OSDN Git Service

PR target/43667
[pf3gnuchains/gcc-fork.git] / gcc / mcf.c
1 /* Routines to implement minimum-cost maximal flow algorithm used to smooth
2    basic block and edge frequency counts.
3    Copyright (C) 2008, 2009
4    Free Software Foundation, Inc.
5    Contributed by Paul Yuan (yingbo.com@gmail.com) and
6                   Vinodha Ramasamy (vinodha@google.com).
7
8 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22
23 /* References:
24    [1] "Feedback-directed Optimizations in GCC with Estimated Edge Profiles
25         from Hardware Event Sampling", Vinodha Ramasamy, Paul Yuan, Dehao Chen,
26         and Robert Hundt; GCC Summit 2008.
27    [2] "Complementing Missing and Inaccurate Profiling Using a Minimum Cost
28         Circulation Algorithm", Roy Levin, Ilan Newman and Gadi Haber;
29         HiPEAC '08.
30
31    Algorithm to smooth basic block and edge counts:
32    1. create_fixup_graph: Create fixup graph by translating function CFG into
33       a graph that satisfies MCF algorithm requirements.
34    2. find_max_flow: Find maximal flow.
35    3. compute_residual_flow: Form residual network.
36    4. Repeat:
37       cancel_negative_cycle: While G contains a negative cost cycle C, reverse
38       the flow on the found cycle by the minimum residual capacity in that
39       cycle.
40    5. Form the minimal cost flow
41       f(u,v) = rf(v, u).
42    6. adjust_cfg_counts: Update initial edge weights with corrected weights.
43       delta(u.v) = f(u,v) -f(v,u).
44       w*(u,v) = w(u,v) + delta(u,v).  */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "basic-block.h"
51 #include "output.h"
52 #include "langhooks.h"
53 #include "tree.h"
54 #include "gcov-io.h"
55
56 #include "profile.h"
57
58 /* CAP_INFINITY: Constant to represent infinite capacity.  */
59 #define CAP_INFINITY INTTYPE_MAXIMUM (HOST_WIDEST_INT)
60
61 /* COST FUNCTION.  */
62 #define K_POS(b)        ((b))
63 #define K_NEG(b)        (50 * (b))
64 #define COST(k, w)      ((k) / mcf_ln ((w) + 2))
65 /* Limit the number of iterations for cancel_negative_cycles() to ensure
66    reasonable compile time.  */
67 #define MAX_ITER(n, e)  10 + (1000000 / ((n) * (e)))
68 typedef enum
69 {
70   INVALID_EDGE,
71   VERTEX_SPLIT_EDGE,        /* Edge to represent vertex with w(e) = w(v).  */
72   REDIRECT_EDGE,            /* Edge after vertex transformation.  */
73   REVERSE_EDGE,
74   SOURCE_CONNECT_EDGE,      /* Single edge connecting to single source.  */
75   SINK_CONNECT_EDGE,        /* Single edge connecting to single sink.  */
76   BALANCE_EDGE,             /* Edge connecting with source/sink: cp(e) = 0.  */
77   REDIRECT_NORMALIZED_EDGE, /* Normalized edge for a redirect edge.  */
78   REVERSE_NORMALIZED_EDGE   /* Normalized edge for a reverse edge.  */
79 } edge_type;
80
81 /* Structure to represent an edge in the fixup graph.  */
82 typedef struct fixup_edge_d
83 {
84   int src;
85   int dest;
86   /* Flag denoting type of edge and attributes for the flow field.  */
87   edge_type type;
88   bool is_rflow_valid;
89   /* Index to the normalization vertex added for this edge.  */
90   int norm_vertex_index;
91   /* Flow for this edge.  */
92   gcov_type flow;
93   /* Residual flow for this edge - used during negative cycle canceling.  */
94   gcov_type rflow;
95   gcov_type weight;
96   gcov_type cost;
97   gcov_type max_capacity;
98 } fixup_edge_type;
99
100 typedef fixup_edge_type *fixup_edge_p;
101
102 DEF_VEC_P (fixup_edge_p);
103 DEF_VEC_ALLOC_P (fixup_edge_p, heap);
104
105 /* Structure to represent a vertex in the fixup graph.  */
106 typedef struct fixup_vertex_d
107 {
108   VEC (fixup_edge_p, heap) *succ_edges;
109 } fixup_vertex_type;
110
111 typedef fixup_vertex_type *fixup_vertex_p;
112
113 /* Fixup graph used in the MCF algorithm.  */
114 typedef struct fixup_graph_d
115 {
116   /* Current number of vertices for the graph.  */
117   int num_vertices;
118   /* Current number of edges for the graph.  */
119   int num_edges;
120   /* Index of new entry vertex.  */
121   int new_entry_index;
122   /* Index of new exit vertex.  */
123   int new_exit_index;
124   /* Fixup vertex list. Adjacency list for fixup graph.  */
125   fixup_vertex_p vertex_list;
126   /* Fixup edge list.  */
127   fixup_edge_p edge_list;
128 } fixup_graph_type;
129
130 typedef struct queue_d
131 {
132   int *queue;
133   int head;
134   int tail;
135   int size;
136 } queue_type;
137
138 /* Structure used in the maximal flow routines to find augmenting path.  */
139 typedef struct augmenting_path_d
140 {
141   /* Queue used to hold vertex indices.  */
142   queue_type queue_list;
143   /* Vector to hold chain of pred vertex indices in augmenting path.  */
144   int *bb_pred;
145   /* Vector that indicates if basic block i has been visited.  */
146   int *is_visited;
147 } augmenting_path_type;
148
149
150 /* Function definitions.  */
151
152 /* Dump routines to aid debugging.  */
153
154 /* Print basic block with index N for FIXUP_GRAPH in n' and n'' format.  */
155
156 static void
157 print_basic_block (FILE *file, fixup_graph_type *fixup_graph, int n)
158 {
159   if (n == ENTRY_BLOCK)
160     fputs ("ENTRY", file);
161   else if (n == ENTRY_BLOCK + 1)
162     fputs ("ENTRY''", file);
163   else if (n == 2 * EXIT_BLOCK)
164     fputs ("EXIT", file);
165   else if (n == 2 * EXIT_BLOCK + 1)
166     fputs ("EXIT''", file);
167   else if (n == fixup_graph->new_exit_index)
168     fputs ("NEW_EXIT", file);
169   else if (n == fixup_graph->new_entry_index)
170     fputs ("NEW_ENTRY", file);
171   else
172     {
173       fprintf (file, "%d", n / 2);
174       if (n % 2)
175         fputs ("''", file);
176       else
177         fputs ("'", file);
178     }
179 }
180
181
182 /* Print edge S->D for given fixup_graph with n' and n'' format.
