1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "basic-block.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
52 /* Local declarations. */
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
70 static struct pointer_map_t *edge_to_cases;
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
76 static bitmap touched_switch_bbs;
81 long num_merged_labels;
84 static struct cfg_stats_d cfg_stats;
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
95 static htab_t discriminator_per_locus;
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120 static bool verify_gimple_transaction (gimple);
122 /* Flowgraph optimization and cleanup. */
123 static void gimple_merge_blocks (basic_block, basic_block);
124 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
125 static void remove_bb (basic_block);
126 static edge find_taken_edge_computed_goto (basic_block, tree);
127 static edge find_taken_edge_cond_expr (basic_block, tree);
128 static edge find_taken_edge_switch_expr (basic_block, tree);
129 static tree find_case_label_for_value (gimple, tree);
130 static void group_case_labels_stmt (gimple);
133 init_empty_tree_cfg_for_function (struct function *fn)
135 /* Initialize the basic block array. */
137 profile_status_for_function (fn) = PROFILE_ABSENT;
138 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
139 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
140 basic_block_info_for_function (fn)
141 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
142 VEC_safe_grow_cleared (basic_block, gc,
143 basic_block_info_for_function (fn),
144 initial_cfg_capacity);
146 /* Build a mapping of labels to their associated blocks. */
147 label_to_block_map_for_function (fn)
148 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
149 VEC_safe_grow_cleared (basic_block, gc,
150 label_to_block_map_for_function (fn),
151 initial_cfg_capacity);
153 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
154 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
155 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
156 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
158 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
159 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
160 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
161 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
165 init_empty_tree_cfg (void)
167 init_empty_tree_cfg_for_function (cfun);
170 /*---------------------------------------------------------------------------
172 ---------------------------------------------------------------------------*/
174 /* Entry point to the CFG builder for trees. SEQ is the sequence of
175 statements to be added to the flowgraph. */
178 build_gimple_cfg (gimple_seq seq)
180 /* Register specific gimple functions. */
181 gimple_register_cfg_hooks ();
183 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
185 init_empty_tree_cfg ();
187 found_computed_goto = 0;
190 /* Computed gotos are hell to deal with, especially if there are
191 lots of them with a large number of destinations. So we factor
192 them to a common computed goto location before we build the
193 edge list. After we convert back to normal form, we will un-factor
194 the computed gotos since factoring introduces an unwanted jump. */
195 if (found_computed_goto)
196 factor_computed_gotos ();
198 /* Make sure there is always at least one block, even if it's empty. */
199 if (n_basic_blocks == NUM_FIXED_BLOCKS)
200 create_empty_bb (ENTRY_BLOCK_PTR);
202 /* Adjust the size of the array. */
203 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
204 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
206 /* To speed up statement iterator walks, we first purge dead labels. */
207 cleanup_dead_labels ();
209 /* Group case nodes to reduce the number of edges.
210 We do this after cleaning up dead labels because otherwise we miss
211 a lot of obvious case merging opportunities. */
212 group_case_labels ();
214 /* Create the edges of the flowgraph. */
215 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
218 cleanup_dead_labels ();
219 htab_delete (discriminator_per_locus);
221 /* Debugging dumps. */
223 /* Write the flowgraph to a VCG file. */
225 int local_dump_flags;
226 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
229 gimple_cfg2vcg (vcg_file);
230 dump_end (TDI_vcg, vcg_file);
236 execute_build_cfg (void)
238 gimple_seq body = gimple_body (current_function_decl);
240 build_gimple_cfg (body);
241 gimple_set_body (current_function_decl, NULL);
242 if (dump_file && (dump_flags & TDF_DETAILS))
244 fprintf (dump_file, "Scope blocks:\n");
245 dump_scope_blocks (dump_file, dump_flags);
250 struct gimple_opt_pass pass_build_cfg =
256 execute_build_cfg, /* execute */
259 0, /* static_pass_number */
260 TV_TREE_CFG, /* tv_id */
261 PROP_gimple_leh, /* properties_required */
262 PROP_cfg, /* properties_provided */
263 0, /* properties_destroyed */
264 0, /* todo_flags_start */
265 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
270 /* Return true if T is a computed goto. */
273 computed_goto_p (gimple t)
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
286 factor_computed_gotos (void)
289 tree factored_label_decl = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
306 last = gsi_stmt (gsi);
308 /* Ignore the computed goto we create when we factor the original
310 if (last == factored_computed_goto)
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
330 var = create_tmp_var (ptr_type_node, "gotovar");
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
356 /* Build a flowgraph for the sequence of stmts SEQ. */
359 make_blocks (gimple_seq seq)
361 gimple_stmt_iterator i = gsi_start (seq);
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
367 while (!gsi_end_p (i))
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
385 /* Now add STMT to BB and create the subgraphs for special statement
387 gimple_set_bb (stmt, bb);
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
394 if (stmt_ends_bb_p (stmt))
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
416 start_new_block = true;
420 first_stmt_of_seq = false;
425 /* Create and return a new empty basic block after bb AFTER. */
428 create_bb (void *h, void *e, basic_block after)
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
439 bb->index = last_basic_block;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
464 /*---------------------------------------------------------------------------
466 ---------------------------------------------------------------------------*/
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
471 fold_cond_expr_cond (void)
477 gimple stmt = last_stmt (bb);
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
481 location_t loc = gimple_location (stmt);
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
494 zerop = onep = false;
496 fold_undefer_overflow_warnings (zerop || onep,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
500 gimple_cond_make_false (stmt);
502 gimple_cond_make_true (stmt);
507 /* Join all the blocks in the flowgraph. */
513 struct omp_region *cur_region = NULL;
515 /* Create an edge from entry to the first block with executable
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
519 /* Traverse the basic block array placing edges. */
522 gimple last = last_stmt (bb);
527 enum gimple_code code = gimple_code (last);
531 make_goto_expr_edges (bb);
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
539 make_cond_expr_edges (bb);
543 make_gimple_switch_edges (bb);
547 make_eh_edges (last);
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
582 make_gimple_asm_edges (bb);
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
603 case GIMPLE_OMP_SECTIONS_SWITCH:
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
645 basic_block switch_bb = single_succ (cur_region->entry);
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
670 case GIMPLE_TRANSACTION:
672 tree abort_label = gimple_transaction_label (last);
674 make_edge (bb, label_to_block (abort_label), 0);
680 gcc_assert (!stmt_ends_bb_p (last));
689 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
691 assign_discriminator (gimple_location (last), bb->next_bb);
698 /* Fold COND_EXPR_COND of each COND_EXPR. */
699 fold_cond_expr_cond ();
702 /* Trivial hash function for a location_t. ITEM is a pointer to
703 a hash table entry that maps a location_t to a discriminator. */
706 locus_map_hash (const void *item)
708 return ((const struct locus_discrim_map *) item)->locus;
711 /* Equality function for the locus-to-discriminator map. VA and VB
712 point to the two hash table entries to compare. */
715 locus_map_eq (const void *va, const void *vb)
717 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
718 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
719 return a->locus == b->locus;
722 /* Find the next available discriminator value for LOCUS. The
723 discriminator distinguishes among several basic blocks that
724 share a common locus, allowing for more accurate sample-based
728 next_discriminator_for_locus (location_t locus)
730 struct locus_discrim_map item;
731 struct locus_discrim_map **slot;
734 item.discriminator = 0;
735 slot = (struct locus_discrim_map **)
736 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
737 (hashval_t) locus, INSERT);
739 if (*slot == HTAB_EMPTY_ENTRY)
741 *slot = XNEW (struct locus_discrim_map);
743 (*slot)->locus = locus;
744 (*slot)->discriminator = 0;
746 (*slot)->discriminator++;
747 return (*slot)->discriminator;
750 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
753 same_line_p (location_t locus1, location_t locus2)
755 expanded_location from, to;
757 if (locus1 == locus2)
760 from = expand_location (locus1);
761 to = expand_location (locus2);
763 if (from.line != to.line)
765 if (from.file == to.file)
767 return (from.file != NULL
769 && filename_cmp (from.file, to.file) == 0);
772 /* Assign a unique discriminator value to block BB if it begins at the same
773 LOCUS as its predecessor block. */
776 assign_discriminator (location_t locus, basic_block bb)
778 gimple first_in_to_bb, last_in_to_bb;
780 if (locus == 0 || bb->discriminator != 0)
783 first_in_to_bb = first_non_label_stmt (bb);
784 last_in_to_bb = last_stmt (bb);
785 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
786 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
787 bb->discriminator = next_discriminator_for_locus (locus);
790 /* Create the edges for a GIMPLE_COND starting at block BB. */
793 make_cond_expr_edges (basic_block bb)
795 gimple entry = last_stmt (bb);
796 gimple then_stmt, else_stmt;
797 basic_block then_bb, else_bb;
798 tree then_label, else_label;
800 location_t entry_locus;
803 gcc_assert (gimple_code (entry) == GIMPLE_COND);
805 entry_locus = gimple_location (entry);
807 /* Entry basic blocks for each component. */
808 then_label = gimple_cond_true_label (entry);
809 else_label = gimple_cond_false_label (entry);
810 then_bb = label_to_block (then_label);
811 else_bb = label_to_block (else_label);
812 then_stmt = first_stmt (then_bb);
813 else_stmt = first_stmt (else_bb);
815 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
816 assign_discriminator (entry_locus, then_bb);
817 e->goto_locus = gimple_location (then_stmt);
819 e->goto_block = gimple_block (then_stmt);
820 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
823 assign_discriminator (entry_locus, else_bb);
824 e->goto_locus = gimple_location (else_stmt);
826 e->goto_block = gimple_block (else_stmt);
829 /* We do not need the labels anymore. */
830 gimple_cond_set_true_label (entry, NULL_TREE);
831 gimple_cond_set_false_label (entry, NULL_TREE);
835 /* Called for each element in the hash table (P) as we delete the
836 edge to cases hash table.
