1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "basic-block.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
52 /* Local declarations. */
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
70 static struct pointer_map_t *edge_to_cases;
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
76 static bitmap touched_switch_bbs;
81 long num_merged_labels;
84 static struct cfg_stats_d cfg_stats;
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
95 static htab_t discriminator_per_locus;
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120 static bool verify_gimple_transaction (gimple);
122 /* Flowgraph optimization and cleanup. */
123 static void gimple_merge_blocks (basic_block, basic_block);
124 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
125 static void remove_bb (basic_block);
126 static edge find_taken_edge_computed_goto (basic_block, tree);
127 static edge find_taken_edge_cond_expr (basic_block, tree);
128 static edge find_taken_edge_switch_expr (basic_block, tree);
129 static tree find_case_label_for_value (gimple, tree);
130 static void group_case_labels_stmt (gimple);
133 init_empty_tree_cfg_for_function (struct function *fn)
135 /* Initialize the basic block array. */
137 profile_status_for_function (fn) = PROFILE_ABSENT;
138 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
139 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
140 basic_block_info_for_function (fn)
141 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
142 VEC_safe_grow_cleared (basic_block, gc,
143 basic_block_info_for_function (fn),
144 initial_cfg_capacity);
146 /* Build a mapping of labels to their associated blocks. */
147 label_to_block_map_for_function (fn)
148 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
149 VEC_safe_grow_cleared (basic_block, gc,
150 label_to_block_map_for_function (fn),
151 initial_cfg_capacity);
153 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
154 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
155 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
156 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
158 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
159 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
160 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
161 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
165 init_empty_tree_cfg (void)
167 init_empty_tree_cfg_for_function (cfun);
170 /*---------------------------------------------------------------------------
172 ---------------------------------------------------------------------------*/
174 /* Entry point to the CFG builder for trees. SEQ is the sequence of
175 statements to be added to the flowgraph. */
178 build_gimple_cfg (gimple_seq seq)
180 /* Register specific gimple functions. */
181 gimple_register_cfg_hooks ();
183 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
185 init_empty_tree_cfg ();
187 found_computed_goto = 0;
190 /* Computed gotos are hell to deal with, especially if there are
191 lots of them with a large number of destinations. So we factor
192 them to a common computed goto location before we build the
193 edge list. After we convert back to normal form, we will un-factor
194 the computed gotos since factoring introduces an unwanted jump. */
195 if (found_computed_goto)
196 factor_computed_gotos ();
198 /* Make sure there is always at least one block, even if it's empty. */
199 if (n_basic_blocks == NUM_FIXED_BLOCKS)
200 create_empty_bb (ENTRY_BLOCK_PTR);
202 /* Adjust the size of the array. */
203 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
204 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
206 /* To speed up statement iterator walks, we first purge dead labels. */
207 cleanup_dead_labels ();
209 /* Group case nodes to reduce the number of edges.
210 We do this after cleaning up dead labels because otherwise we miss
211 a lot of obvious case merging opportunities. */
212 group_case_labels ();
214 /* Create the edges of the flowgraph. */
215 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
218 cleanup_dead_labels ();
219 htab_delete (discriminator_per_locus);
221 /* Debugging dumps. */
223 /* Write the flowgraph to a VCG file. */
225 int local_dump_flags;
226 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
229 gimple_cfg2vcg (vcg_file);
230 dump_end (TDI_vcg, vcg_file);
236 execute_build_cfg (void)
238 gimple_seq body = gimple_body (current_function_decl);
240 build_gimple_cfg (body);
241 gimple_set_body (current_function_decl, NULL);
242 if (dump_file && (dump_flags & TDF_DETAILS))
244 fprintf (dump_file, "Scope blocks:\n");
245 dump_scope_blocks (dump_file, dump_flags);
250 struct gimple_opt_pass pass_build_cfg =
256 execute_build_cfg, /* execute */
259 0, /* static_pass_number */
260 TV_TREE_CFG, /* tv_id */
261 PROP_gimple_leh, /* properties_required */
262 PROP_cfg, /* properties_provided */
263 0, /* properties_destroyed */
264 0, /* todo_flags_start */
265 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
270 /* Return true if T is a computed goto. */
273 computed_goto_p (gimple t)
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
286 factor_computed_gotos (void)
289 tree factored_label_decl = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
306 last = gsi_stmt (gsi);
308 /* Ignore the computed goto we create when we factor the original
310 if (last == factored_computed_goto)
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
330 var = create_tmp_var (ptr_type_node, "gotovar");
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
356 /* Build a flowgraph for the sequence of stmts SEQ. */
359 make_blocks (gimple_seq seq)
361 gimple_stmt_iterator i = gsi_start (seq);
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
367 while (!gsi_end_p (i))
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
385 /* Now add STMT to BB and create the subgraphs for special statement
387 gimple_set_bb (stmt, bb);
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
394 if (stmt_ends_bb_p (stmt))
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
416 start_new_block = true;
420 first_stmt_of_seq = false;
425 /* Create and return a new empty basic block after bb AFTER. */
428 create_bb (void *h, void *e, basic_block after)
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
439 bb->index = last_basic_block;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
464 /*---------------------------------------------------------------------------
466 ---------------------------------------------------------------------------*/
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
471 fold_cond_expr_cond (void)
477 gimple stmt = last_stmt (bb);
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
481 location_t loc = gimple_location (stmt);
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
494 zerop = onep = false;
496 fold_undefer_overflow_warnings (zerop || onep,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
500 gimple_cond_make_false (stmt);
502 gimple_cond_make_true (stmt);
507 /* Join all the blocks in the flowgraph. */
513 struct omp_region *cur_region = NULL;
515 /* Create an edge from entry to the first block with executable
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
519 /* Traverse the basic block array placing edges. */
522 gimple last = last_stmt (bb);
527 enum gimple_code code = gimple_code (last);
531 make_goto_expr_edges (bb);
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
539 make_cond_expr_edges (bb);
543 make_gimple_switch_edges (bb);
547 make_eh_edges (last);
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
582 make_gimple_asm_edges (bb);
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
603 case GIMPLE_OMP_SECTIONS_SWITCH:
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
645 basic_block switch_bb = single_succ (cur_region->entry);
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
670 case GIMPLE_TRANSACTION:
672 tree abort_label = gimple_transaction_label (last);
674 make_edge (bb, label_to_block (abort_label), 0);
680 gcc_assert (!stmt_ends_bb_p (last));
689 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
691 assign_discriminator (gimple_location (last), bb->next_bb);
698 /* Fold COND_EXPR_COND of each COND_EXPR. */
699 fold_cond_expr_cond ();
702 /* Trivial hash function for a location_t. ITEM is a pointer to
703 a hash table entry that maps a location_t to a discriminator. */
706 locus_map_hash (const void *item)
708 return ((const struct locus_discrim_map *) item)->locus;
711 /* Equality function for the locus-to-discriminator map. VA and VB
712 point to the two hash table entries to compare. */
715 locus_map_eq (const void *va, const void *vb)
717 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
718 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
719 return a->locus == b->locus;
722 /* Find the next available discriminator value for LOCUS. The
723 discriminator distinguishes among several basic blocks that
724 share a common locus, allowing for more accurate sample-based
728 next_discriminator_for_locus (location_t locus)
730 struct locus_discrim_map item;
731 struct locus_discrim_map **slot;
734 item.discriminator = 0;
735 slot = (struct locus_discrim_map **)
736 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
737 (hashval_t) locus, INSERT);
739 if (*slot == HTAB_EMPTY_ENTRY)
741 *slot = XNEW (struct locus_discrim_map);
743 (*slot)->locus = locus;
744 (*slot)->discriminator = 0;
746 (*slot)->discriminator++;
747 return (*slot)->discriminator;
750 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
753 same_line_p (location_t locus1, location_t locus2)
755 expanded_location from, to;
757 if (locus1 == locus2)
760 from = expand_location (locus1);
761 to = expand_location (locus2);
763 if (from.line != to.line)
765 if (from.file == to.file)
767 return (from.file != NULL
769 && filename_cmp (from.file, to.file) == 0);
772 /* Assign a unique discriminator value to block BB if it begins at the same
773 LOCUS as its predecessor block. */
776 assign_discriminator (location_t locus, basic_block bb)
778 gimple first_in_to_bb, last_in_to_bb;
780 if (locus == 0 || bb->discriminator != 0)
783 first_in_to_bb = first_non_label_stmt (bb);
784 last_in_to_bb = last_stmt (bb);
785 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
786 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
787 bb->discriminator = next_discriminator_for_locus (locus);
790 /* Create the edges for a GIMPLE_COND starting at block BB. */
793 make_cond_expr_edges (basic_block bb)
795 gimple entry = last_stmt (bb);
796 gimple then_stmt, else_stmt;
797 basic_block then_bb, else_bb;
798 tree then_label, else_label;
800 location_t entry_locus;
803 gcc_assert (gimple_code (entry) == GIMPLE_COND);
805 entry_locus = gimple_location (entry);
807 /* Entry basic blocks for each component. */
808 then_label = gimple_cond_true_label (entry);
809 else_label = gimple_cond_false_label (entry);
810 then_bb = label_to_block (then_label);
811 else_bb = label_to_block (else_label);
812 then_stmt = first_stmt (then_bb);
813 else_stmt = first_stmt (else_bb);
815 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
816 assign_discriminator (entry_locus, then_bb);
817 e->goto_locus = gimple_location (then_stmt);
819 e->goto_block = gimple_block (then_stmt);
820 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
823 assign_discriminator (entry_locus, else_bb);
824 e->goto_locus = gimple_location (else_stmt);
826 e->goto_block = gimple_block (else_stmt);
829 /* We do not need the labels anymore. */
830 gimple_cond_set_true_label (entry, NULL_TREE);
831 gimple_cond_set_false_label (entry, NULL_TREE);
835 /* Called for each element in the hash table (P) as we delete the
836 edge to cases hash table.
