1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 88, 89, 92-6, 1997 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
26 #include "insn-config.h"
27 #include "insn-flags.h"
28 #include "insn-codes.h"
32 #include "hard-reg-set.h"
35 #include "basic-block.h"
39 /* This file contains the reload pass of the compiler, which is
40 run after register allocation has been done. It checks that
41 each insn is valid (operands required to be in registers really
42 are in registers of the proper class) and fixes up invalid ones
43 by copying values temporarily into registers for the insns
46 The results of register allocation are described by the vector
47 reg_renumber; the insns still contain pseudo regs, but reg_renumber
48 can be used to find which hard reg, if any, a pseudo reg is in.
50 The technique we always use is to free up a few hard regs that are
51 called ``reload regs'', and for each place where a pseudo reg
52 must be in a hard reg, copy it temporarily into one of the reload regs.
54 All the pseudos that were formerly allocated to the hard regs that
55 are now in use as reload regs must be ``spilled''. This means
56 that they go to other hard regs, or to stack slots if no other
57 available hard regs can be found. Spilling can invalidate more
58 insns, requiring additional need for reloads, so we must keep checking
59 until the process stabilizes.
61 For machines with different classes of registers, we must keep track
62 of the register class needed for each reload, and make sure that
63 we allocate enough reload registers of each class.
65 The file reload.c contains the code that checks one insn for
66 validity and reports the reloads that it needs. This file
67 is in charge of scanning the entire rtl code, accumulating the
68 reload needs, spilling, assigning reload registers to use for
69 fixing up each insn, and generating the new insns to copy values
70 into the reload registers. */
73 #ifndef REGISTER_MOVE_COST
74 #define REGISTER_MOVE_COST(x, y) 2
77 #ifndef MEMORY_MOVE_COST
78 #define MEMORY_MOVE_COST(x) 4
81 /* During reload_as_needed, element N contains a REG rtx for the hard reg
82 into which reg N has been reloaded (perhaps for a previous insn). */
83 static rtx *reg_last_reload_reg;
85 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
86 for an output reload that stores into reg N. */
87 static char *reg_has_output_reload;
89 /* Indicates which hard regs are reload-registers for an output reload
90 in the current insn. */
91 static HARD_REG_SET reg_is_output_reload;
93 /* Element N is the constant value to which pseudo reg N is equivalent,
94 or zero if pseudo reg N is not equivalent to a constant.
95 find_reloads looks at this in order to replace pseudo reg N
96 with the constant it stands for. */
97 rtx *reg_equiv_constant;
99 /* Element N is a memory location to which pseudo reg N is equivalent,
100 prior to any register elimination (such as frame pointer to stack
101 pointer). Depending on whether or not it is a valid address, this value
102 is transferred to either reg_equiv_address or reg_equiv_mem. */
103 rtx *reg_equiv_memory_loc;
105 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
106 This is used when the address is not valid as a memory address
107 (because its displacement is too big for the machine.) */
108 rtx *reg_equiv_address;
110 /* Element N is the memory slot to which pseudo reg N is equivalent,
111 or zero if pseudo reg N is not equivalent to a memory slot. */
114 /* Widest width in which each pseudo reg is referred to (via subreg). */
115 static int *reg_max_ref_width;
117 /* Element N is the insn that initialized reg N from its equivalent
118 constant or memory slot. */
119 static rtx *reg_equiv_init;
121 /* During reload_as_needed, element N contains the last pseudo regno
122 reloaded into the Nth reload register. This vector is in parallel
123 with spill_regs. If that pseudo reg occupied more than one register,
124 reg_reloaded_contents points to that pseudo for each spill register in
125 use; all of these must remain set for an inheritance to occur. */
126 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
128 /* During reload_as_needed, element N contains the insn for which
129 the Nth reload register was last used. This vector is in parallel
130 with spill_regs, and its contents are significant only when
131 reg_reloaded_contents is significant. */
132 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
134 /* Number of spill-regs so far; number of valid elements of spill_regs. */
137 /* In parallel with spill_regs, contains REG rtx's for those regs.
138 Holds the last rtx used for any given reg, or 0 if it has never
139 been used for spilling yet. This rtx is reused, provided it has
141 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
143 /* In parallel with spill_regs, contains nonzero for a spill reg
144 that was stored after the last time it was used.
145 The precise value is the insn generated to do the store. */
146 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
148 /* This table is the inverse mapping of spill_regs:
149 indexed by hard reg number,
150 it contains the position of that reg in spill_regs,
151 or -1 for something that is not in spill_regs. */
152 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
154 /* This reg set indicates registers that may not be used for retrying global
155 allocation. The registers that may not be used include all spill registers
156 and the frame pointer (if we are using one). */
157 HARD_REG_SET forbidden_regs;
159 /* This reg set indicates registers that are not good for spill registers.
160 They will not be used to complete groups of spill registers. This includes
161 all fixed registers, registers that may be eliminated, and, if
162 SMALL_REGISTER_CLASSES is not defined, registers explicitly used in the rtl.
164 (spill_reg_order prevents these registers from being used to start a
166 static HARD_REG_SET bad_spill_regs;
168 /* Describes order of use of registers for reloading
169 of spilled pseudo-registers. `spills' is the number of
170 elements that are actually valid; new ones are added at the end. */
171 static short spill_regs[FIRST_PSEUDO_REGISTER];
173 /* This reg set indicates those registers that have been used a spill
174 registers. This information is used in reorg.c, to help figure out
175 what registers are live at any point. It is assumed that all spill_regs
176 are dead at every CODE_LABEL. */
178 HARD_REG_SET used_spill_regs;
180 /* Index of last register assigned as a spill register. We allocate in
181 a round-robin fashion. */
183 static int last_spill_reg;
185 /* Describes order of preference for putting regs into spill_regs.
186 Contains the numbers of all the hard regs, in order most preferred first.
187 This order is different for each function.
188 It is set up by order_regs_for_reload.
189 Empty elements at the end contain -1. */
190 static short potential_reload_regs[FIRST_PSEUDO_REGISTER];
192 /* 1 for a hard register that appears explicitly in the rtl
193 (for example, function value registers, special registers
194 used by insns, structure value pointer registers). */
195 static char regs_explicitly_used[FIRST_PSEUDO_REGISTER];
197 /* Indicates if a register was counted against the need for
198 groups. 0 means it can count against max_nongroup instead. */
199 static HARD_REG_SET counted_for_groups;
201 /* Indicates if a register was counted against the need for
202 non-groups. 0 means it can become part of a new group.
203 During choose_reload_regs, 1 here means don't use this reg
204 as part of a group, even if it seems to be otherwise ok. */
205 static HARD_REG_SET counted_for_nongroups;
207 /* Indexed by pseudo reg number N,
208 says may not delete stores into the real (memory) home of pseudo N.
209 This is set if we already substituted a memory equivalent in some uses,
210 which happens when we have to eliminate the fp from it. */
211 static char *cannot_omit_stores;
213 /* Nonzero if indirect addressing is supported on the machine; this means
214 that spilling (REG n) does not require reloading it into a register in
215 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
216 value indicates the level of indirect addressing supported, e.g., two
217 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
220 static char spill_indirect_levels;
222 /* Nonzero if indirect addressing is supported when the innermost MEM is
223 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
224 which these are valid is the same as spill_indirect_levels, above. */
226 char indirect_symref_ok;
228 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
230 char double_reg_address_ok;
232 /* Record the stack slot for each spilled hard register. */
234 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
236 /* Width allocated so far for that stack slot. */
238 static int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
240 /* Indexed by register class and basic block number, nonzero if there is
241 any need for a spill register of that class in that basic block.
242 The pointer is 0 if we did stupid allocation and don't know
243 the structure of basic blocks. */
245 char *basic_block_needs[N_REG_CLASSES];
247 /* First uid used by insns created by reload in this function.
248 Used in find_equiv_reg. */
249 int reload_first_uid;
251 /* Flag set by local-alloc or global-alloc if anything is live in
252 a call-clobbered reg across calls. */
254 int caller_save_needed;
256 /* The register class to use for a base register when reloading an
257 address. This is normally BASE_REG_CLASS, but it may be different
258 when using SMALL_REGISTER_CLASSES and passing parameters in
260 enum reg_class reload_address_base_reg_class;
262 /* The register class to use for an index register when reloading an
263 address. This is normally INDEX_REG_CLASS, but it may be different
264 when using SMALL_REGISTER_CLASSES and passing parameters in
266 enum reg_class reload_address_index_reg_class;
268 /* Set to 1 while reload_as_needed is operating.
269 Required by some machines to handle any generated moves differently. */
271 int reload_in_progress = 0;
273 /* These arrays record the insn_code of insns that may be needed to
274 perform input and output reloads of special objects. They provide a
275 place to pass a scratch register. */
277 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
278 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
280 /* This obstack is used for allocation of rtl during register elimination.
281 The allocated storage can be freed once find_reloads has processed the
284 struct obstack reload_obstack;
285 char *reload_firstobj;
287 #define obstack_chunk_alloc xmalloc
288 #define obstack_chunk_free free
290 /* List of labels that must never be deleted. */
291 extern rtx forced_labels;
293 /* Allocation number table from global register allocation. */
294 extern int *reg_allocno;
296 /* This structure is used to record information about register eliminations.
297 Each array entry describes one possible way of eliminating a register
298 in favor of another. If there is more than one way of eliminating a
299 particular register, the most preferred should be specified first. */
301 static struct elim_table
303 int from; /* Register number to be eliminated. */
304 int to; /* Register number used as replacement. */
305 int initial_offset; /* Initial difference between values. */
306 int can_eliminate; /* Non-zero if this elimination can be done. */
307 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
308 insns made by reload. */
309 int offset; /* Current offset between the two regs. */
310 int max_offset; /* Maximum offset between the two regs. */
311 int previous_offset; /* Offset at end of previous insn. */
312 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
313 rtx from_rtx; /* REG rtx for the register to be eliminated.
314 We cannot simply compare the number since
315 we might then spuriously replace a hard
316 register corresponding to a pseudo
317 assigned to the reg to be eliminated. */
318 rtx to_rtx; /* REG rtx for the replacement. */
321 /* If a set of eliminable registers was specified, define the table from it.
322 Otherwise, default to the normal case of the frame pointer being
323 replaced by the stack pointer. */
325 #ifdef ELIMINABLE_REGS
328 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
331 #define NUM_ELIMINABLE_REGS (sizeof reg_eliminate / sizeof reg_eliminate[0])
333 /* Record the number of pending eliminations that have an offset not equal
334 to their initial offset. If non-zero, we use a new copy of each
335 replacement result in any insns encountered. */
336 static int num_not_at_initial_offset;
338 /* Count the number of registers that we may be able to eliminate. */
339 static int num_eliminable;
341 /* For each label, we record the offset of each elimination. If we reach
342 a label by more than one path and an offset differs, we cannot do the
343 elimination. This information is indexed by the number of the label.
344 The first table is an array of flags that records whether we have yet
345 encountered a label and the second table is an array of arrays, one
346 entry in the latter array for each elimination. */
348 static char *offsets_known_at;
349 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
351 /* Number of labels in the current function. */
353 static int num_labels;
355 struct hard_reg_n_uses { int regno; int uses; };
357 static int possible_group_p PROTO((int, int *));
358 static void count_possible_groups PROTO((int *, enum machine_mode *,
360 static int modes_equiv_for_class_p PROTO((enum machine_mode,
363 static void spill_failure PROTO((rtx));
364 static int new_spill_reg PROTO((int, int, int *, int *, int,
366 static void delete_dead_insn PROTO((rtx));
367 static void alter_reg PROTO((int, int));
368 static void mark_scratch_live PROTO((rtx));
369 static void set_label_offsets PROTO((rtx, rtx, int));
370 static int eliminate_regs_in_insn PROTO((rtx, int));
371 static void mark_not_eliminable PROTO((rtx, rtx));
372 static int spill_hard_reg PROTO((int, int, FILE *, int));
373 static void scan_paradoxical_subregs PROTO((rtx));
374 static int hard_reg_use_compare PROTO((const GENERIC_PTR, const GENERIC_PTR));
375 static void order_regs_for_reload PROTO((int));
376 static int compare_spill_regs PROTO((const GENERIC_PTR, const GENERIC_PTR));
377 static void reload_as_needed PROTO((rtx, int));
378 static void forget_old_reloads_1 PROTO((rtx, rtx));
379 static int reload_reg_class_lower PROTO((const GENERIC_PTR, const GENERIC_PTR));
380 static void mark_reload_reg_in_use PROTO((int, int, enum reload_type,
382 static void clear_reload_reg_in_use PROTO((int, int, enum reload_type,
384 static int reload_reg_free_p PROTO((int, int, enum reload_type));
385 static int reload_reg_free_before_p PROTO((int, int, enum reload_type));
386 static int reload_reg_reaches_end_p PROTO((int, int, enum reload_type));
387 static int reloads_conflict PROTO((int, int));
388 static int allocate_reload_reg PROTO((int, rtx, int, int));
389 static void choose_reload_regs PROTO((rtx, rtx));
390 static void merge_assigned_reloads PROTO((rtx));
391 static void emit_reload_insns PROTO((rtx));
392 static void delete_output_reload PROTO((rtx, int, rtx));
393 static void inc_for_reload PROTO((rtx, rtx, int));
394 static int constraint_accepts_reg_p PROTO((char *, rtx));
395 static int count_occurrences PROTO((rtx, rtx));
396 static void reload_cse_invalidate_regno PROTO((int, enum machine_mode, int));
397 static int reload_cse_mem_conflict_p PROTO((rtx, rtx, enum machine_mode,
399 static void reload_cse_invalidate_mem PROTO((rtx));
400 static void reload_cse_invalidate_rtx PROTO((rtx, rtx));
401 static void reload_cse_regs PROTO((rtx));
402 static int reload_cse_regno_equal_p PROTO((int, rtx, enum machine_mode));
403 static int reload_cse_noop_set_p PROTO((rtx, rtx));
404 static void reload_cse_simplify_set PROTO((rtx, rtx));
405 static void reload_cse_check_clobber PROTO((rtx, rtx));
406 static void reload_cse_record_set PROTO((rtx, rtx));
408 /* Initialize the reload pass once per compilation. */
415 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
416 Set spill_indirect_levels to the number of levels such addressing is
417 permitted, zero if it is not permitted at all. */
420 = gen_rtx (MEM, Pmode,
421 gen_rtx (PLUS, Pmode,
422 gen_rtx (REG, Pmode, LAST_VIRTUAL_REGISTER + 1),
424 spill_indirect_levels = 0;
426 while (memory_address_p (QImode, tem))
428 spill_indirect_levels++;
429 tem = gen_rtx (MEM, Pmode, tem);
432 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
434 tem = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, Pmode, "foo"));
435 indirect_symref_ok = memory_address_p (QImode, tem);
437 /* See if reg+reg is a valid (and offsettable) address. */
439 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
441 tem = gen_rtx (PLUS, Pmode,
442 gen_rtx (REG, Pmode, HARD_FRAME_POINTER_REGNUM),
443 gen_rtx (REG, Pmode, i));
444 /* This way, we make sure that reg+reg is an offsettable address. */
445 tem = plus_constant (tem, 4);
447 if (memory_address_p (QImode, tem))
449 double_reg_address_ok = 1;
454 /* Initialize obstack for our rtl allocation. */
455 gcc_obstack_init (&reload_obstack);
456 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
458 /* Decide which register class should be used when reloading
459 addresses. If we are using SMALL_REGISTER_CLASSES, and any
460 parameters are passed in registers, then we do not want to use
461 those registers when reloading an address. Otherwise, if a
462 function argument needs a reload, we may wind up clobbering
463 another argument to the function which was already computed. If
464 we find a subset class which simply avoids those registers, we
465 use it instead. ??? It would be better to only use the
466 restricted class when we actually are loading function arguments,
467 but that is hard to determine. */
468 reload_address_base_reg_class = BASE_REG_CLASS;
469 reload_address_index_reg_class = INDEX_REG_CLASS;
470 #ifdef SMALL_REGISTER_CLASSES
471 if (SMALL_REGISTER_CLASSES)
474 HARD_REG_SET base, index;
477 COPY_HARD_REG_SET (base, reg_class_contents[BASE_REG_CLASS]);
478 COPY_HARD_REG_SET (index, reg_class_contents[INDEX_REG_CLASS]);
479 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
481 if (FUNCTION_ARG_REGNO_P (regno))
483 CLEAR_HARD_REG_BIT (base, regno);
484 CLEAR_HARD_REG_BIT (index, regno);
488 GO_IF_HARD_REG_EQUAL (base, reg_class_contents[BASE_REG_CLASS],
490 for (p = reg_class_subclasses[BASE_REG_CLASS];
491 *p != LIM_REG_CLASSES;
494 GO_IF_HARD_REG_EQUAL (base, reg_class_contents[*p], usebase);
497 reload_address_base_reg_class = *p;
502 GO_IF_HARD_REG_EQUAL (index, reg_class_contents[INDEX_REG_CLASS],
504 for (p = reg_class_subclasses[INDEX_REG_CLASS];
505 *p != LIM_REG_CLASSES;
508 GO_IF_HARD_REG_EQUAL (index, reg_class_contents[*p], useindex);
511 reload_address_index_reg_class = *p;
516 #endif /* SMALL_REGISTER_CLASSES */
519 /* Main entry point for the reload pass.
