1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
29 #include "coretypes.h"
31 #include "hard-reg-set.h"
36 #include "basic-block.h"
39 #include "insn-config.h"
48 static void init_reg_sets_1 (void);
49 static void init_reg_modes (void);
50 static void init_reg_autoinc (void);
52 /* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
54 reloads for pseudos auto-incremented since reload can't handle it. */
57 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58 #define FORBIDDEN_INC_DEC_CLASSES
62 /* Register tables used by many passes. */
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
69 char fixed_regs[FIRST_PSEUDO_REGISTER];
71 /* Same info as a HARD_REG_SET. */
73 HARD_REG_SET fixed_reg_set;
75 /* Data for initializing the above. */
77 static const char initial_fixed_regs[] = FIXED_REGISTERS;
79 /* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
85 char call_used_regs[FIRST_PSEUDO_REGISTER];
87 /* Same info as a HARD_REG_SET. */
89 HARD_REG_SET call_used_reg_set;
91 /* HARD_REG_SET of registers we want to avoid caller saving. */
92 HARD_REG_SET losing_caller_save_reg_set;
94 /* Data for initializing the above. */
96 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
98 /* This is much like call_used_regs, except it doesn't have to
99 be a superset of FIXED_REGISTERS. This vector indicates
100 what is really call clobbered, and is used when defining
101 regs_invalidated_by_call. */
103 #ifdef CALL_REALLY_USED_REGISTERS
104 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
107 /* Indexed by hard register number, contains 1 for registers that are
108 fixed use or call used registers that cannot hold quantities across
109 calls even if we are willing to save and restore them. call fixed
110 registers are a subset of call used registers. */
112 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
114 /* The same info as a HARD_REG_SET. */
116 HARD_REG_SET call_fixed_reg_set;
118 /* Number of non-fixed registers. */
120 int n_non_fixed_regs;
122 /* Indexed by hard register number, contains 1 for registers
123 that are being used for global register decls.
124 These must be exempt from ordinary flow analysis
125 and are also considered fixed. */
127 char global_regs[FIRST_PSEUDO_REGISTER];
129 /* Contains 1 for registers that are set or clobbered by calls. */
130 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
131 for someone's bright idea to have call_used_regs strictly include
132 fixed_regs. Which leaves us guessing as to the set of fixed_regs
133 that are actually preserved. We know for sure that those associated
134 with the local stack frame are safe, but scant others. */
136 HARD_REG_SET regs_invalidated_by_call;
138 /* Table of register numbers in the order in which to try to use them. */
139 #ifdef REG_ALLOC_ORDER
140 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
142 /* The inverse of reg_alloc_order. */
143 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
146 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
148 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
150 /* The same information, but as an array of unsigned ints. We copy from
151 these unsigned ints to the table above. We do this so the tm.h files
152 do not have to be aware of the wordsize for machines with <= 64 regs.
153 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
156 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
158 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
159 = REG_CLASS_CONTENTS;
161 /* For each reg class, number of regs it contains. */
163 unsigned int reg_class_size[N_REG_CLASSES];
165 /* For each reg class, table listing all the containing classes. */
167 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
169 /* For each reg class, table listing all the classes contained in it. */
171 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
173 /* For each pair of reg classes,
174 a largest reg class contained in their union. */
176 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
178 /* For each pair of reg classes,
179 the smallest reg class containing their union. */
181 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
183 /* Array containing all of the register names. Unless
184 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
186 #ifdef DEBUG_REGISTER_NAMES
187 const char * reg_names[] = REGISTER_NAMES;
190 /* For each hard register, the widest mode object that it can contain.
191 This will be a MODE_INT mode if the register can hold integers. Otherwise
192 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
195 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
197 /* 1 if class does contain register of given mode. */
199 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
201 /* Maximum cost of moving from a register in one class to a register in
202 another class. Based on REGISTER_MOVE_COST. */
204 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
206 /* Similar, but here we don't have to move if the first index is a subset
207 of the second so in that case the cost is zero. */
209 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
211 /* Similar, but here we don't have to move if the first index is a superset
212 of the second so in that case the cost is zero. */
214 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
216 #ifdef FORBIDDEN_INC_DEC_CLASSES
218 /* These are the classes that regs which are auto-incremented or decremented
221 static int forbidden_inc_dec_class[N_REG_CLASSES];
223 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
226 static char *in_inc_dec;
228 #endif /* FORBIDDEN_INC_DEC_CLASSES */
230 #ifdef CANNOT_CHANGE_MODE_CLASS
231 /* All registers that have been subreged. Indexed by regno * MAX_MACHINE_MODE
233 bitmap_head subregs_of_mode;
236 /* Sample MEM values for use by memory_move_secondary_cost. */
238 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
240 /* Linked list of reg_info structures allocated for reg_n_info array.
241 Grouping all of the allocated structures together in one lump
242 means only one call to bzero to clear them, rather than n smaller
244 struct reg_info_data {
245 struct reg_info_data *next; /* next set of reg_info structures */
246 size_t min_index; /* minimum index # */
247 size_t max_index; /* maximum index # */
248 char used_p; /* nonzero if this has been used previously */
249 reg_info data[1]; /* beginning of the reg_info data */
252 static struct reg_info_data *reg_info_head;
254 /* No more global register variables may be declared; true once
255 regclass has been initialized. */
257 static int no_global_reg_vars = 0;
260 /* Function called only once to initialize the above data on reg usage.
261 Once this is done, various switches may override. */
268 /* First copy the register information from the initial int form into
271 for (i = 0; i < N_REG_CLASSES; i++)
273 CLEAR_HARD_REG_SET (reg_class_contents[i]);
275 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
276 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
277 if (int_reg_class_contents[i][j / 32]
278 & ((unsigned) 1 << (j % 32)))
279 SET_HARD_REG_BIT (reg_class_contents[i], j);
282 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
283 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
284 memset (global_regs, 0, sizeof global_regs);
286 /* Do any additional initialization regsets may need. */
287 INIT_ONCE_REG_SET ();
289 #ifdef REG_ALLOC_ORDER
290 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
291 inv_reg_alloc_order[reg_alloc_order[i]] = i;
295 /* After switches have been processed, which perhaps alter
296 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
299 init_reg_sets_1 (void)
302 unsigned int /* enum machine_mode */ m;
303 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
305 /* This macro allows the fixed or call-used registers
306 and the register classes to depend on target flags. */
308 #ifdef CONDITIONAL_REGISTER_USAGE
309 CONDITIONAL_REGISTER_USAGE;
312 /* Compute number of hard regs in each class. */
314 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
315 for (i = 0; i < N_REG_CLASSES; i++)
316 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
317 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
320 /* Initialize the table of subunions.
321 reg_class_subunion[I][J] gets the largest-numbered reg-class
322 that is contained in the union of classes I and J. */
324 for (i = 0; i < N_REG_CLASSES; i++)
326 for (j = 0; j < N_REG_CLASSES; j++)
329 register /* Declare it register if it's a scalar. */
334 COPY_HARD_REG_SET (c, reg_class_contents[i]);
335 IOR_HARD_REG_SET (c, reg_class_contents[j]);
336 for (k = 0; k < N_REG_CLASSES; k++)
338 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
343 /* keep the largest subclass */ /* SPEE 900308 */
344 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
345 reg_class_contents[(int) reg_class_subunion[i][j]],
347 reg_class_subunion[i][j] = (enum reg_class) k;
354 /* Initialize the table of superunions.