838 Clear all the TREE_CHAINs to prevent problems with copying of
839 SWITCH_EXPRs and structure sharing rules, then free the hash table
843 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
844 void *data ATTRIBUTE_UNUSED)
848 for (t = (tree) *value; t; t = next)
850 next = CASE_CHAIN (t);
851 CASE_CHAIN (t) = NULL;
858 /* Start recording information mapping edges to case labels. */
861 start_recording_case_labels (void)
863 gcc_assert (edge_to_cases == NULL);
864 edge_to_cases = pointer_map_create ();
865 touched_switch_bbs = BITMAP_ALLOC (NULL);
868 /* Return nonzero if we are recording information for case labels. */
871 recording_case_labels_p (void)
873 return (edge_to_cases != NULL);
876 /* Stop recording information mapping edges to case labels and
877 remove any information we have recorded. */
879 end_recording_case_labels (void)
883 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
884 pointer_map_destroy (edge_to_cases);
885 edge_to_cases = NULL;
886 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
888 basic_block bb = BASIC_BLOCK (i);
891 gimple stmt = last_stmt (bb);
892 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
893 group_case_labels_stmt (stmt);
896 BITMAP_FREE (touched_switch_bbs);
899 /* If we are inside a {start,end}_recording_cases block, then return
900 a chain of CASE_LABEL_EXPRs from T which reference E.
902 Otherwise return NULL. */
905 get_cases_for_edge (edge e, gimple t)
910 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
911 chains available. Return NULL so the caller can detect this case. */
912 if (!recording_case_labels_p ())
915 slot = pointer_map_contains (edge_to_cases, e);
919 /* If we did not find E in the hash table, then this must be the first
920 time we have been queried for information about E & T. Add all the
921 elements from T to the hash table then perform the query again. */
923 n = gimple_switch_num_labels (t);
924 for (i = 0; i < n; i++)
926 tree elt = gimple_switch_label (t, i);
927 tree lab = CASE_LABEL (elt);
928 basic_block label_bb = label_to_block (lab);
929 edge this_edge = find_edge (e->src, label_bb);
931 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
933 slot = pointer_map_insert (edge_to_cases, this_edge);
934 CASE_CHAIN (elt) = (tree) *slot;
938 return (tree) *pointer_map_contains (edge_to_cases, e);
941 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
944 make_gimple_switch_edges (basic_block bb)
946 gimple entry = last_stmt (bb);
947 location_t entry_locus;
950 entry_locus = gimple_location (entry);
952 n = gimple_switch_num_labels (entry);
954 for (i = 0; i < n; ++i)
956 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
957 basic_block label_bb = label_to_block (lab);
958 make_edge (bb, label_bb, 0);
959 assign_discriminator (entry_locus, label_bb);
964 /* Return the basic block holding label DEST. */
967 label_to_block_fn (struct function *ifun, tree dest)
969 int uid = LABEL_DECL_UID (dest);
971 /* We would die hard when faced by an undefined label. Emit a label to
972 the very first basic block. This will hopefully make even the dataflow
973 and undefined variable warnings quite right. */
974 if (seen_error () && uid < 0)
976 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
979 stmt = gimple_build_label (dest);
980 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
981 uid = LABEL_DECL_UID (dest);
983 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
984 <= (unsigned int) uid)
986 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
989 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
990 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
993 make_abnormal_goto_edges (basic_block bb, bool for_call)
995 basic_block target_bb;
996 gimple_stmt_iterator gsi;
998 FOR_EACH_BB (target_bb)
999 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1001 gimple label_stmt = gsi_stmt (gsi);
1004 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1007 target = gimple_label_label (label_stmt);
1009 /* Make an edge to every label block that has been marked as a
1010 potential target for a computed goto or a non-local goto. */
1011 if ((FORCED_LABEL (target) && !for_call)
1012 || (DECL_NONLOCAL (target) && for_call))
1014 make_edge (bb, target_bb, EDGE_ABNORMAL);
1020 /* Create edges for a goto statement at block BB. */
1023 make_goto_expr_edges (basic_block bb)
1025 gimple_stmt_iterator last = gsi_last_bb (bb);
1026 gimple goto_t = gsi_stmt (last);
1028 /* A simple GOTO creates normal edges. */
1029 if (simple_goto_p (goto_t))
1031 tree dest = gimple_goto_dest (goto_t);
1032 basic_block label_bb = label_to_block (dest);
1033 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1034 e->goto_locus = gimple_location (goto_t);
1035 assign_discriminator (e->goto_locus, label_bb);
1037 e->goto_block = gimple_block (goto_t);
1038 gsi_remove (&last, true);
1042 /* A computed GOTO creates abnormal edges. */
1043 make_abnormal_goto_edges (bb, false);
1046 /* Create edges for an asm statement with labels at block BB. */
1049 make_gimple_asm_edges (basic_block bb)
1051 gimple stmt = last_stmt (bb);
1052 location_t stmt_loc = gimple_location (stmt);
1053 int i, n = gimple_asm_nlabels (stmt);
1055 for (i = 0; i < n; ++i)
1057 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1058 basic_block label_bb = label_to_block (label);
1059 make_edge (bb, label_bb, 0);
1060 assign_discriminator (stmt_loc, label_bb);
1064 /*---------------------------------------------------------------------------
1066 ---------------------------------------------------------------------------*/
1068 /* Cleanup useless labels in basic blocks. This is something we wish
1069 to do early because it allows us to group case labels before creating
1070 the edges for the CFG, and it speeds up block statement iterators in
1071 all passes later on.
1072 We rerun this pass after CFG is created, to get rid of the labels that
1073 are no longer referenced. After then we do not run it any more, since
1074 (almost) no new labels should be created. */
1076 /* A map from basic block index to the leading label of that block. */
1077 static struct label_record
1082 /* True if the label is referenced from somewhere. */
1086 /* Given LABEL return the first label in the same basic block. */
1089 main_block_label (tree label)
1091 basic_block bb = label_to_block (label);
1092 tree main_label = label_for_bb[bb->index].label;
1094 /* label_to_block possibly inserted undefined label into the chain. */
1097 label_for_bb[bb->index].label = label;
1101 label_for_bb[bb->index].used = true;
1105 /* Clean up redundant labels within the exception tree. */
1108 cleanup_dead_labels_eh (void)
1115 if (cfun->eh == NULL)
1118 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1119 if (lp && lp->post_landing_pad)
1121 lab = main_block_label (lp->post_landing_pad);
1122 if (lab != lp->post_landing_pad)
1124 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1125 EH_LANDING_PAD_NR (lab) = lp->index;
1129 FOR_ALL_EH_REGION (r)
1133 case ERT_MUST_NOT_THROW:
1139 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1143 c->label = main_block_label (lab);
1148 case ERT_ALLOWED_EXCEPTIONS:
1149 lab = r->u.allowed.label;
1151 r->u.allowed.label = main_block_label (lab);
1157 /* Cleanup redundant labels. This is a three-step process:
1158 1) Find the leading label for each block.
1159 2) Redirect all references to labels to the leading labels.