521 FIRST is the first insn of the function being compiled.
523 GLOBAL nonzero means we were called from global_alloc
524 and should attempt to reallocate any pseudoregs that we
525 displace from hard regs we will use for reloads.
526 If GLOBAL is zero, we do not have enough information to do that,
527 so any pseudo reg that is spilled must go to the stack.
529 DUMPFILE is the global-reg debugging dump file stream, or 0.
530 If it is nonzero, messages are written to it to describe
531 which registers are seized as reload regs, which pseudo regs
532 are spilled from them, and where the pseudo regs are reallocated to.
534 Return value is nonzero if reload failed
535 and we must not do any more for this function. */
538 reload (first, global, dumpfile)
544 register int i, j, k;
546 register struct elim_table *ep;
548 int something_changed;
549 int something_needs_reloads;
550 int something_needs_elimination;
551 int new_basic_block_needs;
552 enum reg_class caller_save_spill_class = NO_REGS;
553 int caller_save_group_size = 1;
555 /* Nonzero means we couldn't get enough spill regs. */
558 /* The basic block number currently being processed for INSN. */
561 /* Make sure even insns with volatile mem refs are recognizable. */
564 /* Enable find_equiv_reg to distinguish insns made by reload. */
565 reload_first_uid = get_max_uid ();
567 for (i = 0; i < N_REG_CLASSES; i++)
568 basic_block_needs[i] = 0;
570 #ifdef SECONDARY_MEMORY_NEEDED
571 /* Initialize the secondary memory table. */
572 clear_secondary_mem ();
575 /* Remember which hard regs appear explicitly
576 before we merge into `regs_ever_live' the ones in which
577 pseudo regs have been allocated. */
578 bcopy (regs_ever_live, regs_explicitly_used, sizeof regs_ever_live);
580 /* We don't have a stack slot for any spill reg yet. */
581 bzero ((char *) spill_stack_slot, sizeof spill_stack_slot);
582 bzero ((char *) spill_stack_slot_width, sizeof spill_stack_slot_width);
584 /* Initialize the save area information for caller-save, in case some
588 /* Compute which hard registers are now in use
589 as homes for pseudo registers.
590 This is done here rather than (eg) in global_alloc
591 because this point is reached even if not optimizing. */
592 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
595 /* A function that receives a nonlocal goto must save all call-saved
597 if (current_function_has_nonlocal_label)
598 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
600 if (! call_used_regs[i] && ! fixed_regs[i])
601 regs_ever_live[i] = 1;
604 for (i = 0; i < scratch_list_length; i++)
606 mark_scratch_live (scratch_list[i]);
608 /* Make sure that the last insn in the chain
609 is not something that needs reloading. */
610 emit_note (NULL_PTR, NOTE_INSN_DELETED);
612 /* Find all the pseudo registers that didn't get hard regs
613 but do have known equivalent constants or memory slots.
614 These include parameters (known equivalent to parameter slots)
615 and cse'd or loop-moved constant memory addresses.
617 Record constant equivalents in reg_equiv_constant
618 so they will be substituted by find_reloads.
619 Record memory equivalents in reg_mem_equiv so they can
620 be substituted eventually by altering the REG-rtx's. */
622 reg_equiv_constant = (rtx *) alloca (max_regno * sizeof (rtx));
623 bzero ((char *) reg_equiv_constant, max_regno * sizeof (rtx));
624 reg_equiv_memory_loc = (rtx *) alloca (max_regno * sizeof (rtx));
625 bzero ((char *) reg_equiv_memory_loc, max_regno * sizeof (rtx));
626 reg_equiv_mem = (rtx *) alloca (max_regno * sizeof (rtx));
627 bzero ((char *) reg_equiv_mem, max_regno * sizeof (rtx));
628 reg_equiv_init = (rtx *) alloca (max_regno * sizeof (rtx));
629 bzero ((char *) reg_equiv_init, max_regno * sizeof (rtx));
630 reg_equiv_address = (rtx *) alloca (max_regno * sizeof (rtx));
631 bzero ((char *) reg_equiv_address, max_regno * sizeof (rtx));
632 reg_max_ref_width = (int *) alloca (max_regno * sizeof (int));
633 bzero ((char *) reg_max_ref_width, max_regno * sizeof (int));
634 cannot_omit_stores = (char *) alloca (max_regno);
635 bzero (cannot_omit_stores, max_regno);
637 #ifdef SMALL_REGISTER_CLASSES
638 if (SMALL_REGISTER_CLASSES)
639 CLEAR_HARD_REG_SET (forbidden_regs);
642 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
643 Also find all paradoxical subregs and find largest such for each pseudo.
644 On machines with small register classes, record hard registers that
645 are used for user variables. These can never be used for spills.
646 Also look for a "constant" NOTE_INSN_SETJMP. This means that all
647 caller-saved registers must be marked live. */
649 for (insn = first; insn; insn = NEXT_INSN (insn))
651 rtx set = single_set (insn);
653 if (GET_CODE (insn) == NOTE && CONST_CALL_P (insn)
654 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
655 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
656 if (! call_used_regs[i])
657 regs_ever_live[i] = 1;
659 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
661 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
663 #ifdef LEGITIMATE_PIC_OPERAND_P
664 && (! CONSTANT_P (XEXP (note, 0)) || ! flag_pic
665 || LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
669 rtx x = XEXP (note, 0);
670 i = REGNO (SET_DEST (set));
671 if (i > LAST_VIRTUAL_REGISTER)
673 if (GET_CODE (x) == MEM)
674 reg_equiv_memory_loc[i] = x;
675 else if (CONSTANT_P (x))
677 if (LEGITIMATE_CONSTANT_P (x))
678 reg_equiv_constant[i] = x;
680 reg_equiv_memory_loc[i]
681 = force_const_mem (GET_MODE (SET_DEST (set)), x);
686 /* If this register is being made equivalent to a MEM
687 and the MEM is not SET_SRC, the equivalencing insn
688 is one with the MEM as a SET_DEST and it occurs later.
689 So don't mark this insn now. */
690 if (GET_CODE (x) != MEM
691 || rtx_equal_p (SET_SRC (set), x))
692 reg_equiv_init[i] = insn;
697 /* If this insn is setting a MEM from a register equivalent to it,
698 this is the equivalencing insn. */
699 else if (set && GET_CODE (SET_DEST (set)) == MEM
700 && GET_CODE (SET_SRC (set)) == REG
701 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
702 && rtx_equal_p (SET_DEST (set),
703 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
704 reg_equiv_init[REGNO (SET_SRC (set))] = insn;
706 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
707 scan_paradoxical_subregs (PATTERN (insn));
710 /* Does this function require a frame pointer? */
712 frame_pointer_needed = (! flag_omit_frame_pointer
713 #ifdef EXIT_IGNORE_STACK
714 /* ?? If EXIT_IGNORE_STACK is set, we will not save
715 and restore sp for alloca. So we can't eliminate
716 the frame pointer in that case. At some point,
717 we should improve this by emitting the
718 sp-adjusting insns for this case. */
719 || (current_function_calls_alloca
720 && EXIT_IGNORE_STACK)
722 || FRAME_POINTER_REQUIRED);
726 /* Initialize the table of registers to eliminate. The way we do this
727 depends on how the eliminable registers were defined. */
728 #ifdef ELIMINABLE_REGS
729 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
731 ep->can_eliminate = ep->can_eliminate_previous
732 = (CAN_ELIMINATE (ep->from, ep->to)
733 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
736 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
737 = ! frame_pointer_needed;
740 /* Count the number of eliminable registers and build the FROM and TO
741 REG rtx's. Note that code in gen_rtx will cause, e.g.,
742 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
743 We depend on this. */
744 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
746 num_eliminable += ep->can_eliminate;
747 ep->from_rtx = gen_rtx (REG, Pmode, ep->from);
748 ep->to_rtx = gen_rtx (REG, Pmode, ep->to);
751 num_labels = max_label_num () - get_first_label_num ();
753 /* Allocate the tables used to store offset information at labels. */
754 offsets_known_at = (char *) alloca (num_labels);
756 = (int (*)[NUM_ELIMINABLE_REGS])
757 alloca (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
759 offsets_known_at -= get_first_label_num ();
760 offsets_at -= get_first_label_num ();
762 /* Alter each pseudo-reg rtx to contain its hard reg number.
763 Assign stack slots to the pseudos that lack hard regs or equivalents.
764 Do not touch virtual registers. */
766 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
769 /* If we have some registers we think can be eliminated, scan all insns to
770 see if there is an insn that sets one of these registers to something
771 other than itself plus a constant. If so, the register cannot be
772 eliminated. Doing this scan here eliminates an extra pass through the
773 main reload loop in the most common case where register elimination
775 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
776 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
777 || GET_CODE (insn) == CALL_INSN)
778 note_stores (PATTERN (insn), mark_not_eliminable);
780 #ifndef REGISTER_CONSTRAINTS
781 /* If all the pseudo regs have hard regs,
782 except for those that are never referenced,
783 we know that no reloads are needed. */
784 /* But that is not true if there are register constraints, since
785 in that case some pseudos might be in the wrong kind of hard reg. */
787 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
788 if (reg_renumber[i] == -1 && reg_n_refs[i] != 0)
791 if (i == max_regno && num_eliminable == 0 && ! caller_save_needed)
795 /* Compute the order of preference for hard registers to spill.
796 Store them by decreasing preference in potential_reload_regs. */
798 order_regs_for_reload (global);
800 /* So far, no hard regs have been spilled. */
802 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
803 spill_reg_order[i] = -1;
805 /* Initialize to -1, which means take the first spill register. */
808 /* On most machines, we can't use any register explicitly used in the
809 rtl as a spill register. But on some, we have to. Those will have
810 taken care to keep the life of hard regs as short as possible. */
812 #ifdef SMALL_REGISTER_CLASSES
813 if (! SMALL_REGISTER_CLASSES)
815 COPY_HARD_REG_SET (forbidden_regs, bad_spill_regs);
817 /* Spill any hard regs that we know we can't eliminate. */
818 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
819 if (! ep->can_eliminate)
820 spill_hard_reg (ep->from, global, dumpfile, 1);
822 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
823 if (frame_pointer_needed)
824 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, global, dumpfile, 1);
828 for (i = 0; i < N_REG_CLASSES; i++)
830 basic_block_needs[i] = (char *) alloca (n_basic_blocks);
831 bzero (basic_block_needs[i], n_basic_blocks);
834 /* From now on, we need to emit any moves without making new pseudos. */
835 reload_in_progress = 1;
837 /* This loop scans the entire function each go-round
838 and repeats until one repetition spills no additional hard regs. */
840 /* This flag is set when a pseudo reg is spilled,
841 to require another pass. Note that getting an additional reload
842 reg does not necessarily imply any pseudo reg was spilled;
843 sometimes we find a reload reg that no pseudo reg was allocated in. */
844 something_changed = 1;
845 /* This flag is set if there are any insns that require reloading. */
846 something_needs_reloads = 0;
847 /* This flag is set if there are any insns that require register
849 something_needs_elimination = 0;
850 while (something_changed)
854 /* For each class, number of reload regs needed in that class.
855 This is the maximum over all insns of the needs in that class
856 of the individual insn. */
857 int max_needs[N_REG_CLASSES];
858 /* For each class, size of group of consecutive regs
859 that is needed for the reloads of this class. */
860 int group_size[N_REG_CLASSES];
861 /* For each class, max number of consecutive groups needed.
862 (Each group contains group_size[CLASS] consecutive registers.) */
863 int max_groups[N_REG_CLASSES];
864 /* For each class, max number needed of regs that don't belong
865 to any of the groups. */
866 int max_nongroups[N_REG_CLASSES];
867 /* For each class, the machine mode which requires consecutive
868 groups of regs of that class.