838 Clear all the TREE_CHAINs to prevent problems with copying of
839 SWITCH_EXPRs and structure sharing rules, then free the hash table
843 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
844 void *data ATTRIBUTE_UNUSED)
848 for (t = (tree) *value; t; t = next)
850 next = CASE_CHAIN (t);
851 CASE_CHAIN (t) = NULL;
858 /* Start recording information mapping edges to case labels. */
861 start_recording_case_labels (void)
863 gcc_assert (edge_to_cases == NULL);
864 edge_to_cases = pointer_map_create ();
865 touched_switch_bbs = BITMAP_ALLOC (NULL);
868 /* Return nonzero if we are recording information for case labels. */
871 recording_case_labels_p (void)
873 return (edge_to_cases != NULL);
876 /* Stop recording information mapping edges to case labels and
877 remove any information we have recorded. */
879 end_recording_case_labels (void)
883 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
884 pointer_map_destroy (edge_to_cases);
885 edge_to_cases = NULL;
886 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
888 basic_block bb = BASIC_BLOCK (i);
891 gimple stmt = last_stmt (bb);
892 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
893 group_case_labels_stmt (stmt);
896 BITMAP_FREE (touched_switch_bbs);
899 /* If we are inside a {start,end}_recording_cases block, then return
900 a chain of CASE_LABEL_EXPRs from T which reference E.
902 Otherwise return NULL. */
905 get_cases_for_edge (edge e, gimple t)
910 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
911 chains available. Return NULL so the caller can detect this case. */
912 if (!recording_case_labels_p ())
915 slot = pointer_map_contains (edge_to_cases, e);
919 /* If we did not find E in the hash table, then this must be the first
920 time we have been queried for information about E & T. Add all the
921 elements from T to the hash table then perform the query again. */
923 n = gimple_switch_num_labels (t);
924 for (i = 0; i < n; i++)
926 tree elt = gimple_switch_label (t, i);
927 tree lab = CASE_LABEL (elt);
928 basic_block label_bb = label_to_block (lab);
929 edge this_edge = find_edge (e->src, label_bb);
931 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
933 slot = pointer_map_insert (edge_to_cases, this_edge);
934 CASE_CHAIN (elt) = (tree) *slot;
938 return (tree) *pointer_map_contains (edge_to_cases, e);
941 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
944 make_gimple_switch_edges (basic_block bb)
946 gimple entry = last_stmt (bb);
947 location_t entry_locus;
950 entry_locus = gimple_location (entry);
952 n = gimple_switch_num_labels (entry);
954 for (i = 0; i < n; ++i)
956 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
957 basic_block label_bb = label_to_block (lab);
958 make_edge (bb, label_bb, 0);
959 assign_discriminator (entry_locus, label_bb);
964 /* Return the basic block holding label DEST. */
967 label_to_block_fn (struct function *ifun, tree dest)
969 int uid = LABEL_DECL_UID (dest);
971 /* We would die hard when faced by an undefined label. Emit a label to
972 the very first basic block. This will hopefully make even the dataflow
973 and undefined variable warnings quite right. */
974 if (seen_error () && uid < 0)
976 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
979 stmt = gimple_build_label (dest);
980 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
981 uid = LABEL_DECL_UID (dest);
983 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
984 <= (unsigned int) uid)
986 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
989 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
990 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
993 make_abnormal_goto_edges (basic_block bb, bool for_call)
995 basic_block target_bb;
996 gimple_stmt_iterator gsi;
998 FOR_EACH_BB (target_bb)
999 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1001 gimple label_stmt = gsi_stmt (gsi);
1004 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1007 target = gimple_label_label (label_stmt);
1009 /* Make an edge to every label block that has been marked as a
1010 potential target for a computed goto or a non-local goto. */
1011 if ((FORCED_LABEL (target) && !for_call)
1012 || (DECL_NONLOCAL (target) && for_call))
1014 make_edge (bb, target_bb, EDGE_ABNORMAL);
1020 /* Create edges for a goto statement at block BB. */
1023 make_goto_expr_edges (basic_block bb)
1025 gimple_stmt_iterator last = gsi_last_bb (bb);
1026 gimple goto_t = gsi_stmt (last);
1028 /* A simple GOTO creates normal edges. */
1029 if (simple_goto_p (goto_t))
1031 tree dest = gimple_goto_dest (goto_t);
1032 basic_block label_bb = label_to_block (dest);
1033 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1034 e->goto_locus = gimple_location (goto_t);
1035 assign_discriminator (e->goto_locus, label_bb);
1037 e->goto_block = gimple_block (goto_t);
1038 gsi_remove (&last, true);
1042 /* A computed GOTO creates abnormal edges. */
1043 make_abnormal_goto_edges (bb, false);
1046 /* Create edges for an asm statement with labels at block BB. */
1049 make_gimple_asm_edges (basic_block bb)
1051 gimple stmt = last_stmt (bb);
1052 location_t stmt_loc = gimple_location (stmt);
1053 int i, n = gimple_asm_nlabels (stmt);
1055 for (i = 0; i < n; ++i)
1057 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1058 basic_block label_bb = label_to_block (label);
1059 make_edge (bb, label_bb, 0);
1060 assign_discriminator (stmt_loc, label_bb);
1064 /*---------------------------------------------------------------------------
1066 ---------------------------------------------------------------------------*/
1068 /* Cleanup useless labels in basic blocks. This is something we wish
1069 to do early because it allows us to group case labels before creating
1070 the edges for the CFG, and it speeds up block statement iterators in
1071 all passes later on.
1072 We rerun this pass after CFG is created, to get rid of the labels that
1073 are no longer referenced. After then we do not run it any more, since
1074 (almost) no new labels should be created. */
1076 /* A map from basic block index to the leading label of that block. */
1077 static struct label_record
1082 /* True if the label is referenced from somewhere. */
1086 /* Given LABEL return the first label in the same basic block. */
1089 main_block_label (tree label)
1091 basic_block bb = label_to_block (label);
1092 tree main_label = label_for_bb[bb->index].label;
1094 /* label_to_block possibly inserted undefined label into the chain. */
1097 label_for_bb[bb->index].label = label;
1101 label_for_bb[bb->index].used = true;
1105 /* Clean up redundant labels within the exception tree. */
1108 cleanup_dead_labels_eh (void)
1115 if (cfun->eh == NULL)
1118 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1119 if (lp && lp->post_landing_pad)
1121 lab = main_block_label (lp->post_landing_pad);
1122 if (lab != lp->post_landing_pad)
1124 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1125 EH_LANDING_PAD_NR (lab) = lp->index;
1129 FOR_ALL_EH_REGION (r)
1133 case ERT_MUST_NOT_THROW:
1139 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1143 c->label = main_block_label (lab);
1148 case ERT_ALLOWED_EXCEPTIONS:
1149 lab = r->u.allowed.label;
1151 r->u.allowed.label = main_block_label (lab);
1157 /* Cleanup redundant labels. This is a three-step process:
1158 1) Find the leading label for each block.
1159 2) Redirect all references to labels to the leading labels.