183    PARAMETERS:
184    S is the index of the source vertex of the edge (input) and
185    D is the index of the destination vertex of the edge (input) for the given
186    fixup_graph (input).  */
187
188 static void
189 print_edge (FILE *file, fixup_graph_type *fixup_graph, int s, int d)
190 {
191   print_basic_block (file, fixup_graph, s);
192   fputs ("->", file);
193   print_basic_block (file, fixup_graph, d);
194 }
195
196
197 /* Dump out the attributes of a given edge FEDGE in the fixup_graph to a
198    file.  */
199 static void
200 dump_fixup_edge (FILE *file, fixup_graph_type *fixup_graph, fixup_edge_p fedge)
201 {
202   if (!fedge)
203     {
204       fputs ("NULL fixup graph edge.\n", file);
205       return;
206     }
207
208   print_edge (file, fixup_graph, fedge->src, fedge->dest);
209   fputs (": ", file);
210
211   if (fedge->type)
212     {
213       fprintf (file, "flow/capacity=" HOST_WIDEST_INT_PRINT_DEC "/",
214                fedge->flow);
215       if (fedge->max_capacity == CAP_INFINITY)
216         fputs ("+oo,", file);
217       else
218         fprintf (file, "" HOST_WIDEST_INT_PRINT_DEC ",", fedge->max_capacity);
219     }
220
221   if (fedge->is_rflow_valid)
222     {
223       if (fedge->rflow == CAP_INFINITY)
224         fputs (" rflow=+oo.", file);
225       else
226         fprintf (file, " rflow=" HOST_WIDEST_INT_PRINT_DEC ",", fedge->rflow);
227     }
228
229   fprintf (file, " cost=" HOST_WIDEST_INT_PRINT_DEC ".", fedge->cost);
230
231   fprintf (file, "\t(%d->%d)", fedge->src, fedge->dest);
232
233   if (fedge->type)
234     {
235       switch (fedge->type)
236         {
237         case VERTEX_SPLIT_EDGE:
238           fputs (" @VERTEX_SPLIT_EDGE", file);
239           break;
240
241         case REDIRECT_EDGE:
242           fputs (" @REDIRECT_EDGE", file);
243           break;
244
245         case SOURCE_CONNECT_EDGE:
246           fputs (" @SOURCE_CONNECT_EDGE", file);
247           break;
248
249         case SINK_CONNECT_EDGE:
250           fputs (" @SINK_CONNECT_EDGE", file);
251           break;
252
253         case REVERSE_EDGE:
254           fputs (" @REVERSE_EDGE", file);
255           break;
256
257         case BALANCE_EDGE:
258           fputs (" @BALANCE_EDGE", file);
259           break;
260
261         case REDIRECT_NORMALIZED_EDGE:
262         case REVERSE_NORMALIZED_EDGE:
263           fputs ("  @NORMALIZED_EDGE", file);
264           break;
265
266         default:
267           fputs (" @INVALID_EDGE", file);
268           break;
269         }
270     }
271   fputs ("\n", file);
272 }
273
274
275 /* Print out the edges and vertices of the given FIXUP_GRAPH, into the dump
276    file. The input string MSG is printed out as a heading.  */
277
278 static void
279 dump_fixup_graph (FILE *file, fixup_graph_type *fixup_graph, const char *msg)
280 {
281   int i, j;
282   int fnum_vertices, fnum_edges;
283
284   fixup_vertex_p fvertex_list, pfvertex;
285   fixup_edge_p pfedge;
286
287   gcc_assert (fixup_graph);
288   fvertex_list = fixup_graph->vertex_list;
289   fnum_vertices = fixup_graph->num_vertices;
290   fnum_edges = fixup_graph->num_edges;
291
292   fprintf (file, "\nDump fixup graph for %s(): %s.\n",
293            lang_hooks.decl_printable_name (current_function_decl, 2), msg);
294   fprintf (file,
295            "There are %d vertices and %d edges. new_exit_index is %d.\n\n",
296            fnum_vertices, fnum_edges, fixup_graph->new_exit_index);
297
298   for (i = 0; i < fnum_vertices; i++)
299     {
300       pfvertex = fvertex_list + i;
301       fprintf (file, "vertex_list[%d]: %d succ fixup edges.\n",
302                i, VEC_length (fixup_edge_p, pfvertex->succ_edges));
303
304       for (j = 0; VEC_iterate (fixup_edge_p, pfvertex->succ_edges, j, pfedge);
305            j++)
306         {
307           /* Distinguish forward edges and backward edges in the residual flow
308              network.  */
309           if (pfedge->type)
310             fputs ("(f) ", file);
311           else if (pfedge->is_rflow_valid)
312             fputs ("(b) ", file);
313           dump_fixup_edge (file, fixup_graph, pfedge);
314         }
315     }
316
317   fputs ("\n", file);
318 }
319
320
321 /* Utility routines.  */
322 /* ln() implementation: approximate calculation. Returns ln of X.  */
323
324 static double
325 mcf_ln (double x)
326 {
327 #define E       2.71828
328   int l = 1;
329   double m = E;
330
331   gcc_assert (x >= 0);
332
333   while (m < x)
334     {
335       m *= E;
336       l++;
337     }
338
339   return l;
340 }
341
342
343 /* sqrt() implementation: based on open source QUAKE3 code (magic sqrt
344    implementation) by John Carmack.  Returns sqrt of X.  */
345
346 static double
347 mcf_sqrt (double x)
348 {
349 #define MAGIC_CONST1    0x1fbcf800
350 #define MAGIC_CONST2    0x5f3759df
351   union {
352     int intPart;
353     float floatPart;
354   } convertor, convertor2;
355
356   gcc_assert (x >= 0);
357
358   convertor.floatPart = x;
359   convertor2.floatPart = x;
360   convertor.intPart = MAGIC_CONST1 + (convertor.intPart >> 1);
361   convertor2.intPart = MAGIC_CONST2 - (convertor2.intPart >> 1);
362
