1 ! { dg-do run { xfail spu-*-* } }
6 ! XFAILed for SPU targets since we don't have an accurate library
7 ! implementation of the single-precision Bessel functions.
9 ! Run-time tests for transformations BESSEL_JN
12 real,parameter :: values(*) = [0.0, 0.5, 1.0, 0.9, 1.8,2.0,3.0,4.0,4.25,8.0,34.53, 475.78]
13 real,parameter :: myeps(size(values)) = epsilon(0.0) &
14 * [2, 7, 5, 6, 9, 12, 12, 7, 7, 8, 75, 15 ]
15 ! The following is sufficient for me - the values above are a bit
17 ! * [0, 5, 3, 4, 6, 7, 7, 5, 5, 6, 66, 4 ]
18 integer,parameter :: mymax(size(values)) = &
19 [100, 17, 23, 21, 27, 28, 32, 35, 36, 41, 47, 37 ]
20 integer, parameter :: Nmax = 100
21 real :: rec(0:Nmax), lib(0:Nmax)
24 do i = 1, ubound(values,dim=1)
25 call compare(mymax(i), values(i), myeps(i))
30 subroutine compare(mymax, X, myeps)
32 integer :: i, nit, mymax
35 rec(0:mymax) = BESSEL_JN(0, mymax, X)
36 lib(0:mymax) = [ (BESSEL_JN(i, X), i=0,mymax) ]
38 !print *, 'YN for X = ', X, ' -- Epsilon = ',epsilon(x)
40 ! print '(i2,2e17.9,e12.2,f18.10,2l3)', i, rec(i), lib(i), &
41 ! rec(i)-lib(i), ((rec(i)-lib(i))/rec(i))/epsilon(x), &
42 ! rec(i) == lib(i) .or. abs((rec(i)-lib(i))/rec(i)) < myeps
43 if (.not. (rec(i) == lib(i) .or. abs((rec(i)-lib(i))/rec(i)) < myeps)) &