1160 3) Cleanup all useless labels. */
1163 cleanup_dead_labels (void)
1166 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1168 /* Find a suitable label for each block. We use the first user-defined
1169 label if there is one, or otherwise just the first label we see. */
1172 gimple_stmt_iterator i;
1174 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1177 gimple stmt = gsi_stmt (i);
1179 if (gimple_code (stmt) != GIMPLE_LABEL)
1182 label = gimple_label_label (stmt);
1184 /* If we have not yet seen a label for the current block,
1185 remember this one and see if there are more labels. */
1186 if (!label_for_bb[bb->index].label)
1188 label_for_bb[bb->index].label = label;
1192 /* If we did see a label for the current block already, but it
1193 is an artificially created label, replace it if the current
1194 label is a user defined label. */
1195 if (!DECL_ARTIFICIAL (label)
1196 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1198 label_for_bb[bb->index].label = label;
1204 /* Now redirect all jumps/branches to the selected label.
1205 First do so for each block ending in a control statement. */
1208 gimple stmt = last_stmt (bb);
1209 tree label, new_label;
1214 switch (gimple_code (stmt))
1217 label = gimple_cond_true_label (stmt);
1220 new_label = main_block_label (label);
1221 if (new_label != label)
1222 gimple_cond_set_true_label (stmt, new_label);
1225 label = gimple_cond_false_label (stmt);
1228 new_label = main_block_label (label);
1229 if (new_label != label)
1230 gimple_cond_set_false_label (stmt, new_label);
1236 size_t i, n = gimple_switch_num_labels (stmt);
1238 /* Replace all destination labels. */
1239 for (i = 0; i < n; ++i)
1241 tree case_label = gimple_switch_label (stmt, i);
1242 label = CASE_LABEL (case_label);
1243 new_label = main_block_label (label);
1244 if (new_label != label)
1245 CASE_LABEL (case_label) = new_label;
1252 int i, n = gimple_asm_nlabels (stmt);
1254 for (i = 0; i < n; ++i)
1256 tree cons = gimple_asm_label_op (stmt, i);
1257 tree label = main_block_label (TREE_VALUE (cons));
1258 TREE_VALUE (cons) = label;
1263 /* We have to handle gotos until they're removed, and we don't
1264 remove them until after we've created the CFG edges. */
1266 if (!computed_goto_p (stmt))
1268 label = gimple_goto_dest (stmt);
1269 new_label = main_block_label (label);
1270 if (new_label != label)
1271 gimple_goto_set_dest (stmt, new_label);
1275 case GIMPLE_TRANSACTION:
1277 tree label = gimple_transaction_label (stmt);
1280 tree new_label = main_block_label (label);
1281 if (new_label != label)
1282 gimple_transaction_set_label (stmt, new_label);
1292 /* Do the same for the exception region tree labels. */
1293 cleanup_dead_labels_eh ();
1295 /* Finally, purge dead labels. All user-defined labels and labels that
1296 can be the target of non-local gotos and labels which have their
1297 address taken are preserved. */
1300 gimple_stmt_iterator i;
1301 tree label_for_this_bb = label_for_bb[bb->index].label;
1303 if (!label_for_this_bb)
1306 /* If the main label of the block is unused, we may still remove it. */
1307 if (!label_for_bb[bb->index].used)
1308 label_for_this_bb = NULL;
1310 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1313 gimple stmt = gsi_stmt (i);
1315 if (gimple_code (stmt) != GIMPLE_LABEL)
1318 label = gimple_label_label (stmt);
1320 if (label == label_for_this_bb
1321 || !DECL_ARTIFICIAL (label)
1322 || DECL_NONLOCAL (label)
1323 || FORCED_LABEL (label))
1326 gsi_remove (&i, true);
1330 free (label_for_bb);
1333 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1334 the ones jumping to the same label.
1335 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1338 group_case_labels_stmt (gimple stmt)
1340 int old_size = gimple_switch_num_labels (stmt);
1341 int i, j, new_size = old_size;
1342 tree default_case = NULL_TREE;
1343 tree default_label = NULL_TREE;
1346 /* The default label is always the first case in a switch
1347 statement after gimplification if it was not optimized
1349 if (!CASE_LOW (gimple_switch_default_label (stmt))
1350 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1352 default_case = gimple_switch_default_label (stmt);
1353 default_label = CASE_LABEL (default_case);
1357 has_default = false;
1359 /* Look for possible opportunities to merge cases. */
1364 while (i < old_size)
1366 tree base_case, base_label, base_high;
1367 base_case = gimple_switch_label (stmt, i);
1369 gcc_assert (base_case);
1370 base_label = CASE_LABEL (base_case);
1372 /* Discard cases that have the same destination as the
1374 if (base_label == default_label)
1376 gimple_switch_set_label (stmt, i, NULL_TREE);
1382 base_high = CASE_HIGH (base_case)
1383 ? CASE_HIGH (base_case)
1384 : CASE_LOW (base_case);
1387 /* Try to merge case labels. Break out when we reach the end
1388 of the label vector or when we cannot merge the next case
1389 label with the current one. */
1390 while (i < old_size)
1392 tree merge_case = gimple_switch_label (stmt, i);
1393 tree merge_label = CASE_LABEL (merge_case);
1394 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1397 /* Merge the cases if they jump to the same place,
1398 and their ranges are consecutive. */
1399 if (merge_label == base_label
1400 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1403 base_high = CASE_HIGH (merge_case) ?
1404 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1405 CASE_HIGH (base_case) = base_high;
1406 gimple_switch_set_label (stmt, i, NULL_TREE);
1415 /* Compress the case labels in the label vector, and adjust the
1416 length of the vector. */
1417 for (i = 0, j = 0; i < new_size; i++)
1419 while (! gimple_switch_label (stmt, j))
1421 gimple_switch_set_label (stmt, i,
1422 gimple_switch_label (stmt, j++));
1425 gcc_assert (new_size <= old_size);
1426 gimple_switch_set_num_labels (stmt, new_size);
1429 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1430 and scan the sorted vector of cases. Combine the ones jumping to the
1434 group_case_labels (void)
1440 gimple stmt = last_stmt (bb);
1441 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1442 group_case_labels_stmt (stmt);
1446 /* Checks whether we can merge block B into block A. */
1449 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1452 gimple_stmt_iterator gsi;
1455 if (!single_succ_p (a))
1458 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH | EDGE_PRESERVE))
1461 if (single_succ (a) != b)
1464 if (!single_pred_p (b))
1467 if (b == EXIT_BLOCK_PTR)
1470 /* If A ends by a statement causing exceptions or something similar, we
1471 cannot merge the blocks. */
1472 stmt = last_stmt (a);
1473 if (stmt && stmt_ends_bb_p (stmt))
1476 /* Do not allow a block with only a non-local label to be merged. */
1478 && gimple_code (stmt) == GIMPLE_LABEL
1479 && DECL_NONLOCAL (gimple_label_label (stmt)))
1482 /* Examine the labels at the beginning of B. */
1483 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1486 stmt = gsi_stmt (gsi);
1487 if (gimple_code (stmt) != GIMPLE_LABEL)
1489 lab = gimple_label_label (stmt);
1491 /* Do not remove user forced labels or for -O0 any user labels. */
1492 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1496 /* Protect the loop latches. */
1497 if (current_loops && b->loop_father->latch == b)
1500 /* It must be possible to eliminate all phi nodes in B. If ssa form
1501 is not up-to-date and a name-mapping is registered, we cannot eliminate
1502 any phis. Symbols marked for renaming are never a problem though. */
1503 phis = phi_nodes (b);
1504 if (!gimple_seq_empty_p (phis)
1505 && name_mappings_registered_p ())
1508 /* When not optimizing, don't merge if we'd lose goto_locus. */
1510 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1512 location_t goto_locus = single_succ_edge (a)->goto_locus;
1513 gimple_stmt_iterator prev, next;
1514 prev = gsi_last_nondebug_bb (a);
1515 next = gsi_after_labels (b);
1516 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1517 gsi_next_nondebug (&next);
1518 if ((gsi_end_p (prev)
1519 || gimple_location (gsi_stmt (prev)) != goto_locus)
1520 && (gsi_end_p (next)
1521 || gimple_location (gsi_stmt (next)) != goto_locus))
1528 /* Return true if the var whose chain of uses starts at PTR has no
1531 has_zero_uses_1 (const ssa_use_operand_t *head)
1533 const ssa_use_operand_t *ptr;
1535 for (ptr = head->next; ptr != head; ptr = ptr->next)
1536 if (!is_gimple_debug (USE_STMT (ptr)))
1542 /* Return true if the var whose chain of uses starts at PTR has a
1543 single nondebug use. Set USE_P and STMT to that single nondebug
1544 use, if so, or to NULL otherwise. */
1546 single_imm_use_1 (const ssa_use_operand_t *head,
1547 use_operand_p *use_p, gimple *stmt)
1549 ssa_use_operand_t *ptr, *single_use = 0;
1551 for (ptr = head->next; ptr != head; ptr = ptr->next)
1552 if (!is_gimple_debug (USE_STMT (ptr)))
1563 *use_p = single_use;
1566 *stmt = single_use ? single_use->loc.stmt : NULL;
1568 return !!single_use;
