OSDN Git Service

b7cfcb20c08a42466405595376cb2abb35ab8582
[pf3gnuchains/gcc-fork.git] / gcc / tree-phinodes.c
1 /* Generic routines for manipulating PHIs
2    Copyright (C) 2003, 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING.  If not, write to
18 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA.  */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "varray.h"
28 #include "ggc.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "toplev.h"
32
33 /* Rewriting a function into SSA form can create a huge number of PHIs
34    many of which may be thrown away shortly after their creation if jumps
35    were threaded through PHI nodes.
36
37    While our garbage collection mechanisms will handle this situation, it
38    is extremely wasteful to create nodes and throw them away, especially
39    when the nodes can be reused.
40
41    For PR 8361, we can significantly reduce the number of nodes allocated
42    and thus the total amount of memory allocated by managing PHIs a
43    little.  This additionally helps reduce the amount of work done by the
44    garbage collector.  Similar results have been seen on a wider variety
45    of tests (such as the compiler itself).
46
47    Right now we maintain our free list on a per-function basis.  It may
48    or may not make sense to maintain the free list for the duration of
49    a compilation unit.
50
51    We could also use a zone allocator for these objects since they have
52    a very well defined lifetime.  If someone wants to experiment with that
53    this is the place to try it.
54
55    PHI nodes have different sizes, so we can't have a single list of all
56    the PHI nodes as it would be too expensive to walk down that list to
57    find a PHI of a suitable size.
58
59    Instead we have an array of lists of free PHI nodes.  The array is
60    indexed by the number of PHI alternatives that PHI node can hold.
61    Except for the last array member, which holds all remaining PHI
62    nodes.
63
64    So to find a free PHI node, we compute its index into the free PHI
65    node array and see if there are any elements with an exact match.
66    If so, then we are done.  Otherwise, we test the next larger size
67    up and continue until we are in the last array element.
68
69    We do not actually walk members of the last array element.  While it
70    might allow us to pick up a few reusable PHI nodes, it could potentially
71    be very expensive if the program has released a bunch of large PHI nodes,
72    but keeps asking for even larger PHI nodes.  Experiments have shown that
73    walking the elements of the last array entry would result in finding less
74    than .1% additional reusable PHI nodes.
75
76    Note that we can never have less than two PHI argument slots.  Thus,
77    the -2 on all the calculations below.  */
78
79 #define NUM_BUCKETS 10
80 static GTY ((deletable (""))) tree free_phinodes[NUM_BUCKETS - 2];
81 static unsigned long free_phinode_count;
82
83 static int ideal_phi_node_len (int);
84 static void resize_phi_node (tree *, int);
85
86 #ifdef GATHER_STATISTICS
87 unsigned int phi_nodes_reused;
88 unsigned int phi_nodes_created;
89 #endif
90
91 /* Initialize management of PHIs.  */
92
93 void
94 init_phinodes (void)
95 {
96   int i;
97
98   for (i = 0; i < NUM_BUCKETS - 2; i++)
99     free_phinodes[i] = NULL;
100   free_phinode_count = 0;
101 }
102
103 /* Finalize management of PHIs.  */
104
105 void
106 fini_phinodes (void)
107 {
108   int i;
109
110   for (i = 0; i < NUM_BUCKETS - 2; i++)
111     free_phinodes[i] = NULL;
112   free_phinode_count = 0;
113 }
114
115 /* Dump some simple statistics regarding the re-use of PHI nodes.  */
116
117 #ifdef GATHER_STATISTICS
118 void
119 phinodes_print_statistics (void)
120 {
121   fprintf (stderr, "PHI nodes allocated: %u\n", phi_nodes_created);
122   fprintf (stderr, "PHI nodes reused: %u\n", phi_nodes_reused);
123 }
124 #endif
125
126 /* Allocate a PHI node with at least LEN arguments.  If the free list
127    happens to contain a PHI node with LEN arguments or more, return
128    that one.  */
129
130 static inline tree
131 allocate_phi_node (int len)
132 {
133   tree phi;
134   int bucket = NUM_BUCKETS - 2;
135   int size = (sizeof (struct tree_phi_node)
136               + (len - 1) * sizeof (struct phi_arg_d));
137
138   if (free_phinode_count)
139     for (bucket = len - 2; bucket < NUM_BUCKETS - 2; bucket++)
140       if (free_phinodes[bucket])
141         break;
142
143   /* If our free list has an element, then use it.  */
144   if (bucket < NUM_BUCKETS - 2
145       && PHI_ARG_CAPACITY (free_phinodes[bucket]) >= len)
146     {
147       free_phinode_count--;
148       phi = free_phinodes[bucket];
149       free_phinodes[bucket] = PHI_CHAIN (free_phinodes[bucket]);
150 #ifdef GATHER_STATISTICS
151       phi_nodes_reused++;
152 #endif
153     }
154   else
155     {
156       phi = ggc_alloc (size);
157 #ifdef GATHER_STATISTICS
158       phi_nodes_created++;
159       tree_node_counts[(int) phi_kind]++;
160       tree_node_sizes[(int) phi_kind] += size;
161 #endif
162     }
163
164   return phi;
165 }
166
167 /* Given LEN, the original number of requested PHI arguments, return
168    a new, "ideal" length for the PHI node.  The "ideal" length rounds
169    the total size of the PHI node up to the next power of two bytes.