355 reg_class_superunion[I][J] gets the smallest-numbered reg-class
356 containing the union of classes I and J. */
358 for (i = 0; i < N_REG_CLASSES; i++)
360 for (j = 0; j < N_REG_CLASSES; j++)
363 register /* Declare it register if it's a scalar. */
368 COPY_HARD_REG_SET (c, reg_class_contents[i]);
369 IOR_HARD_REG_SET (c, reg_class_contents[j]);
370 for (k = 0; k < N_REG_CLASSES; k++)
371 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
374 reg_class_superunion[i][j] = (enum reg_class) k;
378 /* Initialize the tables of subclasses and superclasses of each reg class.
379 First clear the whole table, then add the elements as they are found. */
381 for (i = 0; i < N_REG_CLASSES; i++)
383 for (j = 0; j < N_REG_CLASSES; j++)
385 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
386 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
390 for (i = 0; i < N_REG_CLASSES; i++)
392 if (i == (int) NO_REGS)
395 for (j = i + 1; j < N_REG_CLASSES; j++)
399 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
403 /* Reg class I is a subclass of J.
404 Add J to the table of superclasses of I. */
405 p = ®_class_superclasses[i][0];
406 while (*p != LIM_REG_CLASSES) p++;
407 *p = (enum reg_class) j;
408 /* Add I to the table of superclasses of J. */
409 p = ®_class_subclasses[j][0];
410 while (*p != LIM_REG_CLASSES) p++;
411 *p = (enum reg_class) i;
415 /* Initialize "constant" tables. */
417 CLEAR_HARD_REG_SET (fixed_reg_set);
418 CLEAR_HARD_REG_SET (call_used_reg_set);
419 CLEAR_HARD_REG_SET (call_fixed_reg_set);
420 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
422 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
424 n_non_fixed_regs = 0;
426 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
429 SET_HARD_REG_BIT (fixed_reg_set, i);
433 if (call_used_regs[i])
434 SET_HARD_REG_BIT (call_used_reg_set, i);
435 if (call_fixed_regs[i])
436 SET_HARD_REG_BIT (call_fixed_reg_set, i);
437 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
438 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
440 /* There are a couple of fixed registers that we know are safe to
441 exclude from being clobbered by calls:
443 The frame pointer is always preserved across calls. The arg pointer
444 is if it is fixed. The stack pointer usually is, unless
445 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
446 If we are generating PIC code, the PIC offset table register is
447 preserved across calls, though the target can override that. */
449 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
451 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
452 else if (i == HARD_FRAME_POINTER_REGNUM)
455 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
456 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
459 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
460 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
464 #ifdef CALL_REALLY_USED_REGISTERS
465 || call_really_used_regs[i]
470 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
473 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
474 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
475 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
476 for (i = 0; i < N_REG_CLASSES; i++)
477 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
478 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
479 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
480 && HARD_REGNO_MODE_OK (j, m))
482 contains_reg_of_mode [i][m] = 1;
483 allocatable_regs_of_mode [m] = 1;
487 /* Initialize the move cost table. Find every subset of each class
488 and take the maximum cost of moving any subset to any other. */
490 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
491 if (allocatable_regs_of_mode [m])
493 for (i = 0; i < N_REG_CLASSES; i++)
494 if (contains_reg_of_mode [i][m])
495 for (j = 0; j < N_REG_CLASSES; j++)
498 enum reg_class *p1, *p2;
500 if (!contains_reg_of_mode [j][m])
502 move_cost[m][i][j] = 65536;
503 may_move_in_cost[m][i][j] = 65536;
504 may_move_out_cost[m][i][j] = 65536;
508 cost = REGISTER_MOVE_COST (m, i, j);
510 for (p2 = ®_class_subclasses[j][0];
511 *p2 != LIM_REG_CLASSES;
513 if (*p2 != i && contains_reg_of_mode [*p2][m])
514 cost = MAX (cost, move_cost [m][i][*p2]);
516 for (p1 = ®_class_subclasses[i][0];
517 *p1 != LIM_REG_CLASSES;
519 if (*p1 != j && contains_reg_of_mode [*p1][m])
520 cost = MAX (cost, move_cost [m][*p1][j]);
522 move_cost[m][i][j] = cost;
524 if (reg_class_subset_p (i, j))
525 may_move_in_cost[m][i][j] = 0;
527 may_move_in_cost[m][i][j] = cost;
529 if (reg_class_subset_p (j, i))
530 may_move_out_cost[m][i][j] = 0;
532 may_move_out_cost[m][i][j] = cost;
536 for (j = 0; j < N_REG_CLASSES; j++)
538 move_cost[m][i][j] = 65536;
539 may_move_in_cost[m][i][j] = 65536;
540 may_move_out_cost[m][i][j] = 65536;
545 /* Compute the table of register modes.
546 These values are used to record death information for individual registers
547 (as opposed to a multi-register mode). */
550 init_reg_modes (void)
554 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
556 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
558 /* If we couldn't find a valid mode, just use the previous mode.
559 ??? One situation in which we need to do this is on the mips where
560 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
561 to use DF mode for the even registers and VOIDmode for the odd
562 (for the cpu models where the odd ones are inaccessible). */
563 if (reg_raw_mode[i] == VOIDmode)
564 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
568 /* Finish initializing the register sets and
569 initialize the register modes. */
574 /* This finishes what was started by init_reg_sets, but couldn't be done
575 until after register usage was specified. */
583 /* Initialize some fake stack-frame MEM references for use in
584 memory_move_secondary_cost. */
587 init_fake_stack_mems (void)
589 #ifdef HAVE_SECONDARY_RELOADS
593 for (i = 0; i < MAX_MACHINE_MODE; i++)
594 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
599 #ifdef HAVE_SECONDARY_RELOADS
601 /* Compute extra cost of moving registers to/from memory due to reloads.
602 Only needed if secondary reloads are required for memory moves. */
605 memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
607 enum reg_class altclass;
608 int partial_cost = 0;
609 /* We need a memory reference to feed to SECONDARY... macros. */
610 /* mem may be unused even if the SECONDARY_ macros are defined. */
611 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
616 #ifdef SECONDARY_INPUT_RELOAD_CLASS
617 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
624 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
625 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
631 if (altclass == NO_REGS)
635 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
637 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
639 if (class == altclass)
640 /* This isn't simply a copy-to-temporary situation. Can't guess
641 what it is, so MEMORY_MOVE_COST really ought not to be calling
644 I'm tempted to put in an abort here, but returning this will
645 probably only give poor estimates, which is what we would've
646 had before this code anyways. */
649 /* Check if the secondary reload register will also need a
651 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
655 /* Return a machine mode that is legitimate for hard reg REGNO and large
656 enough to save nregs. If we can't find one, return VOIDmode.
657 If CALL_SAVED is true, only consider modes that are call saved. */
660 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
661 unsigned int nregs, bool call_saved)
663 unsigned int /* enum machine_mode */ m;
664 enum machine_mode found_mode = VOIDmode, mode;
666 /* We first look for the largest integer mode that can be validly
667 held in REGNO. If none, we look for the largest floating-point mode.
668 If we still didn't find a valid mode, try CCmode. */
670 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
672 mode = GET_MODE_WIDER_MODE (mode))
673 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
674 && HARD_REGNO_MODE_OK (regno, mode)
675 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
678 if (found_mode != VOIDmode)
681 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
683 mode = GET_MODE_WIDER_MODE (mode))
684 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
685 && HARD_REGNO_MODE_OK (regno, mode)
686 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
689 if (found_mode != VOIDmode)
692 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
694 mode = GET_MODE_WIDER_MODE (mode))
695 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
696 && HARD_REGNO_MODE_OK (regno, mode)
697 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
700 if (found_mode != VOIDmode)
703 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
705 mode = GET_MODE_WIDER_MODE (mode))
706 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
707 && HARD_REGNO_MODE_OK (regno, mode)
708 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
711 if (found_mode != VOIDmode)
714 /* Iterate over all of the CCmodes. */
715 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
717 mode = (enum machine_mode) m;
718 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
719 && HARD_REGNO_MODE_OK (regno, mode)
720 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
724 /* We can't find a mode valid for this register. */
728 /* Specify the usage characteristics of the register named NAME.