1571 /* Replaces all uses of NAME by VAL. */
1574 replace_uses_by (tree name, tree val)
1576 imm_use_iterator imm_iter;
1581 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1583 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1585 replace_exp (use, val);
1587 if (gimple_code (stmt) == GIMPLE_PHI)
1589 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1590 if (e->flags & EDGE_ABNORMAL)
1592 /* This can only occur for virtual operands, since
1593 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1594 would prevent replacement. */
1595 gcc_assert (!is_gimple_reg (name));
1596 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1601 if (gimple_code (stmt) != GIMPLE_PHI)
1603 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1607 stmt = gsi_stmt (gsi);
1608 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1609 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1611 /* FIXME. This should go in update_stmt. */
1612 for (i = 0; i < gimple_num_ops (stmt); i++)
1614 tree op = gimple_op (stmt, i);
1615 /* Operands may be empty here. For example, the labels
1616 of a GIMPLE_COND are nulled out following the creation
1617 of the corresponding CFG edges. */
1618 if (op && TREE_CODE (op) == ADDR_EXPR)
1619 recompute_tree_invariant_for_addr_expr (op);
1622 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1627 gcc_assert (has_zero_uses (name));
1629 /* Also update the trees stored in loop structures. */
1635 FOR_EACH_LOOP (li, loop, 0)
1637 substitute_in_loop_info (loop, name, val);
1642 /* Merge block B into block A. */
1645 gimple_merge_blocks (basic_block a, basic_block b)
1647 gimple_stmt_iterator last, gsi, psi;
1648 gimple_seq phis = phi_nodes (b);
1651 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1653 /* Remove all single-valued PHI nodes from block B of the form
1654 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1655 gsi = gsi_last_bb (a);
1656 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1658 gimple phi = gsi_stmt (psi);
1659 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1661 bool may_replace_uses = !is_gimple_reg (def)
1662 || may_propagate_copy (def, use);
1664 /* In case we maintain loop closed ssa form, do not propagate arguments
1665 of loop exit phi nodes. */
1667 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1668 && is_gimple_reg (def)
1669 && TREE_CODE (use) == SSA_NAME
1670 && a->loop_father != b->loop_father)
1671 may_replace_uses = false;
1673 if (!may_replace_uses)
1675 gcc_assert (is_gimple_reg (def));
1677 /* Note that just emitting the copies is fine -- there is no problem
1678 with ordering of phi nodes. This is because A is the single
1679 predecessor of B, therefore results of the phi nodes cannot
1680 appear as arguments of the phi nodes. */
1681 copy = gimple_build_assign (def, use);
1682 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1683 remove_phi_node (&psi, false);
1687 /* If we deal with a PHI for virtual operands, we can simply
1688 propagate these without fussing with folding or updating
1690 if (!is_gimple_reg (def))
1692 imm_use_iterator iter;
1693 use_operand_p use_p;
1696 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1697 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1698 SET_USE (use_p, use);
1700 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1701 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1704 replace_uses_by (def, use);
1706 remove_phi_node (&psi, true);
1710 /* Ensure that B follows A. */
1711 move_block_after (b, a);
1713 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1714 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1716 /* Remove labels from B and set gimple_bb to A for other statements. */
1717 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1719 gimple stmt = gsi_stmt (gsi);
1720 if (gimple_code (stmt) == GIMPLE_LABEL)
1722 tree label = gimple_label_label (stmt);
1725 gsi_remove (&gsi, false);
1727 /* Now that we can thread computed gotos, we might have
1728 a situation where we have a forced label in block B
1729 However, the label at the start of block B might still be
1730 used in other ways (think about the runtime checking for
1731 Fortran assigned gotos). So we can not just delete the
1732 label. Instead we move the label to the start of block A. */
1733 if (FORCED_LABEL (label))
1735 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1736 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1738 /* Other user labels keep around in a form of a debug stmt. */
1739 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1741 gimple dbg = gimple_build_debug_bind (label,
1744 gimple_debug_bind_reset_value (dbg);
1745 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1748 lp_nr = EH_LANDING_PAD_NR (label);
1751 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1752 lp->post_landing_pad = NULL;
1757 gimple_set_bb (stmt, a);
1762 /* Merge the sequences. */
1763 last = gsi_last_bb (a);
1764 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1765 set_bb_seq (b, NULL);
1767 if (cfgcleanup_altered_bbs)
1768 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1772 /* Return the one of two successors of BB that is not reachable by a
1773 complex edge, if there is one. Else, return BB. We use
1774 this in optimizations that use post-dominators for their heuristics,
1775 to catch the cases in C++ where function calls are involved. */
1778 single_noncomplex_succ (basic_block bb)
1781 if (EDGE_COUNT (bb->succs) != 2)
1784 e0 = EDGE_SUCC (bb, 0);
1785 e1 = EDGE_SUCC (bb, 1);
1786 if (e0->flags & EDGE_COMPLEX)
1788 if (e1->flags & EDGE_COMPLEX)
1794 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1797 notice_special_calls (gimple call)
1799 int flags = gimple_call_flags (call);
1801 if (flags & ECF_MAY_BE_ALLOCA)
1802 cfun->calls_alloca = true;
1803 if (flags & ECF_RETURNS_TWICE)
1804 cfun->calls_setjmp = true;
1808 /* Clear flags set by notice_special_calls. Used by dead code removal
1809 to update the flags. */
1812 clear_special_calls (void)
1814 cfun->calls_alloca = false;
1815 cfun->calls_setjmp = false;
1818 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1821 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1823 /* Since this block is no longer reachable, we can just delete all
1824 of its PHI nodes. */
1825 remove_phi_nodes (bb);
1827 /* Remove edges to BB's successors. */
1828 while (EDGE_COUNT (bb->succs) > 0)
1829 remove_edge (EDGE_SUCC (bb, 0));
1833 /* Remove statements of basic block BB. */
1836 remove_bb (basic_block bb)
1838 gimple_stmt_iterator i;
1842 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1843 if (dump_flags & TDF_DETAILS)
1845 dump_bb (bb, dump_file, 0);
1846 fprintf (dump_file, "\n");
1852 struct loop *loop = bb->loop_father;
1854 /* If a loop gets removed, clean up the information associated
1856 if (loop->latch == bb
1857 || loop->header == bb)
1858 free_numbers_of_iterations_estimates_loop (loop);
1861 /* Remove all the instructions in the block. */
1862 if (bb_seq (bb) != NULL)
1864 /* Walk backwards so as to get a chance to substitute all
1865 released DEFs into debug stmts. See
1866 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1868 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1870 gimple stmt = gsi_stmt (i);
1871 if (gimple_code (stmt) == GIMPLE_LABEL
1872 && (FORCED_LABEL (gimple_label_label (stmt))
1873 || DECL_NONLOCAL (gimple_label_label (stmt))))
1876 gimple_stmt_iterator new_gsi;
1878 /* A non-reachable non-local label may still be referenced.
1879 But it no longer needs to carry the extra semantics of
1881 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1883 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1884 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1887 new_bb = bb->prev_bb;
1888 new_gsi = gsi_start_bb (new_bb);
1889 gsi_remove (&i, false);
1890 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1894 /* Release SSA definitions if we are in SSA. Note that we
1895 may be called when not in SSA. For example,
1896 final_cleanup calls this function via
1897 cleanup_tree_cfg. */
1898 if (gimple_in_ssa_p (cfun))
1899 release_defs (stmt);
1901 gsi_remove (&i, true);
1905 i = gsi_last_bb (bb);
1911 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1912 bb->il.gimple = NULL;
1916 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1917 predicate VAL, return the edge that will be taken out of the block.
1918 If VAL does not match a unique edge, NULL is returned. */
1921 find_taken_edge (basic_block bb, tree val)
1925 stmt = last_stmt (bb);
1928 gcc_assert (is_ctrl_stmt (stmt));
1933 if (!is_gimple_min_invariant (val))
1936 if (gimple_code (stmt) == GIMPLE_COND)
1937 return find_taken_edge_cond_expr (bb, val);
1939 if (gimple_code (stmt) == GIMPLE_SWITCH)
1940 return find_taken_edge_switch_expr (bb, val);
1942 if (computed_goto_p (stmt))
1944 /* Only optimize if the argument is a label, if the argument is
1945 not a label then we can not construct a proper CFG.