363   return 0.5f * (convertor.floatPart + (x * convertor2.floatPart));
364 }
365
366
367 /* Common code shared between add_fixup_edge and add_rfixup_edge. Adds an edge
368    (SRC->DEST) to the edge_list maintained in FIXUP_GRAPH with cost of the edge
369    added set to COST.  */
370
371 static fixup_edge_p
372 add_edge (fixup_graph_type *fixup_graph, int src, int dest, gcov_type cost)
373 {
374   fixup_vertex_p curr_vertex = fixup_graph->vertex_list + src;
375   fixup_edge_p curr_edge = fixup_graph->edge_list + fixup_graph->num_edges;
376   curr_edge->src = src;
377   curr_edge->dest = dest;
378   curr_edge->cost = cost;
379   fixup_graph->num_edges++;
380   if (dump_file)
381     dump_fixup_edge (dump_file, fixup_graph, curr_edge);
382   VEC_safe_push (fixup_edge_p, heap, curr_vertex->succ_edges, curr_edge);
383   return curr_edge;
384 }
385
386
387 /* Add a fixup edge (src->dest) with attributes TYPE, WEIGHT, COST and
388    MAX_CAPACITY to the edge_list in the fixup graph.  */
389
390 static void
391 add_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest,
392                 edge_type type, gcov_type weight, gcov_type cost,
393                 gcov_type max_capacity)
394 {
395   fixup_edge_p curr_edge = add_edge(fixup_graph, src, dest, cost);
396   curr_edge->type = type;
397   curr_edge->weight = weight;
398   curr_edge->max_capacity = max_capacity;
399 }
400
401
402 /* Add a residual edge (SRC->DEST) with attributes RFLOW and COST
403    to the fixup graph.  */
404
405 static void
406 add_rfixup_edge (fixup_graph_type *fixup_graph, int src, int dest,
407                  gcov_type rflow, gcov_type cost)
408 {
409   fixup_edge_p curr_edge = add_edge (fixup_graph, src, dest, cost);
410   curr_edge->rflow = rflow;
411   curr_edge->is_rflow_valid = true;
412   /* This edge is not a valid edge - merely used to hold residual flow.  */
413   curr_edge->type = INVALID_EDGE;
414 }
415
416
417 /* Return the pointer to fixup edge SRC->DEST or NULL if edge does not
418    exist in the FIXUP_GRAPH.  */
419
420 static fixup_edge_p
421 find_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest)
422 {
423   int j;
424   fixup_edge_p pfedge;
425   fixup_vertex_p pfvertex;
426
427   gcc_assert (src < fixup_graph->num_vertices);
428
429   pfvertex = fixup_graph->vertex_list + src;
430
431   for (j = 0; VEC_iterate (fixup_edge_p, pfvertex->succ_edges, j, pfedge);
432        j++)
433     if (pfedge->dest == dest)
434       return pfedge;
435
436   return NULL;
437 }
438
439
440 /* Cleanup routine to free structures in FIXUP_GRAPH.  */
441
442 static void
443 delete_fixup_graph (fixup_graph_type *fixup_graph)
444 {
445   int i;
446   int fnum_vertices = fixup_graph->num_vertices;
447   fixup_vertex_p pfvertex = fixup_graph->vertex_list;
448
449   for (i = 0; i < fnum_vertices; i++, pfvertex++)
450     VEC_free (fixup_edge_p, heap, pfvertex->succ_edges);
451
452   free (fixup_graph->vertex_list);
453   free (fixup_graph->edge_list);
454 }
455
456
457 /* Creates a fixup graph FIXUP_GRAPH from the function CFG.  */
458
459 static void
460 create_fixup_graph (fixup_graph_type *fixup_graph)
461 {
462   double sqrt_avg_vertex_weight = 0;
463   double total_vertex_weight = 0;
464   double k_pos = 0;
465   double k_neg = 0;
466   /* Vector to hold D(v) = sum_out_edges(v) - sum_in_edges(v).  */
467   gcov_type *diff_out_in = NULL;
468   gcov_type supply_value = 1, demand_value = 0;
469   gcov_type fcost = 0;
470   int new_entry_index = 0, new_exit_index = 0;
471   int i = 0, j = 0;
472   int new_index = 0;
473   basic_block bb;
474   edge e;
475   edge_iterator ei;
476   fixup_edge_p pfedge, r_pfedge;
477   fixup_edge_p fedge_list;
478   int fnum_edges;
479
480   /* Each basic_block will be split into 2 during vertex transformation.  */
481   int fnum_vertices_after_transform =  2 * n_basic_blocks;
482   int fnum_edges_after_transform = n_edges + n_basic_blocks;
483
484   /* Count the new SOURCE and EXIT vertices to be added.  */
485   int fmax_num_vertices =
486     fnum_vertices_after_transform + n_edges + n_basic_blocks + 2;
487
488   /* In create_fixup_graph: Each basic block and edge can be split into 3
489      edges. Number of balance edges = n_basic_blocks. So after
490      create_fixup_graph:
491      max_edges = 4 * n_basic_blocks + 3 * n_edges
492      Accounting for residual flow edges
493      max_edges = 2 * (4 * n_basic_blocks + 3 * n_edges)
494      = 8 * n_basic_blocks + 6 * n_edges
495      < 8 * n_basic_blocks + 8 * n_edges.  */
496   int fmax_num_edges = 8 * (n_basic_blocks + n_edges);
497
498   /* Initial num of vertices in the fixup graph.  */
499   fixup_graph->num_vertices = n_basic_blocks;
500
501   /* Fixup graph vertex list.  */
502   fixup_graph->vertex_list =
503     (fixup_vertex_p) xcalloc (fmax_num_vertices, sizeof (fixup_vertex_type));
504
505   /* Fixup graph edge list.  */
506   fixup_graph->edge_list =
507     (fixup_edge_p) xcalloc (fmax_num_edges, sizeof (fixup_edge_type));
508
509   diff_out_in =
510     (gcov_type *) xcalloc (1 + fnum_vertices_after_transform,
511                            sizeof (gcov_type));
512
513   /* Compute constants b, k_pos, k_neg used in the cost function calculation.