869 If two different modes ever require groups of one class,
870 they must be the same size and equally restrictive for that class,
871 otherwise we can't handle the complexity. */
872 enum machine_mode group_mode[N_REG_CLASSES];
873 /* Record the insn where each maximum need is first found. */
874 rtx max_needs_insn[N_REG_CLASSES];
875 rtx max_groups_insn[N_REG_CLASSES];
876 rtx max_nongroups_insn[N_REG_CLASSES];
878 HOST_WIDE_INT starting_frame_size;
879 int previous_frame_pointer_needed = frame_pointer_needed;
880 static char *reg_class_names[] = REG_CLASS_NAMES;
882 something_changed = 0;
883 bzero ((char *) max_needs, sizeof max_needs);
884 bzero ((char *) max_groups, sizeof max_groups);
885 bzero ((char *) max_nongroups, sizeof max_nongroups);
886 bzero ((char *) max_needs_insn, sizeof max_needs_insn);
887 bzero ((char *) max_groups_insn, sizeof max_groups_insn);
888 bzero ((char *) max_nongroups_insn, sizeof max_nongroups_insn);
889 bzero ((char *) group_size, sizeof group_size);
890 for (i = 0; i < N_REG_CLASSES; i++)
891 group_mode[i] = VOIDmode;
893 /* Keep track of which basic blocks are needing the reloads. */
896 /* Remember whether any element of basic_block_needs
897 changes from 0 to 1 in this pass. */
898 new_basic_block_needs = 0;
900 /* Round size of stack frame to BIGGEST_ALIGNMENT. This must be done
901 here because the stack size may be a part of the offset computation
902 for register elimination, and there might have been new stack slots
903 created in the last iteration of this loop. */
904 assign_stack_local (BLKmode, 0, 0);
906 starting_frame_size = get_frame_size ();
908 /* Reset all offsets on eliminable registers to their initial values. */
909 #ifdef ELIMINABLE_REGS
910 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
912 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
913 ep->previous_offset = ep->offset
914 = ep->max_offset = ep->initial_offset;
917 #ifdef INITIAL_FRAME_POINTER_OFFSET
918 INITIAL_FRAME_POINTER_OFFSET (reg_eliminate[0].initial_offset);
920 if (!FRAME_POINTER_REQUIRED)
922 reg_eliminate[0].initial_offset = 0;
924 reg_eliminate[0].previous_offset = reg_eliminate[0].max_offset
925 = reg_eliminate[0].offset = reg_eliminate[0].initial_offset;
928 num_not_at_initial_offset = 0;
930 bzero ((char *) &offsets_known_at[get_first_label_num ()], num_labels);
932 /* Set a known offset for each forced label to be at the initial offset
933 of each elimination. We do this because we assume that all
934 computed jumps occur from a location where each elimination is
935 at its initial offset. */
937 for (x = forced_labels; x; x = XEXP (x, 1))
939 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
941 /* For each pseudo register that has an equivalent location defined,
942 try to eliminate any eliminable registers (such as the frame pointer)
943 assuming initial offsets for the replacement register, which
946 If the resulting location is directly addressable, substitute
947 the MEM we just got directly for the old REG.
949 If it is not addressable but is a constant or the sum of a hard reg
950 and constant, it is probably not addressable because the constant is
951 out of range, in that case record the address; we will generate
952 hairy code to compute the address in a register each time it is
953 needed. Similarly if it is a hard register, but one that is not
954 valid as an address register.
956 If the location is not addressable, but does not have one of the
957 above forms, assign a stack slot. We have to do this to avoid the
958 potential of producing lots of reloads if, e.g., a location involves
959 a pseudo that didn't get a hard register and has an equivalent memory
960 location that also involves a pseudo that didn't get a hard register.
962 Perhaps at some point we will improve reload_when_needed handling
963 so this problem goes away. But that's very hairy. */
965 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
966 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
968 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX, 0);
970 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
972 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
973 else if (CONSTANT_P (XEXP (x, 0))
974 || (GET_CODE (XEXP (x, 0)) == REG
975 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
976 || (GET_CODE (XEXP (x, 0)) == PLUS
977 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
978 && (REGNO (XEXP (XEXP (x, 0), 0))
979 < FIRST_PSEUDO_REGISTER)
980 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
981 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
984 /* Make a new stack slot. Then indicate that something
985 changed so we go back and recompute offsets for
986 eliminable registers because the allocation of memory
987 below might change some offset. reg_equiv_{mem,address}
988 will be set up for this pseudo on the next pass around
990 reg_equiv_memory_loc[i] = 0;
991 reg_equiv_init[i] = 0;
993 something_changed = 1;
997 /* If we allocated another pseudo to the stack, redo elimination
999 if (something_changed)
1002 /* If caller-saves needs a group, initialize the group to include
1003 the size and mode required for caller-saves. */
1005 if (caller_save_group_size > 1)
1007 group_mode[(int) caller_save_spill_class] = Pmode;
1008 group_size[(int) caller_save_spill_class] = caller_save_group_size;
1011 /* Compute the most additional registers needed by any instruction.
1012 Collect information separately for each class of regs. */
1014 for (insn = first; insn; insn = NEXT_INSN (insn))
1016 if (global && this_block + 1 < n_basic_blocks
1017 && insn == basic_block_head[this_block+1])
1020 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which
1021 might include REG_LABEL), we need to see what effects this
1022 has on the known offsets at labels. */
1024 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1025 || (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
1026 && REG_NOTES (insn) != 0))
1027 set_label_offsets (insn, insn, 0);
1029 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1031 /* Nonzero means don't use a reload reg that overlaps
1032 the place where a function value can be returned. */
1033 rtx avoid_return_reg = 0;
1035 rtx old_body = PATTERN (insn);
1036 int old_code = INSN_CODE (insn);
1037 rtx old_notes = REG_NOTES (insn);
1038 int did_elimination = 0;
1040 /* To compute the number of reload registers of each class
1041 needed for an insn, we must simulate what choose_reload_regs
1042 can do. We do this by splitting an insn into an "input" and
1043 an "output" part. RELOAD_OTHER reloads are used in both.
1044 The input part uses those reloads, RELOAD_FOR_INPUT reloads,
1045 which must be live over the entire input section of reloads,
1046 and the maximum of all the RELOAD_FOR_INPUT_ADDRESS and
1047 RELOAD_FOR_OPERAND_ADDRESS reloads, which conflict with the
1050 The registers needed for output are RELOAD_OTHER and
1051 RELOAD_FOR_OUTPUT, which are live for the entire output
1052 portion, and the maximum of all the RELOAD_FOR_OUTPUT_ADDRESS
1053 reloads for each operand.
1055 The total number of registers needed is the maximum of the
1056 inputs and outputs. */
1060 /* [0] is normal, [1] is nongroup. */
1061 int regs[2][N_REG_CLASSES];
1062 int groups[N_REG_CLASSES];
1065 /* Each `struct needs' corresponds to one RELOAD_... type. */
1069 struct needs output;
1071 struct needs other_addr;
1072 struct needs op_addr;
1073 struct needs op_addr_reload;
1074 struct needs in_addr[MAX_RECOG_OPERANDS];
1075 struct needs in_addr_addr[MAX_RECOG_OPERANDS];
1076 struct needs out_addr[MAX_RECOG_OPERANDS];
1077 struct needs out_addr_addr[MAX_RECOG_OPERANDS];
1080 /* If needed, eliminate any eliminable registers. */
1082 did_elimination = eliminate_regs_in_insn (insn, 0);
1084 #ifdef SMALL_REGISTER_CLASSES
1085 /* Set avoid_return_reg if this is an insn
1086 that might use the value of a function call. */
1087 if (SMALL_REGISTER_CLASSES && GET_CODE (insn) == CALL_INSN)
1089 if (GET_CODE (PATTERN (insn)) == SET)
1090 after_call = SET_DEST (PATTERN (insn));
1091 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1092 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1093 after_call = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1097 else if (SMALL_REGISTER_CLASSES
1099 && !(GET_CODE (PATTERN (insn)) == SET
1100 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx))
1102 if (reg_referenced_p (after_call, PATTERN (insn)))
1103 avoid_return_reg = after_call;
1106 #endif /* SMALL_REGISTER_CLASSES */
1108 /* Analyze the instruction. */
1109 find_reloads (insn, 0, spill_indirect_levels, global,
1112 /* Remember for later shortcuts which insns had any reloads or
1113 register eliminations.
1115 One might think that it would be worthwhile to mark insns
1116 that need register replacements but not reloads, but this is
1117 not safe because find_reloads may do some manipulation of
1118 the insn (such as swapping commutative operands), which would
1119 be lost when we restore the old pattern after register
1120 replacement. So the actions of find_reloads must be redone in
1121 subsequent passes or in reload_as_needed.
1123 However, it is safe to mark insns that need reloads
1124 but not register replacement. */
1126 PUT_MODE (insn, (did_elimination ? QImode
1127 : n_reloads ? HImode
1128 : GET_MODE (insn) == DImode ? DImode
1131 /* Discard any register replacements done. */
1132 if (did_elimination)
1134 obstack_free (&reload_obstack, reload_firstobj);
1135 PATTERN (insn) = old_body;
1136 INSN_CODE (insn) = old_code;
1137 REG_NOTES (insn) = old_notes;
1138 something_needs_elimination = 1;
1141 /* If this insn has no reloads, we need not do anything except
1142 in the case of a CALL_INSN when we have caller-saves and
1143 caller-save needs reloads. */
1146 && ! (GET_CODE (insn) == CALL_INSN
1147 && caller_save_spill_class != NO_REGS))
1150 something_needs_reloads = 1;
1151 bzero ((char *) &insn_needs, sizeof insn_needs);
1153 /* Count each reload once in every class
1154 containing the reload's own class. */
1156 for (i = 0; i < n_reloads; i++)
1158 register enum reg_class *p;
1159 enum reg_class class = reload_reg_class[i];
1161 enum machine_mode mode;
1163 struct needs *this_needs;
1165 /* Don't count the dummy reloads, for which one of the
1166 regs mentioned in the insn can be used for reloading.
1167 Don't count optional reloads.
1168 Don't count reloads that got combined with others. */
1169 if (reload_reg_rtx[i] != 0
1170 || reload_optional[i] != 0
1171 || (reload_out[i] == 0 && reload_in[i] == 0
1172 && ! reload_secondary_p[i]))
1175 /* Show that a reload register of this class is needed
1176 in this basic block. We do not use insn_needs and
1177 insn_groups because they are overly conservative for
1179 if (global && ! basic_block_needs[(int) class][this_block])
1181 basic_block_needs[(int) class][this_block] = 1;
1182 new_basic_block_needs = 1;
1186 mode = reload_inmode[i];
1187 if (GET_MODE_SIZE (reload_outmode[i]) > GET_MODE_SIZE (mode))
1188 mode = reload_outmode[i];
1189 size = CLASS_MAX_NREGS (class, mode);
1191 /* If this class doesn't want a group, determine if we have
1192 a nongroup need or a regular need. We have a nongroup
1193 need if this reload conflicts with a group reload whose
1194 class intersects with this reload's class. */
1198 for (j = 0; j < n_reloads; j++)
1199 if ((CLASS_MAX_NREGS (reload_reg_class[j],
1200 (GET_MODE_SIZE (reload_outmode[j])
1201 > GET_MODE_SIZE (reload_inmode[j]))
1205 && (!reload_optional[j])
1206 && (reload_in[j] != 0 || reload_out[j] != 0
1207 || reload_secondary_p[j])
1208 && reloads_conflict (i, j)
1209 && reg_classes_intersect_p (class,
1210 reload_reg_class[j]))
1216 /* Decide which time-of-use to count this reload for. */
1217 switch (reload_when_needed[i])
1220 this_needs = &insn_needs.other;
1222 case RELOAD_FOR_INPUT:
1223 this_needs = &insn_needs.input;
1225 case RELOAD_FOR_OUTPUT:
1226 this_needs = &insn_needs.output;
1228 case RELOAD_FOR_INSN:
1229 this_needs = &insn_needs.insn;
1231 case RELOAD_FOR_OTHER_ADDRESS:
1232 this_needs = &insn_needs.other_addr;
1234 case RELOAD_FOR_INPUT_ADDRESS:
1235 this_needs = &insn_needs.in_addr[reload_opnum[i]];
1237 case RELOAD_FOR_INPADDR_ADDRESS:
1238 this_needs = &insn_needs.in_addr_addr[reload_opnum[i]];
1240 case RELOAD_FOR_OUTPUT_ADDRESS:
1241 this_needs = &insn_needs.out_addr[reload_opnum[i]];
1243 case RELOAD_FOR_OUTADDR_ADDRESS:
1244 this_needs = &insn_needs.out_addr_addr[reload_opnum[i]];
1246 case RELOAD_FOR_OPERAND_ADDRESS:
1247 this_needs = &insn_needs.op_addr;
1249 case RELOAD_FOR_OPADDR_ADDR:
1250 this_needs = &insn_needs.op_addr_reload;
1256 enum machine_mode other_mode, allocate_mode;
1258 /* Count number of groups needed separately from
1259 number of individual regs needed. */
1260 this_needs->groups[(int) class]++;
1261 p = reg_class_superclasses[(int) class];
1262 while (*p != LIM_REG_CLASSES)
1263 this_needs->groups[(int) *p++]++;
1265 /* Record size and mode of a group of this class. */
1266 /* If more than one size group is needed,
1267 make all groups the largest needed size. */
1268 if (group_size[(int) class] < size)
1270 other_mode = group_mode[(int) class];
1271 allocate_mode = mode;
1273 group_size[(int) class] = size;
1274 group_mode[(int) class] = mode;
1279 allocate_mode = group_mode[(int) class];
1282 /* Crash if two dissimilar machine modes both need
1283 groups of consecutive regs of the same class. */
1285 if (other_mode != VOIDmode && other_mode != allocate_mode
1286 && ! modes_equiv_for_class_p (allocate_mode,
1288 fatal_insn ("Two dissimilar machine modes both need groups of consecutive regs of the same class",
1293 this_needs->regs[nongroup_need][(int) class] += 1;
1294 p = reg_class_superclasses[(int) class];
1295 while (*p != LIM_REG_CLASSES)
1296 this_needs->regs[nongroup_need][(int) *p++] += 1;
1302 /* All reloads have been counted for this insn;
1303 now merge the various times of use.
