OSDN Git Service

PR target/25168
[pf3gnuchains/gcc-fork.git] / gcc / postreload-gcse.c
1 /* Post reload partially redundant load elimination
2    Copyright (C) 2004, 2005
3    Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA.  */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "toplev.h"
27
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "real.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "basic-block.h"
38 #include "output.h"
39 #include "function.h"
40 #include "expr.h"
41 #include "except.h"
42 #include "intl.h"
43 #include "obstack.h"
44 #include "hashtab.h"
45 #include "params.h"
46 #include "target.h"
47 #include "timevar.h"
48 #include "tree-pass.h"
49
50 /* The following code implements gcse after reload, the purpose of this
51    pass is to cleanup redundant loads generated by reload and other
52    optimizations that come after gcse. It searches for simple inter-block
53    redundancies and tries to eliminate them by adding moves and loads
54    in cold places.
55
56    Perform partially redundant load elimination, try to eliminate redundant
57    loads created by the reload pass.  We try to look for full or partial
58    redundant loads fed by one or more loads/stores in predecessor BBs,
59    and try adding loads to make them fully redundant.  We also check if
60    it's worth adding loads to be able to delete the redundant load.
61
62    Algorithm:
63    1. Build available expressions hash table:
64        For each load/store instruction, if the loaded/stored memory didn't
65        change until the end of the basic block add this memory expression to
66        the hash table.
67    2. Perform Redundancy elimination:
68       For each load instruction do the following:
69          perform partial redundancy elimination, check if it's worth adding
70          loads to make the load fully redundant.  If so add loads and
71          register copies and delete the load.
72    3. Delete instructions made redundant in step 2.
73
74    Future enhancement:
75      If the loaded register is used/defined between load and some store,
76      look for some other free register between load and all its stores,
77      and replace the load with a copy from this register to the loaded
78      register.
79 */
80 \f
81
82 /* Keep statistics of this pass.  */
83 static struct
84 {
85   int moves_inserted;
86   int copies_inserted;
87   int insns_deleted;
88 } stats;
89
90 /* We need to keep a hash table of expressions.  The table entries are of
91    type 'struct expr', and for each expression there is a single linked
92    list of occurrences.  */
93
94 /* The table itself.  */
95 static htab_t expr_table;
96
97 /* Expression elements in the hash table.  */
98 struct expr
99 {
100   /* The expression (SET_SRC for expressions, PATTERN for assignments).  */
101   rtx expr;
102
103   /* The same hash for this entry.  */
104   hashval_t hash;
105
106   /* List of available occurrence in basic blocks in the function.  */
107   struct occr *avail_occr;
108 };
109
110 static struct obstack expr_obstack;
111
112 /* Occurrence of an expression.
113    There is at most one occurrence per basic block.  If a pattern appears
114    more than once, the last appearance is used.  */
115
116 struct occr
117 {
118   /* Next occurrence of this expression.  */
119   struct occr *next;
120   /* The insn that computes the expression.  */
121   rtx insn;
122   /* Nonzero if this [anticipatable] occurrence has been deleted.  */
123   char deleted_p;
124 };
125
126 static struct obstack occr_obstack;
127
128 /* The following structure holds the information about the occurrences of
129    the redundant instructions.  */
130 struct unoccr
131 {
132   struct unoccr *next;
133   edge pred;
134   rtx insn;
135 };
136
137 static struct obstack unoccr_obstack;
138
139 /* Array where each element is the CUID if the insn that last set the hard
140    register with the number of the element, since the start of the current
141    basic block.
142
143    This array is used during the building of the hash table (step 1) to
144    determine if a reg is killed before the end of a basic block.
145
146    It is also used when eliminating partial redundancies (step 2) to see
147    if a reg was modified since the start of a basic block.  */
148 static int *reg_avail_info;
149
150 /* A list of insns that may modify memory within the current basic block.  */
151 struct modifies_mem
152 {
153   rtx insn;
154   struct modifies_mem *next;
155 };
156 static struct modifies_mem *modifies_mem_list;
157
158 /* The modifies_mem structs also go on an obstack, only this obstack is
159    freed each time after completing the analysis or transformations on
160    a basic block.  So we allocate a dummy modifies_mem_obstack_bottom
161    object on the obstack to keep track of the bottom of the obstack.  */
162 static struct obstack modifies_mem_obstack;
163 static struct modifies_mem  *modifies_mem_obstack_bottom;
164
165 /* Mapping of insn UIDs to CUIDs.