170
171    Rounding up will not result in wasting any memory since the size request
172    will be rounded up by the GC system anyway.  [ Note this is not entirely
173    true since the original length might have fit on one of the special
174    GC pages. ]  By rounding up, we may avoid the need to reallocate the
175    PHI node later if we increase the number of arguments for the PHI.  */
176
177 static int
178 ideal_phi_node_len (int len)
179 {
180   size_t size, new_size;
181   int log2, new_len;
182
183   /* We do not support allocations of less than two PHI argument slots.  */
184   if (len < 2)
185     len = 2;
186
187   /* Compute the number of bytes of the original request.  */
188   size = sizeof (struct tree_phi_node) + (len - 1) * sizeof (struct phi_arg_d);
189
190   /* Round it up to the next power of two.  */
191   log2 = ceil_log2 (size);
192   new_size = 1 << log2;
193
194   /* Now compute and return the number of PHI argument slots given an
195      ideal size allocation.  */
196   new_len = len + (new_size - size) / sizeof (struct phi_arg_d);
197   return new_len;
198 }
199
200
201 /* Return a PHI node with LEN argument slots for variable VAR.  */
202
203 static tree
204 make_phi_node (tree var, int len)
205 {
206   tree phi;
207   int capacity, i;
208
209   capacity = ideal_phi_node_len (len);
210
211   phi = allocate_phi_node (capacity);
212
213   /* We need to clear the entire PHI node, including the argument
214      portion, because we represent a "missing PHI argument" by placing
215      NULL_TREE in PHI_ARG_DEF.  */
216   memset (phi, 0, (sizeof (struct tree_phi_node) - sizeof (struct phi_arg_d)
217                    + sizeof (struct phi_arg_d) * len));
218   TREE_SET_CODE (phi, PHI_NODE);
219   PHI_NUM_ARGS (phi) = len;
220   PHI_ARG_CAPACITY (phi) = capacity;
221   TREE_TYPE (phi) = TREE_TYPE (var);
222   if (TREE_CODE (var) == SSA_NAME)
223     SET_PHI_RESULT (phi, var);
224   else
225     SET_PHI_RESULT (phi, make_ssa_name (var, phi));
226
227   for (i = 0; i < capacity; i++)
228     {
229       use_operand_p  imm;
230       imm = &(PHI_ARG_IMM_USE_NODE (phi, i));
231       imm->use = &(PHI_ARG_DEF_TREE (phi, i));
232       imm->prev = NULL;
233       imm->next = NULL;
234       imm->stmt = phi;
235     }
236   return phi;
237 }
238
239 /* We no longer need PHI, release it so that it may be reused.  */
240
241 void
242 release_phi_node (tree phi)
243 {
244   int bucket;
245   int len = PHI_ARG_CAPACITY (phi);
246   int x;
247
248   for (x = 0; x < PHI_NUM_ARGS (phi); x++)
249     {
250       use_operand_p  imm;
251       imm = &(PHI_ARG_IMM_USE_NODE (phi, x));
252       delink_imm_use (imm);
253     }
254
255   bucket = len > NUM_BUCKETS - 1 ? NUM_BUCKETS - 1 : len;
256   bucket -= 2;
257   PHI_CHAIN (phi) = free_phinodes[bucket];
258   free_phinodes[bucket] = phi;
259   free_phinode_count++;
260 }
261
262 /* Resize an existing PHI node.  The only way is up.  Return the
263    possibly relocated phi.  */
264
265 static void
266 resize_phi_node (tree *phi, int len)
267 {
268   int old_size, i;
269   tree new_phi;
270