514      b = sqrt(avg_vertex_weight(cfg)); k_pos = b; k_neg = 50b.  */
515   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
516     total_vertex_weight += bb->count;
517
518   sqrt_avg_vertex_weight = mcf_sqrt (total_vertex_weight / n_basic_blocks);
519
520   k_pos = K_POS (sqrt_avg_vertex_weight);
521   k_neg = K_NEG (sqrt_avg_vertex_weight);
522
523   /* 1. Vertex Transformation: Split each vertex v into two vertices v' and v'',
524      connected by an edge e from v' to v''. w(e) = w(v).  */
525
526   if (dump_file)
527     fprintf (dump_file, "\nVertex transformation:\n");
528
529   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
530   {
531     /* v'->v'': index1->(index1+1).  */
532     i = 2 * bb->index;
533     fcost = (gcov_type) COST (k_pos, bb->count);
534     add_fixup_edge (fixup_graph, i, i + 1, VERTEX_SPLIT_EDGE, bb->count,
535                     fcost, CAP_INFINITY);
536     fixup_graph->num_vertices++;
537
538     FOR_EACH_EDGE (e, ei, bb->succs)
539     {
540       /* Edges with ignore attribute set should be treated like they don't
541          exist.  */
542       if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
543         continue;
544       j = 2 * e->dest->index;
545       fcost = (gcov_type) COST (k_pos, e->count);
546       add_fixup_edge (fixup_graph, i + 1, j, REDIRECT_EDGE, e->count, fcost,
547                       CAP_INFINITY);
548     }
549   }
550
551   /* After vertex transformation.  */
552   gcc_assert (fixup_graph->num_vertices == fnum_vertices_after_transform);
553   /* Redirect edges are not added for edges with ignore attribute.  */
554   gcc_assert (fixup_graph->num_edges <= fnum_edges_after_transform);
555
556   fnum_edges_after_transform = fixup_graph->num_edges;
557
558   /* 2. Initialize D(v).  */
559   for (i = 0; i < fnum_edges_after_transform; i++)
560     {
561       pfedge = fixup_graph->edge_list + i;
562       diff_out_in[pfedge->src] += pfedge->weight;
563       diff_out_in[pfedge->dest] -= pfedge->weight;
564     }
565
566   /* Entry block - vertex indices 0, 1; EXIT block - vertex indices 2, 3.  */
567   for (i = 0; i <= 3; i++)
568     diff_out_in[i] = 0;
569
570   /* 3. Add reverse edges: needed to decrease counts during smoothing.  */
571   if (dump_file)
572     fprintf (dump_file, "\nReverse edges:\n");
573   for (i = 0; i < fnum_edges_after_transform; i++)
574     {
575       pfedge = fixup_graph->edge_list + i;
576       if ((pfedge->src == 0) || (pfedge->src == 2))
577         continue;
578       r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src);
579       if (!r_pfedge && pfedge->weight)
580         {
581           /* Skip adding reverse edges for edges with w(e) = 0, as its maximum
582              capacity is 0.  */
583           fcost = (gcov_type) COST (k_neg, pfedge->weight);
584           add_fixup_edge (fixup_graph, pfedge->dest, pfedge->src,
585                           REVERSE_EDGE, 0, fcost, pfedge->weight);
586         }
587     }
588
589   /* 4. Create single source and sink. Connect new source vertex s' to function
590      entry block. Connect sink vertex t' to function exit.  */
591   if (dump_file)
592     fprintf (dump_file, "\ns'->S, T->t':\n");
593
594   new_entry_index = fixup_graph->new_entry_index = fixup_graph->num_vertices;
595   fixup_graph->num_vertices++;
596   /* Set supply_value to 1 to avoid zero count function ENTRY.  */
597   add_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK, SOURCE_CONNECT_EDGE,
598                   1 /* supply_value */, 0, 1 /* supply_value */);
599
600   /* Create new exit with EXIT_BLOCK as single pred.  */
601   new_exit_index = fixup_graph->new_exit_index = fixup_graph->num_vertices;
602   fixup_graph->num_vertices++;
603   add_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index,
604                   SINK_CONNECT_EDGE,
605                   0 /* demand_value */, 0, 0 /* demand_value */);
606
607   /* Connect vertices with unbalanced D(v) to source/sink.  */
608   if (dump_file)
609     fprintf (dump_file, "\nD(v) balance:\n");
610   /* Skip vertices for ENTRY (0, 1) and EXIT (2,3) blocks, so start with i = 4.
611      diff_out_in[v''] will be 0, so skip v'' vertices, hence i += 2.  */
612   for (i = 4; i < new_entry_index; i += 2)
613     {
614       if (diff_out_in[i] > 0)
615         {
616           add_fixup_edge (fixup_graph, i, new_exit_index, BALANCE_EDGE, 0, 0,
617                           diff_out_in[i]);
618           demand_value += diff_out_in[i];
619         }
620       else if (diff_out_in[i] < 0)
621         {
622           add_fixup_edge (fixup_graph, new_entry_index, i, BALANCE_EDGE, 0, 0,
623                           -diff_out_in[i]);
624           supply_value -= diff_out_in[i];
625         }
626     }
627
628   /* Set supply = demand.  */
629   if (dump_file)
630     {
631       fprintf (dump_file, "\nAdjust supply and demand:\n");
632       fprintf (dump_file, "supply_value=" HOST_WIDEST_INT_PRINT_DEC "\n",
633                supply_value);
634       fprintf (dump_file, "demand_value=" HOST_WIDEST_INT_PRINT_DEC "\n",
635                demand_value);
636     }
637
638   if (demand_value > supply_value)
639     {
640       pfedge = find_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK);
641       pfedge->max_capacity += (demand_value - supply_value);
642     }
643   else
644     {
645       pfedge = find_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index);
646       pfedge->max_capacity += (supply_value - demand_value);
647     }
648
649   /* 6. Normalize edges: remove anti-parallel edges. Anti-parallel edges are
650      created by the vertex transformation step from self-edges in the original
651      CFG and by the reverse edges added earlier.  */
652   if (dump_file)
653     fprintf (dump_file, "\nNormalize edges:\n");
654
655   fnum_edges = fixup_graph->num_edges;
