OSDN Git Service

2006-10-28 Tobias Burnus <burnus@net-b.de>
[pf3gnuchains/gcc-fork.git] / gcc / tree-data-ref.h
1 /* Data references and dependences detectors. 
2    Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3    Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA.  */
21
22 #ifndef GCC_TREE_DATA_REF_H
23 #define GCC_TREE_DATA_REF_H
24
25 #include "lambda.h"
26
27 /** {base_address + offset + init} is the first location accessed by data-ref 
28       in the loop, and step is the stride of data-ref in the loop in bytes;
29       e.g.:
30     
31                        Example 1                      Example 2
32       data-ref         a[j].b[i][j]                   a + x + 16B (a is int*)
33       
34 First location info:
35       base_address     &a                             a
36       offset           j_0*D_j + i_0*D_i + C_a        x
37       init             C_b                            16
38       step             D_j                            4
39       access_fn        NULL                           {16, +, 1}
40
41 Base object info:
42       base_object      a                              NULL
43       access_fn        <access_fns of indexes of b>   NULL
44
45   **/
46 struct first_location_in_loop
47 {
48   tree base_address;
49   tree offset;
50   tree init;
51   tree step;
52   /* Access function related to first location in the loop.  */
53   VEC(tree,heap) *access_fns;
54
55 };
56
57 struct base_object_info
58 {
59   /* The object.  */
60   tree base_object;
61   
62   /* A list of chrecs.  Access functions related to BASE_OBJECT.  */
63   VEC(tree,heap) *access_fns;
64 };
65
66 enum data_ref_type {
67   ARRAY_REF_TYPE,
68   POINTER_REF_TYPE
69 };
70
71 struct data_reference
72 {
73   /* A pointer to the statement that contains this DR.  */
74   tree stmt;
75   
76   /* A pointer to the ARRAY_REF node.  */
77   tree ref;
78
79   /* Auxiliary info specific to a pass.  */
80   int aux;
81
82   /* True when the data reference is in RHS of a stmt.  */
83   bool is_read;
84
85   /* First location accessed by the data-ref in the loop.  */
86   struct first_location_in_loop first_location;
87
88   /* Base object related info.  */
89   struct base_object_info object_info;
90
91   /* Aliasing information.  This field represents the symbol that
92      should be aliased by a pointer holding the address of this data
93      reference.  If the original data reference was a pointer
94      dereference, then this field contains the memory tag that should
95      be used by the new vector-pointer.  */
96   tree memtag;
97   struct ptr_info_def *ptr_info;
98   subvar_t subvars;
99
100   /* Alignment information.  */ 
101   /* The offset of the data-reference from its base in bytes.  */
102   tree misalignment;
103   /* The maximum data-ref's alignment.  */
104   tree aligned_to;
105
106   /* The type of the data-ref.  */
107   enum data_ref_type type;
108 };
109
110 typedef struct data_reference *data_reference_p;
111 DEF_VEC_P(data_reference_p);
112 DEF_VEC_ALLOC_P (data_reference_p, heap);
113
114 #define DR_STMT(DR)                (DR)->stmt
115 #define DR_REF(DR)                 (DR)->ref
116 #define DR_BASE_OBJECT(DR)         (DR)->object_info.base_object
117 #define DR_TYPE(DR)                (DR)->type
118 #define DR_ACCESS_FNS(DR)\
119   (DR_TYPE(DR) == ARRAY_REF_TYPE ?  \
120    (DR)->object_info.access_fns : (DR)->first_location.access_fns)
121 #define DR_ACCESS_FN(DR, I)        VEC_index (tree, DR_ACCESS_FNS (DR), I)
122 #define DR_NUM_DIMENSIONS(DR)      VEC_length (tree, DR_ACCESS_FNS (DR))  
123 #define DR_IS_READ(DR)             (DR)->is_read
124 #define DR_BASE_ADDRESS(DR)        (DR)->first_location.base_address
125 #define DR_OFFSET(DR)              (DR)->first_location.offset
126 #define DR_INIT(DR)                (DR)->first_location.init
127 #define DR_STEP(DR)                (DR)->first_location.step
128 #define DR_MEMTAG(DR)              (DR)->memtag
129 #define DR_ALIGNED_TO(DR)          (DR)->aligned_to
130 #define DR_OFFSET_MISALIGNMENT(DR) (DR)->misalignment
131 #define DR_PTR_INFO(DR)            (DR)->ptr_info
132 #define DR_SUBVARS(DR)             (DR)->subvars
133
134 #define DR_ACCESS_FNS_ADDR(DR)       \
135   (DR_TYPE(DR) == ARRAY_REF_TYPE ?   \
136    &((DR)->object_info.access_fns) : &((DR)->first_location.access_fns))
137 #define DR_SET_ACCESS_FNS(DR, ACC_FNS)         \
138 {                                              \
139   if (DR_TYPE(DR) == ARRAY_REF_TYPE)           \
140     (DR)->object_info.access_fns = ACC_FNS;    \
141   else                                         \
142     (DR)->first_location.access_fns = ACC_FNS; \
143 }
144 #define DR_FREE_ACCESS_FNS(DR)                              \
145 {                                                           \
146   if (DR_TYPE(DR) == ARRAY_REF_TYPE)                        \
147     VEC_free (tree, heap, (DR)->object_info.access_fns);    \
148   else                                                      \
149     VEC_free (tree, heap, (DR)->first_location.access_fns); \
150 }
151
152 enum data_dependence_direction {
153   dir_positive, 
154   dir_negative, 
155   dir_equal, 
156   dir_positive_or_negative,
157   dir_positive_or_equal,
158   dir_negative_or_equal,
159   dir_star,
160   dir_independent
161 };
162
163 /* What is a subscript?  Given two array accesses a subscript is the
164    tuple composed of the access functions for a given dimension.