729 It should be a fixed register if FIXED and a
730 call-used register if CALL_USED. */
733 fix_register (const char *name, int fixed, int call_used)
737 /* Decode the name and update the primary form of
738 the register info. */
740 if ((i = decode_reg_name (name)) >= 0)
742 if ((i == STACK_POINTER_REGNUM
743 #ifdef HARD_FRAME_POINTER_REGNUM
744 || i == HARD_FRAME_POINTER_REGNUM
746 || i == FRAME_POINTER_REGNUM
749 && (fixed == 0 || call_used == 0))
751 static const char * const what_option[2][2] = {
752 { "call-saved", "call-used" },
753 { "no-such-option", "fixed" }};
755 error ("can't use '%s' as a %s register", name,
756 what_option[fixed][call_used]);
760 fixed_regs[i] = fixed;
761 call_used_regs[i] = call_used;
762 #ifdef CALL_REALLY_USED_REGISTERS
764 call_really_used_regs[i] = call_used;
770 warning ("unknown register name: %s", name);
774 /* Mark register number I as global. */
777 globalize_reg (int i)
779 if (fixed_regs[i] == 0 && no_global_reg_vars)
780 error ("global register variable follows a function definition");
784 warning ("register used for two global register variables");
788 if (call_used_regs[i] && ! fixed_regs[i])
789 warning ("call-clobbered register used for global register variable");
793 /* If already fixed, nothing else to do. */
797 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
800 SET_HARD_REG_BIT (fixed_reg_set, i);
801 SET_HARD_REG_BIT (call_used_reg_set, i);
802 SET_HARD_REG_BIT (call_fixed_reg_set, i);
803 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
806 /* Now the data and code for the `regclass' pass, which happens
807 just before local-alloc. */
809 /* The `costs' struct records the cost of using a hard register of each class
810 and of using memory for each pseudo. We use this data to set up
811 register class preferences. */
815 int cost[N_REG_CLASSES];
819 /* Structure used to record preferences of given pseudo. */
822 /* (enum reg_class) prefclass is the preferred class. */
825 /* altclass is a register class that we should use for allocating
826 pseudo if no register in the preferred class is available.
827 If no register in this class is available, memory is preferred.
829 It might appear to be more general to have a bitmask of classes here,
830 but since it is recommended that there be a class corresponding to the
831 union of most major pair of classes, that generality is not required. */
835 /* Record the cost of each class for each pseudo. */
837 static struct costs *costs;
839 /* Initialized once, and used to initialize cost values for each insn. */
841 static struct costs init_cost;
843 /* Record preferences of each pseudo.
844 This is available after `regclass' is run. */
846 static struct reg_pref *reg_pref;
848 /* Allocated buffers for reg_pref. */
850 static struct reg_pref *reg_pref_buffer;
852 /* Frequency of executions of current insn. */
854 static int frequency;
856 static rtx scan_one_insn (rtx, int);
857 static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
858 static void dump_regclass (FILE *);
859 static void record_reg_classes (int, int, rtx *, enum machine_mode *,
860 const char **, rtx, struct costs *,
862 static int copy_cost (rtx, enum machine_mode, enum reg_class, int);
863 static void record_address_regs (rtx, enum reg_class, int);
864 #ifdef FORBIDDEN_INC_DEC_CLASSES
865 static int auto_inc_dec_reg_p (rtx, enum machine_mode);
867 static void reg_scan_mark_refs (rtx, rtx, int, unsigned int);
869 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
870 This function is sometimes called before the info has been computed.
871 When that happens, just return GENERAL_REGS, which is innocuous. */
874 reg_preferred_class (int regno)
878 return (enum reg_class) reg_pref[regno].prefclass;
882 reg_alternate_class (int regno)
887 return (enum reg_class) reg_pref[regno].altclass;
890 /* Initialize some global data for this pass. */
897 init_cost.mem_cost = 10000;
898 for (i = 0; i < N_REG_CLASSES; i++)
899 init_cost.cost[i] = 10000;
901 /* This prevents dump_flow_info from losing if called
902 before regclass is run. */
905 /* No more global register variables may be declared. */
906 no_global_reg_vars = 1;
909 /* Dump register costs. */
911 dump_regclass (FILE *dump)
913 static const char *const reg_class_names[] = REG_CLASS_NAMES;
915 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
917 int /* enum reg_class */ class;
920 fprintf (dump, " Register %i costs:", i);
921 for (class = 0; class < (int) N_REG_CLASSES; class++)
922 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
923 #ifdef FORBIDDEN_INC_DEC_CLASSES
925 || !forbidden_inc_dec_class[(enum reg_class) class])
927 #ifdef CANNOT_CHANGE_MODE_CLASS
928 && ! invalid_mode_change_p (i, (enum reg_class) class,
929 PSEUDO_REGNO_MODE (i))
932 fprintf (dump, " %s:%i", reg_class_names[class],
933 costs[i].cost[(enum reg_class) class]);
934 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
940 /* Calculate the costs of insn operands. */
943 record_operand_costs (rtx insn, struct costs *op_costs,
944 struct reg_pref *reg_pref)
946 const char *constraints[MAX_RECOG_OPERANDS];
947 enum machine_mode modes[MAX_RECOG_OPERANDS];
950 for (i = 0; i < recog_data.n_operands; i++)
952 constraints[i] = recog_data.constraints[i];
953 modes[i] = recog_data.operand_mode[i];
956 /* If we get here, we are set up to record the costs of all the
957 operands for this insn. Start by initializing the costs.
958 Then handle any address registers. Finally record the desired
959 classes for any pseudos, doing it twice if some pair of
960 operands are commutative. */
962 for (i = 0; i < recog_data.n_operands; i++)
964 op_costs[i] = init_cost;
966 if (GET_CODE (recog_data.operand[i]) == SUBREG)
967 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
969 if (GET_CODE (recog_data.operand[i]) == MEM)
970 record_address_regs (XEXP (recog_data.operand[i], 0),
971 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
972 else if (constraints[i][0] == 'p'
973 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
974 record_address_regs (recog_data.operand[i],
975 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
978 /* Check for commutative in a separate loop so everything will
979 have been initialized. We must do this even if one operand
980 is a constant--see addsi3 in m68k.md. */
982 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
983 if (constraints[i][0] == '%')
985 const char *xconstraints[MAX_RECOG_OPERANDS];
988 /* Handle commutative operands by swapping the constraints.
989 We assume the modes are the same. */
991 for (j = 0; j < recog_data.n_operands; j++)
992 xconstraints[j] = constraints[j];
994 xconstraints[i] = constraints[i+1];
995 xconstraints[i+1] = constraints[i];
996 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
997 recog_data.operand, modes,
998 xconstraints, insn, op_costs, reg_pref);
1001 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1002 recog_data.operand, modes,
1003 constraints, insn, op_costs, reg_pref);
1006 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1007 time it would save code to put a certain register in a certain class.