1160 3) Cleanup all useless labels. */
1163 cleanup_dead_labels (void)
1166 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1168 /* Find a suitable label for each block. We use the first user-defined
1169 label if there is one, or otherwise just the first label we see. */
1172 gimple_stmt_iterator i;
1174 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1177 gimple stmt = gsi_stmt (i);
1179 if (gimple_code (stmt) != GIMPLE_LABEL)
1182 label = gimple_label_label (stmt);
1184 /* If we have not yet seen a label for the current block,
1185 remember this one and see if there are more labels. */
1186 if (!label_for_bb[bb->index].label)
1188 label_for_bb[bb->index].label = label;
1192 /* If we did see a label for the current block already, but it
1193 is an artificially created label, replace it if the current
1194 label is a user defined label. */
1195 if (!DECL_ARTIFICIAL (label)
1196 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1198 label_for_bb[bb->index].label = label;
1204 /* Now redirect all jumps/branches to the selected label.
1205 First do so for each block ending in a control statement. */
1208 gimple stmt = last_stmt (bb);
1209 tree label, new_label;
1214 switch (gimple_code (stmt))
1217 label = gimple_cond_true_label (stmt);
1220 new_label = main_block_label (label);
1221 if (new_label != label)
1222 gimple_cond_set_true_label (stmt, new_label);
1225 label = gimple_cond_false_label (stmt);
1228 new_label = main_block_label (label);
1229 if (new_label != label)
1230 gimple_cond_set_false_label (stmt, new_label);
1236 size_t i, n = gimple_switch_num_labels (stmt);
1238 /* Replace all destination labels. */
1239 for (i = 0; i < n; ++i)
1241 tree case_label = gimple_switch_label (stmt, i);
1242 label = CASE_LABEL (case_label);
1243 new_label = main_block_label (label);
1244 if (new_label != label)
1245 CASE_LABEL (case_label) = new_label;
1252 int i, n = gimple_asm_nlabels (stmt);
1254 for (i = 0; i < n; ++i)
1256 tree cons = gimple_asm_label_op (stmt, i);
1257 tree label = main_block_label (TREE_VALUE (cons));
1258 TREE_VALUE (cons) = label;
1263 /* We have to handle gotos until they're removed, and we don't
1264 remove them until after we've created the CFG edges. */
1266 if (!computed_goto_p (stmt))
1268 label = gimple_goto_dest (stmt);
1269 new_label = main_block_label (label);
1270 if (new_label != label)
1271 gimple_goto_set_dest (stmt, new_label);
1275 case GIMPLE_TRANSACTION:
1277 tree label = gimple_transaction_label (stmt);
1280 tree new_label = main_block_label (label);
1281 if (new_label != label)
1282 gimple_transaction_set_label (stmt, new_label);
1292 /* Do the same for the exception region tree labels. */
1293 cleanup_dead_labels_eh ();
1295 /* Finally, purge dead labels. All user-defined labels and labels that
1296 can be the target of non-local gotos and labels which have their
1297 address taken are preserved. */
1300 gimple_stmt_iterator i;
1301 tree label_for_this_bb = label_for_bb[bb->index].label;
1303 if (!label_for_this_bb)
1306 /* If the main label of the block is unused, we may still remove it. */
1307 if (!label_for_bb[bb->index].used)
1308 label_for_this_bb = NULL;
1310 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1313 gimple stmt = gsi_stmt (i);
1315 if (gimple_code (stmt) != GIMPLE_LABEL)
1318 label = gimple_label_label (stmt);
1320 if (label == label_for_this_bb
1321 || !DECL_ARTIFICIAL (label)
1322 || DECL_NONLOCAL (label)
1323 || FORCED_LABEL (label))
1326 gsi_remove (&i, true);
1330 free (label_for_bb);
1333 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1334 the ones jumping to the same label.
1335 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1338 group_case_labels_stmt (gimple stmt)
1340 int old_size = gimple_switch_num_labels (stmt);
1341 int i, j, new_size = old_size;
1342 tree default_case = NULL_TREE;
1343 tree default_label = NULL_TREE;
1346 /* The default label is always the first case in a switch
1347 statement after gimplification if it was not optimized
1349 if (!CASE_LOW (gimple_switch_default_label (stmt))
1350 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1352 default_case = gimple_switch_default_label (stmt);
1353 default_label = CASE_LABEL (default_case);
1357 has_default = false;
1359 /* Look for possible opportunities to merge cases. */
1364 while (i < old_size)
1366 tree base_case, base_label, base_high;
1367 base_case = gimple_switch_label (stmt, i);
1369 gcc_assert (base_case);
1370 base_label = CASE_LABEL (base_case);
1372 /* Discard cases that have the same destination as the
1374 if (base_label == default_label)
1376 gimple_switch_set_label (stmt, i, NULL_TREE);
1382 base_high = CASE_HIGH (base_case)
1383 ? CASE_HIGH (base_case)
1384 : CASE_LOW (base_case);
1387 /* Try to merge case labels. Break out when we reach the end
1388 of the label vector or when we cannot merge the next case
1389 label with the current one. */
1390 while (i < old_size)
1392 tree merge_case = gimple_switch_label (stmt, i);
1393 tree merge_label = CASE_LABEL (merge_case);
1394 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1397 /* Merge the cases if they jump to the same place,
1398 and their ranges are consecutive. */
1399 if (merge_label == base_label
1400 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1403 base_high = CASE_HIGH (merge_case) ?
1404 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1405 CASE_HIGH (base_case) = base_high;
1406 gimple_switch_set_label (stmt, i, NULL_TREE);
1415 /* Compress the case labels in the label vector, and adjust the
1416 length of the vector. */
1417 for (i = 0, j = 0; i < new_size; i++)
1419 while (! gimple_switch_label (stmt, j))
1421 gimple_switch_set_label (stmt, i,
1422 gimple_switch_label (stmt, j++));
1425 gcc_assert (new_size <= old_size);
1426 gimple_switch_set_num_labels (stmt, new_size);
1429 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1430 and scan the sorted vector of cases. Combine the ones jumping to the
1434 group_case_labels (void)
1440 gimple stmt = last_stmt (bb);
1441 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1442 group_case_labels_stmt (stmt);
1446 /* Checks whether we can merge block B into block A. */
1449 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1452 gimple_stmt_iterator gsi;
1455 if (!single_succ_p (a))
1458 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH | EDGE_PRESERVE))
1461 if (single_succ (a) != b)
1464 if (!single_pred_p (b))
1467 if (b == EXIT_BLOCK_PTR)
1470 /* If A ends by a statement causing exceptions or something similar, we
1471 cannot merge the blocks. */
1472 stmt = last_stmt (a);
1473 if (stmt && stmt_ends_bb_p (stmt))
1476 /* Do not allow a block with only a non-local label to be merged. */
1478 && gimple_code (stmt) == GIMPLE_LABEL
1479 && DECL_NONLOCAL (gimple_label_label (stmt)))
1482 /* Examine the labels at the beginning of B. */
1483 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1486 stmt = gsi_stmt (gsi);
1487 if (gimple_code (stmt) != GIMPLE_LABEL)
1489 lab = gimple_label_label (stmt);
1491 /* Do not remove user forced labels or for -O0 any user labels. */
1492 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1496 /* Protect the loop latches. */
1497 if (current_loops && b->loop_father->latch == b)
1500 /* It must be possible to eliminate all phi nodes in B. If ssa form
1501 is not up-to-date and a name-mapping is registered, we cannot eliminate
1502 any phis. Symbols marked for renaming are never a problem though. */
1503 phis = phi_nodes (b);
1504 if (!gimple_seq_empty_p (phis)
1505 && name_mappings_registered_p ())
1508 /* When not optimizing, don't merge if we'd lose goto_locus. */
1510 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1512 location_t goto_locus = single_succ_edge (a)->goto_locus;
1513 gimple_stmt_iterator prev, next;
1514 prev = gsi_last_nondebug_bb (a);
1515 next = gsi_after_labels (b);
1516 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1517 gsi_next_nondebug (&next);
1518 if ((gsi_end_p (prev)
1519 || gimple_location (gsi_stmt (prev)) != goto_locus)
1520 && (gsi_end_p (next)
1521 || gimple_location (gsi_stmt (next)) != goto_locus))
1528 /* Return true if the var whose chain of uses starts at PTR has no
1531 has_zero_uses_1 (const ssa_use_operand_t *head)
1533 const ssa_use_operand_t *ptr;
1535 for (ptr = head->next; ptr != head; ptr = ptr->next)
1536 if (!is_gimple_debug (USE_STMT (ptr)))
1542 /* Return true if the var whose chain of uses starts at PTR has a
1543 single nondebug use. Set USE_P and STMT to that single nondebug
1544 use, if so, or to NULL otherwise. */
1546 single_imm_use_1 (const ssa_use_operand_t *head,
1547 use_operand_p *use_p, gimple *stmt)
1549 ssa_use_operand_t *ptr, *single_use = 0;
1551 for (ptr = head->next; ptr != head; ptr = ptr->next)
1552 if (!is_gimple_debug (USE_STMT (ptr)))
1563 *use_p = single_use;
1566 *stmt = single_use ? single_use->loc.stmt : NULL;
1568 return !!single_use;
1571 /* Replaces all uses of NAME by VAL. */
1574 replace_uses_by (tree name, tree val)
1576 imm_use_iterator imm_iter;
1581 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1583 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1585 replace_exp (use, val);
