&name_obstack, '\0');
1461 return XOBFINISH (&name_obstack, char *);
1464 /* Construct a MEM_REF that would reference a part of aggregate BASE of type
1465 EXP_TYPE at the given OFFSET. If BASE is something for which
1466 get_addr_base_and_unit_offset returns NULL, gsi must be non-NULL and is used
1467 to insert new statements either before or below the current one as specified
1468 by INSERT_AFTER. This function is not capable of handling bitfields. */
1471 build_ref_for_offset (location_t loc, tree base, HOST_WIDE_INT offset,
1472 tree exp_type, gimple_stmt_iterator *gsi,
1475 tree prev_base = base;
1477 HOST_WIDE_INT base_offset;
1478 unsigned HOST_WIDE_INT misalign;
1481 gcc_checking_assert (offset % BITS_PER_UNIT == 0);
1483 base = get_addr_base_and_unit_offset (base, &base_offset);
1485 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1486 offset such as array[var_index]. */
1492 gcc_checking_assert (gsi);
1493 tmp = create_tmp_reg (build_pointer_type (TREE_TYPE (prev_base)), NULL);
1494 add_referenced_var (tmp);
1495 tmp = make_ssa_name (tmp, NULL);
1496 addr = build_fold_addr_expr (unshare_expr (prev_base));
1497 STRIP_USELESS_TYPE_CONVERSION (addr);
1498 stmt = gimple_build_assign (tmp, addr);
1499 gimple_set_location (stmt, loc);
1500 SSA_NAME_DEF_STMT (tmp) = stmt;
1502 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
1504 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1507 off = build_int_cst (reference_alias_ptr_type (prev_base),
1508 offset / BITS_PER_UNIT);
1511 else if (TREE_CODE (base) == MEM_REF)
1513 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1514 base_offset + offset / BITS_PER_UNIT);
1515 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1516 base = unshare_expr (TREE_OPERAND (base, 0));
1520 off = build_int_cst (reference_alias_ptr_type (base),
1521 base_offset + offset / BITS_PER_UNIT);
1522 base = build_fold_addr_expr (unshare_expr (base));
1525 /* If prev_base were always an originally performed access
1526 we can extract more optimistic alignment information
1527 by looking at the access mode. That would constrain the
1528 alignment of base + base_offset which we would need to
1529 adjust according to offset.
1530 ??? But it is not at all clear that prev_base is an access
1531 that was in the IL that way, so be conservative for now. */
1532 align = get_pointer_alignment_1 (base, &misalign);
1533 misalign += (double_int_sext (tree_to_double_int (off),
1534 TYPE_PRECISION (TREE_TYPE (off))).low
1536 misalign = misalign & (align - 1);
1538 align = (misalign & -misalign);
1539 if (align < TYPE_ALIGN (exp_type))
1540 exp_type = build_aligned_type (exp_type, align);
1542 return fold_build2_loc (loc, MEM_REF, exp_type, base, off);
1545 DEF_VEC_ALLOC_P_STACK (tree);
1546 #define VEC_tree_stack_alloc(alloc) VEC_stack_alloc (tree, alloc)
1548 /* Construct a memory reference to a part of an aggregate BASE at the given
1549 OFFSET and of the type of MODEL. In case this is a chain of references
1550 to component, the function will replicate the chain of COMPONENT_REFs of
1551 the expression of MODEL to access it. GSI and INSERT_AFTER have the same
1552 meaning as in build_ref_for_offset. */
1555 build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1556 struct access *model, gimple_stmt_iterator *gsi,
1559 tree type = model->type, t;
1560 VEC(tree,stack) *cr_stack = NULL;
1562 if (TREE_CODE (model->expr) == COMPONENT_REF)
1564 tree expr = model->expr;
1566 /* Create a stack of the COMPONENT_REFs so later we can walk them in
1567 order from inner to outer. */
1568 cr_stack = VEC_alloc (tree, stack, 6);
1571 tree field = TREE_OPERAND (expr, 1);
1572 tree cr_offset = component_ref_field_offset (expr);
1573 HOST_WIDE_INT bit_pos
1574 = tree_low_cst (cr_offset, 1) * BITS_PER_UNIT
1575 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field));
1577 /* We can be called with a model different from the one associated
1578 with BASE so we need to avoid going up the chain too far. */
1579 if (offset - bit_pos < 0)
1583 VEC_safe_push (tree, stack, cr_stack, expr);
1585 expr = TREE_OPERAND (expr, 0);
1586 type = TREE_TYPE (expr);
1587 } while (TREE_CODE (expr) == COMPONENT_REF);
1590 t = build_ref_for_offset (loc, base, offset, type, gsi, insert_after);
1592 if (TREE_CODE (model->expr) == COMPONENT_REF)
1597 /* Now replicate the chain of COMPONENT_REFs from inner to outer. */
1598 FOR_EACH_VEC_ELT_REVERSE (tree, cr_stack, i, expr)
1600 tree field = TREE_OPERAND (expr, 1);
1601 t = fold_build3_loc (loc, COMPONENT_REF, TREE_TYPE (field), t, field,
1602 TREE_OPERAND (expr, 2));
1605 VEC_free (tree, stack, cr_stack);
1611 /* Construct a memory reference consisting of component_refs and array_refs to
1612 a part of an aggregate *RES (which is of type TYPE). The requested part
1613 should have type EXP_TYPE at be the given OFFSET. This function might not
1614 succeed, it returns true when it does and only then *RES points to something
1615 meaningful. This function should be used only to build expressions that we
1616 might need to present to user (e.g. in warnings). In all other situations,
1617 build_ref_for_model or build_ref_for_offset should be used instead. */
1620 build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
1626 tree tr_size, index, minidx;
1627 HOST_WIDE_INT el_size;
1629 if (offset == 0 && exp_type
1630 && types_compatible_p (exp_type, type))
1633 switch (TREE_CODE (type))
1636 case QUAL_UNION_TYPE:
1638 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1640 HOST_WIDE_INT pos, size;
1641 tree expr, *expr_ptr;
1643 if (TREE_CODE (fld) != FIELD_DECL)
1646 pos = int_bit_position (fld);
1647 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1648 tr_size = DECL_SIZE (fld);
1649 if (!tr_size || !host_integerp (tr_size, 1))
1651 size = tree_low_cst (tr_size, 1);
1657 else if (pos > offset || (pos + size) <= offset)
1660 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1663 if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
1664 offset - pos, exp_type))
1673 tr_size = TYPE_SIZE (TREE_TYPE (type));
1674 if (!tr_size || !host_integerp (tr_size, 1))
1676 el_size = tree_low_cst (tr_size, 1);
1678 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1679 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
1681 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1682 if (!integer_zerop (minidx))
1683 index = int_const_binop (PLUS_EXPR, index, minidx);