656   fedge_list = fixup_graph->edge_list;
657
658   for (i = 0; i < fnum_edges; i++)
659     {
660       pfedge = fedge_list + i;
661       r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src);
662       if (((pfedge->type == VERTEX_SPLIT_EDGE)
663            || (pfedge->type == REDIRECT_EDGE)) && r_pfedge)
664         {
665           new_index = fixup_graph->num_vertices;
666           fixup_graph->num_vertices++;
667
668           if (dump_file)
669             {
670               fprintf (dump_file, "\nAnti-parallel edge:\n");
671               dump_fixup_edge (dump_file, fixup_graph, pfedge);
672               dump_fixup_edge (dump_file, fixup_graph, r_pfedge);
673               fprintf (dump_file, "New vertex is %d.\n", new_index);
674               fprintf (dump_file, "------------------\n");
675             }
676
677           pfedge->cost /= 2;
678           pfedge->norm_vertex_index = new_index;
679           if (dump_file)
680             {
681               fprintf (dump_file, "After normalization:\n");
682               dump_fixup_edge (dump_file, fixup_graph, pfedge);
683             }
684
685           /* Add a new fixup edge: new_index->src.  */
686           add_fixup_edge (fixup_graph, new_index, pfedge->src,
687                           REVERSE_NORMALIZED_EDGE, 0, r_pfedge->cost,
688                           r_pfedge->max_capacity);
689           gcc_assert (fixup_graph->num_vertices <= fmax_num_vertices);
690
691           /* Edge: r_pfedge->src -> r_pfedge->dest
692              ==> r_pfedge->src -> new_index.  */
693           r_pfedge->dest = new_index;
694           r_pfedge->type = REVERSE_NORMALIZED_EDGE;
695           r_pfedge->cost = pfedge->cost;
696           r_pfedge->max_capacity = pfedge->max_capacity;
697           if (dump_file)
698             dump_fixup_edge (dump_file, fixup_graph, r_pfedge);
699         }
700     }
701
702   if (dump_file)
703     dump_fixup_graph (dump_file, fixup_graph, "After create_fixup_graph()");
704
705   /* Cleanup.  */
706   free (diff_out_in);
707 }
708
709
710 /* Allocates space for the structures in AUGMENTING_PATH.  The space needed is
711    proportional to the number of nodes in the graph, which is given by
712    GRAPH_SIZE.  */
713
714 static void
715 init_augmenting_path (augmenting_path_type *augmenting_path, int graph_size)
716 {
717   augmenting_path->queue_list.queue = (int *)
718     xcalloc (graph_size + 2, sizeof (int));
719   augmenting_path->queue_list.size = graph_size + 2;
720   augmenting_path->bb_pred = (int *) xcalloc (graph_size, sizeof (int));
721   augmenting_path->is_visited = (int *) xcalloc (graph_size, sizeof (int));
722 }
723
724 /* Free the structures in AUGMENTING_PATH.  */
725 static void
726 free_augmenting_path (augmenting_path_type *augmenting_path)
727 {
728   free (augmenting_path->queue_list.queue);
729   free (augmenting_path->bb_pred);
730   free (augmenting_path->is_visited);
731 }
732
733
734 /* Queue routines. Assumes queue will never overflow.  */
735
736 static void
737 init_queue (queue_type *queue_list)
738 {
739   gcc_assert (queue_list);
740   queue_list->head = 0;
741   queue_list->tail = 0;
742 }
743
744 /* Return true if QUEUE_LIST is empty.  */
745 static bool
746 is_empty (queue_type *queue_list)
747 {
748   return (queue_list->head == queue_list->tail);
749 }
750
751 /* Insert element X into QUEUE_LIST.  */
752 static void
753 enqueue (queue_type *queue_list, int x)
754 {
755   gcc_assert (queue_list->tail < queue_list->size);
756   queue_list->queue[queue_list->tail] = x;
757   (queue_list->tail)++;
758 }
759
760 /* Return the first element in QUEUE_LIST.  */
761 static int
762 dequeue (queue_type *queue_list)
763 {
764   int x;
765   gcc_assert (queue_list->head >= 0);
766   x = queue_list->queue[queue_list->head];
767   (queue_list->head)++;
768   return x;
769 }
770
771
772 /* Finds a negative cycle in the residual network using
773    the Bellman-Ford algorithm. The flow on the found cycle is reversed by the
774    minimum residual capacity of that cycle. ENTRY and EXIT vertices are not
775    considered.
776
777 Parameters:
778    FIXUP_GRAPH - Residual graph  (input/output)
779    The following are allocated/freed by the caller:
780    PI - Vector to hold predecessors in path  (pi = pred index)
781    D - D[I] holds minimum cost of path from i to sink
782    CYCLE - Vector to hold the minimum cost cycle
783
784 Return:
785    true if a negative cycle was found, false otherwise.  */
786
787 static bool
788 cancel_negative_cycle (fixup_graph_type *fixup_graph,
789                        int *pi, gcov_type *d, int *cycle)
790 {
791   int i, j, k;
792   int fnum_vertices, fnum_edges;
793   fixup_edge_p fedge_list, pfedge, r_pfedge;
794   bool found_cycle = false;
795   int cycle_start = 0, cycle_end = 0;
796   gcov_type sum_cost = 0, cycle_flow = 0;
797   int new_entry_index;
798   bool propagated = false;
799
800   gcc_assert (fixup_graph);
801   fnum_vertices = fixup_graph->num_vertices;
802   fnum_edges = fixup_graph->num_edges;
803   fedge_list = fixup_graph->edge_list;
804   new_entry_index = fixup_graph->new_entry_index;
805
806   /* Initialize.  */
807   /* Skip ENTRY.  */
808   for (i = 1; i < fnum_vertices; i++)
809     {
810       d[i] = CAP_INFINITY;
811       pi[i] = -1;
812       cycle[i] = -1;
813     }
814   d[ENTRY_BLOCK] = 0;
815
816   /* Relax.  */
817   for (k = 1; k < fnum_vertices; k++)
818   {
819     propagated = false;
820     for (i = 0; i < fnum_edges; i++)
821       {
822         pfedge = fedge_list + i;
823         if (pfedge->src == new_entry_index)
824           continue;
825         if (pfedge->is_rflow_valid && pfedge->rflow
826             && d[pfedge->src] != CAP_INFINITY
827             && (d[pfedge->dest] > d[pfedge->src] + pfedge->cost))
828           {
829             d[pfedge->dest] = d[pfedge->src] + pfedge->cost;