1008 PASS, when nonzero, inhibits some optimizations which need only be done
1010 Return the last insn processed, so that the scan can be continued from
1014 scan_one_insn (rtx insn, int pass)
1016 enum rtx_code code = GET_CODE (insn);
1017 enum rtx_code pat_code;
1020 struct costs op_costs[MAX_RECOG_OPERANDS];
1022 if (GET_RTX_CLASS (code) != 'i')
1025 pat_code = GET_CODE (PATTERN (insn));
1027 || pat_code == CLOBBER
1028 || pat_code == ASM_INPUT
1029 || pat_code == ADDR_VEC
1030 || pat_code == ADDR_DIFF_VEC)
1033 set = single_set (insn);
1034 extract_insn (insn);
1036 /* If this insn loads a parameter from its stack slot, then
1037 it represents a savings, rather than a cost, if the
1038 parameter is stored in memory. Record this fact. */
1040 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1041 && GET_CODE (SET_SRC (set)) == MEM
1042 && (note = find_reg_note (insn, REG_EQUIV,
1044 && GET_CODE (XEXP (note, 0)) == MEM)
1046 costs[REGNO (SET_DEST (set))].mem_cost
1047 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1050 record_address_regs (XEXP (SET_SRC (set), 0),
1051 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1055 /* Improve handling of two-address insns such as
1056 (set X (ashift CONST Y)) where CONST must be made to
1057 match X. Change it into two insns: (set X CONST)
1058 (set X (ashift X Y)). If we left this for reloading, it
1059 would probably get three insns because X and Y might go
1060 in the same place. This prevents X and Y from receiving
1063 We can only do this if the modes of operands 0 and 1
1064 (which might not be the same) are tieable and we only need
1065 do this during our first pass. */
1067 if (pass == 0 && optimize
1068 && recog_data.n_operands >= 3
1069 && recog_data.constraints[1][0] == '0'
1070 && recog_data.constraints[1][1] == 0
1071 && CONSTANT_P (recog_data.operand[1])
1072 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1073 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1074 && GET_CODE (recog_data.operand[0]) == REG
1075 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1076 recog_data.operand_mode[1]))
1078 rtx previnsn = prev_real_insn (insn);
1080 = gen_lowpart (recog_data.operand_mode[1],
1081 recog_data.operand[0]);
1083 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1085 /* If this insn was the start of a basic block,
1086 include the new insn in that block.
1087 We need not check for code_label here;
1088 while a basic block can start with a code_label,
1089 INSN could not be at the beginning of that block. */
1090 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1094 if (insn == b->head)
1098 /* This makes one more setting of new insns's dest. */
1099 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1100 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1101 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1103 *recog_data.operand_loc[1] = recog_data.operand[0];
1104 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1105 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1106 for (i = recog_data.n_dups - 1; i >= 0; i--)
1107 if (recog_data.dup_num[i] == 1)
1109 *recog_data.dup_loc[i] = recog_data.operand[0];
1110 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1111 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1114 return PREV_INSN (newinsn);
1117 record_operand_costs (insn, op_costs, reg_pref);
1119 /* Now add the cost for each operand to the total costs for
1122 for (i = 0; i < recog_data.n_operands; i++)
1123 if (GET_CODE (recog_data.operand[i]) == REG
1124 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1126 int regno = REGNO (recog_data.operand[i]);
1127 struct costs *p = &costs[regno], *q = &op_costs[i];
1129 p->mem_cost += q->mem_cost * frequency;
1130 for (j = 0; j < N_REG_CLASSES; j++)
1131 p->cost[j] += q->cost[j] * frequency;
1137 /* Initialize information about which register classes can be used for
1138 pseudos that are auto-incremented or auto-decremented. */
1141 init_reg_autoinc (void)
1143 #ifdef FORBIDDEN_INC_DEC_CLASSES
1146 for (i = 0; i < N_REG_CLASSES; i++)
1148 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1149 enum machine_mode m;
1152 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1153 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1157 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1158 m = (enum machine_mode) ((int) m + 1))
1159 if (HARD_REGNO_MODE_OK (j, m))
1163 /* If a register is not directly suitable for an
1164 auto-increment or decrement addressing mode and
1165 requires secondary reloads, disallow its class from
1166 being used in such addresses. */
1169 #ifdef SECONDARY_RELOAD_CLASS
1170 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1173 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1174 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1177 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1178 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1183 && ! auto_inc_dec_reg_p (r, m))
1184 forbidden_inc_dec_class[i] = 1;
1188 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1191 /* This is a pass of the compiler that scans all instructions
1192 and calculates the preferred class for each pseudo-register.
1193 This information can be accessed later by calling `reg_preferred_class'.
1194 This pass comes just before local register allocation. */
1197 regclass (rtx f, int nregs, FILE *dump)
1205 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1207 #ifdef FORBIDDEN_INC_DEC_CLASSES
1209 in_inc_dec = (char *) xmalloc (nregs);
1211 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1213 /* Normally we scan the insns once and determine the best class to use for
1214 each register. However, if -fexpensive_optimizations are on, we do so
1215 twice, the second time using the tentative best classes to guide the
1218 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1223 fprintf (dump, "\n\nPass %i\n\n",pass);
1224 /* Zero out our accumulation of the cost of each class for each reg. */
1226 memset ((char *) costs, 0, nregs * sizeof (struct costs));
1228 #ifdef FORBIDDEN_INC_DEC_CLASSES
1229 memset (in_inc_dec, 0, nregs);
1232 /* Scan the instructions and record each time it would
1233 save code to put a certain register in a certain class. */
1237 frequency = REG_FREQ_MAX;
1238 for (insn = f; insn; insn = NEXT_INSN (insn))
1239 insn = scan_one_insn (insn, pass);
1244 /* Show that an insn inside a loop is likely to be executed three
1245 times more than insns outside a loop. This is much more
1246 aggressive than the assumptions made elsewhere and is being
1247 tried as an experiment. */
1248 frequency = REG_FREQ_FROM_BB (bb);
1249 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1251 insn = scan_one_insn (insn, pass);
1252 if (insn == bb->end)
1257 /* Now for each register look at how desirable each class is
1258 and find which class is preferred. Store that in
1259 `prefclass'. Record in `altclass' the largest register
1260 class any of whose registers is better than memory. */
1263 reg_pref = reg_pref_buffer;
1267 dump_regclass (dump);
1268 fprintf (dump,"\n");
1270 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1272 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1273 enum reg_class best = ALL_REGS, alt = NO_REGS;
1274 /* This is an enum reg_class, but we call it an int
1275 to save lots of casts. */
1277 struct costs *p = &costs[i];
1279 /* In non-optimizing compilation REG_N_REFS is not initialized
1281 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1284 for (class = (int) ALL_REGS - 1; class > 0; class--)
1286 /* Ignore classes that are too small for this operand or
1287 invalid for an operand that was auto-incremented. */
1288 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1289 #ifdef FORBIDDEN_INC_DEC_CLASSES
1290 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1292 #ifdef CANNOT_CHANGE_MODE_CLASS
1293 || invalid_mode_change_p (i, (enum reg_class) class,
1294 PSEUDO_REGNO_MODE (i))
1298 else if (p->cost[class] < best_cost)
1300 best_cost = p->cost[class];
1301 best = (enum reg_class) class;
1303 else if (p->cost[class] == best_cost)
1304 best = reg_class_subunion[(int) best][class];
1307 /* Record the alternate register class; i.e., a class for which
1308 every register in it is better than using memory. If adding a
1309 class would make a smaller class (i.e., no union of just those
1310 classes exists), skip that class. The major unions of classes
1311 should be provided as a register class. Don't do this if we
1312 will be doing it again later. */
1314 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1315 for (class = 0; class < N_REG_CLASSES; class++)
1316 if (p->cost[class] < p->mem_cost
1317 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1318 > reg_class_size[(int) alt])
1319 #ifdef FORBIDDEN_INC_DEC_CLASSES
1320 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1322 #ifdef CANNOT_CHANGE_MODE_CLASS
1323 && ! invalid_mode_change_p (i, (enum reg_class) class,
1324 PSEUDO_REGNO_MODE (i))
1327 alt = reg_class_subunion[(int) alt][class];
1329 /* If we don't add any classes, nothing to try. */
1334 && (reg_pref[i].prefclass != (int) best
1335 || reg_pref[i].altclass != (int) alt))
1337 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1338 fprintf (dump, " Register %i", i);
1339 if (alt == ALL_REGS || best == ALL_REGS)
1340 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1341 else if (alt == NO_REGS)
1342 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1344 fprintf (dump, " pref %s, else %s\n",
1345 reg_class_names[(int) best],
1346 reg_class_names[(int) alt]);
1349 /* We cast to (int) because (char) hits bugs in some compilers. */
1350 reg_pref[i].prefclass = (int) best;
1351 reg_pref[i].altclass = (int) alt;
1355 #ifdef FORBIDDEN_INC_DEC_CLASSES
1361 /* Record the cost of using memory or registers of various classes for
1362 the operands in INSN.