1587 if (gimple_code (stmt) == GIMPLE_PHI)
1589 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1590 if (e->flags & EDGE_ABNORMAL)
1592 /* This can only occur for virtual operands, since
1593 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1594 would prevent replacement. */
1595 gcc_checking_assert (!is_gimple_reg (name));
1596 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1601 if (gimple_code (stmt) != GIMPLE_PHI)
1603 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1604 gimple orig_stmt = stmt;
1607 /* Mark the block if we changed the last stmt in it. */
1608 if (cfgcleanup_altered_bbs
1609 && stmt_ends_bb_p (stmt))
1610 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1612 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1613 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1614 only change sth from non-invariant to invariant, and only
1615 when propagating constants. */
1616 if (is_gimple_min_invariant (val))
1617 for (i = 0; i < gimple_num_ops (stmt); i++)
1619 tree op = gimple_op (stmt, i);
1620 /* Operands may be empty here. For example, the labels
1621 of a GIMPLE_COND are nulled out following the creation
1622 of the corresponding CFG edges. */
1623 if (op && TREE_CODE (op) == ADDR_EXPR)
1624 recompute_tree_invariant_for_addr_expr (op);
1627 if (fold_stmt (&gsi))
1628 stmt = gsi_stmt (gsi);
1630 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1631 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1637 gcc_checking_assert (has_zero_uses (name));
1639 /* Also update the trees stored in loop structures. */
1645 FOR_EACH_LOOP (li, loop, 0)
1647 substitute_in_loop_info (loop, name, val);
1652 /* Merge block B into block A. */
1655 gimple_merge_blocks (basic_block a, basic_block b)
1657 gimple_stmt_iterator last, gsi, psi;
1658 gimple_seq phis = phi_nodes (b);
1661 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1663 /* Remove all single-valued PHI nodes from block B of the form
1664 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1665 gsi = gsi_last_bb (a);
1666 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1668 gimple phi = gsi_stmt (psi);
1669 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1671 bool may_replace_uses = !is_gimple_reg (def)
1672 || may_propagate_copy (def, use);
1674 /* In case we maintain loop closed ssa form, do not propagate arguments
1675 of loop exit phi nodes. */
1677 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1678 && is_gimple_reg (def)
1679 && TREE_CODE (use) == SSA_NAME
1680 && a->loop_father != b->loop_father)
1681 may_replace_uses = false;
1683 if (!may_replace_uses)
1685 gcc_assert (is_gimple_reg (def));
1687 /* Note that just emitting the copies is fine -- there is no problem
1688 with ordering of phi nodes. This is because A is the single
1689 predecessor of B, therefore results of the phi nodes cannot
1690 appear as arguments of the phi nodes. */
1691 copy = gimple_build_assign (def, use);
1692 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1693 remove_phi_node (&psi, false);
1697 /* If we deal with a PHI for virtual operands, we can simply
1698 propagate these without fussing with folding or updating
1700 if (!is_gimple_reg (def))
1702 imm_use_iterator iter;
1703 use_operand_p use_p;
1706 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1707 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1708 SET_USE (use_p, use);
1710 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1711 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1714 replace_uses_by (def, use);
1716 remove_phi_node (&psi, true);
1720 /* Ensure that B follows A. */
1721 move_block_after (b, a);
1723 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1724 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1726 /* Remove labels from B and set gimple_bb to A for other statements. */
1727 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1729 gimple stmt = gsi_stmt (gsi);
1730 if (gimple_code (stmt) == GIMPLE_LABEL)
1732 tree label = gimple_label_label (stmt);
1735 gsi_remove (&gsi, false);
1737 /* Now that we can thread computed gotos, we might have
1738 a situation where we have a forced label in block B
1739 However, the label at the start of block B might still be
1740 used in other ways (think about the runtime checking for
1741 Fortran assigned gotos). So we can not just delete the
1742 label. Instead we move the label to the start of block A. */
1743 if (FORCED_LABEL (label))
1745 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1746 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1748 /* Other user labels keep around in a form of a debug stmt. */
1749 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1751 gimple dbg = gimple_build_debug_bind (label,
1754 gimple_debug_bind_reset_value (dbg);
1755 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1758 lp_nr = EH_LANDING_PAD_NR (label);
1761 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1762 lp->post_landing_pad = NULL;
1767 gimple_set_bb (stmt, a);
1772 /* Merge the sequences. */
1773 last = gsi_last_bb (a);
1774 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1775 set_bb_seq (b, NULL);
1777 if (cfgcleanup_altered_bbs)
1778 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1782 /* Return the one of two successors of BB that is not reachable by a
1783 complex edge, if there is one. Else, return BB. We use
1784 this in optimizations that use post-dominators for their heuristics,
1785 to catch the cases in C++ where function calls are involved. */
1788 single_noncomplex_succ (basic_block bb)
1791 if (EDGE_COUNT (bb->succs) != 2)
1794 e0 = EDGE_SUCC (bb, 0);
1795 e1 = EDGE_SUCC (bb, 1);
1796 if (e0->flags & EDGE_COMPLEX)
1798 if (e1->flags & EDGE_COMPLEX)
1804 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1807 notice_special_calls (gimple call)
1809 int flags = gimple_call_flags (call);
1811 if (flags & ECF_MAY_BE_ALLOCA)
1812 cfun->calls_alloca = true;
1813 if (flags & ECF_RETURNS_TWICE)
1814 cfun->calls_setjmp = true;
1818 /* Clear flags set by notice_special_calls. Used by dead code removal
1819 to update the flags. */
1822 clear_special_calls (void)
1824 cfun->calls_alloca = false;
1825 cfun->calls_setjmp = false;
1828 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1831 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1833 /* Since this block is no longer reachable, we can just delete all
1834 of its PHI nodes. */
1835 remove_phi_nodes (bb);
1837 /* Remove edges to BB's successors. */
1838 while (EDGE_COUNT (bb->succs) > 0)
1839 remove_edge (EDGE_SUCC (bb, 0));
1843 /* Remove statements of basic block BB. */
1846 remove_bb (basic_block bb)
1848 gimple_stmt_iterator i;
1852 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1853 if (dump_flags & TDF_DETAILS)
1855 dump_bb (bb, dump_file, 0);
1856 fprintf (dump_file, "\n");
1862 struct loop *loop = bb->loop_father;
1864 /* If a loop gets removed, clean up the information associated
1866 if (loop->latch == bb
1867 || loop->header == bb)
1868 free_numbers_of_iterations_estimates_loop (loop);
1871 /* Remove all the instructions in the block. */
1872 if (bb_seq (bb) != NULL)
1874 /* Walk backwards so as to get a chance to substitute all
1875 released DEFs into debug stmts. See
1876 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1878 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1880 gimple stmt = gsi_stmt (i);
1881 if (gimple_code (stmt) == GIMPLE_LABEL
1882 && (FORCED_LABEL (gimple_label_label (stmt))
1883 || DECL_NONLOCAL (gimple_label_label (stmt))))
1886 gimple_stmt_iterator new_gsi;
1888 /* A non-reachable non-local label may still be referenced.
1889 But it no longer needs to carry the extra semantics of
1891 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1893 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1894 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1897 new_bb = bb->prev_bb;
1898 new_gsi = gsi_start_bb (new_bb);
1899 gsi_remove (&i, false);
1900 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1904 /* Release SSA definitions if we are in SSA. Note that we
1905 may be called when not in SSA. For example,
1906 final_cleanup calls this function via
1907 cleanup_tree_cfg. */
1908 if (gimple_in_ssa_p (cfun))
1909 release_defs (stmt);
1911 gsi_remove (&i, true);
1915 i = gsi_last_bb (bb);
1921 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1922 bb->il.gimple = NULL;
1926 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1927 predicate VAL, return the edge that will be taken out of the block.
1928 If VAL does not match a unique edge, NULL is returned. */
1931 find_taken_edge (basic_block bb, tree val)
1935 stmt = last_stmt (bb);
1938 gcc_assert (is_ctrl_stmt (stmt));
1943 if (!is_gimple_min_invariant (val))
1946 if (gimple_code (stmt) == GIMPLE_COND)
1947 return find_taken_edge_cond_expr (bb, val);
1949 if (gimple_code (stmt) == GIMPLE_SWITCH)
1950 return find_taken_edge_switch_expr (bb, val);
1952 if (computed_goto_p (stmt))
1954 /* Only optimize if the argument is a label, if the argument is
1955 not a label then we can not construct a proper CFG.