1684 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1685 NULL_TREE, NULL_TREE);
1686 offset = offset % el_size;
1687 type = TREE_TYPE (type);
1702 /* Return true iff TYPE is stdarg va_list type. */
1705 is_va_list_type (tree type)
1707 return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
1710 /* Print message to dump file why a variable was rejected. */
1713 reject (tree var, const char *msg)
1715 if (dump_file && (dump_flags & TDF_DETAILS))
1717 fprintf (dump_file, "Rejected (%d): %s: ", DECL_UID (var), msg);
1718 print_generic_expr (dump_file, var, 0);
1719 fprintf (dump_file, "\n");
1723 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1724 those with type which is suitable for scalarization. */
1727 find_var_candidates (void)
1730 referenced_var_iterator rvi;
1734 FOR_EACH_REFERENCED_VAR (cfun, var, rvi)
1736 if (TREE_CODE (var) != VAR_DECL && TREE_CODE (var) != PARM_DECL)
1738 type = TREE_TYPE (var);
1740 if (!AGGREGATE_TYPE_P (type))
1742 reject (var, "not aggregate");
1745 if (needs_to_live_in_memory (var))
1747 reject (var, "needs to live in memory");
1750 if (TREE_THIS_VOLATILE (var))
1752 reject (var, "is volatile");
1755 if (!COMPLETE_TYPE_P (type))
1757 reject (var, "has incomplete type");
1760 if (!host_integerp (TYPE_SIZE (type), 1))
1762 reject (var, "type size not fixed");
1765 if (tree_low_cst (TYPE_SIZE (type), 1) == 0)
1767 reject (var, "type size is zero");
1770 if (type_internals_preclude_sra_p (type, &msg))
1775 if (/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1776 we also want to schedule it rather late. Thus we ignore it in
1778 (sra_mode == SRA_MODE_EARLY_INTRA
1779 && is_va_list_type (type)))
1781 reject (var, "is va_list");
1785 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1787 if (dump_file && (dump_flags & TDF_DETAILS))
1789 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1790 print_generic_expr (dump_file, var, 0);
1791 fprintf (dump_file, "\n");
1799 /* Sort all accesses for the given variable, check for partial overlaps and
1800 return NULL if there are any. If there are none, pick a representative for
1801 each combination of offset and size and create a linked list out of them.
1802 Return the pointer to the first representative and make sure it is the first
1803 one in the vector of accesses. */
1805 static struct access *
1806 sort_and_splice_var_accesses (tree var)
1808 int i, j, access_count;
1809 struct access *res, **prev_acc_ptr = &res;
1810 VEC (access_p, heap) *access_vec;
1812 HOST_WIDE_INT low = -1, high = 0;
1814 access_vec = get_base_access_vector (var);
1817 access_count = VEC_length (access_p, access_vec);
1819 /* Sort by <OFFSET, SIZE>. */
1820 VEC_qsort (access_p, access_vec, compare_access_positions);
1823 while (i < access_count)
1825 struct access *access = VEC_index (access_p, access_vec, i);
1826 bool grp_write = access->write;
1827 bool grp_read = !access->write;
1828 bool grp_scalar_write = access->write
1829 && is_gimple_reg_type (access->type);
1830 bool grp_scalar_read = !access->write
1831 && is_gimple_reg_type (access->type);
1832 bool grp_assignment_read = access->grp_assignment_read;
1833 bool grp_assignment_write = access->grp_assignment_write;
1834 bool multiple_scalar_reads = false;
1835 bool total_scalarization = access->grp_total_scalarization;
1836 bool grp_partial_lhs = access->grp_partial_lhs;
1837 bool first_scalar = is_gimple_reg_type (access->type);
1838 bool unscalarizable_region = access->grp_unscalarizable_region;
1840 if (first || access->offset >= high)
1843 low = access->offset;
1844 high = access->offset + access->size;
1846 else if (access->offset > low && access->offset + access->size > high)
1849 gcc_assert (access->offset >= low
1850 && access->offset + access->size <= high);
1853 while (j < access_count)
1855 struct access *ac2 = VEC_index (access_p, access_vec, j);
1856 if (ac2->offset != access->offset || ac2->size != access->size)
1861 grp_scalar_write = (grp_scalar_write
1862 || is_gimple_reg_type (ac2->type));
1867 if (is_gimple_reg_type (ac2->type))
1869 if (grp_scalar_read)
1870 multiple_scalar_reads = true;
1872 grp_scalar_read = true;
1875 grp_assignment_read |= ac2->grp_assignment_read;
1876 grp_assignment_write |= ac2->grp_assignment_write;
1877 grp_partial_lhs |= ac2->grp_partial_lhs;
1878 unscalarizable_region |= ac2->grp_unscalarizable_region;
1879 total_scalarization |= ac2->grp_total_scalarization;
1880 relink_to_new_repr (access, ac2);
1882 /* If there are both aggregate-type and scalar-type accesses with
1883 this combination of size and offset, the comparison function
1884 should have put the scalars first. */
1885 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
1886 ac2->group_representative = access;
1892 access->group_representative = access;
1893 access->grp_write = grp_write;
1894 access->grp_read = grp_read;
1895 access->grp_scalar_read = grp_scalar_read;
1896 access->grp_scalar_write = grp_scalar_write;
1897 access->grp_assignment_read = grp_assignment_read;
1898 access->grp_assignment_write = grp_assignment_write;
1899 access->grp_hint = multiple_scalar_reads || total_scalarization;
1900 access->grp_total_scalarization = total_scalarization;
1901 access->grp_partial_lhs = grp_partial_lhs;
1902 access->grp_unscalarizable_region = unscalarizable_region;
1903 if (access->first_link)
1904 add_access_to_work_queue (access);
1906 *prev_acc_ptr = access;
1907 prev_acc_ptr = &access->next_grp;
1910 gcc_assert (res == VEC_index (access_p, access_vec, 0));
1914 /* Create a variable for the given ACCESS which determines the type, name and a
1915 few other properties. Return the variable declaration and store it also to
1916 ACCESS->replacement. */
1919 create_access_replacement (struct access *access, bool rename)
1923 repl = create_tmp_var (access->type, "SR");
1924 add_referenced_var (repl);
1926 mark_sym_for_renaming (repl);
1928 if (!access->grp_partial_lhs
1929 && (TREE_CODE (access->type) == COMPLEX_TYPE
1930 || TREE_CODE (access->type) == VECTOR_TYPE))
1931 DECL_GIMPLE_REG_P (repl) = 1;
1933 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
1934 DECL_ARTIFICIAL (repl) = 1;
1935 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
1937 if (DECL_NAME (access->base)
1938 && !DECL_IGNORED_P (access->base)
1939 && !DECL_ARTIFICIAL (access->base))
1941 char *pretty_name = make_fancy_name (access->expr);
1942 tree debug_expr = unshare_expr (access->expr), d;
1944 DECL_NAME (repl) = get_identifier (pretty_name);