1947 It may be the case that we only need to allow the LABEL_REF to
1948 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1949 appear inside a LABEL_EXPR just to be safe. */
1950 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1951 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1952 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1959 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1960 statement, determine which of the outgoing edges will be taken out of the
1961 block. Return NULL if either edge may be taken. */
1964 find_taken_edge_computed_goto (basic_block bb, tree val)
1969 dest = label_to_block (val);
1972 e = find_edge (bb, dest);
1973 gcc_assert (e != NULL);
1979 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1980 statement, determine which of the two edges will be taken out of the
1981 block. Return NULL if either edge may be taken. */
1984 find_taken_edge_cond_expr (basic_block bb, tree val)
1986 edge true_edge, false_edge;
1988 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1990 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1991 return (integer_zerop (val) ? false_edge : true_edge);
1994 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1995 statement, determine which edge will be taken out of the block. Return
1996 NULL if any edge may be taken. */
1999 find_taken_edge_switch_expr (basic_block bb, tree val)
2001 basic_block dest_bb;
2006 switch_stmt = last_stmt (bb);
2007 taken_case = find_case_label_for_value (switch_stmt, val);
2008 dest_bb = label_to_block (CASE_LABEL (taken_case));
2010 e = find_edge (bb, dest_bb);
2016 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2017 We can make optimal use here of the fact that the case labels are
2018 sorted: We can do a binary search for a case matching VAL. */
2021 find_case_label_for_value (gimple switch_stmt, tree val)
2023 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2024 tree default_case = gimple_switch_default_label (switch_stmt);
2026 for (low = 0, high = n; high - low > 1; )
2028 size_t i = (high + low) / 2;
2029 tree t = gimple_switch_label (switch_stmt, i);
2032 /* Cache the result of comparing CASE_LOW and val. */
2033 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2040 if (CASE_HIGH (t) == NULL)
2042 /* A singe-valued case label. */
2048 /* A case range. We can only handle integer ranges. */
2049 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2054 return default_case;
2058 /* Dump a basic block on stderr. */
2061 gimple_debug_bb (basic_block bb)
2063 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2067 /* Dump basic block with index N on stderr. */
2070 gimple_debug_bb_n (int n)
2072 gimple_debug_bb (BASIC_BLOCK (n));
2073 return BASIC_BLOCK (n);
2077 /* Dump the CFG on stderr.
2079 FLAGS are the same used by the tree dumping functions
2080 (see TDF_* in tree-pass.h). */
2083 gimple_debug_cfg (int flags)
2085 gimple_dump_cfg (stderr, flags);
2089 /* Dump the program showing basic block boundaries on the given FILE.
2091 FLAGS are the same used by the tree dumping functions (see TDF_* in
2095 gimple_dump_cfg (FILE *file, int flags)
2097 if (flags & TDF_DETAILS)
2099 dump_function_header (file, current_function_decl, flags);
2100 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2101 n_basic_blocks, n_edges, last_basic_block);
2103 brief_dump_cfg (file);
2104 fprintf (file, "\n");
2107 if (flags & TDF_STATS)
2108 dump_cfg_stats (file);
2110 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2114 /* Dump CFG statistics on FILE. */
2117 dump_cfg_stats (FILE *file)
2119 static long max_num_merged_labels = 0;
2120 unsigned long size, total = 0;
2123 const char * const fmt_str = "%-30s%-13s%12s\n";
2124 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2125 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2126 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2127 const char *funcname
2128 = lang_hooks.decl_printable_name (current_function_decl, 2);
2131 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2133 fprintf (file, "---------------------------------------------------------\n");
2134 fprintf (file, fmt_str, "", " Number of ", "Memory");
2135 fprintf (file, fmt_str, "", " instances ", "used ");
2136 fprintf (file, "---------------------------------------------------------\n");
2138 size = n_basic_blocks * sizeof (struct basic_block_def);
2140 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2141 SCALE (size), LABEL (size));
2145 num_edges += EDGE_COUNT (bb->succs);
2146 size = num_edges * sizeof (struct edge_def);
2148 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2150 fprintf (file, "---------------------------------------------------------\n");
2151 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2153 fprintf (file, "---------------------------------------------------------\n");
2154 fprintf (file, "\n");
2156 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2157 max_num_merged_labels = cfg_stats.num_merged_labels;
2159 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2160 cfg_stats.num_merged_labels, max_num_merged_labels);
2162 fprintf (file, "\n");
2166 /* Dump CFG statistics on stderr. Keep extern so that it's always
2167 linked in the final executable. */
2170 debug_cfg_stats (void)
2172 dump_cfg_stats (stderr);
2176 /* Dump the flowgraph to a .vcg FILE. */
2179 gimple_cfg2vcg (FILE *file)
2184 const char *funcname
2185 = lang_hooks.decl_printable_name (current_function_decl, 2);
2187 /* Write the file header. */
2188 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2189 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2190 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2192 /* Write blocks and edges. */
2193 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2195 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2198 if (e->flags & EDGE_FAKE)
2199 fprintf (file, " linestyle: dotted priority: 10");
2201 fprintf (file, " linestyle: solid priority: 100");
2203 fprintf (file, " }\n");
2209 enum gimple_code head_code, end_code;
2210 const char *head_name, *end_name;
2213 gimple first = first_stmt (bb);
2214 gimple last = last_stmt (bb);
2218 head_code = gimple_code (first);
2219 head_name = gimple_code_name[head_code];
2220 head_line = get_lineno (first);
2223 head_name = "no-statement";
2227 end_code = gimple_code (last);
2228 end_name = gimple_code_name[end_code];
2229 end_line = get_lineno (last);
2232 end_name = "no-statement";
2234 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2235 bb->index, bb->index, head_name, head_line, end_name,
2238 FOR_EACH_EDGE (e, ei, bb->succs)
2240 if (e->dest == EXIT_BLOCK_PTR)
2241 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2243 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2245 if (e->flags & EDGE_FAKE)
2246 fprintf (file, " priority: 10 linestyle: dotted");
2248 fprintf (file, " priority: 100 linestyle: solid");
2250 fprintf (file, " }\n");
2253 if (bb->next_bb != EXIT_BLOCK_PTR)
2257 fputs ("}\n\n", file);
2262 /*---------------------------------------------------------------------------
2263 Miscellaneous helpers
2264 ---------------------------------------------------------------------------*/
2266 /* Return true if T represents a stmt that always transfers control. */
2269 is_ctrl_stmt (gimple t)
2271 switch (gimple_code (t))
2285 /* Return true if T is a statement that may alter the flow of control
2286 (e.g., a call to a non-returning function). */
2289 is_ctrl_altering_stmt (gimple t)
2293 switch (gimple_code (t))
2297 int flags = gimple_call_flags (t);
2299 /* A non-pure/const call alters flow control if the current
2300 function has nonlocal labels. */
2301 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2302 && cfun->has_nonlocal_label)
2305 /* A call also alters control flow if it does not return. */
2306 if (flags & ECF_NORETURN)
2309 /* TM ending statements have backedges out of the transaction.
2310 Return true so we split the basic block containing them.
2311 Note that the TM_BUILTIN test is merely an optimization. */
2312 if ((flags & ECF_TM_BUILTIN)
2313 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2316 /* BUILT_IN_RETURN call is same as return statement. */
2317 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2322 case GIMPLE_EH_DISPATCH:
2323 /* EH_DISPATCH branches to the individual catch handlers at
2324 this level of a try or allowed-exceptions region. It can
2325 fallthru to the next statement as well. */
2329 if (gimple_asm_nlabels (t) > 0)
2334 /* OpenMP directives alter control flow. */
2337 case GIMPLE_TRANSACTION:
2338 /* A transaction start alters control flow. */
2345 /* If a statement can throw, it alters control flow. */
2346 return stmt_can_throw_internal (t);
2350 /* Return true if T is a simple local goto. */
2353 simple_goto_p (gimple t)
2355 return (gimple_code (t) == GIMPLE_GOTO
2356 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2360 /* Return true if T can make an abnormal transfer of control flow.