271   gcc_assert (len > PHI_ARG_CAPACITY (*phi));
272
273   /* The garbage collector will not look at the PHI node beyond the
274      first PHI_NUM_ARGS elements.  Therefore, all we have to copy is a
275      portion of the PHI node currently in use.  */
276   old_size = (sizeof (struct tree_phi_node)
277              + (PHI_NUM_ARGS (*phi) - 1) * sizeof (struct phi_arg_d));
278
279   new_phi = allocate_phi_node (len);
280
281   memcpy (new_phi, *phi, old_size);
282
283   for (i = 0; i < PHI_NUM_ARGS (new_phi); i++)
284     {
285       use_operand_p imm, old_imm;
286       imm = &(PHI_ARG_IMM_USE_NODE (new_phi, i));
287       old_imm = &(PHI_ARG_IMM_USE_NODE (*phi, i));
288       imm->use = &(PHI_ARG_DEF_TREE (new_phi, i));
289       relink_imm_use_stmt (imm, old_imm, new_phi);
290     }
291
292   PHI_ARG_CAPACITY (new_phi) = len;
293
294   for (i = PHI_NUM_ARGS (new_phi); i < len; i++)
295     {
296       use_operand_p imm;
297       imm = &(PHI_ARG_IMM_USE_NODE (new_phi, i));
298       imm->use = &(PHI_ARG_DEF_TREE (new_phi, i));
299       imm->prev = NULL;
300       imm->next = NULL;
301       imm->stmt = new_phi;
302     }
303
304
305   *phi = new_phi;
306 }
307
308 /* Reserve PHI arguments for a new edge to basic block BB.  */
309
310 void
311 reserve_phi_args_for_new_edge (basic_block bb)
312 {
313   tree *loc;
314   int len = EDGE_COUNT (bb->preds);
315   int cap = ideal_phi_node_len (len + 4);
316
317   for (loc = &(bb->phi_nodes);
318        *loc;
319        loc = &PHI_CHAIN (*loc))
320     {
321       if (len > PHI_ARG_CAPACITY (*loc))
322         {
323           tree old_phi = *loc;
324
325           resize_phi_node (loc, cap);
326
327           /* The result of the phi is defined by this phi node.  */
328           SSA_NAME_DEF_STMT (PHI_RESULT (*loc)) = *loc;
329
330           release_phi_node (old_phi);
331         }
332
333       /* We represent a "missing PHI argument" by placing NULL_TREE in
334          the corresponding slot.  If PHI arguments were added
335          immediately after an edge is created, this zeroing would not
336          be necessary, but unfortunately this is not the case.  For
337          example, the loop optimizer duplicates several basic blocks,
338          redirects edges, and then fixes up PHI arguments later in
339          batch.  */
340       SET_PHI_ARG_DEF (*loc, len - 1, NULL_TREE);
341
342       PHI_NUM_ARGS (*loc)++;
343     }
344 }
345
346 /* Create a new PHI node for variable VAR at basic block BB.  */
347
348 tree
349 create_phi_node (tree var, basic_block bb)
350 {
351   tree phi;
352
353   phi = make_phi_node (var, EDGE_COUNT (bb->preds));
354
355   /* Add the new PHI node to the list of PHI nodes for block BB.  */
356   PHI_CHAIN (phi) = phi_nodes (bb);
357   bb->phi_nodes = phi;
358
359   /* Associate BB to the PHI node.  */
360   set_bb_for_stmt (phi, bb);
361
362   return phi;
363 }
364
365 /* Add a new argument to PHI node PHI.  DEF is the incoming reaching
366    definition and E is the edge through which DEF reaches PHI.  The new
367    argument is added at the end of the argument list.