166    CUIDs are like UIDs except they increase monotonically in each basic
167    block, have no gaps, and only apply to real insns.  */
168 static int *uid_cuid;
169 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
170 \f
171
172 /* Helpers for memory allocation/freeing.  */
173 static void alloc_mem (void);
174 static void free_mem (void);
175
176 /* Support for hash table construction and transformations.  */
177 static bool oprs_unchanged_p (rtx, rtx, bool);
178 static void record_last_reg_set_info (rtx, int);
179 static void record_last_mem_set_info (rtx);
180 static void record_last_set_info (rtx, rtx, void *);
181 static void record_opr_changes (rtx);
182
183 static void find_mem_conflicts (rtx, rtx, void *);
184 static int load_killed_in_block_p (int, rtx, bool);
185 static void reset_opr_set_tables (void);
186
187 /* Hash table support.  */
188 static hashval_t hash_expr (rtx, int *);
189 static hashval_t hash_expr_for_htab (const void *);
190 static int expr_equiv_p (const void *, const void *);
191 static void insert_expr_in_table (rtx, rtx);
192 static struct expr *lookup_expr_in_table (rtx);
193 static int dump_hash_table_entry (void **, void *);
194 static void dump_hash_table (FILE *);
195
196 /* Helpers for eliminate_partially_redundant_load.  */
197 static bool reg_killed_on_edge (rtx, edge);
198 static bool reg_used_on_edge (rtx, edge);
199
200 static rtx reg_set_between_after_reload_p (rtx, rtx, rtx);
201 static rtx reg_used_between_after_reload_p (rtx, rtx, rtx);
202 static rtx get_avail_load_store_reg (rtx);
203
204 static bool bb_has_well_behaved_predecessors (basic_block);
205 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
206 static void hash_scan_set (rtx);
207 static void compute_hash_table (void);
208
209 /* The work horses of this pass.  */
210 static void eliminate_partially_redundant_load (basic_block,
211                                                 rtx,
212                                                 struct expr *);
213 static void eliminate_partially_redundant_loads (void);
214 \f
215
216 /* Allocate memory for the CUID mapping array and register/memory
217    tracking tables.  */
218
219 static void
220 alloc_mem (void)
221 {
222   int i;
223   basic_block bb;
224   rtx insn;
225
226   /* Find the largest UID and create a mapping from UIDs to CUIDs.  */
227   uid_cuid = xcalloc (get_max_uid () + 1, sizeof (int));
228   i = 1;
229   FOR_EACH_BB (bb)
230     FOR_BB_INSNS (bb, insn)
231       {
232         if (INSN_P (insn))
233           uid_cuid[INSN_UID (insn)] = i++;
234         else
235           uid_cuid[INSN_UID (insn)] = i;
236       }
237
238   /* Allocate the available expressions hash table.  We don't want to
239      make the hash table too small, but unnecessarily making it too large
240      also doesn't help.  The i/4 is a gcse.c relic, and seems like a
241      reasonable choice.  */
242   expr_table = htab_create (MAX (i / 4, 13),
243                             hash_expr_for_htab, expr_equiv_p, NULL);
244
245   /* We allocate everything on obstacks because we often can roll back
246      the whole obstack to some point.  Freeing obstacks is very fast.  */
247   gcc_obstack_init (&expr_obstack);
248   gcc_obstack_init (&occr_obstack);
249   gcc_obstack_init (&unoccr_obstack);
250   gcc_obstack_init (&modifies_mem_obstack);
251
252   /* Working array used to track the last set for each register
253      in the current block.  */
254   reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
255
256   /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
257      can roll it back in reset_opr_set_tables.  */
258   modifies_mem_obstack_bottom =
259     (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
260                                            sizeof (struct modifies_mem));
261 }
262
263 /* Free memory allocated by alloc_mem.  */
264
265 static void
266 free_mem (void)
267 {
268   free (uid_cuid);
269
270   htab_delete (expr_table);
271
272   obstack_free (&expr_obstack, NULL);
273   obstack_free (&occr_obstack, NULL);
274   obstack_free (&unoccr_obstack, NULL);
275   obstack_free (&modifies_mem_obstack, NULL);
276
277   free (reg_avail_info);
278 }
279 \f
280
281 /* Hash expression X.
282    DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
283    or if the expression contains something we don't want to insert in the
284    table.  */
285
286 static hashval_t
287 hash_expr (rtx x, int *do_not_record_p)
288 {
289   *do_not_record_p = 0;
290   return hash_rtx (x, GET_MODE (x), do_not_record_p,
291                    NULL,  /*have_reg_qty=*/false);
292 }
293
294 /* Callback for hashtab.
295    Return the hash value for expression EXP.  We don't actually hash
296    here, we just return the cached hash value.  */
297
298 static hashval_t
299 hash_expr_for_htab (const void *expp)
300 {
301   struct expr *exp = (struct expr *) expp;
302   return exp->hash;
303 }
304
305 /* Callback for hashtab.
306    Return nonzero if exp1 is equivalent to exp2.  */
307
308 static int
309 expr_equiv_p (const void *exp1p, const void *exp2p)
310 {
311   struct expr *exp1 = (struct expr *) exp1p;
312   struct expr *exp2 = (struct expr *) exp2p;
313   int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
314   
315   gcc_assert (!equiv_p || exp1->hash == exp2->hash);
316   return equiv_p;
317 }
318 \f
319
320 /* Insert expression X in INSN in the hash TABLE.
321    If it is already present, record it as the last occurrence in INSN's
322    basic block.  */
323
324 static void
325 insert_expr_in_table (rtx x, rtx insn)
326 {
327   int do_not_record_p;
328   hashval_t hash;
329   struct expr *cur_expr, **slot;
330   struct occr *avail_occr, *last_occr = NULL;
331
332   hash = hash_expr (x, &do_not_record_p);
333
334   /* Do not insert expression in the table if it contains volatile operands,
335      or if hash_expr determines the expression is something we don't want
336      to or can't handle.  */
337   if (do_not_record_p)
338     return;
339
340   /* We anticipate that redundant expressions are rare, so for convenience
341      allocate a new hash table element here already and set its fields.