1304 This sets insn_needs, etc., to the maximum total number
1305 of registers needed at any point in this insn. */
1307 for (i = 0; i < N_REG_CLASSES; i++)
1309 int in_max, out_max;
1311 /* Compute normal and nongroup needs. */
1312 for (j = 0; j <= 1; j++)
1314 for (in_max = 0, out_max = 0, k = 0;
1315 k < reload_n_operands; k++)
1318 = MAX (in_max, insn_needs.in_addr[k].regs[j][i]);
1321 insn_needs.in_addr_addr[k].regs[j][i]);
1323 = MAX (out_max, insn_needs.out_addr[k].regs[j][i]);
1326 insn_needs.out_addr_addr[k].regs[j][i]);
1329 /* RELOAD_FOR_INSN reloads conflict with inputs, outputs,
1330 and operand addresses but not things used to reload
1331 them. Similarly, RELOAD_FOR_OPERAND_ADDRESS reloads
1332 don't conflict with things needed to reload inputs or
1335 in_max = MAX (MAX (insn_needs.op_addr.regs[j][i],
1336 insn_needs.op_addr_reload.regs[j][i]),
1339 out_max = MAX (out_max, insn_needs.insn.regs[j][i]);
1341 insn_needs.input.regs[j][i]
1342 = MAX (insn_needs.input.regs[j][i]
1343 + insn_needs.op_addr.regs[j][i]
1344 + insn_needs.insn.regs[j][i],
1345 in_max + insn_needs.input.regs[j][i]);
1347 insn_needs.output.regs[j][i] += out_max;
1348 insn_needs.other.regs[j][i]
1349 += MAX (MAX (insn_needs.input.regs[j][i],
1350 insn_needs.output.regs[j][i]),
1351 insn_needs.other_addr.regs[j][i]);
1355 /* Now compute group needs. */
1356 for (in_max = 0, out_max = 0, j = 0;
1357 j < reload_n_operands; j++)
1359 in_max = MAX (in_max, insn_needs.in_addr[j].groups[i]);
1360 in_max = MAX (in_max,
1361 insn_needs.in_addr_addr[j].groups[i]);
1363 = MAX (out_max, insn_needs.out_addr[j].groups[i]);
1365 = MAX (out_max, insn_needs.out_addr_addr[j].groups[i]);
1368 in_max = MAX (MAX (insn_needs.op_addr.groups[i],
1369 insn_needs.op_addr_reload.groups[i]),
1371 out_max = MAX (out_max, insn_needs.insn.groups[i]);
1373 insn_needs.input.groups[i]
1374 = MAX (insn_needs.input.groups[i]
1375 + insn_needs.op_addr.groups[i]
1376 + insn_needs.insn.groups[i],
1377 in_max + insn_needs.input.groups[i]);
1379 insn_needs.output.groups[i] += out_max;
1380 insn_needs.other.groups[i]
1381 += MAX (MAX (insn_needs.input.groups[i],
1382 insn_needs.output.groups[i]),
1383 insn_needs.other_addr.groups[i]);
1386 /* If this is a CALL_INSN and caller-saves will need
1387 a spill register, act as if the spill register is
1388 needed for this insn. However, the spill register
1389 can be used by any reload of this insn, so we only
1390 need do something if no need for that class has
1393 The assumption that every CALL_INSN will trigger a
1394 caller-save is highly conservative, however, the number
1395 of cases where caller-saves will need a spill register but
1396 a block containing a CALL_INSN won't need a spill register
1397 of that class should be quite rare.
1399 If a group is needed, the size and mode of the group will
1400 have been set up at the beginning of this loop. */
1402 if (GET_CODE (insn) == CALL_INSN
1403 && caller_save_spill_class != NO_REGS)
1405 /* See if this register would conflict with any reload
1406 that needs a group. */
1407 int nongroup_need = 0;
1408 int *caller_save_needs;
1410 for (j = 0; j < n_reloads; j++)
1411 if ((CLASS_MAX_NREGS (reload_reg_class[j],
1412 (GET_MODE_SIZE (reload_outmode[j])
1413 > GET_MODE_SIZE (reload_inmode[j]))
1417 && reg_classes_intersect_p (caller_save_spill_class,
1418 reload_reg_class[j]))
1425 = (caller_save_group_size > 1
1426 ? insn_needs.other.groups
1427 : insn_needs.other.regs[nongroup_need]);
1429 if (caller_save_needs[(int) caller_save_spill_class] == 0)
1431 register enum reg_class *p
1432 = reg_class_superclasses[(int) caller_save_spill_class];
1434 caller_save_needs[(int) caller_save_spill_class]++;
1436 while (*p != LIM_REG_CLASSES)
1437 caller_save_needs[(int) *p++] += 1;
1440 /* Show that this basic block will need a register of
1444 && ! (basic_block_needs[(int) caller_save_spill_class]
1447 basic_block_needs[(int) caller_save_spill_class]
1449 new_basic_block_needs = 1;
1453 #ifdef SMALL_REGISTER_CLASSES
1454 /* If this insn stores the value of a function call,
1455 and that value is in a register that has been spilled,
1456 and if the insn needs a reload in a class
1457 that might use that register as the reload register,
1458 then add add an extra need in that class.
1459 This makes sure we have a register available that does
1460 not overlap the return value. */
1462 if (SMALL_REGISTER_CLASSES && avoid_return_reg)
1464 int regno = REGNO (avoid_return_reg);
1466 = HARD_REGNO_NREGS (regno, GET_MODE (avoid_return_reg));
1468 int basic_needs[N_REG_CLASSES], basic_groups[N_REG_CLASSES];
1470 /* First compute the "basic needs", which counts a
1471 need only in the smallest class in which it
1474 bcopy ((char *) insn_needs.other.regs[0],
1475 (char *) basic_needs, sizeof basic_needs);
1476 bcopy ((char *) insn_needs.other.groups,
1477 (char *) basic_groups, sizeof basic_groups);
1479 for (i = 0; i < N_REG_CLASSES; i++)
1483 if (basic_needs[i] >= 0)
1484 for (p = reg_class_superclasses[i];
1485 *p != LIM_REG_CLASSES; p++)
1486 basic_needs[(int) *p] -= basic_needs[i];
1488 if (basic_groups[i] >= 0)
1489 for (p = reg_class_superclasses[i];
1490 *p != LIM_REG_CLASSES; p++)
1491 basic_groups[(int) *p] -= basic_groups[i];
1494 /* Now count extra regs if there might be a conflict with
1495 the return value register. */
1497 for (r = regno; r < regno + nregs; r++)
1498 if (spill_reg_order[r] >= 0)
1499 for (i = 0; i < N_REG_CLASSES; i++)
1500 if (TEST_HARD_REG_BIT (reg_class_contents[i], r))
1502 if (basic_needs[i] > 0)
1506 insn_needs.other.regs[0][i]++;
1507 p = reg_class_superclasses[i];
1508 while (*p != LIM_REG_CLASSES)
1509 insn_needs.other.regs[0][(int) *p++]++;
1511 if (basic_groups[i] > 0)
1515 insn_needs.other.groups[i]++;
1516 p = reg_class_superclasses[i];
1517 while (*p != LIM_REG_CLASSES)
1518 insn_needs.other.groups[(int) *p++]++;
1522 #endif /* SMALL_REGISTER_CLASSES */
1524 /* For each class, collect maximum need of any insn. */
1526 for (i = 0; i < N_REG_CLASSES; i++)
1528 if (max_needs[i] < insn_needs.other.regs[0][i])
1530 max_needs[i] = insn_needs.other.regs[0][i];
1531 max_needs_insn[i] = insn;
1533 if (max_groups[i] < insn_needs.other.groups[i])
1535 max_groups[i] = insn_needs.other.groups[i];
1536 max_groups_insn[i] = insn;
1538 if (max_nongroups[i] < insn_needs.other.regs[1][i])
1540 max_nongroups[i] = insn_needs.other.regs[1][i];
1541 max_nongroups_insn[i] = insn;
1545 /* Note that there is a continue statement above. */
1548 /* If we allocated any new memory locations, make another pass
1549 since it might have changed elimination offsets. */
1550 if (starting_frame_size != get_frame_size ())
1551 something_changed = 1;
1554 for (i = 0; i < N_REG_CLASSES; i++)
1556 if (max_needs[i] > 0)
1558 ";; Need %d reg%s of class %s (for insn %d).\n",
1559 max_needs[i], max_needs[i] == 1 ? "" : "s",
1560 reg_class_names[i], INSN_UID (max_needs_insn[i]));
1561 if (max_nongroups[i] > 0)
1563 ";; Need %d nongroup reg%s of class %s (for insn %d).\n",
1564 max_nongroups[i], max_nongroups[i] == 1 ? "" : "s",
1565 reg_class_names[i], INSN_UID (max_nongroups_insn[i]));
1566 if (max_groups[i] > 0)
1568 ";; Need %d group%s (%smode) of class %s (for insn %d).\n",
1569 max_groups[i], max_groups[i] == 1 ? "" : "s",
1570 mode_name[(int) group_mode[i]],
1571 reg_class_names[i], INSN_UID (max_groups_insn[i]));
1574 /* If we have caller-saves, set up the save areas and see if caller-save
1575 will need a spill register. */
1577 if (caller_save_needed)
1579 /* Set the offsets for setup_save_areas. */
1580 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
1582 ep->previous_offset = ep->max_offset;
1584 if ( ! setup_save_areas (&something_changed)
1585 && caller_save_spill_class == NO_REGS)
1587 /* The class we will need depends on whether the machine
1588 supports the sum of two registers for an address; see
1589 find_address_reloads for details. */
1591 caller_save_spill_class
1592 = double_reg_address_ok ? INDEX_REG_CLASS : BASE_REG_CLASS;
1593 caller_save_group_size
1594 = CLASS_MAX_NREGS (caller_save_spill_class, Pmode);
1595 something_changed = 1;
1599 /* See if anything that happened changes which eliminations are valid.
1600 For example, on the Sparc, whether or not the frame pointer can
1601 be eliminated can depend on what registers have been used. We need
1602 not check some conditions again (such as flag_omit_frame_pointer)
1603 since they can't have changed. */
1605 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1606 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
1607 #ifdef ELIMINABLE_REGS
1608 || ! CAN_ELIMINATE (ep->from, ep->to)
1611 ep->can_eliminate = 0;
1613 /* Look for the case where we have discovered that we can't replace
1614 register A with register B and that means that we will now be
1615 trying to replace register A with register C. This means we can
1616 no longer replace register C with register B and we need to disable
1617 such an elimination, if it exists. This occurs often with A == ap,
1618 B == sp, and C == fp. */
1620 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1622 struct elim_table *op;
1623 register int new_to = -1;
1625 if (! ep->can_eliminate && ep->can_eliminate_previous)
1627 /* Find the current elimination for ep->from, if there is a
1629 for (op = reg_eliminate;
1630 op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++)
1631 if (op->from == ep->from && op->can_eliminate)
1637 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
1639 for (op = reg_eliminate;
1640 op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++)
1641 if (op->from == new_to && op->to == ep->to)
1642 op->can_eliminate = 0;
1646 /* See if any registers that we thought we could eliminate the previous
1647 time are no longer eliminable. If so, something has changed and we
1648 must spill the register. Also, recompute the number of eliminable
1649 registers and see if the frame pointer is needed; it is if there is
1650 no elimination of the frame pointer that we can perform. */
1652 frame_pointer_needed = 1;
1653 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1655 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
1656 && ep->to != HARD_FRAME_POINTER_REGNUM)
1657 frame_pointer_needed = 0;
1659 if (! ep->can_eliminate && ep->can_eliminate_previous)
1661 ep->can_eliminate_previous = 0;
1662 spill_hard_reg (ep->from, global, dumpfile, 1);
1663 something_changed = 1;
1668 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1669 /* If we didn't need a frame pointer last time, but we do now, spill
1670 the hard frame pointer. */
1671 if (frame_pointer_needed && ! previous_frame_pointer_needed)
1673 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, global, dumpfile, 1);
1674 something_changed = 1;
1678 /* If all needs are met, we win. */
1680 for (i = 0; i < N_REG_CLASSES; i++)
1681 if (max_needs[i] > 0 || max_groups[i] > 0 || max_nongroups[i] > 0)
1683 if (i == N_REG_CLASSES && !new_basic_block_needs && ! something_changed)
1686 /* Not all needs are met; must spill some hard regs. */
1688 /* Put all registers spilled so far back in potential_reload_regs, but
1689 put them at the front, since we've already spilled most of the
1690 pseudos in them (we might have left some pseudos unspilled if they
1691 were in a block that didn't need any spill registers of a conflicting
1692 class. We used to try to mark off the need for those registers,
1693 but doing so properly is very complex and reallocating them is the
1694 simpler approach. First, "pack" potential_reload_regs by pushing
1695 any nonnegative entries towards the end. That will leave room
1696 for the registers we already spilled.
1698 Also, undo the marking of the spill registers from the last time
1699 around in FORBIDDEN_REGS since we will be probably be allocating
1702 ??? It is theoretically possible that we might end up not using one
1703 of our previously-spilled registers in this allocation, even though
1704 they are at the head of the list. It's not clear what to do about
1705 this, but it was no better before, when we marked off the needs met
1706 by the previously-spilled registers. With the current code, globals
1707 can be allocated into these registers, but locals cannot. */
1711 for (i = j = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1712 if (potential_reload_regs[i] != -1)
1713 potential_reload_regs[j--] = potential_reload_regs[i];
1715 for (i = 0; i < n_spills; i++)
1717 potential_reload_regs[i] = spill_regs[i];
1718 spill_reg_order[spill_regs[i]] = -1;
1719 CLEAR_HARD_REG_BIT (forbidden_regs, spill_regs[i]);
1725 /* Now find more reload regs to satisfy the remaining need
1726 Do it by ascending class number, since otherwise a reg
1727 might be spilled for a big class and might fail to count
1728 for a smaller class even though it belongs to that class.
1730 Count spilled regs in `spills', and add entries to
1731 `spill_regs' and `spill_reg_order'.
1733 ??? Note there is a problem here.
1734 When there is a need for a group in a high-numbered class,
1735 and also need for non-group regs that come from a lower class,
1736 the non-group regs are chosen first. If there aren't many regs,
1737 they might leave no room for a group.
1739 This was happening on the 386. To fix it, we added the code
1740 that calls possible_group_p, so that the lower class won't
1741 break up the last possible group.
1743 Really fixing the problem would require changes above
1744 in counting the regs already spilled, and in choose_reload_regs.
1745 It might be hard to avoid introducing bugs there. */
1747 CLEAR_HARD_REG_SET (counted_for_groups);
1748 CLEAR_HARD_REG_SET (counted_for_nongroups);
1750 for (class = 0; class < N_REG_CLASSES; class++)
1752 /* First get the groups of registers.
1753 If we got single registers first, we might fragment
1755 while (max_groups[class] > 0)
1757 /* If any single spilled regs happen to form groups,
1758 count them now. Maybe we don't really need
1759 to spill another group. */
1760 count_possible_groups (group_size, group_mode, max_groups,
1763 if (max_groups[class] <= 0)
1766 /* Groups of size 2 (the only groups used on most machines)
1767 are treated specially. */
1768 if (group_size[class] == 2)
1770 /* First, look for a register that will complete a group. */
1771 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1775 j = potential_reload_regs[i];
1776 if (j >= 0 && ! TEST_HARD_REG_BIT (bad_spill_regs, j)
1778 ((j > 0 && (other = j - 1, spill_reg_order[other] >= 0)
1779 && TEST_HARD_REG_BIT (reg_class_contents[class], j)
1780 && TEST_HARD_REG_BIT (reg_class_contents[class], other)
1781 && HARD_REGNO_MODE_OK (other, group_mode[class])
1782 && ! TEST_HARD_REG_BIT (counted_for_nongroups,
1784 /* We don't want one part of another group.