830             pi[pfedge->dest] = pfedge->src;
831             propagated = true;
832           }
833       }
834     if (!propagated)
835       break;
836   }
837
838   if (!propagated)
839   /* No negative cycles exist.  */
840     return 0;
841
842   /* Detect.  */
843   for (i = 0; i < fnum_edges; i++)
844     {
845       pfedge = fedge_list + i;
846       if (pfedge->src == new_entry_index)
847         continue;
848       if (pfedge->is_rflow_valid && pfedge->rflow
849           && d[pfedge->src] != CAP_INFINITY
850           && (d[pfedge->dest] > d[pfedge->src] + pfedge->cost))
851         {
852           found_cycle = true;
853           break;
854         }
855     }
856
857   if (!found_cycle)
858     return 0;
859
860   /* Augment the cycle with the cycle's minimum residual capacity.  */
861   found_cycle = false;
862   cycle[0] = pfedge->dest;
863   j = pfedge->dest;
864
865   for (i = 1; i < fnum_vertices; i++)
866     {
867       j = pi[j];
868       cycle[i] = j;
869       for (k = 0; k < i; k++)
870         {
871           if (cycle[k] == j)
872             {
873               /* cycle[k] -> ... -> cycle[i].  */
874               cycle_start = k;
875               cycle_end = i;
876               found_cycle = true;
877               break;
878             }
879         }
880       if (found_cycle)
881         break;
882     }
883
884   gcc_assert (cycle[cycle_start] == cycle[cycle_end]);
885   if (dump_file)
886     fprintf (dump_file, "\nNegative cycle length is %d:\n",
887              cycle_end - cycle_start);
888
889   sum_cost = 0;
890   cycle_flow = CAP_INFINITY;
891   for (k = cycle_start; k < cycle_end; k++)
892     {
893       pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]);
894       cycle_flow = MIN (cycle_flow, pfedge->rflow);
895       sum_cost += pfedge->cost;
896       if (dump_file)
897         fprintf (dump_file, "%d ", cycle[k]);
898     }
899
900   if (dump_file)
901     {
902       fprintf (dump_file, "%d", cycle[k]);
903       fprintf (dump_file,
904                ": (" HOST_WIDEST_INT_PRINT_DEC ", " HOST_WIDEST_INT_PRINT_DEC
905                ")\n", sum_cost, cycle_flow);
906       fprintf (dump_file,
907                "Augment cycle with " HOST_WIDEST_INT_PRINT_DEC "\n",
908                cycle_flow);
909     }
910
911   for (k = cycle_start; k < cycle_end; k++)
912     {
913       pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]);
914       r_pfedge = find_fixup_edge (fixup_graph, cycle[k], cycle[k + 1]);
915       pfedge->rflow -= cycle_flow;
916       if (pfedge->type)
917         pfedge->flow += cycle_flow;
918       r_pfedge->rflow += cycle_flow;
919       if (r_pfedge->type)
920         r_pfedge->flow -= cycle_flow;
921     }
922
923   return true;
924 }
925
926
927 /* Computes the residual flow for FIXUP_GRAPH by setting the rflow field of
928    the edges. ENTRY and EXIT vertices should not be considered.  */
929
930 static void
931 compute_residual_flow (fixup_graph_type *fixup_graph)
932 {
933   int i;
934   int fnum_edges;
935   fixup_edge_p fedge_list, pfedge;
936
937   gcc_assert (fixup_graph);
938
939   if (dump_file)
940     fputs ("\ncompute_residual_flow():\n", dump_file);
941
942   fnum_edges = fixup_graph->num_edges;
943   fedge_list = fixup_graph->edge_list;
944
945   for (i = 0; i < fnum_edges; i++)
946     {
947       pfedge = fedge_list + i;
948       pfedge->rflow = pfedge->max_capacity - pfedge->flow;
949       pfedge->is_rflow_valid = true;
950       add_rfixup_edge (fixup_graph, pfedge->dest, pfedge->src, pfedge->flow,
951                        -pfedge->cost);
952     }
953 }
954
955
956 /* Uses Edmonds-Karp algorithm - BFS to find augmenting path from SOURCE to
957    SINK. The fields in the edge vector in the FIXUP_GRAPH are not modified by
958    this routine. The vector bb_pred in the AUGMENTING_PATH structure is updated
959    to reflect the path found.
960    Returns: 0 if no augmenting path is found, 1 otherwise.  */
961
962 static int
963 find_augmenting_path (fixup_graph_type *fixup_graph,
964                       augmenting_path_type *augmenting_path, int source,
965                       int sink)
966 {
967   int u = 0;
968   int i;
969   fixup_vertex_p fvertex_list, pfvertex;
970   fixup_edge_p pfedge;
971   int *bb_pred, *is_visited;
972   queue_type *queue_list;
973
974   gcc_assert (augmenting_path);
975   bb_pred = augmenting_path->bb_pred;
976   gcc_assert (bb_pred);
977   is_visited = augmenting_path->is_visited;
978   gcc_assert (is_visited);
979   queue_list = &(augmenting_path->queue_list);
980
981   gcc_assert (fixup_graph);
982
983   fvertex_list = fixup_graph->vertex_list;
984
985   for (u = 0; u < fixup_graph->num_vertices; u++)
986     is_visited[u] = 0;
987
988   init_queue (queue_list);
989   enqueue (queue_list, source);
990   bb_pred[source] = -1;
991
992   while (!is_empty (queue_list))
993     {
994       u = dequeue (queue_list);
995       is_visited[u] = 1;
996       pfvertex = fvertex_list + u;
997       for (i = 0; VEC_iterate (fixup_edge_p, pfvertex->succ_edges, i, pfedge);
998            i++)
999         {
1000           int dest = pfedge->dest;
1001           if ((pfedge->rflow > 0) && (is_visited[dest] == 0))
1002             {
1003               enqueue (queue_list, dest);
1004               bb_pred[dest] = u;
1005               is_visited[dest] = 1;
1006               if (dest == sink)
1007                 return 1;
1008             }
1009         }
1010     }
1011
1012   return 0;
1013 }
1014
1015
1016 /* Routine to find the maximal flow:
1017    Algorithm:
1018    1. Initialize flow to 0
1019    2. Find an augmenting path form source to sink.
1020    3. Send flow equal to the path's residual capacity along the edges of this path.
1021    4. Repeat steps 2 and 3 until no new augmenting path is found.