342      If we don't do this, we need a hack with a static struct expr.  Anyway,
343      obstack_free is really fast and one more obstack_alloc doesn't hurt if
344      we're going to see more expressions later on.  */
345   cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
346                                             sizeof (struct expr));
347   cur_expr->expr = x;
348   cur_expr->hash = hash;
349   cur_expr->avail_occr = NULL;
350
351   slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
352                                                     hash, INSERT);
353   
354   if (! (*slot))
355     /* The expression isn't found, so insert it.  */
356     *slot = cur_expr;
357   else
358     {
359       /* The expression is already in the table, so roll back the
360          obstack and use the existing table entry.  */
361       obstack_free (&expr_obstack, cur_expr);
362       cur_expr = *slot;
363     }
364
365   /* Search for another occurrence in the same basic block.  */
366   avail_occr = cur_expr->avail_occr;
367   while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
368     {
369       /* If an occurrence isn't found, save a pointer to the end of
370          the list.  */
371       last_occr = avail_occr;
372       avail_occr = avail_occr->next;
373     }
374
375   if (avail_occr)
376     /* Found another instance of the expression in the same basic block.
377        Prefer this occurrence to the currently recorded one.  We want
378        the last one in the block and the block is scanned from start
379        to end.  */
380     avail_occr->insn = insn;
381   else
382     {
383       /* First occurrence of this expression in this basic block.  */
384       avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
385                                                   sizeof (struct occr));
386
387       /* First occurrence of this expression in any block?  */
388       if (cur_expr->avail_occr == NULL)
389         cur_expr->avail_occr = avail_occr;
390       else
391         last_occr->next = avail_occr;
392
393       avail_occr->insn = insn;
394       avail_occr->next = NULL;
395       avail_occr->deleted_p = 0;
396     }
397 }
398 \f
399
400 /* Lookup pattern PAT in the expression hash table.
401    The result is a pointer to the table entry, or NULL if not found.  */
402
403 static struct expr *
404 lookup_expr_in_table (rtx pat)
405 {
406   int do_not_record_p;
407   struct expr **slot, *tmp_expr;
408   hashval_t hash = hash_expr (pat, &do_not_record_p);
409
410   if (do_not_record_p)
411     return NULL;
412
413   tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
414                                             sizeof (struct expr));
415   tmp_expr->expr = pat;
416   tmp_expr->hash = hash;
417   tmp_expr->avail_occr = NULL;
418
419   slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
420                                                     hash, INSERT);
421   obstack_free (&expr_obstack, tmp_expr);
422
423   if (!slot)
424     return NULL;
425   else
426     return (*slot);
427 }
428 \f
429
430 /* Dump all expressions and occurrences that are currently in the
431    expression hash table to FILE.  */
432
433 /* This helper is called via htab_traverse.  */
434 static int
435 dump_hash_table_entry (void **slot, void *filep)
436 {
437   struct expr *expr = (struct expr *) *slot;
438   FILE *file = (FILE *) filep;
439   struct occr *occr;
440
441   fprintf (file, "expr: ");
442   print_rtl (file, expr->expr);
443   fprintf (file,"\nhashcode: %u\n", expr->hash);
444   fprintf (file,"list of occurrences:\n");
445   occr = expr->avail_occr;
446   while (occr)
447     {
448       rtx insn = occr->insn;
449       print_rtl_single (file, insn);
450       fprintf (file, "\n");
451       occr = occr->next;
452     }
453   fprintf (file, "\n");
454   return 1;
455 }
456
457 static void
458 dump_hash_table (FILE *file)
459 {
460   fprintf (file, "\n\nexpression hash table\n");
461   fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
462            (long) htab_size (expr_table),
463            (long) htab_elements (expr_table),
464            htab_collisions (expr_table));
465   if (htab_elements (expr_table) > 0)
466     {
467       fprintf (file, "\n\ntable entries:\n");
468       htab_traverse (expr_table, dump_hash_table_entry, file);
469     }
470   fprintf (file, "\n");
471 }
472 \f
473
474 /* Return nonzero if the operands of expression X are unchanged
475    1) from the start of INSN's basic block up to but not including INSN
476       if AFTER_INSN is false, or
477    2) from INSN to the end of INSN's basic block if AFTER_INSN is true.  */
478
479 static bool
480 oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
481 {
482   int i, j;
483   enum rtx_code code;
484   const char *fmt;
485
486   if (x == 0)
487     return 1;
488
489   code = GET_CODE (x);
490   switch (code)
491     {
492     case REG:
493       /* We are called after register allocation.  */
494       gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
495       if (after_insn)
496         /* If the last CUID setting the insn is less than the CUID of
497            INSN, then reg X is not changed in or after INSN.  */
498         return reg_avail_info[REGNO (x)] < INSN_CUID (insn);
499       else
500         /* Reg X is not set before INSN in the current basic block if
501            we have not yet recorded the CUID of an insn that touches
502            the reg.  */
503         return reg_avail_info[REGNO (x)] == 0;
504
505     case MEM:
506       if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
507         return 0;
508       else
509         return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
510
511     case PC:
512     case CC0: /*FIXME*/
513     case CONST:
514     case CONST_INT:
515     case CONST_DOUBLE:
516     case CONST_VECTOR:
517     case SYMBOL_REF:
518     case LABEL_REF:
519     case ADDR_VEC:
520     case ADDR_DIFF_VEC:
521       return 1;
522
523     case PRE_DEC:
524     case PRE_INC:
525     case POST_DEC:
526     case POST_INC:
527     case PRE_MODIFY:
528     case POST_MODIFY:
529       if (after_insn)
530         return 0;
531       break;
532
533     default:
534       break;
535     }
536
537   for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
538     {
539       if (fmt[i] == 'e')
540         {
541           if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
542             return 0;
543         }
544       else if (fmt[i] == 'E')
545         for (j = 0; j < XVECLEN (x, i); j++)
546           if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
547             return 0;
548     }
549
550   return 1;
551 }
552 \f
553
554 /* Used for communication between find_mem_conflicts and
555    load_killed_in_block_p.  Nonzero if find_mem_conflicts finds a
556    conflict between two memory references.