2361 Transfers of control flow associated with EH are excluded. */
2364 stmt_can_make_abnormal_goto (gimple t)
2366 if (computed_goto_p (t))
2368 if (is_gimple_call (t))
2369 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2370 && !(gimple_call_flags (t) & ECF_LEAF));
2375 /* Return true if STMT should start a new basic block. PREV_STMT is
2376 the statement preceding STMT. It is used when STMT is a label or a
2377 case label. Labels should only start a new basic block if their
2378 previous statement wasn't a label. Otherwise, sequence of labels
2379 would generate unnecessary basic blocks that only contain a single
2383 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2388 /* Labels start a new basic block only if the preceding statement
2389 wasn't a label of the same type. This prevents the creation of
2390 consecutive blocks that have nothing but a single label. */
2391 if (gimple_code (stmt) == GIMPLE_LABEL)
2393 /* Nonlocal and computed GOTO targets always start a new block. */
2394 if (DECL_NONLOCAL (gimple_label_label (stmt))
2395 || FORCED_LABEL (gimple_label_label (stmt)))
2398 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2400 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2403 cfg_stats.num_merged_labels++;
2414 /* Return true if T should end a basic block. */
2417 stmt_ends_bb_p (gimple t)
2419 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2422 /* Remove block annotations and other data structures. */
2425 delete_tree_cfg_annotations (void)
2427 label_to_block_map = NULL;
2431 /* Return the first statement in basic block BB. */
2434 first_stmt (basic_block bb)
2436 gimple_stmt_iterator i = gsi_start_bb (bb);
2439 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2447 /* Return the first non-label statement in basic block BB. */
2450 first_non_label_stmt (basic_block bb)
2452 gimple_stmt_iterator i = gsi_start_bb (bb);
2453 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2455 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2458 /* Return the last statement in basic block BB. */
2461 last_stmt (basic_block bb)
2463 gimple_stmt_iterator i = gsi_last_bb (bb);
2466 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2474 /* Return the last statement of an otherwise empty block. Return NULL
2475 if the block is totally empty, or if it contains more than one
2479 last_and_only_stmt (basic_block bb)
2481 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2487 last = gsi_stmt (i);
2488 gsi_prev_nondebug (&i);
2492 /* Empty statements should no longer appear in the instruction stream.
2493 Everything that might have appeared before should be deleted by
2494 remove_useless_stmts, and the optimizers should just gsi_remove
2495 instead of smashing with build_empty_stmt.
2497 Thus the only thing that should appear here in a block containing
2498 one executable statement is a label. */
2499 prev = gsi_stmt (i);
2500 if (gimple_code (prev) == GIMPLE_LABEL)
2506 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2509 reinstall_phi_args (edge new_edge, edge old_edge)
2511 edge_var_map_vector v;
2514 gimple_stmt_iterator phis;
2516 v = redirect_edge_var_map_vector (old_edge);
2520 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2521 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2522 i++, gsi_next (&phis))
2524 gimple phi = gsi_stmt (phis);
2525 tree result = redirect_edge_var_map_result (vm);
2526 tree arg = redirect_edge_var_map_def (vm);
2528 gcc_assert (result == gimple_phi_result (phi));
2530 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2533 redirect_edge_var_map_clear (old_edge);
2536 /* Returns the basic block after which the new basic block created
2537 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2538 near its "logical" location. This is of most help to humans looking
2539 at debugging dumps. */
2542 split_edge_bb_loc (edge edge_in)
2544 basic_block dest = edge_in->dest;
2545 basic_block dest_prev = dest->prev_bb;
2549 edge e = find_edge (dest_prev, dest);
2550 if (e && !(e->flags & EDGE_COMPLEX))
2551 return edge_in->src;
2556 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2557 Abort on abnormal edges. */
2560 gimple_split_edge (edge edge_in)
2562 basic_block new_bb, after_bb, dest;
2565 /* Abnormal edges cannot be split. */
2566 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2568 dest = edge_in->dest;
2570 after_bb = split_edge_bb_loc (edge_in);
2572 new_bb = create_empty_bb (after_bb);
2573 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2574 new_bb->count = edge_in->count;
2575 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2576 new_edge->probability = REG_BR_PROB_BASE;
2577 new_edge->count = edge_in->count;
2579 e = redirect_edge_and_branch (edge_in, new_bb);
2580 gcc_assert (e == edge_in);
2581 reinstall_phi_args (new_edge, e);
2587 /* Verify properties of the address expression T with base object BASE. */
2590 verify_address (tree t, tree base)
2593 bool old_side_effects;
2595 bool new_side_effects;
2597 old_constant = TREE_CONSTANT (t);
2598 old_side_effects = TREE_SIDE_EFFECTS (t);
2600 recompute_tree_invariant_for_addr_expr (t);
2601 new_side_effects = TREE_SIDE_EFFECTS (t);
2602 new_constant = TREE_CONSTANT (t);
2604 if (old_constant != new_constant)
2606 error ("constant not recomputed when ADDR_EXPR changed");
2609 if (old_side_effects != new_side_effects)
2611 error ("side effects not recomputed when ADDR_EXPR changed");
2615 if (!(TREE_CODE (base) == VAR_DECL
2616 || TREE_CODE (base) == PARM_DECL
2617 || TREE_CODE (base) == RESULT_DECL))
2620 if (DECL_GIMPLE_REG_P (base))
2622 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2629 /* Callback for walk_tree, check that all elements with address taken are
2630 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2631 inside a PHI node. */
2634 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2641 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2642 #define CHECK_OP(N, MSG) \
2643 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2644 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2646 switch (TREE_CODE (t))
2649 if (SSA_NAME_IN_FREE_LIST (t))
2651 error ("SSA name in freelist but still referenced");
2657 error ("INDIRECT_REF in gimple IL");
2661 x = TREE_OPERAND (t, 0);
2662 if (!POINTER_TYPE_P (TREE_TYPE (x))
2663 || !is_gimple_mem_ref_addr (x))
2665 error ("invalid first operand of MEM_REF");
2668 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2669 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2671 error ("invalid offset operand of MEM_REF");
2672 return TREE_OPERAND (t, 1);
2674 if (TREE_CODE (x) == ADDR_EXPR
2675 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2681 x = fold (ASSERT_EXPR_COND (t));
2682 if (x == boolean_false_node)
2684 error ("ASSERT_EXPR with an always-false condition");
2690 error ("MODIFY_EXPR not expected while having tuples");
2697 gcc_assert (is_gimple_address (t));
2699 /* Skip any references (they will be checked when we recurse down the
2700 tree) and ensure that any variable used as a prefix is marked
2702 for (x = TREE_OPERAND (t, 0);
2703 handled_component_p (x);
2704 x = TREE_OPERAND (x, 0))
2707 if ((tem = verify_address (t, x)))
2710 if (!(TREE_CODE (x) == VAR_DECL
2711 || TREE_CODE (x) == PARM_DECL
2712 || TREE_CODE (x) == RESULT_DECL))
2715 if (!TREE_ADDRESSABLE (x))
2717 error ("address taken, but ADDRESSABLE bit not set");
2725 x = COND_EXPR_COND (t);
2726 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2728 error ("non-integral used in condition");
2731 if (!is_gimple_condexpr (x))
2733 error ("invalid conditional operand");
2738 case NON_LVALUE_EXPR:
2739 case TRUTH_NOT_EXPR:
2743 case FIX_TRUNC_EXPR:
2748 CHECK_OP (0, "invalid operand to unary operator");
2755 case ARRAY_RANGE_REF:
2757 case VIEW_CONVERT_EXPR:
2758 /* We have a nest of references. Verify that each of the operands
2759 that determine where to reference is either a constant or a variable,
2760 verify that the base is valid, and then show we've already checked
2762 while (handled_component_p (t))
2764 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2765 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2766 else if (TREE_CODE (t) == ARRAY_REF
2767 || TREE_CODE (t) == ARRAY_RANGE_REF)
2769 CHECK_OP (1, "invalid array index");
2770 if (TREE_OPERAND (t, 2))
2771 CHECK_OP (2, "invalid array lower bound");
2772 if (TREE_OPERAND (t, 3))
2773 CHECK_OP (3, "invalid array stride");
2775 else if (TREE_CODE (t) == BIT_FIELD_REF)
2777 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2778 || !host_integerp (TREE_OPERAND (t, 2), 1))
2780 error ("invalid position or size operand to BIT_FIELD_REF");
2783 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2784 && (TYPE_PRECISION (TREE_TYPE (t))
2785 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2787 error ("integral result type precision does not match "
2788 "field size of BIT_FIELD_REF");
2791 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2792 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2793 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2795 error ("mode precision of non-integral result does not "
2796 "match field size of BIT_FIELD_REF");
2801 t = TREE_OPERAND (t, 0);
2804 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2806 error ("invalid reference prefix");
2813 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2814 POINTER_PLUS_EXPR. */
2815 if (POINTER_TYPE_P (TREE_TYPE (t)))
2817 error ("invalid operand to plus/minus, type is a pointer");
2820 CHECK_OP (0, "invalid operand to binary operator");
2821 CHECK_OP (1, "invalid operand to binary operator");
2824 case POINTER_PLUS_EXPR:
2825 /* Check to make sure the first operand is a pointer or reference type. */