1364 N_ALTS is the number of alternatives.
1366 N_OPS is the number of operands.
1368 OPS is an array of the operands.
1370 MODES are the modes of the operands, in case any are VOIDmode.
1372 CONSTRAINTS are the constraints to use for the operands. This array
1373 is modified by this procedure.
1375 This procedure works alternative by alternative. For each alternative
1376 we assume that we will be able to allocate all pseudos to their ideal
1377 register class and calculate the cost of using that alternative. Then
1378 we compute for each operand that is a pseudo-register, the cost of
1379 having the pseudo allocated to each register class and using it in that
1380 alternative. To this cost is added the cost of the alternative.
1382 The cost of each class for this insn is its lowest cost among all the
1386 record_reg_classes (int n_alts, int n_ops, rtx *ops,
1387 enum machine_mode *modes, const char **constraints,
1388 rtx insn, struct costs *op_costs,
1389 struct reg_pref *reg_pref)
1395 /* Process each alternative, each time minimizing an operand's cost with
1396 the cost for each operand in that alternative. */
1398 for (alt = 0; alt < n_alts; alt++)
1400 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1403 enum reg_class classes[MAX_RECOG_OPERANDS];
1404 int allows_mem[MAX_RECOG_OPERANDS];
1407 for (i = 0; i < n_ops; i++)
1409 const char *p = constraints[i];
1411 enum machine_mode mode = modes[i];
1412 int allows_addr = 0;
1416 /* Initially show we know nothing about the register class. */
1417 classes[i] = NO_REGS;
1420 /* If this operand has no constraints at all, we can conclude
1421 nothing about it since anything is valid. */
1425 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1426 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
1431 /* If this alternative is only relevant when this operand
1432 matches a previous operand, we do different things depending
1433 on whether this operand is a pseudo-reg or not. We must process
1434 any modifiers for the operand before we can make this test. */
1436 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1439 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1441 /* Copy class and whether memory is allowed from the matching
1442 alternative. Then perform any needed cost computations
1443 and/or adjustments. */
1445 classes[i] = classes[j];
1446 allows_mem[i] = allows_mem[j];
1448 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1450 /* If this matches the other operand, we have no added
1452 if (rtx_equal_p (ops[j], op))
1455 /* If we can put the other operand into a register, add to
1456 the cost of this alternative the cost to copy this
1457 operand to the register used for the other operand. */
1459 else if (classes[j] != NO_REGS)
1460 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1462 else if (GET_CODE (ops[j]) != REG
1463 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1465 /* This op is a pseudo but the one it matches is not. */
1467 /* If we can't put the other operand into a register, this
1468 alternative can't be used. */
1470 if (classes[j] == NO_REGS)
1473 /* Otherwise, add to the cost of this alternative the cost
1474 to copy the other operand to the register used for this
1478 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1482 /* The costs of this operand are not the same as the other
1483 operand since move costs are not symmetric. Moreover,
1484 if we cannot tie them, this alternative needs to do a
1485 copy, which is one instruction. */
1487 struct costs *pp = &this_op_costs[i];
1489 for (class = 0; class < N_REG_CLASSES; class++)
1491 = ((recog_data.operand_type[i] != OP_OUT
1492 ? may_move_in_cost[mode][class][(int) classes[i]]
1494 + (recog_data.operand_type[i] != OP_IN
1495 ? may_move_out_cost[mode][(int) classes[i]][class]
1498 /* If the alternative actually allows memory, make things
1499 a bit cheaper since we won't need an extra insn to
1503 = ((recog_data.operand_type[i] != OP_IN
1504 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1506 + (recog_data.operand_type[i] != OP_OUT
1507 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1508 : 0) - allows_mem[i]);
1510 /* If we have assigned a class to this register in our
1511 first pass, add a cost to this alternative corresponding
1512 to what we would add if this register were not in the
1513 appropriate class. */
1517 += (may_move_in_cost[mode]
1518 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1519 [(int) classes[i]]);
1521 if (REGNO (ops[i]) != REGNO (ops[j])
1522 && ! find_reg_note (insn, REG_DEAD, op))
1525 /* This is in place of ordinary cost computation
1526 for this operand, so skip to the end of the
1527 alternative (should be just one character). */
1528 while (*p && *p++ != ',')
1536 /* Scan all the constraint letters. See if the operand matches
1537 any of the constraints. Collect the valid register classes
1538 and see if this operand accepts memory. */
1547 /* Ignore the next letter for this pass. */
1553 case '!': case '#': case '&':
1554 case '0': case '1': case '2': case '3': case '4':
1555 case '5': case '6': case '7': case '8': case '9':
1560 win = address_operand (op, GET_MODE (op));
1561 /* We know this operand is an address, so we want it to be
1562 allocated to a register that can be the base of an
1563 address, ie BASE_REG_CLASS. */
1565 = reg_class_subunion[(int) classes[i]]
1566 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1569 case 'm': case 'o': case 'V':
1570 /* It doesn't seem worth distinguishing between offsettable
1571 and non-offsettable addresses here. */
1573 if (GET_CODE (op) == MEM)
1578 if (GET_CODE (op) == MEM
1579 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1580 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1585 if (GET_CODE (op) == MEM
1586 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1587 || GET_CODE (XEXP (op, 0)) == POST_INC))
1593 if (GET_CODE (op) == CONST_DOUBLE
1594 || (GET_CODE (op) == CONST_VECTOR
1595 && (GET_MODE_CLASS (GET_MODE (op))
1596 == MODE_VECTOR_FLOAT)))
1602 if (GET_CODE (op) == CONST_DOUBLE
1603 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1608 if (GET_CODE (op) == CONST_INT
1609 || (GET_CODE (op) == CONST_DOUBLE
1610 && GET_MODE (op) == VOIDmode))
1614 #ifdef LEGITIMATE_PIC_OPERAND_P
1615 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1622 if (GET_CODE (op) == CONST_INT
1623 || (GET_CODE (op) == CONST_DOUBLE
1624 && GET_MODE (op) == VOIDmode))
1636 if (GET_CODE (op) == CONST_INT
1637 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1646 if (GET_CODE (op) == MEM
1648 #ifdef LEGITIMATE_PIC_OPERAND_P
1649 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1656 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1660 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1662 = reg_class_subunion[(int) classes[i]]
1663 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1664 #ifdef EXTRA_CONSTRAINT_STR
1665 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1668 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1670 /* Every MEM can be reloaded to fit. */
1672 if (GET_CODE (op) == MEM)
1675 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1677 /* Every address can be reloaded to fit. */
1679 if (address_operand (op, GET_MODE (op)))
1681 /* We know this operand is an address, so we want it to
1682 be allocated to a register that can be the base of an
1683 address, ie BASE_REG_CLASS. */
1685 = reg_class_subunion[(int) classes[i]]
1686 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1691 p += CONSTRAINT_LEN (c, p);
1698 /* How we account for this operand now depends on whether it is a
1699 pseudo register or not. If it is, we first check if any
1700 register classes are valid. If not, we ignore this alternative,
1701 since we want to assume that all pseudos get allocated for
1702 register preferencing. If some register class is valid, compute
1703 the costs of moving the pseudo into that class. */
1705 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1707 if (classes[i] == NO_REGS)
1709 /* We must always fail if the operand is a REG, but
1710 we did not find a suitable class.