557    This is a bit of a hack to work around the limitations of note_stores.  */
558 static int mems_conflict_p;
559
560 /* DEST is the output of an instruction.  If it is a memory reference, and
561    possibly conflicts with the load found in DATA, then set mems_conflict_p
562    to a nonzero value.  */
563
564 static void
565 find_mem_conflicts (rtx dest, rtx setter ATTRIBUTE_UNUSED,
566                     void *data)
567 {
568   rtx mem_op = (rtx) data;
569
570   while (GET_CODE (dest) == SUBREG
571          || GET_CODE (dest) == ZERO_EXTRACT
572          || GET_CODE (dest) == STRICT_LOW_PART)
573     dest = XEXP (dest, 0);
574
575   /* If DEST is not a MEM, then it will not conflict with the load.  Note
576      that function calls are assumed to clobber memory, but are handled
577      elsewhere.  */
578   if (! MEM_P (dest))
579     return;
580
581   if (true_dependence (dest, GET_MODE (dest), mem_op,
582                        rtx_addr_varies_p))
583     mems_conflict_p = 1;
584 }
585 \f
586
587 /* Return nonzero if the expression in X (a memory reference) is killed
588    in the current basic block before (if AFTER_INSN is false) or after
589    (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
590
591    This function assumes that the modifies_mem table is flushed when
592    the hash table construction or redundancy elimination phases start
593    processing a new basic block.  */
594
595 static int
596 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
597 {
598   struct modifies_mem *list_entry = modifies_mem_list;
599
600   while (list_entry)
601     {
602       rtx setter = list_entry->insn;
603
604       /* Ignore entries in the list that do not apply.  */
605       if ((after_insn
606            && INSN_CUID (setter) < uid_limit)
607           || (! after_insn
608               && INSN_CUID (setter) > uid_limit))
609         {
610           list_entry = list_entry->next;
611           continue;
612         }
613
614       /* If SETTER is a call everything is clobbered.  Note that calls
615          to pure functions are never put on the list, so we need not
616          worry about them.  */
617       if (CALL_P (setter))
618         return 1;
619
620       /* SETTER must be an insn of some kind that sets memory.  Call
621          note_stores to examine each hunk of memory that is modified.
622          It will set mems_conflict_p to nonzero if there may be a
623          conflict between X and SETTER.  */
624       mems_conflict_p = 0;
625       note_stores (PATTERN (setter), find_mem_conflicts, x);
626       if (mems_conflict_p)
627         return 1;
628
629       list_entry = list_entry->next;
630     }
631   return 0;
632 }
633 \f
634
635 /* Record register first/last/block set information for REGNO in INSN.  */
636
637 static inline void
638 record_last_reg_set_info (rtx insn, int regno)
639 {
640   reg_avail_info[regno] = INSN_CUID (insn);
641 }
642
643
644 /* Record memory modification information for INSN.  We do not actually care
645    about the memory location(s) that are set, or even how they are set (consider
646    a CALL_INSN).  We merely need to record which insns modify memory.  */
647
648 static void
649 record_last_mem_set_info (rtx insn)
650 {
651   struct modifies_mem *list_entry;
652
653   list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
654                                                       sizeof (struct modifies_mem));
655   list_entry->insn = insn;
656   list_entry->next = modifies_mem_list;
657   modifies_mem_list = list_entry;
658 }
659
660 /* Called from compute_hash_table via note_stores to handle one
661    SET or CLOBBER in an insn.  DATA is really the instruction in which
662    the SET is taking place.  */
663
664 static void
665 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
666 {
667   rtx last_set_insn = (rtx) data;
668
669   if (GET_CODE (dest) == SUBREG)
670     dest = SUBREG_REG (dest);
671
672   if (REG_P (dest))
673     record_last_reg_set_info (last_set_insn, REGNO (dest));
674   else if (MEM_P (dest))
675     {
676       /* Ignore pushes, they don't clobber memory.  They may still
677          clobber the stack pointer though.  Some targets do argument
678          pushes without adding REG_INC notes.  See e.g. PR25196,
679          where a pushsi2 on i386 doesn't have REG_INC notes.  Note
680          such changes here too.  */
681       if (! push_operand (dest, GET_MODE (dest)))
682         record_last_mem_set_info (last_set_insn);
683       else
684         record_last_reg_set_info (last_set_insn, STACK_POINTER_REGNUM);
685     }
686 }
687
688
689 /* Reset tables used to keep track of what's still available since the
690    start of the block.  */
691
692 static void
693 reset_opr_set_tables (void)
694 {
695   memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
696   obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
697   modifies_mem_list = NULL;
698 }
699 \f
700
701 /* Record things set by INSN.