2826 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2828 error ("invalid operand to pointer plus, first operand is not a pointer");
2831 /* Check to make sure the second operand is a ptrofftype. */
2832 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2834 error ("invalid operand to pointer plus, second operand is not an "
2835 "integer type of appropriate width");
2845 case UNORDERED_EXPR:
2854 case TRUNC_DIV_EXPR:
2856 case FLOOR_DIV_EXPR:
2857 case ROUND_DIV_EXPR:
2858 case TRUNC_MOD_EXPR:
2860 case FLOOR_MOD_EXPR:
2861 case ROUND_MOD_EXPR:
2863 case EXACT_DIV_EXPR:
2873 CHECK_OP (0, "invalid operand to binary operator");
2874 CHECK_OP (1, "invalid operand to binary operator");
2878 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2882 case CASE_LABEL_EXPR:
2885 error ("invalid CASE_CHAIN");
2899 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2900 Returns true if there is an error, otherwise false. */
2903 verify_types_in_gimple_min_lval (tree expr)
2907 if (is_gimple_id (expr))
2910 if (TREE_CODE (expr) != TARGET_MEM_REF
2911 && TREE_CODE (expr) != MEM_REF)
2913 error ("invalid expression for min lvalue");
2917 /* TARGET_MEM_REFs are strange beasts. */
2918 if (TREE_CODE (expr) == TARGET_MEM_REF)
2921 op = TREE_OPERAND (expr, 0);
2922 if (!is_gimple_val (op))
2924 error ("invalid operand in indirect reference");
2925 debug_generic_stmt (op);
2928 /* Memory references now generally can involve a value conversion. */
2933 /* Verify if EXPR is a valid GIMPLE reference expression. If
2934 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2935 if there is an error, otherwise false. */
2938 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2940 while (handled_component_p (expr))
2942 tree op = TREE_OPERAND (expr, 0);
2944 if (TREE_CODE (expr) == ARRAY_REF
2945 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2947 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2948 || (TREE_OPERAND (expr, 2)
2949 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2950 || (TREE_OPERAND (expr, 3)
2951 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2953 error ("invalid operands to array reference");
2954 debug_generic_stmt (expr);
2959 /* Verify if the reference array element types are compatible. */
2960 if (TREE_CODE (expr) == ARRAY_REF
2961 && !useless_type_conversion_p (TREE_TYPE (expr),
2962 TREE_TYPE (TREE_TYPE (op))))
2964 error ("type mismatch in array reference");
2965 debug_generic_stmt (TREE_TYPE (expr));
2966 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2969 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2970 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2971 TREE_TYPE (TREE_TYPE (op))))
2973 error ("type mismatch in array range reference");
2974 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2975 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2979 if ((TREE_CODE (expr) == REALPART_EXPR
2980 || TREE_CODE (expr) == IMAGPART_EXPR)
2981 && !useless_type_conversion_p (TREE_TYPE (expr),
2982 TREE_TYPE (TREE_TYPE (op))))
2984 error ("type mismatch in real/imagpart reference");
2985 debug_generic_stmt (TREE_TYPE (expr));
2986 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2990 if (TREE_CODE (expr) == COMPONENT_REF
2991 && !useless_type_conversion_p (TREE_TYPE (expr),
2992 TREE_TYPE (TREE_OPERAND (expr, 1))))
2994 error ("type mismatch in component reference");
2995 debug_generic_stmt (TREE_TYPE (expr));
2996 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3000 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3002 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3003 that their operand is not an SSA name or an invariant when
3004 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3005 bug). Otherwise there is nothing to verify, gross mismatches at
3006 most invoke undefined behavior. */
3008 && (TREE_CODE (op) == SSA_NAME
3009 || is_gimple_min_invariant (op)))
3011 error ("conversion of an SSA_NAME on the left hand side");
3012 debug_generic_stmt (expr);
3015 else if (TREE_CODE (op) == SSA_NAME
3016 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3018 error ("conversion of register to a different size");
3019 debug_generic_stmt (expr);
3022 else if (!handled_component_p (op))
3029 if (TREE_CODE (expr) == MEM_REF)
3031 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3033 error ("invalid address operand in MEM_REF");
3034 debug_generic_stmt (expr);
3037 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3038 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3040 error ("invalid offset operand in MEM_REF");
3041 debug_generic_stmt (expr);
3045 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3047 if (!TMR_BASE (expr)
3048 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3050 error ("invalid address operand in TARGET_MEM_REF");
3053 if (!TMR_OFFSET (expr)
3054 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3055 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3057 error ("invalid offset operand in TARGET_MEM_REF");
3058 debug_generic_stmt (expr);
3063 return ((require_lvalue || !is_gimple_min_invariant (expr))
3064 && verify_types_in_gimple_min_lval (expr));
3067 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3068 list of pointer-to types that is trivially convertible to DEST. */
3071 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3075 if (!TYPE_POINTER_TO (src_obj))
3078 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3079 if (useless_type_conversion_p (dest, src))
3085 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3086 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3089 valid_fixed_convert_types_p (tree type1, tree type2)
3091 return (FIXED_POINT_TYPE_P (type1)
3092 && (INTEGRAL_TYPE_P (type2)
3093 || SCALAR_FLOAT_TYPE_P (type2)
3094 || FIXED_POINT_TYPE_P (type2)));
3097 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3098 is a problem, otherwise false. */
3101 verify_gimple_call (gimple stmt)
3103 tree fn = gimple_call_fn (stmt);
3104 tree fntype, fndecl;
3107 if (gimple_call_internal_p (stmt))
3111 error ("gimple call has two targets");
3112 debug_generic_stmt (fn);
3120 error ("gimple call has no target");
3125 if (fn && !is_gimple_call_addr (fn))
3127 error ("invalid function in gimple call");
3128 debug_generic_stmt (fn);
3133 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3134 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3135 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3137 error ("non-function in gimple call");
3141 fndecl = gimple_call_fndecl (stmt);
3143 && TREE_CODE (fndecl) == FUNCTION_DECL
3144 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3145 && !DECL_PURE_P (fndecl)
3146 && !TREE_READONLY (fndecl))
3148 error ("invalid pure const state for function");
3152 if (gimple_call_lhs (stmt)
3153 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3154 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3156 error ("invalid LHS in gimple call");
3160 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3162 error ("LHS in noreturn call");
3166 fntype = gimple_call_fntype (stmt);
3168 && gimple_call_lhs (stmt)
3169 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3171 /* ??? At least C++ misses conversions at assignments from
3172 void * call results.
3173 ??? Java is completely off. Especially with functions
3174 returning java.lang.Object.
3175 For now simply allow arbitrary pointer type conversions. */
3176 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3177 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3179 error ("invalid conversion in gimple call");
3180 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3181 debug_generic_stmt (TREE_TYPE (fntype));
3185 if (gimple_call_chain (stmt)
3186 && !is_gimple_val (gimple_call_chain (stmt)))
3188 error ("invalid static chain in gimple call");
3189 debug_generic_stmt (gimple_call_chain (stmt));
3193 /* If there is a static chain argument, this should not be an indirect
3194 call, and the decl should have DECL_STATIC_CHAIN set. */
3195 if (gimple_call_chain (stmt))
3197 if (!gimple_call_fndecl (stmt))
3199 error ("static chain in indirect gimple call");
3202 fn = TREE_OPERAND (fn, 0);
3204 if (!DECL_STATIC_CHAIN (fn))
3206 error ("static chain with function that doesn%'t use one");
3211 /* ??? The C frontend passes unpromoted arguments in case it
3212 didn't see a function declaration before the call. So for now
3213 leave the call arguments mostly unverified. Once we gimplify
3214 unit-at-a-time we have a chance to fix this. */
3216 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3218 tree arg = gimple_call_arg (stmt, i);
3219 if ((is_gimple_reg_type (TREE_TYPE (arg))
3220 && !is_gimple_val (arg))
3221 || (!is_gimple_reg_type (TREE_TYPE (arg))
3222 && !is_gimple_lvalue (arg)))
3224 error ("invalid argument to gimple call");
3225 debug_generic_expr (arg);
3230 /* Verify that if we have a direct call and the argument/return
3231 types have mismatches the call is properly marked as noninlinable. */
3233 && !gimple_call_cannot_inline_p (stmt)
3234 && !gimple_check_call_matching_types (stmt, fndecl))
3236 error ("gimple call cannot be inlined but is not marked so");
3243 /* Verifies the gimple comparison with the result type TYPE and
3244 the operands OP0 and OP1. */
3247 verify_gimple_comparison (tree type, tree op0, tree op1)
3249 tree op0_type = TREE_TYPE (op0);
3250 tree op1_type = TREE_TYPE (op1);
3252 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3254 error ("invalid operands in gimple comparison");
3258 /* For comparisons we do not have the operations type as the
3259 effective type the comparison is carried out in. Instead
3260 we require that either the first operand is trivially
3261 convertible into the second, or the other way around.