1945 obstack_free (&name_obstack, pretty_name);
1947 /* Get rid of any SSA_NAMEs embedded in debug_expr,
1948 as DECL_DEBUG_EXPR isn't considered when looking for still
1949 used SSA_NAMEs and thus they could be freed. All debug info
1950 generation cares is whether something is constant or variable
1951 and that get_ref_base_and_extent works properly on the
1953 for (d = debug_expr; handled_component_p (d); d = TREE_OPERAND (d, 0))
1954 switch (TREE_CODE (d))
1957 case ARRAY_RANGE_REF:
1958 if (TREE_OPERAND (d, 1)
1959 && TREE_CODE (TREE_OPERAND (d, 1)) == SSA_NAME)
1960 TREE_OPERAND (d, 1) = SSA_NAME_VAR (TREE_OPERAND (d, 1));
1961 if (TREE_OPERAND (d, 3)
1962 && TREE_CODE (TREE_OPERAND (d, 3)) == SSA_NAME)
1963 TREE_OPERAND (d, 3) = SSA_NAME_VAR (TREE_OPERAND (d, 3));
1966 if (TREE_OPERAND (d, 2)
1967 && TREE_CODE (TREE_OPERAND (d, 2)) == SSA_NAME)
1968 TREE_OPERAND (d, 2) = SSA_NAME_VAR (TREE_OPERAND (d, 2));
1973 SET_DECL_DEBUG_EXPR (repl, debug_expr);
1974 DECL_DEBUG_EXPR_IS_FROM (repl) = 1;
1975 if (access->grp_no_warning)
1976 TREE_NO_WARNING (repl) = 1;
1978 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
1981 TREE_NO_WARNING (repl) = 1;
1985 fprintf (dump_file, "Created a replacement for ");
1986 print_generic_expr (dump_file, access->base, 0);
1987 fprintf (dump_file, " offset: %u, size: %u: ",
1988 (unsigned) access->offset, (unsigned) access->size);
1989 print_generic_expr (dump_file, repl, 0);
1990 fprintf (dump_file, "\n");
1992 sra_stats.replacements++;
1997 /* Return ACCESS scalar replacement, create it if it does not exist yet. */
2000 get_access_replacement (struct access *access)
2002 gcc_assert (access->grp_to_be_replaced);
2004 if (!access->replacement_decl)
2005 access->replacement_decl = create_access_replacement (access, true);
2006 return access->replacement_decl;
2009 /* Return ACCESS scalar replacement, create it if it does not exist yet but do
2010 not mark it for renaming. */
2013 get_unrenamed_access_replacement (struct access *access)
2015 gcc_assert (!access->grp_to_be_replaced);
2017 if (!access->replacement_decl)
2018 access->replacement_decl = create_access_replacement (access, false);
2019 return access->replacement_decl;
2023 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
2024 linked list along the way. Stop when *ACCESS is NULL or the access pointed
2025 to it is not "within" the root. Return false iff some accesses partially
2029 build_access_subtree (struct access **access)
2031 struct access *root = *access, *last_child = NULL;
2032 HOST_WIDE_INT limit = root->offset + root->size;
2034 *access = (*access)->next_grp;
2035 while (*access && (*access)->offset + (*access)->size <= limit)
2038 root->first_child = *access;
2040 last_child->next_sibling = *access;
2041 last_child = *access;
2043 if (!build_access_subtree (access))
2047 if (*access && (*access)->offset < limit)
2053 /* Build a tree of access representatives, ACCESS is the pointer to the first
2054 one, others are linked in a list by the next_grp field. Return false iff
2055 some accesses partially overlap. */
2058 build_access_trees (struct access *access)
2062 struct access *root = access;
2064 if (!build_access_subtree (&access))
2066 root->next_grp = access;
2071 /* Return true if expr contains some ARRAY_REFs into a variable bounded
2075 expr_with_var_bounded_array_refs_p (tree expr)
2077 while (handled_component_p (expr))
2079 if (TREE_CODE (expr) == ARRAY_REF
2080 && !host_integerp (array_ref_low_bound (expr), 0))
2082 expr = TREE_OPERAND (expr, 0);
2087 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
2088 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
2089 sorts of access flags appropriately along the way, notably always set
2090 grp_read and grp_assign_read according to MARK_READ and grp_write when
2093 Creating a replacement for a scalar access is considered beneficial if its
2094 grp_hint is set (this means we are either attempting total scalarization or
2095 there is more than one direct read access) or according to the following
2098 Access written to through a scalar type (once or more times)
2100 | Written to in an assignment statement
2102 | | Access read as scalar _once_
2104 | | | Read in an assignment statement
2106 | | | | Scalarize Comment
2107 -----------------------------------------------------------------------------
2108 0 0 0 0 No access for the scalar
2109 0 0 0 1 No access for the scalar
2110 0 0 1 0 No Single read - won't help
2111 0 0 1 1 No The same case
2112 0 1 0 0 No access for the scalar
2113 0 1 0 1 No access for the scalar
2114 0 1 1 0 Yes s = *g; return s.i;
2115 0 1 1 1 Yes The same case as above
2116 1 0 0 0 No Won't help
2117 1 0 0 1 Yes s.i = 1; *g = s;
2118 1 0 1 0 Yes s.i = 5; g = s.i;
2119 1 0 1 1 Yes The same case as above
2120 1 1 0 0 No Won't help.
2121 1 1 0 1 Yes s.i = 1; *g = s;
2122 1 1 1 0 Yes s = *g; return s.i;
2123 1 1 1 1 Yes Any of the above yeses */
2126 analyze_access_subtree (struct access *root, struct access *parent,
2127 bool allow_replacements)
2129 struct access *child;
2130 HOST_WIDE_INT limit = root->offset + root->size;
2131 HOST_WIDE_INT covered_to = root->offset;
2132 bool scalar = is_gimple_reg_type (root->type);
2133 bool hole = false, sth_created = false;
2137 if (parent->grp_read)
2139 if (parent->grp_assignment_read)
2140 root->grp_assignment_read = 1;
2141 if (parent->grp_write)
2142 root->grp_write = 1;
2143 if (parent->grp_assignment_write)
2144 root->grp_assignment_write = 1;
2145 if (parent->grp_total_scalarization)
2146 root->grp_total_scalarization = 1;
2149 if (root->grp_unscalarizable_region)
2150 allow_replacements = false;
2152 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
2153 allow_replacements = false;
2155 for (child = root->first_child; child; child = child->next_sibling)
2157 hole |= covered_to < child->offset;
2158 sth_created |= analyze_access_subtree (child, root,
2159 allow_replacements && !scalar);
2161 root->grp_unscalarized_data |= child->grp_unscalarized_data;
2162 root->grp_total_scalarization &= child->grp_total_scalarization;
2163 if (child->grp_covered)
2164 covered_to += child->size;
2169 if (allow_replacements && scalar && !root->first_child
2171 || ((root->grp_scalar_read || root->grp_assignment_read)
2172 && (root->grp_scalar_write || root->grp_assignment_write))))
2174 bool new_integer_type;
2175 /* Always create access replacements that cover the whole access.