1712 Otherwise we may perform an uninitialized read
1713 from this_op_costs after the `continue' statement
1719 struct costs *pp = &this_op_costs[i];
1721 for (class = 0; class < N_REG_CLASSES; class++)
1723 = ((recog_data.operand_type[i] != OP_OUT
1724 ? may_move_in_cost[mode][class][(int) classes[i]]
1726 + (recog_data.operand_type[i] != OP_IN
1727 ? may_move_out_cost[mode][(int) classes[i]][class]
1730 /* If the alternative actually allows memory, make things
1731 a bit cheaper since we won't need an extra insn to
1735 = ((recog_data.operand_type[i] != OP_IN
1736 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1738 + (recog_data.operand_type[i] != OP_OUT
1739 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1740 : 0) - allows_mem[i]);
1742 /* If we have assigned a class to this register in our
1743 first pass, add a cost to this alternative corresponding
1744 to what we would add if this register were not in the
1745 appropriate class. */
1749 += (may_move_in_cost[mode]
1750 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1751 [(int) classes[i]]);
1755 /* Otherwise, if this alternative wins, either because we
1756 have already determined that or if we have a hard register of
1757 the proper class, there is no cost for this alternative. */
1760 || (GET_CODE (op) == REG
1761 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1764 /* If registers are valid, the cost of this alternative includes
1765 copying the object to and/or from a register. */
1767 else if (classes[i] != NO_REGS)
1769 if (recog_data.operand_type[i] != OP_OUT)
1770 alt_cost += copy_cost (op, mode, classes[i], 1);
1772 if (recog_data.operand_type[i] != OP_IN)
1773 alt_cost += copy_cost (op, mode, classes[i], 0);
1776 /* The only other way this alternative can be used is if this is a
1777 constant that could be placed into memory. */
1779 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1780 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1788 /* Finally, update the costs with the information we've calculated
1789 about this alternative. */
1791 for (i = 0; i < n_ops; i++)
1792 if (GET_CODE (ops[i]) == REG
1793 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1795 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1796 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1798 pp->mem_cost = MIN (pp->mem_cost,
1799 (qq->mem_cost + alt_cost) * scale);
1801 for (class = 0; class < N_REG_CLASSES; class++)
1802 pp->cost[class] = MIN (pp->cost[class],
1803 (qq->cost[class] + alt_cost) * scale);
1807 /* If this insn is a single set copying operand 1 to operand 0
1808 and one operand is a pseudo with the other a hard reg or a pseudo
1809 that prefers a register that is in its own register class then
1810 we may want to adjust the cost of that register class to -1.
1812 Avoid the adjustment if the source does not die to avoid stressing of
1813 register allocator by preferrencing two colliding registers into single
1816 Also avoid the adjustment if a copy between registers of the class
1817 is expensive (ten times the cost of a default copy is considered
1818 arbitrarily expensive). This avoids losing when the preferred class
1819 is very expensive as the source of a copy instruction. */
1821 if ((set = single_set (insn)) != 0
1822 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1823 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1824 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1825 for (i = 0; i <= 1; i++)
1826 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1828 unsigned int regno = REGNO (ops[!i]);
1829 enum machine_mode mode = GET_MODE (ops[!i]);
1833 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1835 enum reg_class pref = reg_pref[regno].prefclass;
1837 if ((reg_class_size[(unsigned char) pref]
1838 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1839 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1840 op_costs[i].cost[(unsigned char) pref] = -1;
1842 else if (regno < FIRST_PSEUDO_REGISTER)
1843 for (class = 0; class < N_REG_CLASSES; class++)
1844 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1845 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1847 if (reg_class_size[class] == 1)
1848 op_costs[i].cost[class] = -1;
1851 for (nr = 0; nr < (unsigned) HARD_REGNO_NREGS (regno, mode); nr++)
1853 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1858 if (nr == (unsigned) HARD_REGNO_NREGS (regno,mode))
1859 op_costs[i].cost[class] = -1;
1865 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1866 TO_P is zero) a register of class CLASS in mode MODE.
1868 X must not be a pseudo. */
1871 copy_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1872 enum reg_class class, int to_p ATTRIBUTE_UNUSED)
1874 #ifdef HAVE_SECONDARY_RELOADS
1875 enum reg_class secondary_class = NO_REGS;
1878 /* If X is a SCRATCH, there is actually nothing to move since we are
1879 assuming optimal allocation. */
1881 if (GET_CODE (x) == SCRATCH)
1884 /* Get the class we will actually use for a reload. */
1885 class = PREFERRED_RELOAD_CLASS (x, class);
1887 #ifdef HAVE_SECONDARY_RELOADS
1888 /* If we need a secondary reload (we assume here that we are using
1889 the secondary reload as an intermediate, not a scratch register), the
1890 cost is that to load the input into the intermediate register, then
1891 to copy them. We use a special value of TO_P to avoid recursion. */
1893 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1895 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1898 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1900 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1903 if (secondary_class != NO_REGS)
1904 return (move_cost[mode][(int) secondary_class][(int) class]
1905 + copy_cost (x, mode, secondary_class, 2));
1906 #endif /* HAVE_SECONDARY_RELOADS */
1908 /* For memory, use the memory move cost, for (hard) registers, use the
1909 cost to move between the register classes, and use 2 for everything
1910 else (constants). */
1912 if (GET_CODE (x) == MEM || class == NO_REGS)
1913 return MEMORY_MOVE_COST (mode, class, to_p);
1915 else if (GET_CODE (x) == REG)
1916 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1919 /* If this is a constant, we may eventually want to call rtx_cost here. */
1920 return COSTS_N_INSNS (1);
1923 /* Record the pseudo registers we must reload into hard registers
1924 in a subexpression of a memory address, X.
1926 CLASS is the class that the register needs to be in and is either
1927 BASE_REG_CLASS or INDEX_REG_CLASS.
1929 SCALE is twice the amount to multiply the cost by (it is twice so we
1930 can represent half-cost adjustments). */
1933 record_address_regs (rtx x, enum reg_class class, int scale)
1935 enum rtx_code code = GET_CODE (x);
1948 /* When we have an address that is a sum,
1949 we must determine whether registers are "base" or "index" regs.
1950 If there is a sum of two registers, we must choose one to be
1951 the "base". Luckily, we can use the REG_POINTER to make a good
1952 choice most of the time. We only need to do this on machines
1953 that can have two registers in an address and where the base
1954 and index register classes are different.