3262 Because we special-case pointers to void we allow
3263 comparisons of pointers with the same mode as well. */
3264 if (!useless_type_conversion_p (op0_type, op1_type)
3265 && !useless_type_conversion_p (op1_type, op0_type)
3266 && (!POINTER_TYPE_P (op0_type)
3267 || !POINTER_TYPE_P (op1_type)
3268 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3270 error ("mismatching comparison operand types");
3271 debug_generic_expr (op0_type);
3272 debug_generic_expr (op1_type);
3276 /* The resulting type of a comparison may be an effective boolean type. */
3277 if (INTEGRAL_TYPE_P (type)
3278 && (TREE_CODE (type) == BOOLEAN_TYPE
3279 || TYPE_PRECISION (type) == 1))
3281 /* Or an integer vector type with the same size and element count
3282 as the comparison operand types. */
3283 else if (TREE_CODE (type) == VECTOR_TYPE
3284 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3286 if (TREE_CODE (op0_type) != VECTOR_TYPE
3287 || TREE_CODE (op1_type) != VECTOR_TYPE)
3289 error ("non-vector operands in vector comparison");
3290 debug_generic_expr (op0_type);
3291 debug_generic_expr (op1_type);
3295 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3296 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3297 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))))
3299 error ("invalid vector comparison resulting type");
3300 debug_generic_expr (type);
3306 error ("bogus comparison result type");
3307 debug_generic_expr (type);
3314 /* Verify a gimple assignment statement STMT with an unary rhs.
3315 Returns true if anything is wrong. */
3318 verify_gimple_assign_unary (gimple stmt)
3320 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3321 tree lhs = gimple_assign_lhs (stmt);
3322 tree lhs_type = TREE_TYPE (lhs);
3323 tree rhs1 = gimple_assign_rhs1 (stmt);
3324 tree rhs1_type = TREE_TYPE (rhs1);
3326 if (!is_gimple_reg (lhs))
3328 error ("non-register as LHS of unary operation");
3332 if (!is_gimple_val (rhs1))
3334 error ("invalid operand in unary operation");
3338 /* First handle conversions. */
3343 /* Allow conversions between integral types and pointers only if
3344 there is no sign or zero extension involved.
3345 For targets were the precision of ptrofftype doesn't match that
3346 of pointers we need to allow arbitrary conversions from and
3348 if ((POINTER_TYPE_P (lhs_type)
3349 && INTEGRAL_TYPE_P (rhs1_type)
3350 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3351 || ptrofftype_p (rhs1_type)))
3352 || (POINTER_TYPE_P (rhs1_type)
3353 && INTEGRAL_TYPE_P (lhs_type)
3354 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3355 || ptrofftype_p (sizetype))))
3358 /* Allow conversion from integer to offset type and vice versa. */
3359 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3360 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3361 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3362 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3365 /* Otherwise assert we are converting between types of the
3367 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3369 error ("invalid types in nop conversion");
3370 debug_generic_expr (lhs_type);
3371 debug_generic_expr (rhs1_type);
3378 case ADDR_SPACE_CONVERT_EXPR:
3380 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3381 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3382 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3384 error ("invalid types in address space conversion");
3385 debug_generic_expr (lhs_type);
3386 debug_generic_expr (rhs1_type);
3393 case FIXED_CONVERT_EXPR:
3395 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3396 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3398 error ("invalid types in fixed-point conversion");
3399 debug_generic_expr (lhs_type);
3400 debug_generic_expr (rhs1_type);
3409 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3410 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3411 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3413 error ("invalid types in conversion to floating point");
3414 debug_generic_expr (lhs_type);
3415 debug_generic_expr (rhs1_type);
3422 case FIX_TRUNC_EXPR:
3424 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3425 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3426 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3428 error ("invalid types in conversion to integer");
3429 debug_generic_expr (lhs_type);
3430 debug_generic_expr (rhs1_type);
3437 case VEC_UNPACK_HI_EXPR:
3438 case VEC_UNPACK_LO_EXPR:
3439 case REDUC_MAX_EXPR:
3440 case REDUC_MIN_EXPR:
3441 case REDUC_PLUS_EXPR:
3442 case VEC_UNPACK_FLOAT_HI_EXPR:
3443 case VEC_UNPACK_FLOAT_LO_EXPR:
3451 case NON_LVALUE_EXPR:
3459 /* For the remaining codes assert there is no conversion involved. */
3460 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3462 error ("non-trivial conversion in unary operation");
3463 debug_generic_expr (lhs_type);
3464 debug_generic_expr (rhs1_type);
3471 /* Verify a gimple assignment statement STMT with a binary rhs.
3472 Returns true if anything is wrong. */
3475 verify_gimple_assign_binary (gimple stmt)
3477 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3478 tree lhs = gimple_assign_lhs (stmt);
3479 tree lhs_type = TREE_TYPE (lhs);
3480 tree rhs1 = gimple_assign_rhs1 (stmt);
3481 tree rhs1_type = TREE_TYPE (rhs1);
3482 tree rhs2 = gimple_assign_rhs2 (stmt);
3483 tree rhs2_type = TREE_TYPE (rhs2);
3485 if (!is_gimple_reg (lhs))
3487 error ("non-register as LHS of binary operation");
3491 if (!is_gimple_val (rhs1)
3492 || !is_gimple_val (rhs2))
3494 error ("invalid operands in binary operation");
3498 /* First handle operations that involve different types. */
3503 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3504 || !(INTEGRAL_TYPE_P (rhs1_type)
3505 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3506 || !(INTEGRAL_TYPE_P (rhs2_type)
3507 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3509 error ("type mismatch in complex expression");
3510 debug_generic_expr (lhs_type);
3511 debug_generic_expr (rhs1_type);
3512 debug_generic_expr (rhs2_type);
3524 /* Shifts and rotates are ok on integral types, fixed point
3525 types and integer vector types. */
3526 if ((!INTEGRAL_TYPE_P (rhs1_type)
3527 && !FIXED_POINT_TYPE_P (rhs1_type)
3528 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3529 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3530 || (!INTEGRAL_TYPE_P (rhs2_type)
3531 /* Vector shifts of vectors are also ok. */
3532 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3533 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3534 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3535 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3536 || !useless_type_conversion_p (lhs_type, rhs1_type))
3538 error ("type mismatch in shift expression");
3539 debug_generic_expr (lhs_type);
3540 debug_generic_expr (rhs1_type);
3541 debug_generic_expr (rhs2_type);
3548 case VEC_LSHIFT_EXPR:
3549 case VEC_RSHIFT_EXPR:
3551 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3552 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3553 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3554 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3555 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3556 || (!INTEGRAL_TYPE_P (rhs2_type)
3557 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3558 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3559 || !useless_type_conversion_p (lhs_type, rhs1_type))
3561 error ("type mismatch in vector shift expression");
3562 debug_generic_expr (lhs_type);
3563 debug_generic_expr (rhs1_type);
3564 debug_generic_expr (rhs2_type);
3567 /* For shifting a vector of non-integral components we
3568 only allow shifting by a constant multiple of the element size. */
3569 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3570 && (TREE_CODE (rhs2) != INTEGER_CST
3571 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3572 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3574 error ("non-element sized vector shift of floating point vector");
3581 case WIDEN_LSHIFT_EXPR:
3583 if (!INTEGRAL_TYPE_P (lhs_type)
3584 || !INTEGRAL_TYPE_P (rhs1_type)
3585 || TREE_CODE (rhs2) != INTEGER_CST
3586 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3588 error ("type mismatch in widening vector shift expression");
3589 debug_generic_expr (lhs_type);
3590 debug_generic_expr (rhs1_type);
3591 debug_generic_expr (rhs2_type);
3598 case VEC_WIDEN_LSHIFT_HI_EXPR:
3599 case VEC_WIDEN_LSHIFT_LO_EXPR:
3601 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3602 || TREE_CODE (lhs_type) != VECTOR_TYPE
3603 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3604 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3605 || TREE_CODE (rhs2) != INTEGER_CST
3606 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3607 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3609 error ("type mismatch in widening vector shift expression");
3610 debug_generic_expr (lhs_type);
3611 debug_generic_expr (rhs1_type);
3612 debug_generic_expr (rhs2_type);