2176 For integral types this means the precision has to match.
2177 Avoid assumptions based on the integral type kind, too. */
2178 if (INTEGRAL_TYPE_P (root->type)
2179 && (TREE_CODE (root->type) != INTEGER_TYPE
2180 || TYPE_PRECISION (root->type) != root->size)
2181 /* But leave bitfield accesses alone. */
2182 && (root->offset % BITS_PER_UNIT) == 0)
2184 tree rt = root->type;
2185 root->type = build_nonstandard_integer_type (root->size,
2186 TYPE_UNSIGNED (rt));
2187 root->expr = build_ref_for_offset (UNKNOWN_LOCATION,
2188 root->base, root->offset,
2189 root->type, NULL, false);
2190 new_integer_type = true;
2193 new_integer_type = false;
2195 if (dump_file && (dump_flags & TDF_DETAILS))
2197 fprintf (dump_file, "Marking ");
2198 print_generic_expr (dump_file, root->base, 0);
2199 fprintf (dump_file, " offset: %u, size: %u ",
2200 (unsigned) root->offset, (unsigned) root->size);
2201 fprintf (dump_file, " to be replaced%s.\n",
2202 new_integer_type ? " with an integer": "");
2205 root->grp_to_be_replaced = 1;
2211 if (covered_to < limit)
2214 root->grp_total_scalarization = 0;
2218 && (!hole || root->grp_total_scalarization))
2220 root->grp_covered = 1;
2223 if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
2224 root->grp_unscalarized_data = 1; /* not covered and written to */
2230 /* Analyze all access trees linked by next_grp by the means of
2231 analyze_access_subtree. */
2233 analyze_access_trees (struct access *access)
2239 if (analyze_access_subtree (access, NULL, true))
2241 access = access->next_grp;
2247 /* Return true iff a potential new child of LACC at offset OFFSET and with size
2248 SIZE would conflict with an already existing one. If exactly such a child
2249 already exists in LACC, store a pointer to it in EXACT_MATCH. */
2252 child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
2253 HOST_WIDE_INT size, struct access **exact_match)
2255 struct access *child;
2257 for (child = lacc->first_child; child; child = child->next_sibling)
2259 if (child->offset == norm_offset && child->size == size)
2261 *exact_match = child;
2265 if (child->offset < norm_offset + size
2266 && child->offset + child->size > norm_offset)
2273 /* Create a new child access of PARENT, with all properties just like MODEL
2274 except for its offset and with its grp_write false and grp_read true.
2275 Return the new access or NULL if it cannot be created. Note that this access
2276 is created long after all splicing and sorting, it's not located in any
2277 access vector and is automatically a representative of its group. */
2279 static struct access *
2280 create_artificial_child_access (struct access *parent, struct access *model,
2281 HOST_WIDE_INT new_offset)
2283 struct access *access;
2284 struct access **child;
2285 tree expr = parent->base;
2287 gcc_assert (!model->grp_unscalarizable_region);
2289 access = (struct access *) pool_alloc (access_pool);
2290 memset (access, 0, sizeof (struct access));
2291 if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
2294 access->grp_no_warning = true;
2295 expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
2296 new_offset, model, NULL, false);
2299 access->base = parent->base;
2300 access->expr = expr;
2301 access->offset = new_offset;
2302 access->size = model->size;
2303 access->type = model->type;
2304 access->grp_write = true;
2305 access->grp_read = false;
2307 child = &parent->first_child;
2308 while (*child && (*child)->offset < new_offset)
2309 child = &(*child)->next_sibling;
2311 access->next_sibling = *child;
2318 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
2319 true if any new subaccess was created. Additionally, if RACC is a scalar
2320 access but LACC is not, change the type of the latter, if possible. */
2323 propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
2325 struct access *rchild;
2326 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
2329 if (is_gimple_reg_type (lacc->type)
2330 || lacc->grp_unscalarizable_region
2331 || racc->grp_unscalarizable_region)
2334 if (is_gimple_reg_type (racc->type))
2336 if (!lacc->first_child && !racc->first_child)
2338 tree t = lacc->base;
2340 lacc->type = racc->type;
2341 if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t),
2342 lacc->offset, racc->type))
2346 lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
2347 lacc->base, lacc->offset,
2349 lacc->grp_no_warning = true;
2355 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
2357 struct access *new_acc = NULL;
2358 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
2360 if (rchild->grp_unscalarizable_region)
2363 if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
2368 rchild->grp_hint = 1;
2369 new_acc->grp_hint |= new_acc->grp_read;
2370 if (rchild->first_child)
2371 ret |= propagate_subaccesses_across_link (new_acc, rchild);
2376 rchild->grp_hint = 1;
2377 new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
2381 if (racc->first_child)
2382 propagate_subaccesses_across_link (new_acc, rchild);
2389 /* Propagate all subaccesses across assignment links. */
2392 propagate_all_subaccesses (void)
2394 while (work_queue_head)
2396 struct access *racc = pop_access_from_work_queue ();
2397 struct assign_link *link;
2399 gcc_assert (racc->first_link);
2401 for (link = racc->first_link; link; link = link->next)
2403 struct access *lacc = link->lacc;
2405 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2407 lacc = lacc->group_representative;
2408 if (propagate_subaccesses_across_link (lacc, racc)
2409 && lacc->first_link)
2410 add_access_to_work_queue (lacc);
2415 /* Go through all accesses collected throughout the (intraprocedural) analysis
2416 stage, exclude overlapping ones, identify representatives and build trees
2417 out of them, making decisions about scalarization on the way. Return true
2418 iff there are any to-be-scalarized variables after this stage. */
2421 analyze_all_variable_accesses (void)
2424 bitmap tmp = BITMAP_ALLOC (NULL);
2426 unsigned i, max_total_scalarization_size;
2428 max_total_scalarization_size = UNITS_PER_WORD * BITS_PER_UNIT
2429 * MOVE_RATIO (optimize_function_for_speed_p (cfun));
2431 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2432 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
2433 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
2435 tree var = referenced_var (i);
2437 if (TREE_CODE (var) == VAR_DECL
2438 && type_consists_of_records_p (TREE_TYPE (var)))
2440 if ((unsigned) tree_low_cst (TYPE_SIZE (TREE_TYPE (var)), 1)
2441 <= max_total_scalarization_size)
2443 completely_scalarize_var (var);
2444 if (dump_file && (dump_flags & TDF_DETAILS))
2446 fprintf (dump_file, "Will attempt to totally scalarize ");
2447 print_generic_expr (dump_file, var, 0);
2448 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2451 else if (dump_file && (dump_flags & TDF_DETAILS))
2453 fprintf (dump_file, "Too big to totally scalarize: ");
2454 print_generic_expr (dump_file, var, 0);
2455 fprintf (dump_file, " (UID: %u)\n", DECL_UID (var));
2460 bitmap_copy (tmp, candidate_bitmap);
2461 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2463 tree var = referenced_var (i);
2464 struct access *access;
2466 access = sort_and_splice_var_accesses (var);
2467 if (!access || !build_access_trees (access))
2468 disqualify_candidate (var,
2469 "No or inhibitingly overlapping accesses.");
2472 propagate_all_subaccesses ();
2474 bitmap_copy (tmp, candidate_bitmap);
2475 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2477 tree var = referenced_var (i);
2478 struct access *access = get_first_repr_for_decl (var);
2480 if (analyze_access_trees (access))
2483 if (dump_file && (dump_flags & TDF_DETAILS))
2485 fprintf (dump_file, "\nAccess trees for ");
2486 print_generic_expr (dump_file, var, 0);
2487 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2488 dump_access_tree (dump_file, access);