165    Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
166    subscripts: (f1, g1), (f2, g2), (f3, g3).  These three subscripts
167    are stored in the data_dependence_relation structure under the form
168    of an array of subscripts.  */
169
170 struct subscript
171 {
172   /* A description of the iterations for which the elements are
173      accessed twice.  */
174   tree conflicting_iterations_in_a;
175   tree conflicting_iterations_in_b;
176   
177   /* This field stores the information about the iteration domain
178      validity of the dependence relation.  */
179   tree last_conflict;
180   
181   /* Distance from the iteration that access a conflicting element in
182      A to the iteration that access this same conflicting element in
183      B.  The distance is a tree scalar expression, i.e. a constant or a
184      symbolic expression, but certainly not a chrec function.  */
185   tree distance;
186 };
187
188 typedef struct subscript *subscript_p;
189 DEF_VEC_P(subscript_p);
190 DEF_VEC_ALLOC_P (subscript_p, heap);
191
192 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
193 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
194 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
195 #define SUB_DISTANCE(SUB) SUB->distance
196
197 typedef struct loop *loop_p;
198 DEF_VEC_P(loop_p);
199 DEF_VEC_ALLOC_P (loop_p, heap);
200
201 /* A data_dependence_relation represents a relation between two
202    data_references A and B.  */
203
204 struct data_dependence_relation
205 {
206   
207   struct data_reference *a;
208   struct data_reference *b;
209
210   /* When the dependence relation is affine, it can be represented by
211      a distance vector.  */
212   bool affine_p;
213
214   /* A "yes/no/maybe" field for the dependence relation:
215      
216      - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
217        relation between A and B, and the description of this relation
218        is given in the SUBSCRIPTS array,
219      
220      - when "ARE_DEPENDENT == chrec_known", there is no dependence and
221        SUBSCRIPTS is empty,
222      
223      - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
224        but the analyzer cannot be more specific.  */
225   tree are_dependent;
226   
227   /* For each subscript in the dependence test, there is an element in
228      this array.  This is the attribute that labels the edge A->B of
229      the data_dependence_relation.  */
230   VEC (subscript_p, heap) *subscripts;
231
232   /* The analyzed loop nest.  */
233   VEC (loop_p, heap) *loop_nest;
234
235   /* The classic direction vector.  */
236   VEC (lambda_vector, heap) *dir_vects;
237
238   /* The classic distance vector.  */
239   VEC (lambda_vector, heap) *dist_vects;
240 };
241
242 typedef struct data_dependence_relation *ddr_p;
243 DEF_VEC_P(ddr_p);
244 DEF_VEC_ALLOC_P(ddr_p,heap);
245
246 #define DDR_A(DDR) DDR->a
247 #define DDR_B(DDR) DDR->b
248 #define DDR_AFFINE_P(DDR) DDR->affine_p
249 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
250 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
251 #define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
252 #define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
253
254 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
255 /* The size of the direction/distance vectors: the number of loops in
256    the loop nest.  */
257 #define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
258
259 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
260 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
261 #define DDR_NUM_DIST_VECTS(DDR) \
262   (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
263 #define DDR_NUM_DIR_VECTS(DDR) \
264   (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
265 #define DDR_DIR_VECT(DDR, I) \
266   VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
267 #define DDR_DIST_VECT(DDR, I) \
268   VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
269
270 \f
271
272 extern tree find_data_references_in_loop (struct loop *,
273                                           VEC (data_reference_p, heap) **);
274 extern void compute_data_dependences_for_loop (struct loop *, bool,
275                                                VEC (data_reference_p, heap) **,
276                                                VEC (ddr_p, heap) **);
277 extern void print_direction_vector (FILE *, lambda_vector, int);
278 extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
279 extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
280 extern void dump_subscript (FILE *, struct subscript *);
281 extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
282 extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
283 extern void dump_data_reference (FILE *, struct data_reference *);
284 extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
285 extern void debug_data_dependence_relation (struct data_dependence_relation *);
286 extern void dump_data_dependence_relation (FILE *, 
287                                            struct data_dependence_relation *);
288 extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
289 extern void dump_data_dependence_direction (FILE *, 
290                                             enum data_dependence_direction);
291 extern void free_dependence_relation (struct data_dependence_relation *);
292 extern void free_dependence_relations (VEC (ddr_p, heap) *);
293 extern void free_data_refs (VEC (data_reference_p, heap) *);
294 extern struct data_reference *analyze_array (tree, tree, bool);
295 extern void estimate_iters_using_array (tree, tree);
296
297
298 /* Return the index of the variable VAR in the LOOP_NEST array.  */
299
300 static inline int
301 index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
302 {
303   struct loop *loopi;
304   int var_index;
305
306   for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
307        var_index++)
308     if (loopi->num == var)
309       break;
310
311   return var_index;
312 }
313
314 /* In lambda-code.c  */
315 bool lambda_transform_legal_p (lambda_trans_matrix, int, VEC (ddr_p, heap) *);
316
317 #endif  /* GCC_TREE_DATA_REF_H  */