1956 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1957 that seems bogus since it should only be set when we are sure
1958 the register is being used as a pointer. */
1961 rtx arg0 = XEXP (x, 0);
1962 rtx arg1 = XEXP (x, 1);
1963 enum rtx_code code0 = GET_CODE (arg0);
1964 enum rtx_code code1 = GET_CODE (arg1);
1966 /* Look inside subregs. */
1967 if (code0 == SUBREG)
1968 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1969 if (code1 == SUBREG)
1970 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1972 /* If this machine only allows one register per address, it must
1973 be in the first operand. */
1975 if (MAX_REGS_PER_ADDRESS == 1)
1976 record_address_regs (arg0, class, scale);
1978 /* If index and base registers are the same on this machine, just
1979 record registers in any non-constant operands. We assume here,
1980 as well as in the tests below, that all addresses are in
1983 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
1985 record_address_regs (arg0, class, scale);
1986 if (! CONSTANT_P (arg1))
1987 record_address_regs (arg1, class, scale);
1990 /* If the second operand is a constant integer, it doesn't change
1991 what class the first operand must be. */
1993 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1994 record_address_regs (arg0, class, scale);
1996 /* If the second operand is a symbolic constant, the first operand
1997 must be an index register. */
1999 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2000 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2002 /* If both operands are registers but one is already a hard register
2003 of index or base class, give the other the class that the hard
2006 #ifdef REG_OK_FOR_BASE_P
2007 else if (code0 == REG && code1 == REG
2008 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2009 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2010 record_address_regs (arg1,
2011 REG_OK_FOR_BASE_P (arg0)
2012 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2014 else if (code0 == REG && code1 == REG
2015 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2016 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2017 record_address_regs (arg0,
2018 REG_OK_FOR_BASE_P (arg1)
2019 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2023 /* If one operand is known to be a pointer, it must be the base
2024 with the other operand the index. Likewise if the other operand
2027 else if ((code0 == REG && REG_POINTER (arg0))
2030 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
2031 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2033 else if ((code1 == REG && REG_POINTER (arg1))
2036 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2037 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
2040 /* Otherwise, count equal chances that each might be a base
2041 or index register. This case should be rare. */
2045 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2047 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2048 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2050 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2055 /* Double the importance of a pseudo register that is incremented
2056 or decremented, since it would take two extra insns
2057 if it ends up in the wrong place. */
2060 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2062 if (REG_P (XEXP (XEXP (x, 1), 1)))
2063 record_address_regs (XEXP (XEXP (x, 1), 1),
2064 INDEX_REG_CLASS, 2 * scale);
2071 /* Double the importance of a pseudo register that is incremented
2072 or decremented, since it would take two extra insns
2073 if it ends up in the wrong place. If the operand is a pseudo,
2074 show it is being used in an INC_DEC context. */
2076 #ifdef FORBIDDEN_INC_DEC_CLASSES
2077 if (GET_CODE (XEXP (x, 0)) == REG
2078 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2079 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2082 record_address_regs (XEXP (x, 0), class, 2 * scale);
2087 struct costs *pp = &costs[REGNO (x)];
2090 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2092 for (i = 0; i < N_REG_CLASSES; i++)
2093 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2099 const char *fmt = GET_RTX_FORMAT (code);
2101 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2103 record_address_regs (XEXP (x, i), class, scale);
2108 #ifdef FORBIDDEN_INC_DEC_CLASSES
2110 /* Return 1 if REG is valid as an auto-increment memory reference
2111 to an object of MODE. */
2114 auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2116 if (HAVE_POST_INCREMENT
2117 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2120 if (HAVE_POST_DECREMENT
2121 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2124 if (HAVE_PRE_INCREMENT
2125 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2128 if (HAVE_PRE_DECREMENT
2129 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2136 static short *renumber;
2137 static size_t regno_allocated;
2138 static unsigned int reg_n_max;
2140 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2141 reg_scan and flow_analysis that are indexed by the register number. If
2142 NEW_P is nonzero, initialize all of the registers, otherwise only
2143 initialize the new registers allocated. The same table is kept from
2144 function to function, only reallocating it when we need more room. If
2145 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2148 allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2151 size_t size_renumber;
2152 size_t min = (new_p) ? 0 : reg_n_max;
2153 struct reg_info_data *reg_data;
2155 if (num_regs > regno_allocated)
2157 size_t old_allocated = regno_allocated;
2159 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2160 size_renumber = regno_allocated * sizeof (short);
2164 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2165 renumber = (short *) xmalloc (size_renumber);
2166 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2167 * sizeof (struct reg_pref));
2172 VARRAY_GROW (reg_n_info, regno_allocated);
2174 if (new_p) /* if we're zapping everything, no need to realloc */
2176 free ((char *) renumber);
2177 free ((char *) reg_pref);
2178 renumber = (short *) xmalloc (size_renumber);
2179 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2180 * sizeof (struct reg_pref));
2185 renumber = (short *) xrealloc ((char *) renumber, size_renumber);
2186 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *) reg_pref_buffer,
2188 * sizeof (struct reg_pref));
2192 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2193 + sizeof (struct reg_info_data) - sizeof (reg_info);
2194 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2195 reg_data->min_index = old_allocated;
2196 reg_data->max_index = regno_allocated - 1;
2197 reg_data->next = reg_info_head;
2198 reg_info_head = reg_data;
2201 reg_n_max = num_regs;
2204 /* Loop through each of the segments allocated for the actual
2205 reg_info pages, and set up the pointers, zero the pages, etc. */
2206 for (reg_data = reg_info_head;
2207 reg_data && reg_data->max_index >= min;
2208 reg_data = reg_data->next)
2210 size_t min_index = reg_data->min_index;
2211 size_t max_index = reg_data->max_index;
2212 size_t max = MIN (max_index, num_regs);
2213 size_t local_min = min - min_index;
2216 if (reg_data->min_index > num_regs)
2219 if (min < min_index)
2221 if (!reg_data->used_p) /* page just allocated with calloc */
2222 reg_data->used_p = 1; /* no need to zero */
2224 memset ((char *) ®_data->data[local_min], 0,
2225 sizeof (reg_info) * (max - min_index - local_min + 1));
2227 for (i = min_index+local_min; i <= max; i++)
2229 VARRAY_REG (reg_n_info, i) = ®_data->data[i-min_index];
2230 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2232 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2233 reg_pref_buffer[i].altclass = (char) NO_REGS;
2238 /* If {pref,alt}class have already been allocated, update the pointers to
2239 the newly realloced ones. */
2241 reg_pref = reg_pref_buffer;
2244 reg_renumber = renumber;
2246 /* Tell the regset code about the new number of registers. */
2247 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2250 /* Free up the space allocated by allocate_reg_info. */
2252 free_reg_info (void)
2256 struct reg_info_data *reg_data;
2257 struct reg_info_data *reg_next;
2259 VARRAY_FREE (reg_n_info);
2260 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2262 reg_next = reg_data->next;
2263 free ((char *) reg_data);
2266 free (reg_pref_buffer);
2267 reg_pref_buffer = (struct reg_pref *) 0;
2268 reg_info_head = (struct reg_info_data *) 0;
2269 renumber = (short *) 0;
2271 regno_allocated = 0;
2275 /* This is the `regscan' pass of the compiler, run just before cse
2276 and again just before loop.
2278 It finds the first and last use of each pseudo-register
2279 and records them in the vectors regno_first_uid, regno_last_uid
2280 and counts the number of sets in the vector reg_n_sets.
2282 REPEAT is nonzero the second time this is called. */
2284 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2285 Always at least 3, since the combiner could put that many together
2286 and we want this to remain correct for all the remaining passes.