1957 It may be the case that we only need to allow the LABEL_REF to
1958 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1959 appear inside a LABEL_EXPR just to be safe. */
1960 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1961 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1962 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1969 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1970 statement, determine which of the outgoing edges will be taken out of the
1971 block. Return NULL if either edge may be taken. */
1974 find_taken_edge_computed_goto (basic_block bb, tree val)
1979 dest = label_to_block (val);
1982 e = find_edge (bb, dest);
1983 gcc_assert (e != NULL);
1989 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1990 statement, determine which of the two edges will be taken out of the
1991 block. Return NULL if either edge may be taken. */
1994 find_taken_edge_cond_expr (basic_block bb, tree val)
1996 edge true_edge, false_edge;
1998 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2000 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2001 return (integer_zerop (val) ? false_edge : true_edge);
2004 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2005 statement, determine which edge will be taken out of the block. Return
2006 NULL if any edge may be taken. */
2009 find_taken_edge_switch_expr (basic_block bb, tree val)
2011 basic_block dest_bb;
2016 switch_stmt = last_stmt (bb);
2017 taken_case = find_case_label_for_value (switch_stmt, val);
2018 dest_bb = label_to_block (CASE_LABEL (taken_case));
2020 e = find_edge (bb, dest_bb);
2026 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2027 We can make optimal use here of the fact that the case labels are
2028 sorted: We can do a binary search for a case matching VAL. */
2031 find_case_label_for_value (gimple switch_stmt, tree val)
2033 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2034 tree default_case = gimple_switch_default_label (switch_stmt);
2036 for (low = 0, high = n; high - low > 1; )
2038 size_t i = (high + low) / 2;
2039 tree t = gimple_switch_label (switch_stmt, i);
2042 /* Cache the result of comparing CASE_LOW and val. */
2043 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2050 if (CASE_HIGH (t) == NULL)
2052 /* A singe-valued case label. */
2058 /* A case range. We can only handle integer ranges. */
2059 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2064 return default_case;
2068 /* Dump a basic block on stderr. */
2071 gimple_debug_bb (basic_block bb)
2073 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2077 /* Dump basic block with index N on stderr. */
2080 gimple_debug_bb_n (int n)
2082 gimple_debug_bb (BASIC_BLOCK (n));
2083 return BASIC_BLOCK (n);
2087 /* Dump the CFG on stderr.
2089 FLAGS are the same used by the tree dumping functions
2090 (see TDF_* in tree-pass.h). */
2093 gimple_debug_cfg (int flags)
2095 gimple_dump_cfg (stderr, flags);
2099 /* Dump the program showing basic block boundaries on the given FILE.
2101 FLAGS are the same used by the tree dumping functions (see TDF_* in
2105 gimple_dump_cfg (FILE *file, int flags)
2107 if (flags & TDF_DETAILS)
2109 dump_function_header (file, current_function_decl, flags);
2110 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2111 n_basic_blocks, n_edges, last_basic_block);
2113 brief_dump_cfg (file);
2114 fprintf (file, "\n");
2117 if (flags & TDF_STATS)
2118 dump_cfg_stats (file);
2120 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2124 /* Dump CFG statistics on FILE. */
2127 dump_cfg_stats (FILE *file)
2129 static long max_num_merged_labels = 0;
2130 unsigned long size, total = 0;
2133 const char * const fmt_str = "%-30s%-13s%12s\n";
2134 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2135 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2136 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2137 const char *funcname
2138 = lang_hooks.decl_printable_name (current_function_decl, 2);
2141 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2143 fprintf (file, "---------------------------------------------------------\n");
2144 fprintf (file, fmt_str, "", " Number of ", "Memory");
2145 fprintf (file, fmt_str, "", " instances ", "used ");
2146 fprintf (file, "---------------------------------------------------------\n");
2148 size = n_basic_blocks * sizeof (struct basic_block_def);
2150 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2151 SCALE (size), LABEL (size));
2155 num_edges += EDGE_COUNT (bb->succs);
2156 size = num_edges * sizeof (struct edge_def);
2158 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2160 fprintf (file, "---------------------------------------------------------\n");
2161 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2163 fprintf (file, "---------------------------------------------------------\n");
2164 fprintf (file, "\n");
2166 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2167 max_num_merged_labels = cfg_stats.num_merged_labels;
2169 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2170 cfg_stats.num_merged_labels, max_num_merged_labels);
2172 fprintf (file, "\n");
2176 /* Dump CFG statistics on stderr. Keep extern so that it's always
2177 linked in the final executable. */
2180 debug_cfg_stats (void)
2182 dump_cfg_stats (stderr);
2186 /* Dump the flowgraph to a .vcg FILE. */
2189 gimple_cfg2vcg (FILE *file)
2194 const char *funcname
2195 = lang_hooks.decl_printable_name (current_function_decl, 2);
2197 /* Write the file header. */
2198 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2199 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2200 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2202 /* Write blocks and edges. */
2203 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2205 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2208 if (e->flags & EDGE_FAKE)
2209 fprintf (file, " linestyle: dotted priority: 10");
2211 fprintf (file, " linestyle: solid priority: 100");
2213 fprintf (file, " }\n");
2219 enum gimple_code head_code, end_code;
2220 const char *head_name, *end_name;
2223 gimple first = first_stmt (bb);
2224 gimple last = last_stmt (bb);
2228 head_code = gimple_code (first);
2229 head_name = gimple_code_name[head_code];
2230 head_line = get_lineno (first);
2233 head_name = "no-statement";
2237 end_code = gimple_code (last);
2238 end_name = gimple_code_name[end_code];
2239 end_line = get_lineno (last);
2242 end_name = "no-statement";
2244 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2245 bb->index, bb->index, head_name, head_line, end_name,
2248 FOR_EACH_EDGE (e, ei, bb->succs)
2250 if (e->dest == EXIT_BLOCK_PTR)
2251 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2253 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2255 if (e->flags & EDGE_FAKE)
2256 fprintf (file, " priority: 10 linestyle: dotted");
2258 fprintf (file, " priority: 100 linestyle: solid");
2260 fprintf (file, " }\n");
2263 if (bb->next_bb != EXIT_BLOCK_PTR)
2267 fputs ("}\n\n", file);
2272 /*---------------------------------------------------------------------------
2273 Miscellaneous helpers
2274 ---------------------------------------------------------------------------*/
2276 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2277 flow. Transfers of control flow associated with EH are excluded. */
2280 call_can_make_abnormal_goto (gimple t)
2282 /* If the function has no non-local labels, then a call cannot make an
2283 abnormal transfer of control. */
2284 if (!cfun->has_nonlocal_label)
2287 /* Likewise if the call has no side effects. */
2288 if (!gimple_has_side_effects (t))
2291 /* Likewise if the called function is leaf. */
2292 if (gimple_call_flags (t) & ECF_LEAF)
2299 /* Return true if T can make an abnormal transfer of control flow.
2300 Transfers of control flow associated with EH are excluded. */
2303 stmt_can_make_abnormal_goto (gimple t)
2305 if (computed_goto_p (t))
2307 if (is_gimple_call (t))
2308 return call_can_make_abnormal_goto (t);
2313 /* Return true if T represents a stmt that always transfers control. */
2316 is_ctrl_stmt (gimple t)
2318 switch (gimple_code (t))
2332 /* Return true if T is a statement that may alter the flow of control
2333 (e.g., a call to a non-returning function). */
2336 is_ctrl_altering_stmt (gimple t)
2340 switch (gimple_code (t))
2344 int flags = gimple_call_flags (t);
2346 /* A call alters control flow if it can make an abnormal goto. */
2347 if (call_can_make_abnormal_goto (t))
2350 /* A call also alters control flow if it does not return. */
2351 if (flags & ECF_NORETURN)
2354 /* TM ending statements have backedges out of the transaction.