1785 We could get "two groups" that overlap! */
1786 && ! TEST_HARD_REG_BIT (counted_for_groups, other))
1788 (j < FIRST_PSEUDO_REGISTER - 1
1789 && (other = j + 1, spill_reg_order[other] >= 0)
1790 && TEST_HARD_REG_BIT (reg_class_contents[class], j)
1791 && TEST_HARD_REG_BIT (reg_class_contents[class], other)
1792 && HARD_REGNO_MODE_OK (j, group_mode[class])
1793 && ! TEST_HARD_REG_BIT (counted_for_nongroups,
1795 && ! TEST_HARD_REG_BIT (counted_for_groups,
1798 register enum reg_class *p;
1800 /* We have found one that will complete a group,
1801 so count off one group as provided. */
1802 max_groups[class]--;
1803 p = reg_class_superclasses[class];
1804 while (*p != LIM_REG_CLASSES)
1806 if (group_size [(int) *p] <= group_size [class])
1807 max_groups[(int) *p]--;
1811 /* Indicate both these regs are part of a group. */
1812 SET_HARD_REG_BIT (counted_for_groups, j);
1813 SET_HARD_REG_BIT (counted_for_groups, other);
1817 /* We can't complete a group, so start one. */
1818 #ifdef SMALL_REGISTER_CLASSES
1819 /* Look for a pair neither of which is explicitly used. */
1820 if (SMALL_REGISTER_CLASSES && i == FIRST_PSEUDO_REGISTER)
1821 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1824 j = potential_reload_regs[i];
1825 /* Verify that J+1 is a potential reload reg. */
1826 for (k = 0; k < FIRST_PSEUDO_REGISTER; k++)
1827 if (potential_reload_regs[k] == j + 1)
1829 if (j >= 0 && j + 1 < FIRST_PSEUDO_REGISTER
1830 && k < FIRST_PSEUDO_REGISTER
1831 && spill_reg_order[j] < 0 && spill_reg_order[j + 1] < 0
1832 && TEST_HARD_REG_BIT (reg_class_contents[class], j)
1833 && TEST_HARD_REG_BIT (reg_class_contents[class], j + 1)
1834 && HARD_REGNO_MODE_OK (j, group_mode[class])
1835 && ! TEST_HARD_REG_BIT (counted_for_nongroups,
1837 && ! TEST_HARD_REG_BIT (bad_spill_regs, j + 1)
1838 /* Reject J at this stage
1839 if J+1 was explicitly used. */
1840 && ! regs_explicitly_used[j + 1])
1844 /* Now try any group at all
1845 whose registers are not in bad_spill_regs. */
1846 if (i == FIRST_PSEUDO_REGISTER)
1847 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1850 j = potential_reload_regs[i];
1851 /* Verify that J+1 is a potential reload reg. */
1852 for (k = 0; k < FIRST_PSEUDO_REGISTER; k++)
1853 if (potential_reload_regs[k] == j + 1)
1855 if (j >= 0 && j + 1 < FIRST_PSEUDO_REGISTER
1856 && k < FIRST_PSEUDO_REGISTER
1857 && spill_reg_order[j] < 0 && spill_reg_order[j + 1] < 0
1858 && TEST_HARD_REG_BIT (reg_class_contents[class], j)
1859 && TEST_HARD_REG_BIT (reg_class_contents[class], j + 1)
1860 && HARD_REGNO_MODE_OK (j, group_mode[class])
1861 && ! TEST_HARD_REG_BIT (counted_for_nongroups,
1863 && ! TEST_HARD_REG_BIT (bad_spill_regs, j + 1))
1867 /* I should be the index in potential_reload_regs
1868 of the new reload reg we have found. */
1870 if (i >= FIRST_PSEUDO_REGISTER)
1872 /* There are no groups left to spill. */
1873 spill_failure (max_groups_insn[class]);
1879 |= new_spill_reg (i, class, max_needs, NULL_PTR,
1884 /* For groups of more than 2 registers,
1885 look for a sufficient sequence of unspilled registers,
1886 and spill them all at once. */
1887 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1891 j = potential_reload_regs[i];
1893 && j + group_size[class] <= FIRST_PSEUDO_REGISTER
1894 && HARD_REGNO_MODE_OK (j, group_mode[class]))
1896 /* Check each reg in the sequence. */
1897 for (k = 0; k < group_size[class]; k++)
1898 if (! (spill_reg_order[j + k] < 0
1899 && ! TEST_HARD_REG_BIT (bad_spill_regs, j + k)
1900 && TEST_HARD_REG_BIT (reg_class_contents[class], j + k)))
1902 /* We got a full sequence, so spill them all. */
1903 if (k == group_size[class])
1905 register enum reg_class *p;
1906 for (k = 0; k < group_size[class]; k++)
1909 SET_HARD_REG_BIT (counted_for_groups, j + k);
1910 for (idx = 0; idx < FIRST_PSEUDO_REGISTER; idx++)
1911 if (potential_reload_regs[idx] == j + k)
1914 |= new_spill_reg (idx, class,
1915 max_needs, NULL_PTR,
1919 /* We have found one that will complete a group,
1920 so count off one group as provided. */
1921 max_groups[class]--;
1922 p = reg_class_superclasses[class];
1923 while (*p != LIM_REG_CLASSES)
1925 if (group_size [(int) *p]
1926 <= group_size [class])
1927 max_groups[(int) *p]--;
1934 /* We couldn't find any registers for this reload.
1935 Avoid going into an infinite loop. */
1936 if (i >= FIRST_PSEUDO_REGISTER)
1938 /* There are no groups left. */
1939 spill_failure (max_groups_insn[class]);
1946 /* Now similarly satisfy all need for single registers. */
1948 while (max_needs[class] > 0 || max_nongroups[class] > 0)
1950 /* If we spilled enough regs, but they weren't counted
1951 against the non-group need, see if we can count them now.
1952 If so, we can avoid some actual spilling. */
1953 if (max_needs[class] <= 0 && max_nongroups[class] > 0)
1954 for (i = 0; i < n_spills; i++)
1955 if (TEST_HARD_REG_BIT (reg_class_contents[class],
1957 && !TEST_HARD_REG_BIT (counted_for_groups,
1959 && !TEST_HARD_REG_BIT (counted_for_nongroups,
1961 && max_nongroups[class] > 0)
1963 register enum reg_class *p;
1965 SET_HARD_REG_BIT (counted_for_nongroups, spill_regs[i]);
1966 max_nongroups[class]--;
1967 p = reg_class_superclasses[class];
1968 while (*p != LIM_REG_CLASSES)
1969 max_nongroups[(int) *p++]--;
1971 if (max_needs[class] <= 0 && max_nongroups[class] <= 0)
1974 /* Consider the potential reload regs that aren't
1975 yet in use as reload regs, in order of preference.
1976 Find the most preferred one that's in this class. */
1978 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1979 if (potential_reload_regs[i] >= 0
1980 && TEST_HARD_REG_BIT (reg_class_contents[class],
1981 potential_reload_regs[i])
1982 /* If this reg will not be available for groups,
1983 pick one that does not foreclose possible groups.
1984 This is a kludge, and not very general,
1985 but it should be sufficient to make the 386 work,
1986 and the problem should not occur on machines with
1988 && (max_nongroups[class] == 0
1989 || possible_group_p (potential_reload_regs[i], max_groups)))
1992 /* If we couldn't get a register, try to get one even if we
1993 might foreclose possible groups. This may cause problems
1994 later, but that's better than aborting now, since it is
1995 possible that we will, in fact, be able to form the needed
1996 group even with this allocation. */
1998 if (i >= FIRST_PSEUDO_REGISTER
1999 && (asm_noperands (max_needs[class] > 0
2000 ? max_needs_insn[class]
2001 : max_nongroups_insn[class])
2003 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2004 if (potential_reload_regs[i] >= 0
2005 && TEST_HARD_REG_BIT (reg_class_contents[class],
2006 potential_reload_regs[i]))
2009 /* I should be the index in potential_reload_regs
2010 of the new reload reg we have found. */
2012 if (i >= FIRST_PSEUDO_REGISTER)
2014 /* There are no possible registers left to spill. */
2015 spill_failure (max_needs[class] > 0 ? max_needs_insn[class]
2016 : max_nongroups_insn[class]);
2022 |= new_spill_reg (i, class, max_needs, max_nongroups,
2028 /* If global-alloc was run, notify it of any register eliminations we have
2031 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2032 if (ep->can_eliminate)
2033 mark_elimination (ep->from, ep->to);
2035 /* Insert code to save and restore call-clobbered hard regs
2036 around calls. Tell if what mode to use so that we will process
2037 those insns in reload_as_needed if we have to. */
2039 if (caller_save_needed)
2040 save_call_clobbered_regs (num_eliminable ? QImode
2041 : caller_save_spill_class != NO_REGS ? HImode
2044 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
2045 If that insn didn't set the register (i.e., it copied the register to
2046 memory), just delete that insn instead of the equivalencing insn plus
2047 anything now dead. If we call delete_dead_insn on that insn, we may
2048 delete the insn that actually sets the register if the register die
2049 there and that is incorrect. */
2051 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2052 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0
2053 && GET_CODE (reg_equiv_init[i]) != NOTE)
2055 if (reg_set_p (regno_reg_rtx[i], PATTERN (reg_equiv_init[i])))
2056 delete_dead_insn (reg_equiv_init[i]);
2059 PUT_CODE (reg_equiv_init[i], NOTE);
2060 NOTE_SOURCE_FILE (reg_equiv_init[i]) = 0;
2061 NOTE_LINE_NUMBER (reg_equiv_init[i]) = NOTE_INSN_DELETED;
2065 /* Use the reload registers where necessary
2066 by generating move instructions to move the must-be-register
2067 values into or out of the reload registers. */
2069 if (something_needs_reloads || something_needs_elimination
2070 || (caller_save_needed && num_eliminable)
2071 || caller_save_spill_class != NO_REGS)
2072 reload_as_needed (first, global);
2074 /* If we were able to eliminate the frame pointer, show that it is no
2075 longer live at the start of any basic block. If it ls live by
2076 virtue of being in a pseudo, that pseudo will be marked live
2077 and hence the frame pointer will be known to be live via that
2080 if (! frame_pointer_needed)
2081 for (i = 0; i < n_basic_blocks; i++)
2082 basic_block_live_at_start[i][HARD_FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
2083 &= ~ ((REGSET_ELT_TYPE) 1 << (HARD_FRAME_POINTER_REGNUM
2084 % REGSET_ELT_BITS));
2086 /* Come here (with failure set nonzero) if we can't get enough spill regs
2087 and we decide not to abort about it. */
2090 reload_in_progress = 0;
2092 /* Now eliminate all pseudo regs by modifying them into
2093 their equivalent memory references.
2094 The REG-rtx's for the pseudos are modified in place,
2095 so all insns that used to refer to them now refer to memory.
2097 For a reg that has a reg_equiv_address, all those insns
2098 were changed by reloading so that no insns refer to it any longer;
2099 but the DECL_RTL of a variable decl may refer to it,
2100 and if so this causes the debugging info to mention the variable. */
2102 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2106 if (reg_equiv_mem[i])
2108 addr = XEXP (reg_equiv_mem[i], 0);
2109 in_struct = MEM_IN_STRUCT_P (reg_equiv_mem[i]);
2111 if (reg_equiv_address[i])
2112 addr = reg_equiv_address[i];
2115 if (reg_renumber[i] < 0)
2117 rtx reg = regno_reg_rtx[i];
2118 XEXP (reg, 0) = addr;
2119 REG_USERVAR_P (reg) = 0;
2120 MEM_IN_STRUCT_P (reg) = in_struct;
2121 PUT_CODE (reg, MEM);
2123 else if (reg_equiv_mem[i])
2124 XEXP (reg_equiv_mem[i], 0) = addr;
2128 /* Do a very simple CSE pass over just the hard registers. */
2130 reload_cse_regs (first);
2132 #ifdef PRESERVE_DEATH_INFO_REGNO_P
2133 /* Make a pass over all the insns and remove death notes for things that
2134 are no longer registers or no longer die in the insn (e.g., an input
2135 and output pseudo being tied). */
2137 for (insn = first; insn; insn = NEXT_INSN (insn))
2138 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2142 for (note = REG_NOTES (insn); note; note = next)
2144 next = XEXP (note, 1);
2145 if (REG_NOTE_KIND (note) == REG_DEAD
2146 && (GET_CODE (XEXP (note, 0)) != REG
2147 || reg_set_p (XEXP (note, 0), PATTERN (insn))))
2148 remove_note (insn, note);
2153 /* Indicate that we no longer have known memory locations or constants. */
2154 reg_equiv_constant = 0;
2155 reg_equiv_memory_loc = 0;
2158 free (scratch_list);
2161 free (scratch_block);
2164 CLEAR_HARD_REG_SET (used_spill_regs);
2165 for (i = 0; i < n_spills; i++)
2166 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
2171 /* Nonzero if, after spilling reg REGNO for non-groups,
2172 it will still be possible to find a group if we still need one. */
2175 possible_group_p (regno, max_groups)
2180 int class = (int) NO_REGS;
2182 for (i = 0; i < (int) N_REG_CLASSES; i++)
2183 if (max_groups[i] > 0)
2189 if (class == (int) NO_REGS)
2192 /* Consider each pair of consecutive registers. */
2193 for (i = 0; i < FIRST_PSEUDO_REGISTER - 1; i++)
2195 /* Ignore pairs that include reg REGNO. */
2196 if (i == regno || i + 1 == regno)
2199 /* Ignore pairs that are outside the class that needs the group.