2489 fprintf (dump_file, "\n");
2493 disqualify_candidate (var, "No scalar replacements to be created.");
2500 statistics_counter_event (cfun, "Scalarized aggregates", res);
2507 /* Generate statements copying scalar replacements of accesses within a subtree
2508 into or out of AGG. ACCESS, all its children, siblings and their children
2509 are to be processed. AGG is an aggregate type expression (can be a
2510 declaration but does not have to be, it can for example also be a mem_ref or
2511 a series of handled components). TOP_OFFSET is the offset of the processed
2512 subtree which has to be subtracted from offsets of individual accesses to
2513 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
2514 replacements in the interval <start_offset, start_offset + chunk_size>,
2515 otherwise copy all. GSI is a statement iterator used to place the new
2516 statements. WRITE should be true when the statements should write from AGG
2517 to the replacement and false if vice versa. if INSERT_AFTER is true, new
2518 statements will be added after the current statement in GSI, they will be
2519 added before the statement otherwise. */
2522 generate_subtree_copies (struct access *access, tree agg,
2523 HOST_WIDE_INT top_offset,
2524 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
2525 gimple_stmt_iterator *gsi, bool write,
2526 bool insert_after, location_t loc)
2530 if (chunk_size && access->offset >= start_offset + chunk_size)
2533 if (access->grp_to_be_replaced
2535 || access->offset + access->size > start_offset))
2537 tree expr, repl = get_access_replacement (access);
2540 expr = build_ref_for_model (loc, agg, access->offset - top_offset,
2541 access, gsi, insert_after);
2545 if (access->grp_partial_lhs)
2546 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
2548 insert_after ? GSI_NEW_STMT
2550 stmt = gimple_build_assign (repl, expr);
2554 TREE_NO_WARNING (repl) = 1;
2555 if (access->grp_partial_lhs)
2556 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2558 insert_after ? GSI_NEW_STMT
2560 stmt = gimple_build_assign (expr, repl);
2562 gimple_set_location (stmt, loc);
2565 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2567 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2569 sra_stats.subtree_copies++;
2572 if (access->first_child)
2573 generate_subtree_copies (access->first_child, agg, top_offset,
2574 start_offset, chunk_size, gsi,
2575 write, insert_after, loc);
2577 access = access->next_sibling;
2582 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2583 the root of the subtree to be processed. GSI is the statement iterator used
2584 for inserting statements which are added after the current statement if
2585 INSERT_AFTER is true or before it otherwise. */
2588 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
2589 bool insert_after, location_t loc)
2592 struct access *child;
2594 if (access->grp_to_be_replaced)
2598 stmt = gimple_build_assign (get_access_replacement (access),
2599 build_zero_cst (access->type));
2601 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2603 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2605 gimple_set_location (stmt, loc);
2608 for (child = access->first_child; child; child = child->next_sibling)
2609 init_subtree_with_zero (child, gsi, insert_after, loc);
2612 /* Search for an access representative for the given expression EXPR and
2613 return it or NULL if it cannot be found. */
2615 static struct access *
2616 get_access_for_expr (tree expr)
2618 HOST_WIDE_INT offset, size, max_size;
2621 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2622 a different size than the size of its argument and we need the latter
2624 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2625 expr = TREE_OPERAND (expr, 0);
2627 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
2628 if (max_size == -1 || !DECL_P (base))
2631 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
2634 return get_var_base_offset_size_access (base, offset, max_size);
2637 /* Replace the expression EXPR with a scalar replacement if there is one and
2638 generate other statements to do type conversion or subtree copying if
2639 necessary. GSI is used to place newly created statements, WRITE is true if
2640 the expression is being written to (it is on a LHS of a statement or output
2641 in an assembly statement). */
2644 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
2647 struct access *access;
2650 if (TREE_CODE (*expr) == BIT_FIELD_REF)
2653 expr = &TREE_OPERAND (*expr, 0);
2658 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
2659 expr = &TREE_OPERAND (*expr, 0);
2660 access = get_access_for_expr (*expr);
2663 type = TREE_TYPE (*expr);
2665 loc = gimple_location (gsi_stmt (*gsi));
2666 if (access->grp_to_be_replaced)
2668 tree repl = get_access_replacement (access);
2669 /* If we replace a non-register typed access simply use the original
2670 access expression to extract the scalar component afterwards.
2671 This happens if scalarizing a function return value or parameter
2672 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2673 gcc.c-torture/compile/20011217-1.c.
2675 We also want to use this when accessing a complex or vector which can
2676 be accessed as a different type too, potentially creating a need for
2677 type conversion (see PR42196) and when scalarized unions are involved
2678 in assembler statements (see PR42398). */
2679 if (!useless_type_conversion_p (type, access->type))
2683 ref = build_ref_for_model (loc, access->base, access->offset, access,
2690 if (access->grp_partial_lhs)
2691 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
2692 false, GSI_NEW_STMT);
2693 stmt = gimple_build_assign (repl, ref);
2694 gimple_set_location (stmt, loc);
2695 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2701 if (access->grp_partial_lhs)
2702 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2703 true, GSI_SAME_STMT);
2704 stmt = gimple_build_assign (ref, repl);
2705 gimple_set_location (stmt, loc);
2706 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2714 if (access->first_child)
2716 HOST_WIDE_INT start_offset, chunk_size;
2718 && host_integerp (TREE_OPERAND (bfr, 1), 1)
2719 && host_integerp (TREE_OPERAND (bfr, 2), 1))
2721 chunk_size = tree_low_cst (TREE_OPERAND (bfr, 1), 1);
2722 start_offset = access->offset
2723 + tree_low_cst (TREE_OPERAND (bfr, 2), 1);
2726 start_offset = chunk_size = 0;
2728 generate_subtree_copies (access->first_child, access->base, 0,
2729 start_offset, chunk_size, gsi, write, write,
2735 /* Where scalar replacements of the RHS have been written to when a replacement
2736 of a LHS of an assigments cannot be direclty loaded from a replacement of
2738 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
2739 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
2740 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
2742 /* Store all replacements in the access tree rooted in TOP_RACC either to their
2743 base aggregate if there are unscalarized data or directly to LHS of the
2744 statement that is pointed to by GSI otherwise. */
2746 static enum unscalarized_data_handling
2747 handle_unscalarized_data_in_subtree (struct access *top_racc,
2748 gimple_stmt_iterator *gsi)
2750 if (top_racc->grp_unscalarized_data)
2752 generate_subtree_copies (top_racc->first_child, top_racc->base, 0, 0, 0,
2754 gimple_location (gsi_stmt (*gsi)));
2755 return SRA_UDH_RIGHT;
2759 tree lhs = gimple_assign_lhs (gsi_stmt (*gsi));
2760 generate_subtree_copies (top_racc->first_child, lhs, top_racc->offset,
2761 0, 0, gsi, false, false,
2762 gimple_location (gsi_stmt (*gsi)));
2763 return SRA_UDH_LEFT;
2768 /* Try to generate statements to load all sub-replacements in an access subtree
2769 formed by children of LACC from scalar replacements in the TOP_RACC subtree.