702    This data is used by oprs_unchanged_p.  */
703
704 static void
705 record_opr_changes (rtx insn)
706 {
707   rtx note;
708
709   /* Find all stores and record them.  */
710   note_stores (PATTERN (insn), record_last_set_info, insn);
711
712   /* Also record autoincremented REGs for this insn as changed.  */
713   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
714     if (REG_NOTE_KIND (note) == REG_INC)
715       record_last_reg_set_info (insn, REGNO (XEXP (note, 0)));
716
717   /* Finally, if this is a call, record all call clobbers.  */
718   if (CALL_P (insn))
719     {
720       unsigned int regno;
721
722       for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
723         if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
724           record_last_reg_set_info (insn, regno);
725
726       if (! CONST_OR_PURE_CALL_P (insn))
727         record_last_mem_set_info (insn);
728     }
729 }
730 \f
731
732 /* Scan the pattern of INSN and add an entry to the hash TABLE.
733    After reload we are interested in loads/stores only.  */
734
735 static void
736 hash_scan_set (rtx insn)
737 {
738   rtx pat = PATTERN (insn);
739   rtx src = SET_SRC (pat);
740   rtx dest = SET_DEST (pat);
741
742   /* We are only interested in loads and stores.  */
743   if (! MEM_P (src) && ! MEM_P (dest))
744     return;
745
746   /* Don't mess with jumps and nops.  */
747   if (JUMP_P (insn) || set_noop_p (pat))
748     return;
749
750   if (REG_P (dest))
751     {
752       if (/* Don't CSE something if we can't do a reg/reg copy.  */
753           can_copy_p (GET_MODE (dest))
754           /* Is SET_SRC something we want to gcse?  */
755           && general_operand (src, GET_MODE (src))
756 #ifdef STACK_REGS
757           /* Never consider insns touching the register stack.  It may
758              create situations that reg-stack cannot handle (e.g. a stack
759              register live across an abnormal edge).  */
760           && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
761 #endif
762           /* An expression is not available if its operands are
763              subsequently modified, including this insn.  */
764           && oprs_unchanged_p (src, insn, true))
765         {
766           insert_expr_in_table (src, insn);
767         }
768     }
769   else if (REG_P (src))
770     {
771       /* Only record sets of pseudo-regs in the hash table.  */
772       if (/* Don't CSE something if we can't do a reg/reg copy.  */
773           can_copy_p (GET_MODE (src))
774           /* Is SET_DEST something we want to gcse?  */
775           && general_operand (dest, GET_MODE (dest))
776 #ifdef STACK_REGS
777           /* As above for STACK_REGS.  */
778           && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
779 #endif
780           && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
781           /* Check if the memory expression is killed after insn.  */
782           && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
783           && oprs_unchanged_p (XEXP (dest, 0), insn, true))
784         {
785           insert_expr_in_table (dest, insn);
786         }
787     }
788 }
789 \f
790
791 /* Create hash table of memory expressions available at end of basic
792    blocks.  Basically you should think of this hash table as the
793    representation of AVAIL_OUT.  This is the set of expressions that
794    is generated in a basic block and not killed before the end of the
795    same basic block.  Notice that this is really a local computation.  */
796
797 static void
798 compute_hash_table (void)
799 {
800   basic_block bb;
801
802   FOR_EACH_BB (bb)
803     {
804       rtx insn;
805
806       /* First pass over the instructions records information used to
807          determine when registers and memory are last set.
808          Since we compute a "local" AVAIL_OUT, reset the tables that
809          help us keep track of what has been modified since the start
810          of the block.  */
811       reset_opr_set_tables ();
812       FOR_BB_INSNS (bb, insn)
813         {
814           if (INSN_P (insn))
815             record_opr_changes (insn);
816         }
817
818       /* The next pass actually builds the hash table.  */
819       FOR_BB_INSNS (bb, insn)
820         if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
821           hash_scan_set (insn);
822     }
823 }
824 \f
825
826 /* Check if register REG is killed in any insn waiting to be inserted on
827    edge E.  This function is required to check that our data flow analysis
828    is still valid prior to commit_edge_insertions.  */
829
830 static bool
831 reg_killed_on_edge (rtx reg, edge e)
832 {
833   rtx insn;
834
835   for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
836     if (INSN_P (insn) && reg_set_p (reg, insn))
837       return true;
838
839   return false;
840 }
841
842 /* Similar to above - check if register REG is used in any insn waiting
843    to be inserted on edge E.
844    Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
845    with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p.  */
846
847 static bool
848 reg_used_on_edge (rtx reg, edge e)
849 {
850   rtx insn;
851
852   for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
853     if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
854       return true;
855
856   return false;