2355 Return true so we split the basic block containing them.
2356 Note that the TM_BUILTIN test is merely an optimization. */
2357 if ((flags & ECF_TM_BUILTIN)
2358 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2361 /* BUILT_IN_RETURN call is same as return statement. */
2362 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2367 case GIMPLE_EH_DISPATCH:
2368 /* EH_DISPATCH branches to the individual catch handlers at
2369 this level of a try or allowed-exceptions region. It can
2370 fallthru to the next statement as well. */
2374 if (gimple_asm_nlabels (t) > 0)
2379 /* OpenMP directives alter control flow. */
2382 case GIMPLE_TRANSACTION:
2383 /* A transaction start alters control flow. */
2390 /* If a statement can throw, it alters control flow. */
2391 return stmt_can_throw_internal (t);
2395 /* Return true if T is a simple local goto. */
2398 simple_goto_p (gimple t)
2400 return (gimple_code (t) == GIMPLE_GOTO
2401 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2405 /* Return true if STMT should start a new basic block. PREV_STMT is
2406 the statement preceding STMT. It is used when STMT is a label or a
2407 case label. Labels should only start a new basic block if their
2408 previous statement wasn't a label. Otherwise, sequence of labels
2409 would generate unnecessary basic blocks that only contain a single
2413 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2418 /* Labels start a new basic block only if the preceding statement
2419 wasn't a label of the same type. This prevents the creation of
2420 consecutive blocks that have nothing but a single label. */
2421 if (gimple_code (stmt) == GIMPLE_LABEL)
2423 /* Nonlocal and computed GOTO targets always start a new block. */
2424 if (DECL_NONLOCAL (gimple_label_label (stmt))
2425 || FORCED_LABEL (gimple_label_label (stmt)))
2428 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2430 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2433 cfg_stats.num_merged_labels++;
2444 /* Return true if T should end a basic block. */
2447 stmt_ends_bb_p (gimple t)
2449 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2452 /* Remove block annotations and other data structures. */
2455 delete_tree_cfg_annotations (void)
2457 label_to_block_map = NULL;
2461 /* Return the first statement in basic block BB. */
2464 first_stmt (basic_block bb)
2466 gimple_stmt_iterator i = gsi_start_bb (bb);
2469 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2477 /* Return the first non-label statement in basic block BB. */
2480 first_non_label_stmt (basic_block bb)
2482 gimple_stmt_iterator i = gsi_start_bb (bb);
2483 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2485 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2488 /* Return the last statement in basic block BB. */
2491 last_stmt (basic_block bb)
2493 gimple_stmt_iterator i = gsi_last_bb (bb);
2496 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2504 /* Return the last statement of an otherwise empty block. Return NULL
2505 if the block is totally empty, or if it contains more than one
2509 last_and_only_stmt (basic_block bb)
2511 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2517 last = gsi_stmt (i);
2518 gsi_prev_nondebug (&i);
2522 /* Empty statements should no longer appear in the instruction stream.
2523 Everything that might have appeared before should be deleted by
2524 remove_useless_stmts, and the optimizers should just gsi_remove
2525 instead of smashing with build_empty_stmt.
2527 Thus the only thing that should appear here in a block containing
2528 one executable statement is a label. */
2529 prev = gsi_stmt (i);
2530 if (gimple_code (prev) == GIMPLE_LABEL)
2536 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2539 reinstall_phi_args (edge new_edge, edge old_edge)
2541 edge_var_map_vector v;
2544 gimple_stmt_iterator phis;
2546 v = redirect_edge_var_map_vector (old_edge);
2550 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2551 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2552 i++, gsi_next (&phis))
2554 gimple phi = gsi_stmt (phis);
2555 tree result = redirect_edge_var_map_result (vm);
2556 tree arg = redirect_edge_var_map_def (vm);
2558 gcc_assert (result == gimple_phi_result (phi));
2560 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2563 redirect_edge_var_map_clear (old_edge);
2566 /* Returns the basic block after which the new basic block created
2567 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2568 near its "logical" location. This is of most help to humans looking
2569 at debugging dumps. */
2572 split_edge_bb_loc (edge edge_in)
2574 basic_block dest = edge_in->dest;
2575 basic_block dest_prev = dest->prev_bb;
2579 edge e = find_edge (dest_prev, dest);
2580 if (e && !(e->flags & EDGE_COMPLEX))
2581 return edge_in->src;
2586 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2587 Abort on abnormal edges. */
2590 gimple_split_edge (edge edge_in)
2592 basic_block new_bb, after_bb, dest;
2595 /* Abnormal edges cannot be split. */
2596 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2598 dest = edge_in->dest;
2600 after_bb = split_edge_bb_loc (edge_in);
2602 new_bb = create_empty_bb (after_bb);
2603 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2604 new_bb->count = edge_in->count;
2605 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2606 new_edge->probability = REG_BR_PROB_BASE;
2607 new_edge->count = edge_in->count;
2609 e = redirect_edge_and_branch (edge_in, new_bb);
2610 gcc_assert (e == edge_in);
2611 reinstall_phi_args (new_edge, e);
2617 /* Verify properties of the address expression T with base object BASE. */
2620 verify_address (tree t, tree base)
2623 bool old_side_effects;
2625 bool new_side_effects;
2627 old_constant = TREE_CONSTANT (t);
2628 old_side_effects = TREE_SIDE_EFFECTS (t);
2630 recompute_tree_invariant_for_addr_expr (t);
2631 new_side_effects = TREE_SIDE_EFFECTS (t);
2632 new_constant = TREE_CONSTANT (t);
2634 if (old_constant != new_constant)
2636 error ("constant not recomputed when ADDR_EXPR changed");
2639 if (old_side_effects != new_side_effects)
2641 error ("side effects not recomputed when ADDR_EXPR changed");
2645 if (!(TREE_CODE (base) == VAR_DECL
2646 || TREE_CODE (base) == PARM_DECL
2647 || TREE_CODE (base) == RESULT_DECL))
2650 if (DECL_GIMPLE_REG_P (base))
2652 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2659 /* Callback for walk_tree, check that all elements with address taken are
2660 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2661 inside a PHI node. */
2664 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2671 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2672 #define CHECK_OP(N, MSG) \
2673 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2674 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2676 switch (TREE_CODE (t))
2679 if (SSA_NAME_IN_FREE_LIST (t))
2681 error ("SSA name in freelist but still referenced");
2687 error ("INDIRECT_REF in gimple IL");
2691 x = TREE_OPERAND (t, 0);
2692 if (!POINTER_TYPE_P (TREE_TYPE (x))
2693 || !is_gimple_mem_ref_addr (x))
2695 error ("invalid first operand of MEM_REF");
2698 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2699 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2701 error ("invalid offset operand of MEM_REF");
2702 return TREE_OPERAND (t, 1);
2704 if (TREE_CODE (x) == ADDR_EXPR
2705 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2711 x = fold (ASSERT_EXPR_COND (t));
2712 if (x == boolean_false_node)
2714 error ("ASSERT_EXPR with an always-false condition");
2720 error ("MODIFY_EXPR not expected while having tuples");
2727 gcc_assert (is_gimple_address (t));
2729 /* Skip any references (they will be checked when we recurse down the
2730 tree) and ensure that any variable used as a prefix is marked
2732 for (x = TREE_OPERAND (t, 0);
2733 handled_component_p (x);
2734 x = TREE_OPERAND (x, 0))
2737 if ((tem = verify_address (t, x)))
2740 if (!(TREE_CODE (x) == VAR_DECL
2741 || TREE_CODE (x) == PARM_DECL
2742 || TREE_CODE (x) == RESULT_DECL))
2745 if (!TREE_ADDRESSABLE (x))
2747 error ("address taken, but ADDRESSABLE bit not set");
2755 x = COND_EXPR_COND (t);
2756 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2758 error ("non-integral used in condition");
2761 if (!is_gimple_condexpr (x))
2763 error ("invalid conditional operand");
2768 case NON_LVALUE_EXPR:
2769 case TRUTH_NOT_EXPR:
2773 case FIX_TRUNC_EXPR:
2778 CHECK_OP (0, "invalid operand to unary operator");
2785 case ARRAY_RANGE_REF:
2787 case VIEW_CONVERT_EXPR:
2788 /* We have a nest of references. Verify that each of the operands
2789 that determine where to reference is either a constant or a variable,
2790 verify that the base is valid, and then show we've already checked
2792 while (handled_component_p (t))
2794 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2795 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2796 else if (TREE_CODE (t) == ARRAY_REF
2797 || TREE_CODE (t) == ARRAY_RANGE_REF)
2799 CHECK_OP (1, "invalid array index");
2800 if (TREE_OPERAND (t, 2))
2801 CHECK_OP (2, "invalid array lower bound");
2802 if (TREE_OPERAND (t, 3))
2803 CHECK_OP (3, "invalid array stride");
2805 else if (TREE_CODE (t) == BIT_FIELD_REF)
2807 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2808 || !host_integerp (TREE_OPERAND (t, 2), 1))
2810 error ("invalid position or size operand to BIT_FIELD_REF");
2813 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2814 && (TYPE_PRECISION (TREE_TYPE (t))
2815 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2817 error ("integral result type precision does not match "
2818 "field size of BIT_FIELD_REF");
2821 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2822 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2823 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2825 error ("mode precision of non-integral result does not "
2826 "match field size of BIT_FIELD_REF");
2831 t = TREE_OPERAND (t, 0);