2200 ??? Here we fail to handle the case where two different classes
2201 independently need groups. But this never happens with our
2202 current machine descriptions. */
2203 if (! (TEST_HARD_REG_BIT (reg_class_contents[class], i)
2204 && TEST_HARD_REG_BIT (reg_class_contents[class], i + 1)))
2207 /* A pair of consecutive regs we can still spill does the trick. */
2208 if (spill_reg_order[i] < 0 && spill_reg_order[i + 1] < 0
2209 && ! TEST_HARD_REG_BIT (bad_spill_regs, i)
2210 && ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1))
2213 /* A pair of one already spilled and one we can spill does it
2214 provided the one already spilled is not otherwise reserved. */
2215 if (spill_reg_order[i] < 0
2216 && ! TEST_HARD_REG_BIT (bad_spill_regs, i)
2217 && spill_reg_order[i + 1] >= 0
2218 && ! TEST_HARD_REG_BIT (counted_for_groups, i + 1)
2219 && ! TEST_HARD_REG_BIT (counted_for_nongroups, i + 1))
2221 if (spill_reg_order[i + 1] < 0
2222 && ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1)
2223 && spill_reg_order[i] >= 0
2224 && ! TEST_HARD_REG_BIT (counted_for_groups, i)
2225 && ! TEST_HARD_REG_BIT (counted_for_nongroups, i))
2232 /* Count any groups of CLASS that can be formed from the registers recently
2236 count_possible_groups (group_size, group_mode, max_groups, class)
2238 enum machine_mode *group_mode;
2245 /* Now find all consecutive groups of spilled registers
2246 and mark each group off against the need for such groups.
2247 But don't count them against ordinary need, yet. */
2249 if (group_size[class] == 0)
2252 CLEAR_HARD_REG_SET (new);
2254 /* Make a mask of all the regs that are spill regs in class I. */
2255 for (i = 0; i < n_spills; i++)
2256 if (TEST_HARD_REG_BIT (reg_class_contents[class], spill_regs[i])
2257 && ! TEST_HARD_REG_BIT (counted_for_groups, spill_regs[i])
2258 && ! TEST_HARD_REG_BIT (counted_for_nongroups, spill_regs[i]))
2259 SET_HARD_REG_BIT (new, spill_regs[i]);
2261 /* Find each consecutive group of them. */
2262 for (i = 0; i < FIRST_PSEUDO_REGISTER && max_groups[class] > 0; i++)
2263 if (TEST_HARD_REG_BIT (new, i)
2264 && i + group_size[class] <= FIRST_PSEUDO_REGISTER
2265 && HARD_REGNO_MODE_OK (i, group_mode[class]))
2267 for (j = 1; j < group_size[class]; j++)
2268 if (! TEST_HARD_REG_BIT (new, i + j))
2271 if (j == group_size[class])
2273 /* We found a group. Mark it off against this class's need for
2274 groups, and against each superclass too. */
2275 register enum reg_class *p;
2277 max_groups[class]--;
2278 p = reg_class_superclasses[class];
2279 while (*p != LIM_REG_CLASSES)
2281 if (group_size [(int) *p] <= group_size [class])
2282 max_groups[(int) *p]--;
2286 /* Don't count these registers again. */
2287 for (j = 0; j < group_size[class]; j++)
2288 SET_HARD_REG_BIT (counted_for_groups, i + j);
2291 /* Skip to the last reg in this group. When i is incremented above,
2292 it will then point to the first reg of the next possible group. */
2297 /* ALLOCATE_MODE is a register mode that needs to be reloaded. OTHER_MODE is
2298 another mode that needs to be reloaded for the same register class CLASS.
2299 If any reg in CLASS allows ALLOCATE_MODE but not OTHER_MODE, fail.
2300 ALLOCATE_MODE will never be smaller than OTHER_MODE.
2302 This code used to also fail if any reg in CLASS allows OTHER_MODE but not
2303 ALLOCATE_MODE. This test is unnecessary, because we will never try to put
2304 something of mode ALLOCATE_MODE into an OTHER_MODE register. Testing this
2305 causes unnecessary failures on machines requiring alignment of register
2306 groups when the two modes are different sizes, because the larger mode has
2307 more strict alignment rules than the smaller mode. */
2310 modes_equiv_for_class_p (allocate_mode, other_mode, class)
2311 enum machine_mode allocate_mode, other_mode;
2312 enum reg_class class;
2315 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2317 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
2318 && HARD_REGNO_MODE_OK (regno, allocate_mode)
2319 && ! HARD_REGNO_MODE_OK (regno, other_mode))
2325 /* Handle the failure to find a register to spill.
2326 INSN should be one of the insns which needed this particular spill reg. */
2329 spill_failure (insn)
2332 if (asm_noperands (PATTERN (insn)) >= 0)
2333 error_for_asm (insn, "`asm' needs too many reloads");
2335 fatal_insn ("Unable to find a register to spill.", insn);
2338 /* Add a new register to the tables of available spill-registers
2339 (as well as spilling all pseudos allocated to the register).
2340 I is the index of this register in potential_reload_regs.
2341 CLASS is the regclass whose need is being satisfied.
2342 MAX_NEEDS and MAX_NONGROUPS are the vectors of needs,
2343 so that this register can count off against them.
2344 MAX_NONGROUPS is 0 if this register is part of a group.
2345 GLOBAL and DUMPFILE are the same as the args that `reload' got. */
2348 new_spill_reg (i, class, max_needs, max_nongroups, global, dumpfile)
2356 register enum reg_class *p;
2358 int regno = potential_reload_regs[i];
2360 if (i >= FIRST_PSEUDO_REGISTER)
2361 abort (); /* Caller failed to find any register. */
2363 if (fixed_regs[regno] || TEST_HARD_REG_BIT (forbidden_regs, regno))
2364 fatal ("fixed or forbidden register was spilled.\n\
2365 This may be due to a compiler bug or to impossible asm\n\
2366 statements or clauses.");
2368 /* Make reg REGNO an additional reload reg. */
2370 potential_reload_regs[i] = -1;
2371 spill_regs[n_spills] = regno;
2372 spill_reg_order[regno] = n_spills;
2374 fprintf (dumpfile, "Spilling reg %d.\n", spill_regs[n_spills]);
2376 /* Clear off the needs we just satisfied. */
2379 p = reg_class_superclasses[class];
2380 while (*p != LIM_REG_CLASSES)
2381 max_needs[(int) *p++]--;
2383 if (max_nongroups && max_nongroups[class] > 0)
2385 SET_HARD_REG_BIT (counted_for_nongroups, regno);
2386 max_nongroups[class]--;
2387 p = reg_class_superclasses[class];
2388 while (*p != LIM_REG_CLASSES)
2389 max_nongroups[(int) *p++]--;
2392 /* Spill every pseudo reg that was allocated to this reg
2393 or to something that overlaps this reg. */
2395 val = spill_hard_reg (spill_regs[n_spills], global, dumpfile, 0);
2397 /* If there are some registers still to eliminate and this register
2398 wasn't ever used before, additional stack space may have to be
2399 allocated to store this register. Thus, we may have changed the offset
2400 between the stack and frame pointers, so mark that something has changed.
2401 (If new pseudos were spilled, thus requiring more space, VAL would have
2402 been set non-zero by the call to spill_hard_reg above since additional
2403 reloads may be needed in that case.
2405 One might think that we need only set VAL to 1 if this is a call-used
2406 register. However, the set of registers that must be saved by the
2407 prologue is not identical to the call-used set. For example, the
2408 register used by the call insn for the return PC is a call-used register,
2409 but must be saved by the prologue. */
2410 if (num_eliminable && ! regs_ever_live[spill_regs[n_spills]])
2413 regs_ever_live[spill_regs[n_spills]] = 1;
2419 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2420 data that is dead in INSN. */
2423 delete_dead_insn (insn)
2426 rtx prev = prev_real_insn (insn);
2429 /* If the previous insn sets a register that dies in our insn, delete it
2431 if (prev && GET_CODE (PATTERN (prev)) == SET
2432 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
2433 && reg_mentioned_p (prev_dest, PATTERN (insn))
2434 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest)))
2435 delete_dead_insn (prev);
2437 PUT_CODE (insn, NOTE);
2438 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2439 NOTE_SOURCE_FILE (insn) = 0;
2442 /* Modify the home of pseudo-reg I.
2443 The new home is present in reg_renumber[I].
2445 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2446 or it may be -1, meaning there is none or it is not relevant.
2447 This is used so that all pseudos spilled from a given hard reg
2448 can share one stack slot. */
2451 alter_reg (i, from_reg)
2455 /* When outputting an inline function, this can happen
2456 for a reg that isn't actually used. */
2457 if (regno_reg_rtx[i] == 0)
2460 /* If the reg got changed to a MEM at rtl-generation time,
2462 if (GET_CODE (regno_reg_rtx[i]) != REG)
2465 /* Modify the reg-rtx to contain the new hard reg
2466 number or else to contain its pseudo reg number. */
2467 REGNO (regno_reg_rtx[i])
2468 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
2470 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2471 allocate a stack slot for it. */
2473 if (reg_renumber[i] < 0
2474 && reg_n_refs[i] > 0
2475 && reg_equiv_constant[i] == 0
2476 && reg_equiv_memory_loc[i] == 0)
2479 int inherent_size = PSEUDO_REGNO_BYTES (i);
2480 int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2483 /* Each pseudo reg has an inherent size which comes from its own mode,
2484 and a total size which provides room for paradoxical subregs
2485 which refer to the pseudo reg in wider modes.
2487 We can use a slot already allocated if it provides both
2488 enough inherent space and enough total space.
2489 Otherwise, we allocate a new slot, making sure that it has no less
2490 inherent space, and no less total space, then the previous slot. */
2493 /* No known place to spill from => no slot to reuse. */
2494 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
2495 inherent_size == total_size ? 0 : -1);
2496 if (BYTES_BIG_ENDIAN)
2497 /* Cancel the big-endian correction done in assign_stack_local.
2498 Get the address of the beginning of the slot.
2499 This is so we can do a big-endian correction unconditionally
2501 adjust = inherent_size - total_size;
2503 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
2505 /* Reuse a stack slot if possible. */
2506 else if (spill_stack_slot[from_reg] != 0
2507 && spill_stack_slot_width[from_reg] >= total_size
2508 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2510 x = spill_stack_slot[from_reg];
2511 /* Allocate a bigger slot. */
2514 /* Compute maximum size needed, both for inherent size
2515 and for total size. */
2516 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2518 if (spill_stack_slot[from_reg])
2520 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2522 mode = GET_MODE (spill_stack_slot[from_reg]);
2523 if (spill_stack_slot_width[from_reg] > total_size)
2524 total_size = spill_stack_slot_width[from_reg];
2526 /* Make a slot with that size. */
2527 x = assign_stack_local (mode, total_size,
2528 inherent_size == total_size ? 0 : -1);
2530 if (BYTES_BIG_ENDIAN)
2532 /* Cancel the big-endian correction done in assign_stack_local.
2533 Get the address of the beginning of the slot.
2534 This is so we can do a big-endian correction unconditionally
2536 adjust = GET_MODE_SIZE (mode) - total_size;
2538 stack_slot = gen_rtx (MEM, mode_for_size (total_size
2541 plus_constant (XEXP (x, 0), adjust));
2543 spill_stack_slot[from_reg] = stack_slot;
2544 spill_stack_slot_width[from_reg] = total_size;
2547 /* On a big endian machine, the "address" of the slot
2548 is the address of the low part that fits its inherent mode. */
2549 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2550 adjust += (total_size - inherent_size);
2552 /* If we have any adjustment to make, or if the stack slot is the
2553 wrong mode, make a new stack slot. */
2554 if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
2556 x = gen_rtx (MEM, GET_MODE (regno_reg_rtx[i]),
2557 plus_constant (XEXP (x, 0), adjust));
2558 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
2561 /* Save the stack slot for later. */
2562 reg_equiv_memory_loc[i] = x;
2566 /* Mark the slots in regs_ever_live for the hard regs
2567 used by pseudo-reg number REGNO. */
2570 mark_home_live (regno)
2573 register int i, lim;
2574 i = reg_renumber[regno];
2577 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2579 regs_ever_live[i++] = 1;
2582 /* Mark the registers used in SCRATCH as being live. */
2585 mark_scratch_live (scratch)
2589 int regno = REGNO (scratch);
2590 int lim = regno + HARD_REGNO_NREGS (regno, GET_MODE (scratch));
2592 for (i = regno; i < lim; i++)
2593 regs_ever_live[i] = 1;
2596 /* This function handles the tracking of elimination offsets around branches.
2598 X is a piece of RTL being scanned.
2600 INSN is the insn that it came from, if any.
2602 INITIAL_P is non-zero if we are to set the offset to be the initial
2603 offset and zero if we are setting the offset of the label to be the
2607 set_label_offsets (x, insn, initial_p)
2612 enum rtx_code code = GET_CODE (x);
2615 struct elim_table *p;
2620 if (LABEL_REF_NONLOCAL_P (x))
2625 /* ... fall through ... */
2628 /* If we know nothing about this label, set the desired offsets. Note
2629 that this sets the offset at a label to be the offset before a label
2630 if we don't know anything about the label. This is not correct for
2631 the label after a BARRIER, but is the best guess we can make. If
2632 we guessed wrong, we will suppress an elimination that might have
2633 been possible had we been able to guess correctly. */
2635 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2637 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2638 offsets_at[CODE_LABEL_NUMBER (x)][i]
2639 = (initial_p ? reg_eliminate[i].initial_offset
2640 : reg_eliminate[i].offset);
2641 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2644 /* Otherwise, if this is the definition of a label and it is
2645 preceded by a BARRIER, set our offsets to the known offset of
2649 && (tem = prev_nonnote_insn (insn)) != 0
2650 && GET_CODE (tem) == BARRIER)
2652 num_not_at_initial_offset = 0;
2653 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2655 reg_eliminate[i].offset = reg_eliminate[i].previous_offset
2656 = offsets_at[CODE_LABEL_NUMBER (x)][i];
2657 if (reg_eliminate[i].can_eliminate
2658 && (reg_eliminate[i].offset
2659 != reg_eliminate[i].initial_offset))
2660 num_not_at_initial_offset++;
2665 /* If neither of the above cases is true, compare each offset
2666 with those previously recorded and suppress any eliminations
2667 where the offsets disagree. */
2669 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2670 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2671 != (initial_p ? reg_eliminate[i].initial_offset
2672 : reg_eliminate[i].offset))
2673 reg_eliminate[i].can_eliminate = 0;
2678 set_label_offsets (PATTERN (insn), insn, initial_p);
2680 /* ... fall through ... */
2684 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2685 and hence must have all eliminations at their initial offsets. */
2686 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2687 if (REG_NOTE_KIND (tem) == REG_LABEL)
2688 set_label_offsets (XEXP (tem, 0), insn, 1);
2693 /* Each of the labels in the address vector must be at their initial
2694 offsets. We want the first first for ADDR_VEC and the second
2695 field for ADDR_DIFF_VEC. */
2697 for (i = 0; i < XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2698 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2703 /* We only care about setting PC. If the source is not RETURN,
2704 IF_THEN_ELSE, or a label, disable any eliminations not at
2705 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2706 isn't one of those possibilities. For branches to a label,
2707 call ourselves recursively.