857 }
858 \f
859
860 /* Return the insn that sets register REG or clobbers it in between
861    FROM_INSN and TO_INSN (exclusive of those two).
862    Just like reg_set_between but for hard registers and not pseudos.  */
863
864 static rtx
865 reg_set_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
866 {
867   rtx insn;
868
869   /* We are called after register allocation.  */
870   gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
871
872   if (from_insn == to_insn)
873     return NULL_RTX;
874
875   for (insn = NEXT_INSN (from_insn);
876        insn != to_insn;
877        insn = NEXT_INSN (insn))
878     if (INSN_P (insn))
879       {
880         if (set_of (reg, insn) != NULL_RTX)
881           return insn;
882         if ((CALL_P (insn)
883               && call_used_regs[REGNO (reg)])
884             || find_reg_fusage (insn, CLOBBER, reg))
885           return insn;
886
887         if (FIND_REG_INC_NOTE (insn, reg))
888           return insn;
889       }
890
891   return NULL_RTX;
892 }
893
894 /* Return the insn that uses register REG in between FROM_INSN and TO_INSN
895    (exclusive of those two). Similar to reg_used_between but for hard
896    registers and not pseudos.  */
897
898 static rtx
899 reg_used_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
900 {
901   rtx insn;
902
903   /* We are called after register allocation.  */
904   gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
905
906   if (from_insn == to_insn)
907     return NULL_RTX;
908
909   for (insn = NEXT_INSN (from_insn);
910        insn != to_insn;
911        insn = NEXT_INSN (insn))
912     if (INSN_P (insn))
913       {
914         if (reg_overlap_mentioned_p (reg, PATTERN (insn))
915             || (CALL_P (insn)
916                 && call_used_regs[REGNO (reg)])
917             || find_reg_fusage (insn, USE, reg)
918             || find_reg_fusage (insn, CLOBBER, reg))
919           return insn;
920
921         if (FIND_REG_INC_NOTE (insn, reg))
922           return insn;
923       }
924
925   return NULL_RTX;
926 }
927
928 /* Return true if REG is used, set, or killed between the beginning of
929    basic block BB and UP_TO_INSN.  Caches the result in reg_avail_info.  */
930
931 static bool
932 reg_set_or_used_since_bb_start (rtx reg, basic_block bb, rtx up_to_insn)
933 {
934   rtx insn, start = PREV_INSN (BB_HEAD (bb));
935
936   if (reg_avail_info[REGNO (reg)] != 0)
937     return true;
938
939   insn = reg_used_between_after_reload_p (reg, start, up_to_insn);
940   if (! insn)
941     insn = reg_set_between_after_reload_p (reg, start, up_to_insn);
942
943   if (insn)
944     reg_avail_info[REGNO (reg)] = INSN_CUID (insn);
945
946   return insn != NULL_RTX;
947 }
948
949 /* Return the loaded/stored register of a load/store instruction.  */
950
951 static rtx
952 get_avail_load_store_reg (rtx insn)
953 {
954   if (REG_P (SET_DEST (PATTERN (insn))))
955     /* A load.  */
956     return SET_DEST(PATTERN(insn));
957   else
958     {
959       /* A store.  */
960       gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
961       return SET_SRC (PATTERN (insn));
962     }
963 }
964
965 /* Return nonzero if the predecessors of BB are "well behaved".  */
966
967 static bool
968 bb_has_well_behaved_predecessors (basic_block bb)
969 {
970   edge pred;
971   edge_iterator ei;
972
973   if (EDGE_COUNT (bb->preds) == 0)
974     return false;
975
976   FOR_EACH_EDGE (pred, ei, bb->preds)
977     {
978       if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
979         return false;
980
981       if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
982         return false;
983     }
984   return true;
985 }
986
987
988 /* Search for the occurrences of expression in BB.  */
989
990 static struct occr*
991 get_bb_avail_insn (basic_block bb, struct occr *occr)
992 {
993   for (; occr != NULL; occr = occr->next)
994     if (BLOCK_FOR_INSN (occr->insn) == bb)
995       return occr;
996   return NULL;
997 }
998
999
1000 /* This handles the case where several stores feed a partially redundant
1001    load. It checks if the redundancy elimination is possible and if it's
1002    worth it.
1003
1004    Redundancy elimination is possible if,
1005    1) None of the operands of an insn have been modified since the start
1006       of the current basic block.
1007    2) In any predecessor of the current basic block, the same expression
1008       is generated.
1009
1010    See the function body for the heuristics that determine if eliminating
1011    a redundancy is also worth doing, assuming it is possible.  */
1012
1013 static void
1014 eliminate_partially_redundant_load (basic_block bb, rtx insn,
1015                                     struct expr *expr)
1016 {
1017   edge pred;
1018   rtx avail_insn = NULL_RTX;
1019   rtx avail_reg;
1020   rtx dest, pat;
1021   struct occr *a_occr;
1022   struct unoccr *occr, *avail_occrs = NULL;
1023   struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
1024   int npred_ok = 0;
1025   gcov_type ok_count = 0; /* Redundant load execution count.  */
1026   gcov_type critical_count = 0; /* Execution count of critical edges.  */
1027   edge_iterator ei;
1028   bool critical_edge_split = false;
1029
1030   /* The execution count of the loads to be added to make the
1031      load fully redundant.  */
1032   gcov_type not_ok_count = 0;
1033   basic_block pred_bb;
1034
1035   pat = PATTERN (insn);
1036   dest = SET_DEST (pat);
1037
1038   /* Check that the loaded register is not used, set, or killed from the
1039      beginning of the block.  */
1040   if (reg_set_or_used_since_bb_start (dest, bb, insn))
1041     return;
1042
1043   /* Check potential for replacing load with copy for predecessors.  */
1044   FOR_EACH_EDGE (pred, ei, bb->preds)
1045     {
1046       rtx next_pred_bb_end;
1047
1048       avail_insn = NULL_RTX;
1049       avail_reg = NULL_RTX;
1050       pred_bb = pred->src;
1051       next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
1052       for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
1053            a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
1054         {