2834 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2836 error ("invalid reference prefix");
2843 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2844 POINTER_PLUS_EXPR. */
2845 if (POINTER_TYPE_P (TREE_TYPE (t)))
2847 error ("invalid operand to plus/minus, type is a pointer");
2850 CHECK_OP (0, "invalid operand to binary operator");
2851 CHECK_OP (1, "invalid operand to binary operator");
2854 case POINTER_PLUS_EXPR:
2855 /* Check to make sure the first operand is a pointer or reference type. */
2856 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2858 error ("invalid operand to pointer plus, first operand is not a pointer");
2861 /* Check to make sure the second operand is a ptrofftype. */
2862 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2864 error ("invalid operand to pointer plus, second operand is not an "
2865 "integer type of appropriate width");
2875 case UNORDERED_EXPR:
2884 case TRUNC_DIV_EXPR:
2886 case FLOOR_DIV_EXPR:
2887 case ROUND_DIV_EXPR:
2888 case TRUNC_MOD_EXPR:
2890 case FLOOR_MOD_EXPR:
2891 case ROUND_MOD_EXPR:
2893 case EXACT_DIV_EXPR:
2903 CHECK_OP (0, "invalid operand to binary operator");
2904 CHECK_OP (1, "invalid operand to binary operator");
2908 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2912 case CASE_LABEL_EXPR:
2915 error ("invalid CASE_CHAIN");
2929 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2930 Returns true if there is an error, otherwise false. */
2933 verify_types_in_gimple_min_lval (tree expr)
2937 if (is_gimple_id (expr))
2940 if (TREE_CODE (expr) != TARGET_MEM_REF
2941 && TREE_CODE (expr) != MEM_REF)
2943 error ("invalid expression for min lvalue");
2947 /* TARGET_MEM_REFs are strange beasts. */
2948 if (TREE_CODE (expr) == TARGET_MEM_REF)
2951 op = TREE_OPERAND (expr, 0);
2952 if (!is_gimple_val (op))
2954 error ("invalid operand in indirect reference");
2955 debug_generic_stmt (op);
2958 /* Memory references now generally can involve a value conversion. */
2963 /* Verify if EXPR is a valid GIMPLE reference expression. If
2964 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2965 if there is an error, otherwise false. */
2968 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2970 while (handled_component_p (expr))
2972 tree op = TREE_OPERAND (expr, 0);
2974 if (TREE_CODE (expr) == ARRAY_REF
2975 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2977 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2978 || (TREE_OPERAND (expr, 2)
2979 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2980 || (TREE_OPERAND (expr, 3)
2981 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2983 error ("invalid operands to array reference");
2984 debug_generic_stmt (expr);
2989 /* Verify if the reference array element types are compatible. */
2990 if (TREE_CODE (expr) == ARRAY_REF
2991 && !useless_type_conversion_p (TREE_TYPE (expr),
2992 TREE_TYPE (TREE_TYPE (op))))
2994 error ("type mismatch in array reference");
2995 debug_generic_stmt (TREE_TYPE (expr));
2996 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2999 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3000 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3001 TREE_TYPE (TREE_TYPE (op))))
3003 error ("type mismatch in array range reference");
3004 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3005 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3009 if ((TREE_CODE (expr) == REALPART_EXPR
3010 || TREE_CODE (expr) == IMAGPART_EXPR)
3011 && !useless_type_conversion_p (TREE_TYPE (expr),
3012 TREE_TYPE (TREE_TYPE (op))))
3014 error ("type mismatch in real/imagpart reference");
3015 debug_generic_stmt (TREE_TYPE (expr));
3016 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3020 if (TREE_CODE (expr) == COMPONENT_REF
3021 && !useless_type_conversion_p (TREE_TYPE (expr),
3022 TREE_TYPE (TREE_OPERAND (expr, 1))))
3024 error ("type mismatch in component reference");
3025 debug_generic_stmt (TREE_TYPE (expr));
3026 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3030 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3032 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3033 that their operand is not an SSA name or an invariant when
3034 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3035 bug). Otherwise there is nothing to verify, gross mismatches at
3036 most invoke undefined behavior. */
3038 && (TREE_CODE (op) == SSA_NAME
3039 || is_gimple_min_invariant (op)))
3041 error ("conversion of an SSA_NAME on the left hand side");
3042 debug_generic_stmt (expr);
3045 else if (TREE_CODE (op) == SSA_NAME
3046 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3048 error ("conversion of register to a different size");
3049 debug_generic_stmt (expr);
3052 else if (!handled_component_p (op))
3059 if (TREE_CODE (expr) == MEM_REF)
3061 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3063 error ("invalid address operand in MEM_REF");
3064 debug_generic_stmt (expr);
3067 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3068 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3070 error ("invalid offset operand in MEM_REF");
3071 debug_generic_stmt (expr);
3075 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3077 if (!TMR_BASE (expr)
3078 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3080 error ("invalid address operand in TARGET_MEM_REF");
3083 if (!TMR_OFFSET (expr)
3084 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3085 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3087 error ("invalid offset operand in TARGET_MEM_REF");
3088 debug_generic_stmt (expr);
3093 return ((require_lvalue || !is_gimple_min_invariant (expr))
3094 && verify_types_in_gimple_min_lval (expr));
3097 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3098 list of pointer-to types that is trivially convertible to DEST. */
3101 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3105 if (!TYPE_POINTER_TO (src_obj))
3108 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3109 if (useless_type_conversion_p (dest, src))
3115 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3116 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3119 valid_fixed_convert_types_p (tree type1, tree type2)
3121 return (FIXED_POINT_TYPE_P (type1)
3122 && (INTEGRAL_TYPE_P (type2)
3123 || SCALAR_FLOAT_TYPE_P (type2)
3124 || FIXED_POINT_TYPE_P (type2)));
3127 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3128 is a problem, otherwise false. */
3131 verify_gimple_call (gimple stmt)
3133 tree fn = gimple_call_fn (stmt);
3134 tree fntype, fndecl;
3137 if (gimple_call_internal_p (stmt))
3141 error ("gimple call has two targets");
3142 debug_generic_stmt (fn);
3150 error ("gimple call has no target");
3155 if (fn && !is_gimple_call_addr (fn))
3157 error ("invalid function in gimple call");
3158 debug_generic_stmt (fn);
3163 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3164 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3165 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3167 error ("non-function in gimple call");
3171 fndecl = gimple_call_fndecl (stmt);
3173 && TREE_CODE (fndecl) == FUNCTION_DECL
3174 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3175 && !DECL_PURE_P (fndecl)
3176 && !TREE_READONLY (fndecl))
3178 error ("invalid pure const state for function");
3182 if (gimple_call_lhs (stmt)
3183 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3184 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3186 error ("invalid LHS in gimple call");
3190 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3192 error ("LHS in noreturn call");
3196 fntype = gimple_call_fntype (stmt);
3198 && gimple_call_lhs (stmt)
3199 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3201 /* ??? At least C++ misses conversions at assignments from
3202 void * call results.
3203 ??? Java is completely off. Especially with functions
3204 returning java.lang.Object.
3205 For now simply allow arbitrary pointer type conversions. */
3206 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3207 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3209 error ("invalid conversion in gimple call");
3210 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3211 debug_generic_stmt (TREE_TYPE (fntype));
3215 if (gimple_call_chain (stmt)
3216 && !is_gimple_val (gimple_call_chain (stmt)))
3218 error ("invalid static chain in gimple call");
3219 debug_generic_stmt (gimple_call_chain (stmt));
3223 /* If there is a static chain argument, this should not be an indirect
3224 call, and the decl should have DECL_STATIC_CHAIN set. */
3225 if (gimple_call_chain (stmt))
3227 if (!gimple_call_fndecl (stmt))
3229 error ("static chain in indirect gimple call");
3232 fn = TREE_OPERAND (fn, 0);
3234 if (!DECL_STATIC_CHAIN (fn))
3236 error ("static chain with function that doesn%'t use one");
3241 /* ??? The C frontend passes unpromoted arguments in case it
3242 didn't see a function declaration before the call. So for now
3243 leave the call arguments mostly unverified. Once we gimplify
3244 unit-at-a-time we have a chance to fix this. */
3246 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3248 tree arg = gimple_call_arg (stmt, i);
3249 if ((is_gimple_reg_type (TREE_TYPE (arg))
3250 && !is_gimple_val (arg))
3251 || (!is_gimple_reg_type (TREE_TYPE (arg))
3252 && !is_gimple_lvalue (arg)))
3254 error ("invalid argument to gimple call");
3255 debug_generic_expr (arg);
3263 /* Verifies the gimple comparison with the result type TYPE and
3264 the operands OP0 and OP1. */
3267 verify_gimple_comparison (tree type, tree op0, tree op1)
3269 tree op0_type = TREE_TYPE (op0);
3270 tree op1_type = TREE_TYPE (op1);
3272 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3274 error ("invalid operands in gimple comparison");
3278 /* For comparisons we do not have the operations type as the
3279 effective type the comparison is carried out in. Instead
3280 we require that either the first operand is trivially
3281 convertible into the second, or the other way around.