2770 If that is not possible, refresh the TOP_RACC base aggregate and load the
2771 accesses from it. LEFT_OFFSET is the offset of the left whole subtree being
2772 copied. NEW_GSI is stmt iterator used for statement insertions after the
2773 original assignment, OLD_GSI is used to insert statements before the
2774 assignment. *REFRESHED keeps the information whether we have needed to
2775 refresh replacements of the LHS and from which side of the assignments this
2779 load_assign_lhs_subreplacements (struct access *lacc, struct access *top_racc,
2780 HOST_WIDE_INT left_offset,
2781 gimple_stmt_iterator *old_gsi,
2782 gimple_stmt_iterator *new_gsi,
2783 enum unscalarized_data_handling *refreshed)
2785 location_t loc = gimple_location (gsi_stmt (*old_gsi));
2786 for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling)
2788 if (lacc->grp_to_be_replaced)
2790 struct access *racc;
2791 HOST_WIDE_INT offset = lacc->offset - left_offset + top_racc->offset;
2795 racc = find_access_in_subtree (top_racc, offset, lacc->size);
2796 if (racc && racc->grp_to_be_replaced)
2798 rhs = get_access_replacement (racc);
2799 if (!useless_type_conversion_p (lacc->type, racc->type))
2800 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, lacc->type, rhs);
2802 if (racc->grp_partial_lhs && lacc->grp_partial_lhs)
2803 rhs = force_gimple_operand_gsi (old_gsi, rhs, true, NULL_TREE,
2804 true, GSI_SAME_STMT);
2808 /* No suitable access on the right hand side, need to load from
2809 the aggregate. See if we have to update it first... */
2810 if (*refreshed == SRA_UDH_NONE)
2811 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2814 if (*refreshed == SRA_UDH_LEFT)
2815 rhs = build_ref_for_model (loc, lacc->base, lacc->offset, lacc,
2818 rhs = build_ref_for_model (loc, top_racc->base, offset, lacc,
2820 if (lacc->grp_partial_lhs)
2821 rhs = force_gimple_operand_gsi (new_gsi, rhs, true, NULL_TREE,
2822 false, GSI_NEW_STMT);
2825 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
2826 gsi_insert_after (new_gsi, stmt, GSI_NEW_STMT);
2827 gimple_set_location (stmt, loc);
2829 sra_stats.subreplacements++;
2831 else if (*refreshed == SRA_UDH_NONE
2832 && lacc->grp_read && !lacc->grp_covered)
2833 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2836 if (lacc->first_child)
2837 load_assign_lhs_subreplacements (lacc, top_racc, left_offset,
2838 old_gsi, new_gsi, refreshed);
2842 /* Result code for SRA assignment modification. */
2843 enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
2844 SRA_AM_MODIFIED, /* stmt changed but not
2846 SRA_AM_REMOVED }; /* stmt eliminated */
2848 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
2849 to the assignment and GSI is the statement iterator pointing at it. Returns
2850 the same values as sra_modify_assign. */
2852 static enum assignment_mod_result
2853 sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2855 tree lhs = gimple_assign_lhs (*stmt);
2859 acc = get_access_for_expr (lhs);
2863 if (gimple_clobber_p (*stmt))
2865 /* Remove clobbers of fully scalarized variables, otherwise
2867 if (acc->grp_covered)
2869 unlink_stmt_vdef (*stmt);
2870 gsi_remove (gsi, true);
2871 return SRA_AM_REMOVED;
2877 loc = gimple_location (*stmt);
2878 if (VEC_length (constructor_elt,
2879 CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt))) > 0)
2881 /* I have never seen this code path trigger but if it can happen the
2882 following should handle it gracefully. */
2883 if (access_has_children_p (acc))
2884 generate_subtree_copies (acc->first_child, acc->base, 0, 0, 0, gsi,
2886 return SRA_AM_MODIFIED;
2889 if (acc->grp_covered)
2891 init_subtree_with_zero (acc, gsi, false, loc);
2892 unlink_stmt_vdef (*stmt);
2893 gsi_remove (gsi, true);
2894 return SRA_AM_REMOVED;
2898 init_subtree_with_zero (acc, gsi, true, loc);
2899 return SRA_AM_MODIFIED;
2903 /* Create and return a new suitable default definition SSA_NAME for RACC which
2904 is an access describing an uninitialized part of an aggregate that is being
2908 get_repl_default_def_ssa_name (struct access *racc)
2912 decl = get_unrenamed_access_replacement (racc);
2914 repl = gimple_default_def (cfun, decl);
2917 repl = make_ssa_name (decl, gimple_build_nop ());
2918 set_default_def (decl, repl);
2924 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
2928 contains_bitfld_comp_ref_p (const_tree ref)
2930 while (handled_component_p (ref))
2932 if (TREE_CODE (ref) == COMPONENT_REF
2933 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
2935 ref = TREE_OPERAND (ref, 0);
2941 /* Return true if REF has an VIEW_CONVERT_EXPR or a COMPONENT_REF with a
2942 bit-field field declaration somewhere in it. */
2945 contains_vce_or_bfcref_p (const_tree ref)
2947 while (handled_component_p (ref))
2949 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR
2950 || (TREE_CODE (ref) == COMPONENT_REF
2951 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))))
2953 ref = TREE_OPERAND (ref, 0);
2959 /* Examine both sides of the assignment statement pointed to by STMT, replace
2960 them with a scalare replacement if there is one and generate copying of
2961 replacements if scalarized aggregates have been used in the assignment. GSI
2962 is used to hold generated statements for type conversions and subtree
2965 static enum assignment_mod_result
2966 sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2968 struct access *lacc, *racc;
2970 bool modify_this_stmt = false;
2971 bool force_gimple_rhs = false;
2973 gimple_stmt_iterator orig_gsi = *gsi;
2975 if (!gimple_assign_single_p (*stmt))
2977 lhs = gimple_assign_lhs (*stmt);
2978 rhs = gimple_assign_rhs1 (*stmt);
2980 if (TREE_CODE (rhs) == CONSTRUCTOR)
2981 return sra_modify_constructor_assign (stmt, gsi);
2983 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
2984 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
2985 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
2987 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (*stmt),