2287 This corresponds to the maximum number of times note_stores will call
2288 a function for any insn. */
2292 /* Used as a temporary to record the largest number of registers in
2293 PARALLEL in a SET_DEST. This is added to max_parallel. */
2295 static int max_set_parallel;
2298 reg_scan (rtx f, unsigned int nregs, int repeat ATTRIBUTE_UNUSED)
2302 allocate_reg_info (nregs, TRUE, FALSE);
2304 max_set_parallel = 0;
2306 timevar_push (TV_REG_SCAN);
2308 for (insn = f; insn; insn = NEXT_INSN (insn))
2309 if (GET_CODE (insn) == INSN
2310 || GET_CODE (insn) == CALL_INSN
2311 || GET_CODE (insn) == JUMP_INSN)
2313 if (GET_CODE (PATTERN (insn)) == PARALLEL
2314 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2315 max_parallel = XVECLEN (PATTERN (insn), 0);
2316 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2318 if (REG_NOTES (insn))
2319 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2322 max_parallel += max_set_parallel;
2324 timevar_pop (TV_REG_SCAN);
2327 /* Update 'regscan' information by looking at the insns
2328 from FIRST to LAST. Some new REGs have been created,
2329 and any REG with number greater than OLD_MAX_REGNO is
2330 such a REG. We only update information for those. */
2333 reg_scan_update (rtx first, rtx last, unsigned int old_max_regno)
2337 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2339 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2340 if (GET_CODE (insn) == INSN
2341 || GET_CODE (insn) == CALL_INSN
2342 || GET_CODE (insn) == JUMP_INSN)
2344 if (GET_CODE (PATTERN (insn)) == PARALLEL
2345 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2346 max_parallel = XVECLEN (PATTERN (insn), 0);
2347 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2349 if (REG_NOTES (insn))
2350 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2354 /* X is the expression to scan. INSN is the insn it appears in.
2355 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2356 We should only record information for REGs with numbers
2357 greater than or equal to MIN_REGNO. */
2360 reg_scan_mark_refs (rtx x, rtx insn, int note_flag, unsigned int min_regno)
2368 code = GET_CODE (x);
2385 unsigned int regno = REGNO (x);
2387 if (regno >= min_regno)
2389 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2391 REGNO_LAST_UID (regno) = INSN_UID (insn);
2392 if (REGNO_FIRST_UID (regno) == 0)
2393 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2394 /* If we are called by reg_scan_update() (indicated by min_regno
2395 being set), we also need to update the reference count. */
2397 REG_N_REFS (regno)++;
2404 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2406 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2411 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2416 rtx reg = XEXP (x, 0);
2418 && REGNO (reg) >= min_regno)
2420 REG_N_SETS (REGNO (reg))++;
2421 REG_N_REFS (REGNO (reg))++;
2427 /* Count a set of the destination if it is a register. */
2428 for (dest = SET_DEST (x);
2429 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2430 || GET_CODE (dest) == ZERO_EXTEND;
2431 dest = XEXP (dest, 0))
2434 /* For a PARALLEL, record the number of things (less the usual one for a
2435 SET) that are set. */
2436 if (GET_CODE (dest) == PARALLEL)
2437 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2439 if (GET_CODE (dest) == REG
2440 && REGNO (dest) >= min_regno)
2442 REG_N_SETS (REGNO (dest))++;
2443 REG_N_REFS (REGNO (dest))++;
2446 /* If this is setting a pseudo from another pseudo or the sum of a
2447 pseudo and a constant integer and the other pseudo is known to be
2448 a pointer, set the destination to be a pointer as well.
2450 Likewise if it is setting the destination from an address or from a
2451 value equivalent to an address or to the sum of an address and
2454 But don't do any of this if the pseudo corresponds to a user
2455 variable since it should have already been set as a pointer based
2458 if (GET_CODE (SET_DEST (x)) == REG
2459 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2460 && REGNO (SET_DEST (x)) >= min_regno
2461 /* If the destination pseudo is set more than once, then other
2462 sets might not be to a pointer value (consider access to a
2463 union in two threads of control in the presence of global
2464 optimizations). So only set REG_POINTER on the destination
2465 pseudo if this is the only set of that pseudo. */
2466 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2467 && ! REG_USERVAR_P (SET_DEST (x))
2468 && ! REG_POINTER (SET_DEST (x))
2469 && ((GET_CODE (SET_SRC (x)) == REG
2470 && REG_POINTER (SET_SRC (x)))
2471 || ((GET_CODE (SET_SRC (x)) == PLUS
2472 || GET_CODE (SET_SRC (x)) == LO_SUM)
2473 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2474 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2475 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2476 || GET_CODE (SET_SRC (x)) == CONST
2477 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2478 || GET_CODE (SET_SRC (x)) == LABEL_REF
2479 || (GET_CODE (SET_SRC (x)) == HIGH
2480 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2481 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2482 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2483 || ((GET_CODE (SET_SRC (x)) == PLUS
2484 || GET_CODE (SET_SRC (x)) == LO_SUM)
2485 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2486 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2487 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2488 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2489 && (GET_CODE (XEXP (note, 0)) == CONST
2490 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2491 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2492 REG_POINTER (SET_DEST (x)) = 1;
2494 /* If this is setting a register from a register or from a simple
2495 conversion of a register, propagate REG_EXPR. */
2496 if (GET_CODE (dest) == REG)
2498 rtx src = SET_SRC (x);
2500 while (GET_CODE (src) == SIGN_EXTEND
2501 || GET_CODE (src) == ZERO_EXTEND
2502 || GET_CODE (src) == TRUNCATE
2503 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2504 src = XEXP (src, 0);
2506 if (!REG_ATTRS (dest) && REG_P (src))
2507 REG_ATTRS (dest) = REG_ATTRS (src);
2508 if (!REG_ATTRS (dest) && GET_CODE (src) == MEM)
2509 set_reg_attrs_from_mem (dest, src);
2512 /* ... fall through ... */
2516 const char *fmt = GET_RTX_FORMAT (code);
2518 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2521 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2522 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2525 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2526 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2533 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2537 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2539 if (c1 == c2) return 1;
2544 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2545 reg_class_contents[(int) c2],
2550 /* Return nonzero if there is a register that is in both C1 and C2. */
2553 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2560 if (c1 == c2) return 1;
2562 if (c1 == ALL_REGS || c2 == ALL_REGS)
2565 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2566 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2568 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2575 /* Release any memory allocated by register sets. */
2578 regset_release_memory (void)
2580 bitmap_release_memory ();
2583 #ifdef CANNOT_CHANGE_MODE_CLASS
2584 /* Set bits in *USED which correspond to registers which can't change
2585 their mode from FROM to any mode in which REGNO was encountered. */
2588 cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2591 enum machine_mode to;
2593 int start = regno * MAX_MACHINE_MODE;
2595 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2596 if (n >= MAX_MACHINE_MODE + start)
2599 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2600 if (! TEST_HARD_REG_BIT (*used, i)
2601 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2602 SET_HARD_REG_BIT (*used, i);
2606 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2610 invalid_mode_change_p (unsigned int regno, enum reg_class class,
2611 enum machine_mode from_mode)
2613 enum machine_mode to_mode;
2615 int start = regno * MAX_MACHINE_MODE;
2617 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2618 if (n >= MAX_MACHINE_MODE + start)
2620 to_mode = n - start;
2621 if (CANNOT_CHANGE_MODE_CLASS (from_mode, to_mode, class))
2626 #endif /* CANNOT_CHANGE_MODE_CLASS */
2628 #include "gt-regclass.h"