1022
1023 Parameters:
1024 SOURCE: index of source vertex (input)
1025 SINK: index of sink vertex    (input)
1026 FIXUP_GRAPH: adjacency matrix representing the graph. The flow of the edges will be
1027              set to have a valid maximal flow by this routine. (input)
1028 Return: Maximum flow possible.  */
1029
1030 static gcov_type
1031 find_max_flow (fixup_graph_type *fixup_graph, int source, int sink)
1032 {
1033   int fnum_edges;
1034   augmenting_path_type augmenting_path;
1035   int *bb_pred;
1036   gcov_type max_flow = 0;
1037   int i, u;
1038   fixup_edge_p fedge_list, pfedge, r_pfedge;
1039
1040   gcc_assert (fixup_graph);
1041
1042   fnum_edges = fixup_graph->num_edges;
1043   fedge_list = fixup_graph->edge_list;
1044
1045   /* Initialize flow to 0.  */
1046   for (i = 0; i < fnum_edges; i++)
1047     {
1048       pfedge = fedge_list + i;
1049       pfedge->flow = 0;
1050     }
1051
1052   compute_residual_flow (fixup_graph);
1053
1054   init_augmenting_path (&augmenting_path, fixup_graph->num_vertices);
1055
1056   bb_pred = augmenting_path.bb_pred;
1057   while (find_augmenting_path (fixup_graph, &augmenting_path, source, sink))
1058     {
1059       /* Determine the amount by which we can increment the flow.  */
1060       gcov_type increment = CAP_INFINITY;
1061       for (u = sink; u != source; u = bb_pred[u])
1062         {
1063           pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u);
1064           increment = MIN (increment, pfedge->rflow);
1065         }
1066       max_flow += increment;
1067
1068       /* Now increment the flow. EXIT vertex index is 1.  */
1069       for (u = sink; u != source; u = bb_pred[u])
1070         {
1071           pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u);
1072           r_pfedge = find_fixup_edge (fixup_graph, u, bb_pred[u]);
1073           if (pfedge->type)
1074             {
1075               /* forward edge.  */
1076               pfedge->flow += increment;
1077               pfedge->rflow -= increment;
1078               r_pfedge->rflow += increment;
1079             }
1080           else
1081             {
1082               /* backward edge.  */
1083               gcc_assert (r_pfedge->type);
1084               r_pfedge->rflow += increment;
1085               r_pfedge->flow -= increment;
1086               pfedge->rflow -= increment;
1087             }
1088         }
1089
1090       if (dump_file)
1091         {
1092           fprintf (dump_file, "\nDump augmenting path:\n");
1093           for (u = sink; u != source; u = bb_pred[u])
1094             {
1095               print_basic_block (dump_file, fixup_graph, u);
1096               fprintf (dump_file, "<-");
1097             }
1098           fprintf (dump_file,
1099                    "ENTRY  (path_capacity=" HOST_WIDEST_INT_PRINT_DEC ")\n",
1100                    increment);
1101           fprintf (dump_file,
1102                    "Network flow is " HOST_WIDEST_INT_PRINT_DEC ".\n",
1103                    max_flow);
1104         }
1105     }
1106
1107   free_augmenting_path (&augmenting_path);
1108   if (dump_file)
1109     dump_fixup_graph (dump_file, fixup_graph, "After find_max_flow()");
1110   return max_flow;
1111 }
1112
1113
1114 /* Computes the corrected edge and basic block weights using FIXUP_GRAPH
1115    after applying the find_minimum_cost_flow() routine.  */
1116
1117 static void
1118 adjust_cfg_counts (fixup_graph_type *fixup_graph)
1119 {
1120   basic_block bb;
1121   edge e;
1122   edge_iterator ei;
1123   int i, j;
1124   fixup_edge_p pfedge, pfedge_n;
1125
1126   gcc_assert (fixup_graph);
1127
1128   if (dump_file)
1129     fprintf (dump_file, "\nadjust_cfg_counts():\n");
1130
1131   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1132     {
1133       i = 2 * bb->index;
1134
1135       /* Fixup BB.  */
1136       if (dump_file)
1137         fprintf (dump_file,
1138                  "BB%d: " HOST_WIDEST_INT_PRINT_DEC "", bb->index, bb->count);
1139
1140       pfedge = find_fixup_edge (fixup_graph, i, i + 1);
1141       if (pfedge->flow)
1142         {
1143           bb->count += pfedge->flow;
1144           if (dump_file)
1145             {
1146               fprintf (dump_file, " + " HOST_WIDEST_INT_PRINT_DEC "(",
1147                        pfedge->flow);
1148               print_edge (dump_file, fixup_graph, i, i + 1);
1149               fprintf (dump_file, ")");
1150             }
1151         }
1152
1153       pfedge_n =
1154         find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index);
1155       /* Deduct flow from normalized reverse edge.  */
1156       if (pfedge->norm_vertex_index && pfedge_n->flow)
1157         {
1158           bb->count -= pfedge_n->flow;
1159           if (dump_file)
1160             {
1161               fprintf (dump_file, " - " HOST_WIDEST_INT_PRINT_DEC "(",
1162                        pfedge_n->flow);
1163               print_edge (dump_file, fixup_graph, i + 1,
1164                           pfedge->norm_vertex_index);
1165               fprintf (dump_file, ")");
1166             }
1167         }
1168       if (dump_file)
1169         fprintf (dump_file, " = " HOST_WIDEST_INT_PRINT_DEC "\n", bb->count);
1170
1171       /* Fixup edge.  */
1172       FOR_EACH_EDGE (e, ei, bb->succs)
1173         {
1174           /* Treat edges with ignore attribute set as if they don't exist.  */
1175           if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
1176             continue;
1177
1178           j = 2 * e->dest->index;
1179           if (dump_file)
1180             fprintf (dump_file, "%d->%d: " HOST_WIDEST_INT_PRINT_DEC "",
1181                      bb->index, e->dest->index, e->count);
1182
1183           pfedge = find_fixup_edge (fixup_graph, i + 1, j);
1184
1185           if (bb->index != e->dest->index)
1186             {
1187               /* Non-self edge.  */
1188               if (pfedge->flow)
1189                 {
1190                   e->count += pfedge->flow;
1191                   if (dump_file)
1192                     {
1193                       fprintf (dump_file, " + " HOST_WIDEST_INT_PRINT_DEC "(",
1194                                pfedge->flow);
1195                       print_edge (dump_file, fixup_graph, i + 1, j);
1196                       fprintf (dump_file, ")");
1197                     }
1198                 }
1199
1200               pfedge_n =
1201                 find_fixup_edge (fixup_graph, j, pfedge->norm_vertex_index);
1202               /* Deduct flow from normalized reverse edge.  */
1203               if (pfedge->norm_vertex_index && pfedge_n->flow)
1204                 {
1205                   e->count -= pfedge_n->flow;
1206                   if (dump_file)
1207                     {
1208                       fprintf (dump_file, " - " HOST_WIDEST_INT_PRINT_DEC "(",
1209                                pfedge_n->flow);
1210                       print_edge (dump_file, fixup_graph, j,
1211                                   pfedge->norm_vertex_index);