1055           /* Check if the loaded register is not used.  */
1056           avail_insn = a_occr->insn;
1057           avail_reg = get_avail_load_store_reg (avail_insn);
1058           gcc_assert (avail_reg);
1059           
1060           /* Make sure we can generate a move from register avail_reg to
1061              dest.  */
1062           extract_insn (gen_move_insn (copy_rtx (dest),
1063                                        copy_rtx (avail_reg)));
1064           if (! constrain_operands (1)
1065               || reg_killed_on_edge (avail_reg, pred)
1066               || reg_used_on_edge (dest, pred))
1067             {
1068               avail_insn = NULL;
1069               continue;
1070             }
1071           if (! reg_set_between_after_reload_p (avail_reg, avail_insn,
1072                                                 next_pred_bb_end))
1073             /* AVAIL_INSN remains non-null.  */
1074             break;
1075           else
1076             avail_insn = NULL;
1077         }
1078
1079       if (EDGE_CRITICAL_P (pred))
1080         critical_count += pred->count;
1081
1082       if (avail_insn != NULL_RTX)
1083         {
1084           npred_ok++;
1085           ok_count += pred->count;
1086           if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1087                                                     copy_rtx (avail_reg)))))
1088             {
1089               /* Check if there is going to be a split.  */
1090               if (EDGE_CRITICAL_P (pred))
1091                 critical_edge_split = true;
1092             }
1093           else /* Its a dead move no need to generate.  */
1094             continue;
1095           occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1096                                                   sizeof (struct unoccr));
1097           occr->insn = avail_insn;
1098           occr->pred = pred;
1099           occr->next = avail_occrs;
1100           avail_occrs = occr;
1101           if (! rollback_unoccr)
1102             rollback_unoccr = occr;
1103         }
1104       else
1105         {
1106           /* Adding a load on a critical edge will cause a split.  */
1107           if (EDGE_CRITICAL_P (pred))
1108             critical_edge_split = true;
1109           not_ok_count += pred->count;
1110           unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1111                                                     sizeof (struct unoccr));
1112           unoccr->insn = NULL_RTX;
1113           unoccr->pred = pred;
1114           unoccr->next = unavail_occrs;
1115           unavail_occrs = unoccr;
1116           if (! rollback_unoccr)
1117             rollback_unoccr = unoccr;
1118         }
1119     }
1120
1121   if (/* No load can be replaced by copy.  */
1122       npred_ok == 0
1123       /* Prevent exploding the code.  */ 
1124       || (optimize_size && npred_ok > 1)
1125       /* If we don't have profile information we cannot tell if splitting 
1126          a critical edge is profitable or not so don't do it.  */
1127       || ((! profile_info || ! flag_branch_probabilities
1128            || targetm.cannot_modify_jumps_p ())
1129           && critical_edge_split))
1130     goto cleanup;
1131
1132   /* Check if it's worth applying the partial redundancy elimination.  */
1133   if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1134     goto cleanup;
1135   if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1136     goto cleanup;
1137
1138   /* Generate moves to the loaded register from where
1139      the memory is available.  */
1140   for (occr = avail_occrs; occr; occr = occr->next)
1141     {
1142       avail_insn = occr->insn;
1143       pred = occr->pred;
1144       /* Set avail_reg to be the register having the value of the
1145          memory.  */
1146       avail_reg = get_avail_load_store_reg (avail_insn);
1147       gcc_assert (avail_reg);
1148
1149       insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1150                                           copy_rtx (avail_reg)),
1151                            pred);
1152       stats.moves_inserted++;
1153
1154       if (dump_file)
1155         fprintf (dump_file,
1156                  "generating move from %d to %d on edge from %d to %d\n",
1157                  REGNO (avail_reg),
1158                  REGNO (dest),
1159                  pred->src->index,
1160                  pred->dest->index);
1161     }
1162
1163   /* Regenerate loads where the memory is unavailable.  */
1164   for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1165     {
1166       pred = unoccr->pred;
1167       insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1168       stats.copies_inserted++;
1169
1170       if (dump_file)
1171         {
1172           fprintf (dump_file,
1173                    "generating on edge from %d to %d a copy of load: ",
1174                    pred->src->index,
1175                    pred->dest->index);
1176           print_rtl (dump_file, PATTERN (insn));
1177           fprintf (dump_file, "\n");
1178         }
1179     }
1180
1181   /* Delete the insn if it is not available in this block and mark it
1182      for deletion if it is available. If insn is available it may help
1183      discover additional redundancies, so mark it for later deletion.  */
1184   for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1185        a_occr && (a_occr->insn != insn);
1186        a_occr = get_bb_avail_insn (bb, a_occr->next));
1187
1188   if (!a_occr)
1189     {
1190       stats.insns_deleted++;
1191
1192       if (dump_file)
1193         {
1194           fprintf (dump_file, "deleting insn:\n");
1195           print_rtl_single (dump_file, insn);
1196           fprintf (dump_file, "\n");
1197         }
1198       delete_insn (insn);
1199     }
1200   else
1201     a_occr->deleted_p = 1;
1202
1203 cleanup:
1204   if (rollback_unoccr)
1205     obstack_free (&unoccr_obstack, rollback_unoccr);
1206 }
1207
1208 /* Performing the redundancy elimination as described before.  */
1209
1210 static void
1211 eliminate_partially_redundant_loads (void)
1212 {
1213   rtx insn;
1214   basic_block bb;