2989 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (*stmt),
2991 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
2994 lacc = get_access_for_expr (lhs);
2995 racc = get_access_for_expr (rhs);
2999 loc = gimple_location (*stmt);
3000 if (lacc && lacc->grp_to_be_replaced)
3002 lhs = get_access_replacement (lacc);
3003 gimple_assign_set_lhs (*stmt, lhs);
3004 modify_this_stmt = true;
3005 if (lacc->grp_partial_lhs)
3006 force_gimple_rhs = true;
3010 if (racc && racc->grp_to_be_replaced)
3012 rhs = get_access_replacement (racc);
3013 modify_this_stmt = true;
3014 if (racc->grp_partial_lhs)
3015 force_gimple_rhs = true;
3019 && !racc->grp_unscalarized_data
3020 && TREE_CODE (lhs) == SSA_NAME
3021 && !access_has_replacements_p (racc))
3023 rhs = get_repl_default_def_ssa_name (racc);
3024 modify_this_stmt = true;
3028 if (modify_this_stmt)
3030 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3032 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
3033 ??? This should move to fold_stmt which we simply should
3034 call after building a VIEW_CONVERT_EXPR here. */
3035 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
3036 && !contains_bitfld_comp_ref_p (lhs)
3037 && !access_has_children_p (lacc))
3039 lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false);
3040 gimple_assign_set_lhs (*stmt, lhs);
3042 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
3043 && !contains_vce_or_bfcref_p (rhs)
3044 && !access_has_children_p (racc))
3045 rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false);
3047 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3049 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
3051 if (is_gimple_reg_type (TREE_TYPE (lhs))
3052 && TREE_CODE (lhs) != SSA_NAME)
3053 force_gimple_rhs = true;
3058 /* From this point on, the function deals with assignments in between
3059 aggregates when at least one has scalar reductions of some of its
3060 components. There are three possible scenarios: Both the LHS and RHS have
3061 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
3063 In the first case, we would like to load the LHS components from RHS
3064 components whenever possible. If that is not possible, we would like to
3065 read it directly from the RHS (after updating it by storing in it its own
3066 components). If there are some necessary unscalarized data in the LHS,
3067 those will be loaded by the original assignment too. If neither of these
3068 cases happen, the original statement can be removed. Most of this is done
3069 by load_assign_lhs_subreplacements.
3071 In the second case, we would like to store all RHS scalarized components
3072 directly into LHS and if they cover the aggregate completely, remove the
3073 statement too. In the third case, we want the LHS components to be loaded
3074 directly from the RHS (DSE will remove the original statement if it
3077 This is a bit complex but manageable when types match and when unions do
3078 not cause confusion in a way that we cannot really load a component of LHS
3079 from the RHS or vice versa (the access representing this level can have
3080 subaccesses that are accessible only through a different union field at a
3081 higher level - different from the one used in the examined expression).
3084 Therefore, I specially handle a fourth case, happening when there is a
3085 specific type cast or it is impossible to locate a scalarized subaccess on
3086 the other side of the expression. If that happens, I simply "refresh" the
3087 RHS by storing in it is scalarized components leave the original statement
3088 there to do the copying and then load the scalar replacements of the LHS.
3089 This is what the first branch does. */
3091 if (modify_this_stmt
3092 || gimple_has_volatile_ops (*stmt)
3093 || contains_vce_or_bfcref_p (rhs)
3094 || contains_vce_or_bfcref_p (lhs))
3096 if (access_has_children_p (racc))
3097 generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
3098 gsi, false, false, loc);
3099 if (access_has_children_p (lacc))
3100 generate_subtree_copies (lacc->first_child, lacc->base, 0, 0, 0,
3101 gsi, true, true, loc);
3102 sra_stats.separate_lhs_rhs_handling++;
3104 /* This gimplification must be done after generate_subtree_copies,
3105 lest we insert the subtree copies in the middle of the gimplified
3107 if (force_gimple_rhs)
3108 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
3109 true, GSI_SAME_STMT);
3110 if (gimple_assign_rhs1 (*stmt) != rhs)
3112 modify_this_stmt = true;
3113 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
3114 gcc_assert (*stmt == gsi_stmt (orig_gsi));
3117 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
3121 if (access_has_children_p (lacc) && access_has_children_p (racc))
3123 gimple_stmt_iterator orig_gsi = *gsi;
3124 enum unscalarized_data_handling refreshed;
3126 if (lacc->grp_read && !lacc->grp_covered)
3127 refreshed = handle_unscalarized_data_in_subtree (racc, gsi);
3129 refreshed = SRA_UDH_NONE;
3131 load_assign_lhs_subreplacements (lacc, racc, lacc->offset,
3132 &orig_gsi, gsi, &refreshed);
3133 if (refreshed != SRA_UDH_RIGHT)
3136 unlink_stmt_vdef (*stmt);
3137 gsi_remove (&orig_gsi, true);
3138 sra_stats.deleted++;
3139 return SRA_AM_REMOVED;
3144 if (access_has_children_p (racc)
3145 && !racc->grp_unscalarized_data)
3149 fprintf (dump_file, "Removing load: ");
3150 print_gimple_stmt (dump_file, *stmt, 0, 0);
3152 generate_subtree_copies (racc->first_child, lhs,
3153 racc->offset, 0, 0, gsi,
3155 gcc_assert (*stmt == gsi_stmt (*gsi));
3156 unlink_stmt_vdef (*stmt);
3157 gsi_remove (gsi, true);
3158 sra_stats.deleted++;
3159 return SRA_AM_REMOVED;
3161 /* Restore the aggregate RHS from its components so the
3162 prevailing aggregate copy does the right thing. */
3163 if (access_has_children_p (racc))
3164 generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
3165 gsi, false, false, loc);
3166 /* Re-load the components of the aggregate copy destination.