1212                       fprintf (dump_file, ")");
1213                     }
1214                 }
1215             }
1216           else
1217             {
1218               /* Handle self edges. Self edge is split with a normalization
1219                  vertex. Here i=j.  */
1220               pfedge = find_fixup_edge (fixup_graph, j, i + 1);
1221               pfedge_n =
1222                 find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index);
1223               e->count += pfedge_n->flow;
1224               bb->count += pfedge_n->flow;
1225               if (dump_file)
1226                 {
1227                   fprintf (dump_file, "(self edge)");
1228                   fprintf (dump_file, " + " HOST_WIDEST_INT_PRINT_DEC "(",
1229                            pfedge_n->flow);
1230                   print_edge (dump_file, fixup_graph, i + 1,
1231                               pfedge->norm_vertex_index);
1232                   fprintf (dump_file, ")");
1233                 }
1234             }
1235
1236           if (bb->count)
1237             e->probability = REG_BR_PROB_BASE * e->count / bb->count;
1238           if (dump_file)
1239             fprintf (dump_file, " = " HOST_WIDEST_INT_PRINT_DEC "\t(%.1f%%)\n",
1240                      e->count, e->probability * 100.0 / REG_BR_PROB_BASE);
1241         }
1242     }
1243
1244   ENTRY_BLOCK_PTR->count = sum_edge_counts (ENTRY_BLOCK_PTR->succs);
1245   EXIT_BLOCK_PTR->count = sum_edge_counts (EXIT_BLOCK_PTR->preds);
1246
1247   /* Compute edge probabilities.  */
1248   FOR_ALL_BB (bb)
1249     {
1250       if (bb->count)
1251         {
1252           FOR_EACH_EDGE (e, ei, bb->succs)
1253             e->probability = REG_BR_PROB_BASE * e->count / bb->count;
1254         }
1255       else
1256         {
1257           int total = 0;
1258           FOR_EACH_EDGE (e, ei, bb->succs)
1259             if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
1260               total++;
1261           if (total)
1262             {
1263               FOR_EACH_EDGE (e, ei, bb->succs)
1264                 {
1265                   if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
1266                     e->probability = REG_BR_PROB_BASE / total;
1267                   else
1268                     e->probability = 0;
1269                 }
1270             }
1271           else
1272             {
1273               total += EDGE_COUNT (bb->succs);
1274               FOR_EACH_EDGE (e, ei, bb->succs)
1275                   e->probability = REG_BR_PROB_BASE / total;
1276             }
1277         }
1278     }
1279
1280   if (dump_file)
1281     {
1282       fprintf (dump_file, "\nCheck %s() CFG flow conservation:\n",
1283            lang_hooks.decl_printable_name (current_function_decl, 2));
1284       FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb)
1285         {
1286           if ((bb->count != sum_edge_counts (bb->preds))
1287                || (bb->count != sum_edge_counts (bb->succs)))
1288             {
1289               fprintf (dump_file,
1290                        "BB%d(" HOST_WIDEST_INT_PRINT_DEC ")  **INVALID**: ",
1291                        bb->index, bb->count);
1292               fprintf (stderr,
1293                        "******** BB%d(" HOST_WIDEST_INT_PRINT_DEC
1294                        ")  **INVALID**: \n", bb->index, bb->count);
1295               fprintf (dump_file, "in_edges=" HOST_WIDEST_INT_PRINT_DEC " ",
1296                        sum_edge_counts (bb->preds));
1297               fprintf (dump_file, "out_edges=" HOST_WIDEST_INT_PRINT_DEC "\n",
1298                        sum_edge_counts (bb->succs));
1299             }
1300          }
1301     }
1302 }
1303
1304
1305 /* Implements the negative cycle canceling algorithm to compute a minimum cost
1306    flow.
1307 Algorithm:
1308 1. Find maximal flow.
1309 2. Form residual network
1310 3. Repeat:
1311   While G contains a negative cost cycle C, reverse the flow on the found cycle
1312   by the minimum residual capacity in that cycle.
1313 4. Form the minimal cost flow
1314   f(u,v) = rf(v, u)
1315 Input:
1316   FIXUP_GRAPH - Initial fixup graph.
1317   The flow field is modified to represent the minimum cost flow.  */
1318
1319 static void
1320 find_minimum_cost_flow (fixup_graph_type *fixup_graph)
1321 {
1322   /* Holds the index of predecessor in path.  */
1323   int *pred;
1324   /* Used to hold the minimum cost cycle.  */
1325   int *cycle;
1326   /* Used to record the number of iterations of cancel_negative_cycle.  */
1327   int iteration;
1328   /* Vector d[i] holds the minimum cost of path from i to sink.  */
1329   gcov_type *d;
1330   int fnum_vertices;
1331   int new_exit_index;
1332   int new_entry_index;
1333
1334   gcc_assert (fixup_graph);
1335   fnum_vertices = fixup_graph->num_vertices;
1336   new_exit_index = fixup_graph->new_exit_index;
1337   new_entry_index = fixup_graph->new_entry_index;
1338
1339   find_max_flow (fixup_graph, new_entry_index, new_exit_index);
1340
1341   /* Initialize the structures for find_negative_cycle().  */
1342   pred = (int *) xcalloc (fnum_vertices, sizeof (int));
1343   d = (gcov_type *) xcalloc (fnum_vertices, sizeof (gcov_type));
1344   cycle = (int *) xcalloc (fnum_vertices, sizeof (int));
1345
1346   /* Repeatedly find and cancel negative cost cycles, until
1347      no more negative cycles exist. This also updates the flow field
1348      to represent the minimum cost flow so far.  */
1349   iteration = 0;
1350   while (cancel_negative_cycle (fixup_graph, pred, d, cycle))
1351     {
1352       iteration++;
1353       if (iteration > MAX_ITER (fixup_graph->num_vertices,
1354                                 fixup_graph->num_edges))
1355         break;
1356     }
1357
1358   if (dump_file)
1359     dump_fixup_graph (dump_file, fixup_graph,
1360                       "After find_minimum_cost_flow()");
1361
1362   /* Cleanup structures.  */
1363   free (pred);
1364   free (d);
1365   free (cycle);
1366 }
1367
1368
1369 /* Compute the sum of the edge counts in TO_EDGES.  */
1370
1371 gcov_type
1372 sum_edge_counts (VEC (edge, gc) *to_edges)
1373 {
1374   gcov_type sum = 0;
1375   edge e;
1376   edge_iterator ei;
1377
1378   FOR_EACH_EDGE (e, ei, to_edges)
1379     {
1380       if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
1381         continue;
1382       sum += e->count;
1383     }
1384   return sum;
1385 }
1386
1387
1388 /* Main routine. Smoothes the intial assigned basic block and edge counts using
1389    a minimum cost flow algorithm, to ensure that the flow consistency rule is
1390    obeyed: sum of outgoing edges = sum of incoming edges for each basic
1391    block.  */
1392
1393 void
1394 mcf_smooth_cfg (void)
1395 {
1396   fixup_graph_type fixup_graph;
1397   memset (&fixup_graph, 0, sizeof (fixup_graph));
1398   create_fixup_graph (&fixup_graph);
1399   find_minimum_cost_flow (&fixup_graph);
1400   adjust_cfg_counts (&fixup_graph);
1401   delete_fixup_graph (&fixup_graph);
1402 }