368    If PHI has reached its maximum capacity, add a few slots.  In this case,
369    PHI points to the reallocated phi node when we return.  */
370
371 void
372 add_phi_arg (tree phi, tree def, edge e)
373 {
374   basic_block bb = e->dest;
375
376   gcc_assert (bb == bb_for_stmt (phi));
377
378   /* We resize PHI nodes upon edge creation.  We should always have
379      enough room at this point.  */
380   gcc_assert (PHI_NUM_ARGS (phi) <= PHI_ARG_CAPACITY (phi));
381
382   /* We resize PHI nodes upon edge creation.  We should always have
383      enough room at this point.  */
384   gcc_assert (e->dest_idx < (unsigned int) PHI_NUM_ARGS (phi));
385
386   /* Copy propagation needs to know what object occur in abnormal
387      PHI nodes.  This is a convenient place to record such information.  */
388   if (e->flags & EDGE_ABNORMAL)
389     {
390       SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def) = 1;
391       SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)) = 1;
392     }
393
394   SET_PHI_ARG_DEF (phi, e->dest_idx, def);
395   PHI_ARG_NONZERO (phi, e->dest_idx) = false;
396 }
397
398 /* Remove the Ith argument from PHI's argument list.  This routine
399    implements removal by swapping the last alternative with the
400    alternative we want to delete and then shrinking the vector, which
401    is consistent with how we remove an edge from the edge vector.  */
402
403 static void
404 remove_phi_arg_num (tree phi, int i)
405 {
406   int num_elem = PHI_NUM_ARGS (phi);
407
408   gcc_assert (i < num_elem);
409
410   /* Delink the last item, which is being removed.  */
411   delink_imm_use (&(PHI_ARG_IMM_USE_NODE (phi, num_elem - 1)));
412
413   /* If we are not at the last element, switch the last element
414      with the element we want to delete.  */
415   if (i != num_elem - 1)
416     {
417       SET_PHI_ARG_DEF (phi, i, PHI_ARG_DEF (phi, num_elem - 1));
418       PHI_ARG_NONZERO (phi, i) = PHI_ARG_NONZERO (phi, num_elem - 1);
419     }
420
421   /* Shrink the vector and return.  Note that we do not have to clear
422      PHI_ARG_DEF or PHI_ARG_NONZERO because the garbage collector will
423      not look at those elements beyond the first PHI_NUM_ARGS elements
424      of the array.  */
425   PHI_NUM_ARGS (phi)--;
426 }
427
428 /* Remove all PHI arguments associated with edge E.  */
429
430 void
431 remove_phi_args (edge e)
432 {
433   tree phi;
434
435   for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
436     remove_phi_arg_num (phi, e->dest_idx);
437 }
438
439 /* Remove PHI node PHI from basic block BB.  If PREV is non-NULL, it is
440    used as the node immediately before PHI in the linked list.  */
441
442 void
443 remove_phi_node (tree phi, tree prev)
444 {
445   tree *loc;
446
447   if (prev)
448     {
449       loc = &PHI_CHAIN (prev);
450     }
451   else
452     {
453       for (loc = &(bb_for_stmt (phi)->phi_nodes);
454            *loc != phi;
455            loc = &PHI_CHAIN (*loc))
456         ;
457     }
458
459   /* Remove PHI from the chain.  */
460   *loc = PHI_CHAIN (phi);
461
462   /* If we are deleting the PHI node, then we should release the
463      SSA_NAME node so that it can be reused.  */
464   release_phi_node (phi);
465   release_ssa_name (PHI_RESULT (phi));
466 }
467
468
469 /* Reverse the order of PHI nodes in the chain PHI.
470    Return the new head of the chain (old last PHI node).  */
471
472 tree
473 phi_reverse (tree phi)
474 {
475   tree prev = NULL_TREE, next;
476   for (; phi; phi = next)
477     {
478       next = PHI_CHAIN (phi);
479       PHI_CHAIN (phi) = prev;
480       prev = phi;
481     }
482   return prev;
483 }
484
485 #include "gt-tree-phinodes.h"