1215
1216   /* Note we start at block 1.  */
1217
1218   if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
1219     return;
1220
1221   FOR_BB_BETWEEN (bb,
1222                   ENTRY_BLOCK_PTR->next_bb->next_bb,
1223                   EXIT_BLOCK_PTR,
1224                   next_bb)
1225     {
1226       /* Don't try anything on basic blocks with strange predecessors.  */
1227       if (! bb_has_well_behaved_predecessors (bb))
1228         continue;
1229
1230       /* Do not try anything on cold basic blocks.  */
1231       if (probably_cold_bb_p (bb))
1232         continue;
1233
1234       /* Reset the table of things changed since the start of the current
1235          basic block.  */
1236       reset_opr_set_tables ();
1237
1238       /* Look at all insns in the current basic block and see if there are
1239          any loads in it that we can record.  */
1240       FOR_BB_INSNS (bb, insn)
1241         {
1242           /* Is it a load - of the form (set (reg) (mem))?  */
1243           if (NONJUMP_INSN_P (insn)
1244               && GET_CODE (PATTERN (insn)) == SET
1245               && REG_P (SET_DEST (PATTERN (insn)))
1246               && MEM_P (SET_SRC (PATTERN (insn))))
1247             {
1248               rtx pat = PATTERN (insn);
1249               rtx src = SET_SRC (pat);
1250               struct expr *expr;
1251
1252               if (!MEM_VOLATILE_P (src)
1253                   && GET_MODE (src) != BLKmode
1254                   && general_operand (src, GET_MODE (src))
1255                   /* Are the operands unchanged since the start of the
1256                      block?  */
1257                   && oprs_unchanged_p (src, insn, false)
1258                   && !(flag_non_call_exceptions && may_trap_p (src))
1259                   && !side_effects_p (src)
1260                   /* Is the expression recorded?  */
1261                   && (expr = lookup_expr_in_table (src)) != NULL)
1262                 {
1263                   /* We now have a load (insn) and an available memory at
1264                      its BB start (expr). Try to remove the loads if it is
1265                      redundant.  */
1266                   eliminate_partially_redundant_load (bb, insn, expr);
1267                 }
1268             }
1269
1270           /* Keep track of everything modified by this insn, so that we
1271              know what has been modified since the start of the current
1272              basic block.  */
1273           if (INSN_P (insn))
1274             record_opr_changes (insn);
1275         }
1276     }
1277
1278   commit_edge_insertions ();
1279 }
1280
1281 /* Go over the expression hash table and delete insns that were
1282    marked for later deletion.  */
1283
1284 /* This helper is called via htab_traverse.  */
1285 static int
1286 delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
1287 {
1288   struct expr *expr = (struct expr *) *slot;
1289   struct occr *occr;
1290
1291   for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1292     {
1293       if (occr->deleted_p)
1294         {
1295           delete_insn (occr->insn);
1296           stats.insns_deleted++;
1297
1298           if (dump_file)
1299             {
1300               fprintf (dump_file, "deleting insn:\n");
1301               print_rtl_single (dump_file, occr->insn);
1302               fprintf (dump_file, "\n");
1303             }
1304         }
1305     }
1306
1307   return 1;
1308 }
1309
1310 static void
1311 delete_redundant_insns (void)
1312 {
1313   htab_traverse (expr_table, delete_redundant_insns_1, NULL);
1314   if (dump_file)
1315     fprintf (dump_file, "\n");
1316 }
1317
1318 /* Main entry point of the GCSE after reload - clean some redundant loads
1319    due to spilling.  */
1320
1321 void
1322 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1323 {
1324
1325   memset (&stats, 0, sizeof (stats));
1326
1327   /* Allocate ememory for this pass.
1328      Also computes and initializes the insns' CUIDs.  */
1329   alloc_mem ();
1330
1331   /* We need alias analysis.  */
1332   init_alias_analysis ();
1333
1334   compute_hash_table ();
1335
1336   if (dump_file)
1337     dump_hash_table (dump_file);
1338
1339   if (htab_elements (expr_table) > 0)
1340     {
1341       eliminate_partially_redundant_loads ();
1342       delete_redundant_insns ();
1343
1344       if (dump_file)
1345         {
1346           fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1347           fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1348           fprintf (dump_file, "moves inserted:  %d\n", stats.moves_inserted);
1349           fprintf (dump_file, "insns deleted:   %d\n", stats.insns_deleted);
1350           fprintf (dump_file, "\n\n");
1351         }
1352     }
1353     
1354   /* We are finished with alias.  */
1355   end_alias_analysis ();
1356
1357   free_mem ();
1358 }
1359
1360 \f
1361 static bool
1362 gate_handle_gcse2 (void)
1363 {
1364   return (optimize > 0 && flag_gcse_after_reload);
1365 }
1366
1367
1368 static void
1369 rest_of_handle_gcse2 (void)
1370 {
1371   gcse_after_reload_main (get_insns ());
1372   rebuild_jump_labels (get_insns ());
1373   delete_trivially_dead_insns (get_insns (), max_reg_num ());
1374 }
1375
1376 struct tree_opt_pass pass_gcse2 =
1377 {
1378   "gcse2",                              /* name */
1379   gate_handle_gcse2,                    /* gate */
1380   rest_of_handle_gcse2,                 /* execute */
1381   NULL,                                 /* sub */
1382   NULL,                                 /* next */
1383   0,                                    /* static_pass_number */
1384   TV_GCSE_AFTER_RELOAD,                 /* tv_id */
1385   0,                                    /* properties_required */
1386   0,                                    /* properties_provided */
1387   0,                                    /* properties_destroyed */
1388   0,                                    /* todo_flags_start */
1389   TODO_dump_func |
1390   TODO_verify_flow | TODO_ggc_collect,  /* todo_flags_finish */
1391   'J'                                   /* letter */
1392 };
1393