2709 Note that this can disable elimination unnecessarily when we have
2710 a non-local goto since it will look like a non-constant jump to
2711 someplace in the current function. This isn't a significant
2712 problem since such jumps will normally be when all elimination
2713 pairs are back to their initial offsets. */
2715 if (SET_DEST (x) != pc_rtx)
2718 switch (GET_CODE (SET_SRC (x)))
2725 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2729 tem = XEXP (SET_SRC (x), 1);
2730 if (GET_CODE (tem) == LABEL_REF)
2731 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2732 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2735 tem = XEXP (SET_SRC (x), 2);
2736 if (GET_CODE (tem) == LABEL_REF)
2737 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2738 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2743 /* If we reach here, all eliminations must be at their initial
2744 offset because we are doing a jump to a variable address. */
2745 for (p = reg_eliminate; p < ®_eliminate[NUM_ELIMINABLE_REGS]; p++)
2746 if (p->offset != p->initial_offset)
2747 p->can_eliminate = 0;
2751 /* Used for communication between the next two function to properly share
2752 the vector for an ASM_OPERANDS. */
2754 static struct rtvec_def *old_asm_operands_vec, *new_asm_operands_vec;
2756 /* Scan X and replace any eliminable registers (such as fp) with a
2757 replacement (such as sp), plus an offset.
2759 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2760 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2761 MEM, we are allowed to replace a sum of a register and the constant zero
2762 with the register, which we cannot do outside a MEM. In addition, we need
2763 to record the fact that a register is referenced outside a MEM.
2765 If INSN is an insn, it is the insn containing X. If we replace a REG
2766 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2767 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2768 that the REG is being modified.
2770 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2771 That's used when we eliminate in expressions stored in notes.
2772 This means, do not set ref_outside_mem even if the reference
2775 If we see a modification to a register we know about, take the
2776 appropriate action (see case SET, below).
2778 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2779 replacements done assuming all offsets are at their initial values. If
2780 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2781 encounter, return the actual location so that find_reloads will do
2782 the proper thing. */
2785 eliminate_regs (x, mem_mode, insn, storing)
2787 enum machine_mode mem_mode;
2791 enum rtx_code code = GET_CODE (x);
2792 struct elim_table *ep;
2817 /* First handle the case where we encounter a bare register that
2818 is eliminable. Replace it with a PLUS. */
2819 if (regno < FIRST_PSEUDO_REGISTER)
2821 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
2823 if (ep->from_rtx == x && ep->can_eliminate)
2826 /* Refs inside notes don't count for this purpose. */
2827 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2828 || GET_CODE (insn) == INSN_LIST)))
2829 ep->ref_outside_mem = 1;
2830 return plus_constant (ep->to_rtx, ep->previous_offset);
2834 else if (reg_equiv_memory_loc && reg_equiv_memory_loc[regno]
2835 && (reg_equiv_address[regno] || num_not_at_initial_offset))
2837 /* In this case, find_reloads would attempt to either use an
2838 incorrect address (if something is not at its initial offset)
2839 or substitute an replaced address into an insn (which loses
2840 if the offset is changed by some later action). So we simply
2841 return the replaced stack slot (assuming it is changed by
2842 elimination) and ignore the fact that this is actually a
2843 reference to the pseudo. Ensure we make a copy of the
2844 address in case it is shared. */
2845 new = eliminate_regs (reg_equiv_memory_loc[regno],
2847 if (new != reg_equiv_memory_loc[regno])
2849 cannot_omit_stores[regno] = 1;
2850 return copy_rtx (new);
2856 /* If this is the sum of an eliminable register and a constant, rework
2858 if (GET_CODE (XEXP (x, 0)) == REG
2859 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2860 && CONSTANT_P (XEXP (x, 1)))
2862 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
2864 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2867 /* Refs inside notes don't count for this purpose. */
2868 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2869 || GET_CODE (insn) == INSN_LIST)))
2870 ep->ref_outside_mem = 1;
2872 /* The only time we want to replace a PLUS with a REG (this
2873 occurs when the constant operand of the PLUS is the negative
2874 of the offset) is when we are inside a MEM. We won't want
2875 to do so at other times because that would change the
2876 structure of the insn in a way that reload can't handle.
2877 We special-case the commonest situation in
2878 eliminate_regs_in_insn, so just replace a PLUS with a
2879 PLUS here, unless inside a MEM. */
2880 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2881 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2884 return gen_rtx (PLUS, Pmode, ep->to_rtx,
2885 plus_constant (XEXP (x, 1),
2886 ep->previous_offset));
2889 /* If the register is not eliminable, we are done since the other
2890 operand is a constant. */
2894 /* If this is part of an address, we want to bring any constant to the
2895 outermost PLUS. We will do this by doing register replacement in
2896 our operands and seeing if a constant shows up in one of them.
2898 We assume here this is part of an address (or a "load address" insn)
2899 since an eliminable register is not likely to appear in any other
2902 If we have (plus (eliminable) (reg)), we want to produce
2903 (plus (plus (replacement) (reg) (const))). If this was part of a
2904 normal add insn, (plus (replacement) (reg)) will be pushed as a
2905 reload. This is the desired action. */
2908 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn, 0);
2909 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn, 0);
2911 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2913 /* If one side is a PLUS and the other side is a pseudo that
2914 didn't get a hard register but has a reg_equiv_constant,
2915 we must replace the constant here since it may no longer
2916 be in the position of any operand. */
2917 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2918 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2919 && reg_renumber[REGNO (new1)] < 0
2920 && reg_equiv_constant != 0
2921 && reg_equiv_constant[REGNO (new1)] != 0)
2922 new1 = reg_equiv_constant[REGNO (new1)];
2923 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2924 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2925 && reg_renumber[REGNO (new0)] < 0
2926 && reg_equiv_constant[REGNO (new0)] != 0)
2927 new0 = reg_equiv_constant[REGNO (new0)];
2929 new = form_sum (new0, new1);
2931 /* As above, if we are not inside a MEM we do not want to
2932 turn a PLUS into something else. We might try to do so here
2933 for an addition of 0 if we aren't optimizing. */
2934 if (! mem_mode && GET_CODE (new) != PLUS)
2935 return gen_rtx (PLUS, GET_MODE (x), new, const0_rtx);
2943 /* If this is the product of an eliminable register and a
2944 constant, apply the distribute law and move the constant out
2945 so that we have (plus (mult ..) ..). This is needed in order
2946 to keep load-address insns valid. This case is pathological.
2947 We ignore the possibility of overflow here. */
2948 if (GET_CODE (XEXP (x, 0)) == REG
2949 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2950 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2951 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
2953 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2956 /* Refs inside notes don't count for this purpose. */
2957 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2958 || GET_CODE (insn) == INSN_LIST)))
2959 ep->ref_outside_mem = 1;
2962 plus_constant (gen_rtx (MULT, Pmode, ep->to_rtx, XEXP (x, 1)),
2963 ep->previous_offset * INTVAL (XEXP (x, 1)));
2966 /* ... fall through ... */
2971 case DIV: case UDIV:
2972 case MOD: case UMOD:
2973 case AND: case IOR: case XOR:
2974 case ROTATERT: case ROTATE:
2975 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2977 case GE: case GT: case GEU: case GTU:
2978 case LE: case LT: case LEU: case LTU:
2980 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn, 0);
2982 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn, 0) : 0;
2984 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2985 return gen_rtx (code, GET_MODE (x), new0, new1);
2990 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2993 new = eliminate_regs (XEXP (x, 0), mem_mode, insn, 0);
2994 if (new != XEXP (x, 0))
2995 x = gen_rtx (EXPR_LIST, REG_NOTE_KIND (x), new, XEXP (x, 1));
2998 /* ... fall through ... */
3001 /* Now do eliminations in the rest of the chain. If this was
3002 an EXPR_LIST, this might result in allocating more memory than is
3003 strictly needed, but it simplifies the code. */
3006 new = eliminate_regs (XEXP (x, 1), mem_mode, insn, 0);
3007 if (new != XEXP (x, 1))
3008 return gen_rtx (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
3016 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3017 if (ep->to_rtx == XEXP (x, 0))
3019 int size = GET_MODE_SIZE (mem_mode);
3021 /* If more bytes than MEM_MODE are pushed, account for them. */
3022 #ifdef PUSH_ROUNDING
3023 if (ep->to_rtx == stack_pointer_rtx)
3024 size = PUSH_ROUNDING (size);
3026 if (code == PRE_DEC || code == POST_DEC)
3032 /* Fall through to generic unary operation case. */
3033 case STRICT_LOW_PART:
3035 case SIGN_EXTEND: case ZERO_EXTEND:
3036 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3037 case FLOAT: case FIX:
3038 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3042 new = eliminate_regs (XEXP (x, 0), mem_mode, insn, 0);
3043 if (new != XEXP (x, 0))
3044 return gen_rtx (code, GET_MODE (x), new);
3048 /* Similar to above processing, but preserve SUBREG_WORD.
3049 Convert (subreg (mem)) to (mem) if not paradoxical.
3050 Also, if we have a non-paradoxical (subreg (pseudo)) and the
3051 pseudo didn't get a hard reg, we must replace this with the
3052 eliminated version of the memory location because push_reloads
3053 may do the replacement in certain circumstances. */
3054 if (GET_CODE (SUBREG_REG (x)) == REG
3055 && (GET_MODE_SIZE (GET_MODE (x))
3056 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3057 && reg_equiv_memory_loc != 0
3058 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
3060 new = eliminate_regs (reg_equiv_memory_loc[REGNO (SUBREG_REG (x))],
3063 /* If we didn't change anything, we must retain the pseudo. */
3064 if (new == reg_equiv_memory_loc[REGNO (SUBREG_REG (x))])
3065 new = SUBREG_REG (x);
3068 /* Otherwise, ensure NEW isn't shared in case we have to reload
3070 new = copy_rtx (new);
3072 /* In this case, we must show that the pseudo is used in this
3073 insn so that delete_output_reload will do the right thing. */
3074 if (insn != 0 && GET_CODE (insn) != EXPR_LIST
3075 && GET_CODE (insn) != INSN_LIST)
3076 emit_insn_before (gen_rtx (USE, VOIDmode, SUBREG_REG (x)),
3081 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn, 0);
3083 if (new != XEXP (x, 0))
3085 int x_size = GET_MODE_SIZE (GET_MODE (x));
3086 int new_size = GET_MODE_SIZE (GET_MODE (new));
3088 /* When asked to spill a partial word subreg, we need to go
3089 ahead and spill the whole thing against the possibility
3090 that we reload the whole reg and find garbage at the top. */
3092 && GET_CODE (new) == MEM
3093 && x_size < new_size
3094 && ((x_size + UNITS_PER_WORD-1) / UNITS_PER_WORD
3095 == (new_size + UNITS_PER_WORD-1) / UNITS_PER_WORD))
3097 else if (GET_CODE (new) == MEM
3098 && x_size <= new_size
3099 #ifdef LOAD_EXTEND_OP
3100 /* On these machines we will be reloading what is
3101 inside the SUBREG if it originally was a pseudo and
3102 the inner and outer modes are both a word or
3103 smaller. So leave the SUBREG then. */
3104 && ! (GET_CODE (SUBREG_REG (x)) == REG
3105 && x_size <= UNITS_PER_WORD
3106 && new_size <= UNITS_PER_WORD
3107 && x_size > new_size
3108 && INTEGRAL_MODE_P (GET_MODE (new))
3109 && LOAD_EXTEND_OP (GET_MODE (new)) != NIL)
3113 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
3114 enum machine_mode mode = GET_MODE (x);
3116 if (BYTES_BIG_ENDIAN)
3117 offset += (MIN (UNITS_PER_WORD,
3118 GET_MODE_SIZE (GET_MODE (new)))
3119 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
3121 PUT_MODE (new, mode);
3122 XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
3126 return gen_rtx (SUBREG, GET_MODE (x), new, SUBREG_WORD (x));
3132 /* If using a register that is the source of an eliminate we still
3133 think can be performed, note it cannot be performed since we don't
3134 know how this register is used. */
3135 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3136 if (ep->from_rtx == XEXP (x, 0))
3137 ep->can_eliminate = 0;
3139 new = eliminate_regs (XEXP (x, 0), mem_mode, insn, 0);
3140 if (new != XEXP (x, 0))
3141 return gen_rtx (code, GET_MODE (x), new);
3145 /* If clobbering a register that is the replacement register for an
3146 elimination we still think can be performed, note that it cannot
3147 be performed. Otherwise, we need not be concerned about it. */
3148 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3149 if (ep->to_rtx == XEXP (x, 0))
3150 ep->can_eliminate = 0;
3152 new = eliminate_regs (XEXP (x, 0), mem_mode, insn, 0);
3153 if (new != XEXP (x, 0))
3154 return gen_rtx (code, GET_MODE (x), new);
3160 /* Properly handle sharing input and constraint vectors. */
3161 if (ASM_OPERANDS_INPUT_VEC (x) != old_asm_operands_vec)
3163 /* When we come to a new vector not seen before,
3164 scan all its elements; keep the old vector if none
3165 of them changes; otherwise, make a copy. */
3166 old_asm_operands_vec = ASM_OPERANDS_INPUT_VEC (x);
3167 temp_vec = (rtx *) alloca (XVECLEN (x, 3) * sizeof (rtx));
3168 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
3169 temp_vec[i] = eliminate_regs (ASM_OPERANDS_INPUT (x, i),
3172 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
3173 if (temp_vec[i] != ASM_OPERANDS_INPUT (x, i))
3176 if (i == ASM_OPERANDS_INPUT_LENGTH (x))
3177 new_asm_operands_vec = old_asm_operands_vec;
3179 new_asm_operands_vec
3180 = gen_rtvec_v (ASM_OPERANDS_INPUT_LENGTH (x), temp_vec);
3183 /* If we had to copy the vector, copy the entire ASM_OPERANDS. */
3184 if (new_asm_operands_vec == old_asm_operands_vec)
3187 new = gen_rtx (ASM_OPERANDS, VOIDmode, ASM_OPERANDS_TEMPLATE (x),
3188 ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
3189 ASM_OPERANDS_OUTPUT_IDX (x), new_asm_operands_vec,
3190 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (x),
3191 ASM_OPERANDS_SOURCE_FILE (x),
3192 ASM_OPERANDS_SOURCE_LINE (x));
3193 new->volatil = x->volatil;
3198 /* Check for setting a register that we know about. */
3199 if (GET_CODE (SET_DEST (x)) == REG)
3201 /* See if this is setting the replacement register for an
3204 If DEST is the hard frame pointer, we do nothing because we
3205 assume that all assignments to the frame pointer are for
3206 non-local gotos and are being done at a time when they are valid
3207 and do not disturb anything else. Some machines want to
3208 eliminate a fake argument pointer (or even a fake frame pointer)
3209 with either the real frame or the stack pointer. Assignments to
3210 the hard frame pointer must not prevent this elimination. */
3212 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
3214 if (ep->to_rtx == SET_DEST (x)
3215 && SET_DEST (x) != hard_frame_pointer_rtx)
3217 /* If it is being incremented, adjust the offset. Otherwise,
3218 this elimination can't be done. */
3219 rtx src = SET_SRC (x);
3221 if (GET_CODE (src) == PLUS
3222 && XEXP (src, 0) == SET_DEST (x)
3223 && GET_CODE (XEXP (src, 1)) == CONST_INT)
3224 ep->offset -= INTVAL (XEXP (src, 1));
3226 ep->can_eliminate = 0;
3229 /* Now check to see we are assigning to a register that can be
3230 eliminated. If so, it must be as part of a PARALLEL, since we
3231 will not have been called if this is a single SET. So indicate
3232 that we can no longer eliminate this reg. */
3233 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
3235 if (ep->from_rtx == SET_DEST (x) && ep->can_eliminate)
3236 ep->can_eliminate = 0;
3239 /* Now avoid the loop below in this common case. */
3241 rtx new0 = eliminate_regs (SET_DEST (x), 0, insn, 1);
3242 rtx new1 = eliminate_regs (SET_SRC (x), 0, insn, 0);
3244 /* If SET_DEST changed from a REG to a MEM and INSN is an insn,
3245 write a CLOBBER insn. */
3246 if (GET_CODE (SET_DEST (x)) == REG && GET_CODE (new0) == MEM
3247 && insn != 0 && GET_CODE (insn) != EXPR_LIST
3248 && GET_CODE (insn) != INSN_LIST)
3249 emit_insn_after (gen_rtx (CLOBBER, VOIDmode, SET_DEST (x)), insn);
3251 if (new0 != SET_DEST (x) || new1 != SET_SRC (x))
3252 return gen_rtx (SET, VOIDmode, new0, new1);
3258 /* Our only special processing is to pass the mode of the MEM to our
3259 recursive call and copy the flags. While we are here, handle this
3260 case more efficiently. */
3261 new = eliminate_regs (XEXP (x, 0), GET_MODE (x), insn, 0);
3262 if (new != XEXP (x, 0))
3264 new = gen_rtx (MEM, GET_MODE (x), new);
3265 new->volatil = x->volatil;
3266 new->unchanging = x->unchanging;
3267 new->in_struct = x->in_struct;
3274 /* Process each of our operands recursively. If any have changed, make a
3276 fmt = GET_RTX_FORMAT (code);
3277 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3281 new = eliminate_regs (XEXP (x, i), mem_mode, insn, 0);
3282 if (new != XEXP (x, i) && ! copied)
3284 rtx new_x = rtx_alloc (code);
3285 bcopy ((char *) x, (char *) new_x,
3286 (sizeof (*new_x) - sizeof (new_x->fld)
3287 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
3293 else if (*fmt == 'E')
3296 for (j = 0; j < XVECLEN (x, i); j++)
3298 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn, 0);
3299 if (new != XVECEXP (x, i, j) && ! copied_vec)
3301 rtvec new_v = gen_rtvec_vv (XVECLEN (x, i),
3305 rtx new_x = rtx_alloc (code);
3306 bcopy ((char *) x, (char *) new_x,
3307 (sizeof (*new_x) - sizeof (new_x->fld)
3308 + (sizeof (new_x->fld[0])
3309 * GET_RTX_LENGTH (code))));
3313 XVEC (x, i) = new_v;
3316 XVECEXP (x, i, j) = new;
3324 /* Scan INSN and eliminate all eliminable registers in it.