3282 Because we special-case pointers to void we allow
3283 comparisons of pointers with the same mode as well. */
3284 if (!useless_type_conversion_p (op0_type, op1_type)
3285 && !useless_type_conversion_p (op1_type, op0_type)
3286 && (!POINTER_TYPE_P (op0_type)
3287 || !POINTER_TYPE_P (op1_type)
3288 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3290 error ("mismatching comparison operand types");
3291 debug_generic_expr (op0_type);
3292 debug_generic_expr (op1_type);
3296 /* The resulting type of a comparison may be an effective boolean type. */
3297 if (INTEGRAL_TYPE_P (type)
3298 && (TREE_CODE (type) == BOOLEAN_TYPE
3299 || TYPE_PRECISION (type) == 1))
3301 /* Or an integer vector type with the same size and element count
3302 as the comparison operand types. */
3303 else if (TREE_CODE (type) == VECTOR_TYPE
3304 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3306 if (TREE_CODE (op0_type) != VECTOR_TYPE
3307 || TREE_CODE (op1_type) != VECTOR_TYPE)
3309 error ("non-vector operands in vector comparison");
3310 debug_generic_expr (op0_type);
3311 debug_generic_expr (op1_type);
3315 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3316 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3317 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))))
3319 error ("invalid vector comparison resulting type");
3320 debug_generic_expr (type);
3326 error ("bogus comparison result type");
3327 debug_generic_expr (type);
3334 /* Verify a gimple assignment statement STMT with an unary rhs.
3335 Returns true if anything is wrong. */
3338 verify_gimple_assign_unary (gimple stmt)
3340 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3341 tree lhs = gimple_assign_lhs (stmt);
3342 tree lhs_type = TREE_TYPE (lhs);
3343 tree rhs1 = gimple_assign_rhs1 (stmt);
3344 tree rhs1_type = TREE_TYPE (rhs1);
3346 if (!is_gimple_reg (lhs))
3348 error ("non-register as LHS of unary operation");
3352 if (!is_gimple_val (rhs1))
3354 error ("invalid operand in unary operation");
3358 /* First handle conversions. */
3363 /* Allow conversions from pointer type to integral type only if
3364 there is no sign or zero extension involved.
3365 For targets were the precision of ptrofftype doesn't match that
3366 of pointers we need to allow arbitrary conversions to ptrofftype. */
3367 if ((POINTER_TYPE_P (lhs_type)
3368 && INTEGRAL_TYPE_P (rhs1_type))
3369 || (POINTER_TYPE_P (rhs1_type)
3370 && INTEGRAL_TYPE_P (lhs_type)
3371 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3372 || ptrofftype_p (sizetype))))
3375 /* Allow conversion from integer to offset type and vice versa. */
3376 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3377 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3378 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3379 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3382 /* Otherwise assert we are converting between types of the
3384 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3386 error ("invalid types in nop conversion");
3387 debug_generic_expr (lhs_type);
3388 debug_generic_expr (rhs1_type);
3395 case ADDR_SPACE_CONVERT_EXPR:
3397 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3398 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3399 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3401 error ("invalid types in address space conversion");
3402 debug_generic_expr (lhs_type);
3403 debug_generic_expr (rhs1_type);
3410 case FIXED_CONVERT_EXPR:
3412 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3413 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3415 error ("invalid types in fixed-point conversion");
3416 debug_generic_expr (lhs_type);
3417 debug_generic_expr (rhs1_type);
3426 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3427 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3428 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3430 error ("invalid types in conversion to floating point");
3431 debug_generic_expr (lhs_type);
3432 debug_generic_expr (rhs1_type);
3439 case FIX_TRUNC_EXPR:
3441 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3442 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3443 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3445 error ("invalid types in conversion to integer");
3446 debug_generic_expr (lhs_type);
3447 debug_generic_expr (rhs1_type);
3454 case VEC_UNPACK_HI_EXPR:
3455 case VEC_UNPACK_LO_EXPR:
3456 case REDUC_MAX_EXPR:
3457 case REDUC_MIN_EXPR:
3458 case REDUC_PLUS_EXPR:
3459 case VEC_UNPACK_FLOAT_HI_EXPR:
3460 case VEC_UNPACK_FLOAT_LO_EXPR:
3468 case NON_LVALUE_EXPR:
3476 /* For the remaining codes assert there is no conversion involved. */
3477 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3479 error ("non-trivial conversion in unary operation");
3480 debug_generic_expr (lhs_type);
3481 debug_generic_expr (rhs1_type);
3488 /* Verify a gimple assignment statement STMT with a binary rhs.
3489 Returns true if anything is wrong. */
3492 verify_gimple_assign_binary (gimple stmt)
3494 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3495 tree lhs = gimple_assign_lhs (stmt);
3496 tree lhs_type = TREE_TYPE (lhs);
3497 tree rhs1 = gimple_assign_rhs1 (stmt);
3498 tree rhs1_type = TREE_TYPE (rhs1);
3499 tree rhs2 = gimple_assign_rhs2 (stmt);
3500 tree rhs2_type = TREE_TYPE (rhs2);
3502 if (!is_gimple_reg (lhs))
3504 error ("non-register as LHS of binary operation");
3508 if (!is_gimple_val (rhs1)
3509 || !is_gimple_val (rhs2))
3511 error ("invalid operands in binary operation");
3515 /* First handle operations that involve different types. */
3520 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3521 || !(INTEGRAL_TYPE_P (rhs1_type)
3522 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3523 || !(INTEGRAL_TYPE_P (rhs2_type)
3524 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3526 error ("type mismatch in complex expression");
3527 debug_generic_expr (lhs_type);
3528 debug_generic_expr (rhs1_type);
3529 debug_generic_expr (rhs2_type);
3541 /* Shifts and rotates are ok on integral types, fixed point
3542 types and integer vector types. */
3543 if ((!INTEGRAL_TYPE_P (rhs1_type)
3544 && !FIXED_POINT_TYPE_P (rhs1_type)
3545 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3546 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3547 || (!INTEGRAL_TYPE_P (rhs2_type)
3548 /* Vector shifts of vectors are also ok. */
3549 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3550 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3551 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3552 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3553 || !useless_type_conversion_p (lhs_type, rhs1_type))
3555 error ("type mismatch in shift expression");
3556 debug_generic_expr (lhs_type);
3557 debug_generic_expr (rhs1_type);
3558 debug_generic_expr (rhs2_type);
3565 case VEC_LSHIFT_EXPR:
3566 case VEC_RSHIFT_EXPR:
3568 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3569 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3570 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3571 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3572 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3573 || (!INTEGRAL_TYPE_P (rhs2_type)
3574 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3575 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3576 || !useless_type_conversion_p (lhs_type, rhs1_type))
3578 error ("type mismatch in vector shift expression");
3579 debug_generic_expr (lhs_type);
3580 debug_generic_expr (rhs1_type);
3581 debug_generic_expr (rhs2_type);
3584 /* For shifting a vector of non-integral components we
3585 only allow shifting by a constant multiple of the element size. */
3586 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3587 && (TREE_CODE (rhs2) != INTEGER_CST
3588 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3589 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3591 error ("non-element sized vector shift of floating point vector");
3598 case WIDEN_LSHIFT_EXPR:
3600 if (!INTEGRAL_TYPE_P (lhs_type)
3601 || !INTEGRAL_TYPE_P (rhs1_type)
3602 || TREE_CODE (rhs2) != INTEGER_CST
3603 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3605 error ("type mismatch in widening vector shift expression");
3606 debug_generic_expr (lhs_type);
3607 debug_generic_expr (rhs1_type);
3608 debug_generic_expr (rhs2_type);
3615 case VEC_WIDEN_LSHIFT_HI_EXPR:
3616 case VEC_WIDEN_LSHIFT_LO_EXPR:
3618 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3619 || TREE_CODE (lhs_type) != VECTOR_TYPE