3167 But use the RHS aggregate to load from to expose more
3168 optimization opportunities. */
3169 if (access_has_children_p (lacc))
3170 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
3171 0, 0, gsi, true, true, loc);
3178 /* Traverse the function body and all modifications as decided in
3179 analyze_all_variable_accesses. Return true iff the CFG has been
3183 sra_modify_function_body (void)
3185 bool cfg_changed = false;
3190 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3191 while (!gsi_end_p (gsi))
3193 gimple stmt = gsi_stmt (gsi);
3194 enum assignment_mod_result assign_result;
3195 bool modified = false, deleted = false;
3199 switch (gimple_code (stmt))
3202 t = gimple_return_retval_ptr (stmt);
3203 if (*t != NULL_TREE)
3204 modified |= sra_modify_expr (t, &gsi, false);
3208 assign_result = sra_modify_assign (&stmt, &gsi);
3209 modified |= assign_result == SRA_AM_MODIFIED;
3210 deleted = assign_result == SRA_AM_REMOVED;
3214 /* Operands must be processed before the lhs. */
3215 for (i = 0; i < gimple_call_num_args (stmt); i++)
3217 t = gimple_call_arg_ptr (stmt, i);
3218 modified |= sra_modify_expr (t, &gsi, false);
3221 if (gimple_call_lhs (stmt))
3223 t = gimple_call_lhs_ptr (stmt);
3224 modified |= sra_modify_expr (t, &gsi, true);
3229 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
3231 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
3232 modified |= sra_modify_expr (t, &gsi, false);
3234 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
3236 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
3237 modified |= sra_modify_expr (t, &gsi, true);
3248 if (maybe_clean_eh_stmt (stmt)
3249 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
3260 /* Generate statements initializing scalar replacements of parts of function
3264 initialize_parameter_reductions (void)
3266 gimple_stmt_iterator gsi;
3267 gimple_seq seq = NULL;
3270 for (parm = DECL_ARGUMENTS (current_function_decl);
3272 parm = DECL_CHAIN (parm))
3274 VEC (access_p, heap) *access_vec;
3275 struct access *access;
3277 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3279 access_vec = get_base_access_vector (parm);
3285 seq = gimple_seq_alloc ();
3286 gsi = gsi_start (seq);
3289 for (access = VEC_index (access_p, access_vec, 0);
3291 access = access->next_grp)
3292 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true,
3293 EXPR_LOCATION (parm));
3297 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR), seq);
3300 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
3301 it reveals there are components of some aggregates to be scalarized, it runs
3302 the required transformations. */
3304 perform_intra_sra (void)
3309 if (!find_var_candidates ())
3312 if (!scan_function ())
3315 if (!analyze_all_variable_accesses ())
3318 if (sra_modify_function_body ())
3319 ret = TODO_update_ssa | TODO_cleanup_cfg;
3321 ret = TODO_update_ssa;
3322 initialize_parameter_reductions ();
3324 statistics_counter_event (cfun, "Scalar replacements created",
3325 sra_stats.replacements);
3326 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
3327 statistics_counter_event (cfun, "Subtree copy stmts",
3328 sra_stats.subtree_copies);
3329 statistics_counter_event (cfun, "Subreplacement stmts",
3330 sra_stats.subreplacements);
3331 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
3332 statistics_counter_event (cfun, "Separate LHS and RHS handling",
3333 sra_stats.separate_lhs_rhs_handling);
3336 sra_deinitialize ();
3340 /* Perform early intraprocedural SRA. */
3342 early_intra_sra (void)
3344 sra_mode = SRA_MODE_EARLY_INTRA;
3345 return perform_intra_sra ();
3348 /* Perform "late" intraprocedural SRA. */
3350 late_intra_sra (void)
3352 sra_mode = SRA_MODE_INTRA;
3353 return perform_intra_sra ();
3358 gate_intra_sra (void)
3360 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
3364 struct gimple_opt_pass pass_sra_early =
3369 gate_intra_sra, /* gate */
3370 early_intra_sra, /* execute */
3373 0, /* static_pass_number */
3374 TV_TREE_SRA, /* tv_id */
3375 PROP_cfg | PROP_ssa, /* properties_required */
3376 0, /* properties_provided */
3377 0, /* properties_destroyed */
3378 0, /* todo_flags_start */
3381 | TODO_verify_ssa /* todo_flags_finish */
3385 struct gimple_opt_pass pass_sra =
3390 gate_intra_sra, /* gate */
3391 late_intra_sra, /* execute */
3394 0, /* static_pass_number */
3395 TV_TREE_SRA, /* tv_id */
3396 PROP_cfg | PROP_ssa, /* properties_required */
3397 0, /* properties_provided */
3398 0, /* properties_destroyed */
3399 TODO_update_address_taken, /* todo_flags_start */
3402 | TODO_verify_ssa /* todo_flags_finish */
3407 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
3411 is_unused_scalar_param (tree parm)
3414 return (is_gimple_reg (parm)
3415 && (!(name = gimple_default_def (cfun, parm))
3416 || has_zero_uses (name)));
3419 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
3420 examine whether there are any direct or otherwise infeasible ones. If so,
3421 return true, otherwise return false. PARM must be a gimple register with a
3422 non-NULL default definition. */
3425 ptr_parm_has_direct_uses (tree parm)
3427 imm_use_iterator ui;
3429 tree name = gimple_default_def (cfun, parm);
3432 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
3435 use_operand_p use_p;
3437 if (is_gimple_debug (stmt))
3440 /* Valid uses include dereferences on the lhs and the rhs. */
3441 if (gimple_has_lhs (stmt))
3443 tree lhs = gimple_get_lhs (stmt);
3444 while (handled_component_p (lhs))
3445 lhs = TREE_OPERAND (lhs, 0);
3446 if (TREE_CODE (lhs) == MEM_REF
3447 && TREE_OPERAND (lhs, 0) == name
3448 && integer_zerop (TREE_OPERAND (lhs, 1))
3449 && types_compatible_p (TREE_TYPE (lhs),
3450 TREE_TYPE (TREE_TYPE (name)))
3451 && !TREE_THIS_VOLATILE (lhs))
3454 if (gimple_assign_single_p (stmt))
3456 tree rhs = gimple_assign_rhs1 (stmt);
3457 while (handled_component_p (rhs))
3458 rhs = TREE_OPERAND (rhs, 0);
3459 if (TREE_CODE (rhs) == MEM_REF
3460 && TREE_OPERAND (rhs, 0) == name
3461 && integer_zerop (TREE_OPERAND (rhs, 1))
3462 && types_compatible_p (TREE_TYPE (rhs),
3463 TREE_TYPE (TREE_TYPE (name)))
3464 && !TREE_THIS_VOLATILE (rhs))
3467 else if (is_gimple_call (stmt))
3470 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3472 tree arg = gimple_call_arg (stmt, i);
3473 while (handled_component_p (arg))
3474 arg = TREE_OPERAND (arg, 0);
3475 if (TREE_CODE (arg) == MEM_REF
3476 && TREE_OPERAND (arg, 0) == name
3477 && integer_zerop (TREE_OPERAND (arg, 1))
3478 && types_compatible_p (TREE_TYPE (arg),
3479 TREE_TYPE (TREE_TYPE (name)))
3480 && !TREE_THIS_VOLATILE (arg))
3485 /* If the number of valid uses does not match the number of
3486 uses in this stmt there is an unhandled use. */
3487 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
3494 BREAK_FROM_IMM_USE_STMT (ui);
3500 /* Identify candidates for reduction for IPA-SRA based on their type and mark
3501 them in candidate_bitmap. Note that these do not necessarily include
3502 parameter which are unused and thus can be removed. Return true iff any
3503 such candidate has been found. */
3506 find_param_candidates (void)
3513 for (parm = DECL_ARGUMENTS (current_function_decl);
3515 parm = DECL_CHAIN (parm))
3517 tree type = TREE_TYPE (parm);