3326 If REPLACE is nonzero, do the replacement destructively. Also
3327 delete the insn as dead it if it is setting an eliminable register.
3329 If REPLACE is zero, do all our allocations in reload_obstack.
3331 If no eliminations were done and this insn doesn't require any elimination
3332 processing (these are not identical conditions: it might be updating sp,
3333 but not referencing fp; this needs to be seen during reload_as_needed so
3334 that the offset between fp and sp can be taken into consideration), zero
3335 is returned. Otherwise, 1 is returned. */
3338 eliminate_regs_in_insn (insn, replace)
3342 rtx old_body = PATTERN (insn);
3343 rtx old_set = single_set (insn);
3346 struct elim_table *ep;
3349 push_obstacks (&reload_obstack, &reload_obstack);
3351 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
3352 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3354 /* Check for setting an eliminable register. */
3355 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3356 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3358 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3359 /* If this is setting the frame pointer register to the
3360 hardware frame pointer register and this is an elimination
3361 that will be done (tested above), this insn is really
3362 adjusting the frame pointer downward to compensate for
3363 the adjustment done before a nonlocal goto. */
3364 if (ep->from == FRAME_POINTER_REGNUM
3365 && ep->to == HARD_FRAME_POINTER_REGNUM)
3367 rtx src = SET_SRC (old_set);
3369 rtx prev_insn, prev_set;
3371 if (src == ep->to_rtx)
3373 else if (GET_CODE (src) == PLUS
3374 && GET_CODE (XEXP (src, 0)) == CONST_INT)
3375 offset = INTVAL (XEXP (src, 0)), ok = 1;
3376 else if ((prev_insn = prev_nonnote_insn (insn)) != 0
3377 && (prev_set = single_set (prev_insn)) != 0
3378 && rtx_equal_p (SET_DEST (prev_set), src))
3380 src = SET_SRC (prev_set);
3381 if (src == ep->to_rtx)
3383 else if (GET_CODE (src) == PLUS
3384 && GET_CODE (XEXP (src, 0)) == CONST_INT
3385 && XEXP (src, 1) == ep->to_rtx)
3386 offset = INTVAL (XEXP (src, 0)), ok = 1;
3387 else if (GET_CODE (src) == PLUS
3388 && GET_CODE (XEXP (src, 1)) == CONST_INT
3389 && XEXP (src, 0) == ep->to_rtx)
3390 offset = INTVAL (XEXP (src, 1)), ok = 1;
3398 = plus_constant (ep->to_rtx, offset - ep->offset);
3400 /* First see if this insn remains valid when we
3401 make the change. If not, keep the INSN_CODE
3402 the same and let reload fit it up. */
3403 validate_change (insn, &SET_SRC (old_set), src, 1);
3404 validate_change (insn, &SET_DEST (old_set),
3406 if (! apply_change_group ())
3408 SET_SRC (old_set) = src;
3409 SET_DEST (old_set) = ep->to_rtx;
3419 /* In this case this insn isn't serving a useful purpose. We
3420 will delete it in reload_as_needed once we know that this
3421 elimination is, in fact, being done.
3423 If REPLACE isn't set, we can't delete this insn, but needn't
3424 process it since it won't be used unless something changes. */
3426 delete_dead_insn (insn);
3431 /* Check for (set (reg) (plus (reg from) (offset))) where the offset
3432 in the insn is the negative of the offset in FROM. Substitute
3433 (set (reg) (reg to)) for the insn and change its code.
3435 We have to do this here, rather than in eliminate_regs, do that we can
3436 change the insn code. */
3438 if (GET_CODE (SET_SRC (old_set)) == PLUS
3439 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3440 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT)
3441 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
3443 if (ep->from_rtx == XEXP (SET_SRC (old_set), 0)
3444 && ep->can_eliminate)
3446 /* We must stop at the first elimination that will be used.
3447 If this one would replace the PLUS with a REG, do it
3448 now. Otherwise, quit the loop and let eliminate_regs
3449 do its normal replacement. */
3450 if (ep->offset == - INTVAL (XEXP (SET_SRC (old_set), 1)))
3452 /* We assume here that we don't need a PARALLEL of
3453 any CLOBBERs for this assignment. There's not
3454 much we can do if we do need it. */
3455 PATTERN (insn) = gen_rtx (SET, VOIDmode,
3456 SET_DEST (old_set), ep->to_rtx);
3457 INSN_CODE (insn) = -1;
3466 old_asm_operands_vec = 0;
3468 /* Replace the body of this insn with a substituted form. If we changed
3469 something, return non-zero.
3471 If we are replacing a body that was a (set X (plus Y Z)), try to
3472 re-recognize the insn. We do this in case we had a simple addition
3473 but now can do this as a load-address. This saves an insn in this
3476 new_body = eliminate_regs (old_body, 0, replace ? insn : NULL_RTX, 0);
3477 if (new_body != old_body)
3479 /* If we aren't replacing things permanently and we changed something,
3480 make another copy to ensure that all the RTL is new. Otherwise
3481 things can go wrong if find_reload swaps commutative operands
3482 and one is inside RTL that has been copied while the other is not. */
3484 /* Don't copy an asm_operands because (1) there's no need and (2)
3485 copy_rtx can't do it properly when there are multiple outputs. */
3486 if (! replace && asm_noperands (old_body) < 0)
3487 new_body = copy_rtx (new_body);
3489 /* If we had a move insn but now we don't, rerecognize it. This will
3490 cause spurious re-recognition if the old move had a PARALLEL since
3491 the new one still will, but we can't call single_set without
3492 having put NEW_BODY into the insn and the re-recognition won't
3493 hurt in this rare case. */
3495 && ((GET_CODE (SET_SRC (old_set)) == REG
3496 && (GET_CODE (new_body) != SET
3497 || GET_CODE (SET_SRC (new_body)) != REG))
3498 /* If this was a load from or store to memory, compare
3499 the MEM in recog_operand to the one in the insn. If they
3500 are not equal, then rerecognize the insn. */
3502 && ((GET_CODE (SET_SRC (old_set)) == MEM
3503 && SET_SRC (old_set) != recog_operand[1])
3504 || (GET_CODE (SET_DEST (old_set)) == MEM
3505 && SET_DEST (old_set) != recog_operand[0])))
3506 /* If this was an add insn before, rerecognize. */
3507 || GET_CODE (SET_SRC (old_set)) == PLUS))
3509 if (! validate_change (insn, &PATTERN (insn), new_body, 0))
3510 /* If recognition fails, store the new body anyway.
3511 It's normal to have recognition failures here
3512 due to bizarre memory addresses; reloading will fix them. */
3513 PATTERN (insn) = new_body;
3516 PATTERN (insn) = new_body;
3521 /* Loop through all elimination pairs. See if any have changed and
3522 recalculate the number not at initial offset.
3524 Compute the maximum offset (minimum offset if the stack does not
3525 grow downward) for each elimination pair.
3527 We also detect a cases where register elimination cannot be done,
3528 namely, if a register would be both changed and referenced outside a MEM
3529 in the resulting insn since such an insn is often undefined and, even if
3530 not, we cannot know what meaning will be given to it. Note that it is
3531 valid to have a register used in an address in an insn that changes it
3532 (presumably with a pre- or post-increment or decrement).
3534 If anything changes, return nonzero. */
3536 num_not_at_initial_offset = 0;
3537 for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3539 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3540 ep->can_eliminate = 0;
3542 ep->ref_outside_mem = 0;
3544 if (ep->previous_offset != ep->offset)
3547 ep->previous_offset = ep->offset;
3548 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3549 num_not_at_initial_offset++;
3551 #ifdef STACK_GROWS_DOWNWARD
3552 ep->max_offset = MAX (ep->max_offset, ep->offset);
3554 ep->max_offset = MIN (ep->max_offset, ep->offset);
3559 /* If we changed something, perform elimination in REG_NOTES. This is
3560 needed even when REPLACE is zero because a REG_DEAD note might refer
3561 to a register that we eliminate and could cause a different number
3562 of spill registers to be needed in the final reload pass than in
3564 if (val && REG_NOTES (insn) != 0)
3565 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn), 0);
3573 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3574 replacement we currently believe is valid, mark it as not eliminable if X
3575 modifies DEST in any way other than by adding a constant integer to it.
3577 If DEST is the frame pointer, we do nothing because we assume that
3578 all assignments to the hard frame pointer are nonlocal gotos and are being
3579 done at a time when they are valid and do not disturb anything else.
3580 Some machines want to eliminate a fake argument pointer with either the
3581 frame or stack pointer. Assignments to the hard frame pointer must not
3582 prevent this elimination.
3584 Called via note_stores from reload before starting its passes to scan
3585 the insns of the function. */
3588 mark_not_eliminable (dest, x)
3594 /* A SUBREG of a hard register here is just changing its mode. We should
3595 not see a SUBREG of an eliminable hard register, but check just in
3597 if (GET_CODE (dest) == SUBREG)
3598 dest = SUBREG_REG (dest);
3600 if (dest == hard_frame_pointer_rtx)
3603 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3604 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3605 && (GET_CODE (x) != SET
3606 || GET_CODE (SET_SRC (x)) != PLUS
3607 || XEXP (SET_SRC (x), 0) != dest
3608 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3610 reg_eliminate[i].can_eliminate_previous
3611 = reg_eliminate[i].can_eliminate = 0;
3616 /* Kick all pseudos out of hard register REGNO.
3617 If GLOBAL is nonzero, try to find someplace else to put them.
3618 If DUMPFILE is nonzero, log actions taken on that file.
3620 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3621 because we found we can't eliminate some register. In the case, no pseudos
3622 are allowed to be in the register, even if they are only in a block that
3623 doesn't require spill registers, unlike the case when we are spilling this
3624 hard reg to produce another spill register.
3626 Return nonzero if any pseudos needed to be kicked out. */
3629 spill_hard_reg (regno, global, dumpfile, cant_eliminate)
3635 enum reg_class class = REGNO_REG_CLASS (regno);
3636 int something_changed = 0;
3639 SET_HARD_REG_BIT (forbidden_regs, regno);
3642 regs_ever_live[regno] = 1;
3644 /* Spill every pseudo reg that was allocated to this reg
3645 or to something that overlaps this reg. */
3647 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3648 if (reg_renumber[i] >= 0
3649 && reg_renumber[i] <= regno
3651 + HARD_REGNO_NREGS (reg_renumber[i],
3652 PSEUDO_REGNO_MODE (i))
3655 /* If this register belongs solely to a basic block which needed no
3656 spilling of any class that this register is contained in,
3657 leave it be, unless we are spilling this register because
3658 it was a hard register that can't be eliminated. */
3660 if (! cant_eliminate
3661 && basic_block_needs[0]
3662 && reg_basic_block[i] >= 0
3663 && basic_block_needs[(int) class][reg_basic_block[i]] == 0)
3667 for (p = reg_class_superclasses[(int) class];
3668 *p != LIM_REG_CLASSES; p++)
3669 if (basic_block_needs[(int) *p][reg_basic_block[i]] > 0)
3672 if (*p == LIM_REG_CLASSES)
3676 /* Mark it as no longer having a hard register home. */
3677 reg_renumber[i] = -1;
3678 /* We will need to scan everything again. */