1 /* Loop transformation code generation
2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 #include "coretypes.h"
30 #include "basic-block.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
38 #include "tree-chrec.h"
39 #include "tree-data-ref.h"
40 #include "tree-pass.h"
41 #include "tree-scalar-evolution.h"
46 /* This loop nest code generation is based on non-singular matrix
49 A little terminology and a general sketch of the algorithm. See "A singular
50 loop transformation framework based on non-singular matrices" by Wei Li and
51 Keshav Pingali for formal proofs that the various statements below are
54 A loop iteration space represents the points traversed by the loop. A point in the
55 iteration space can be represented by a vector of size <loop depth>. You can
56 therefore represent the iteration space as an integral combinations of a set
59 A loop iteration space is dense if every integer point between the loop
60 bounds is a point in the iteration space. Every loop with a step of 1
61 therefore has a dense iteration space.
63 for i = 1 to 3, step 1 is a dense iteration space.
65 A loop iteration space is sparse if it is not dense. That is, the iteration
66 space skips integer points that are within the loop bounds.
68 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
71 Dense source spaces are easy to transform, because they don't skip any
72 points to begin with. Thus we can compute the exact bounds of the target
73 space using min/max and floor/ceil.
75 For a dense source space, we take the transformation matrix, decompose it
76 into a lower triangular part (H) and a unimodular part (U).
77 We then compute the auxiliary space from the unimodular part (source loop
78 nest . U = auxiliary space) , which has two important properties:
79 1. It traverses the iterations in the same lexicographic order as the source
81 2. It is a dense space when the source is a dense space (even if the target
82 space is going to be sparse).
84 Given the auxiliary space, we use the lower triangular part to compute the
85 bounds in the target space by simple matrix multiplication.
86 The gaps in the target space (IE the new loop step sizes) will be the
87 diagonals of the H matrix.
89 Sparse source spaces require another step, because you can't directly compute
90 the exact bounds of the auxiliary and target space from the sparse space.
91 Rather than try to come up with a separate algorithm to handle sparse source
92 spaces directly, we just find a legal transformation matrix that gives you
93 the sparse source space, from a dense space, and then transform the dense
96 For a regular sparse space, you can represent the source space as an integer
97 lattice, and the base space of that lattice will always be dense. Thus, we
98 effectively use the lattice to figure out the transformation from the lattice
99 base space, to the sparse iteration space (IE what transform was applied to
100 the dense space to make it sparse). We then compose this transform with the
101 transformation matrix specified by the user (since our matrix transformations
102 are closed under composition, this is okay). We can then use the base space
103 (which is dense) plus the composed transformation matrix, to compute the rest
104 of the transform using the dense space algorithm above.
106 In other words, our sparse source space (B) is decomposed into a dense base
107 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
108 We then compute the composition of L and the user transformation matrix (T),
109 so that T is now a transform from A to the result, instead of from B to the
111 IE A.(LT) = result instead of B.T = result
112 Since A is now a dense source space, we can use the dense source space
113 algorithm above to compute the result of applying transform (LT) to A.
115 Fourier-Motzkin elimination is used to compute the bounds of the base space
118 static bool perfect_nestify (struct loop *, VEC(tree,heap) *,
119 VEC(tree,heap) *, VEC(int,heap) *,
121 /* Lattice stuff that is internal to the code generation algorithm. */
125 /* Lattice base matrix. */
127 /* Lattice dimension. */
129 /* Origin vector for the coefficients. */
130 lambda_vector origin;
131 /* Origin matrix for the invariants. */
132 lambda_matrix origin_invariants;
133 /* Number of invariants. */
137 #define LATTICE_BASE(T) ((T)->base)
138 #define LATTICE_DIMENSION(T) ((T)->dimension)
139 #define LATTICE_ORIGIN(T) ((T)->origin)
140 #define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
141 #define LATTICE_INVARIANTS(T) ((T)->invariants)
143 static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
145 static lambda_lattice lambda_lattice_new (int, int);
146 static lambda_lattice lambda_lattice_compute_base (lambda_loopnest);
148 static tree find_induction_var_from_exit_cond (struct loop *);
149 static bool can_convert_to_perfect_nest (struct loop *);
151 /* Create a new lambda body vector. */
154 lambda_body_vector_new (int size)
156 lambda_body_vector ret;
158 ret = ggc_alloc (sizeof (*ret));
159 LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
160 LBV_SIZE (ret) = size;
161 LBV_DENOMINATOR (ret) = 1;
165 /* Compute the new coefficients for the vector based on the
166 *inverse* of the transformation matrix. */
169 lambda_body_vector_compute_new (lambda_trans_matrix transform,
170 lambda_body_vector vect)
172 lambda_body_vector temp;
175 /* Make sure the matrix is square. */
176 gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
178 depth = LTM_ROWSIZE (transform);
180 temp = lambda_body_vector_new (depth);
181 LBV_DENOMINATOR (temp) =
182 LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
183 lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
184 LTM_MATRIX (transform), depth,
185 LBV_COEFFICIENTS (temp));
186 LBV_SIZE (temp) = LBV_SIZE (vect);
190 /* Print out a lambda body vector. */
193 print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
195 print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
198 /* Return TRUE if two linear expressions are equal. */
201 lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
202 int depth, int invariants)
206 if (lle1 == NULL || lle2 == NULL)
208 if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
210 if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
212 for (i = 0; i < depth; i++)
213 if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
215 for (i = 0; i < invariants; i++)
216 if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
217 LLE_INVARIANT_COEFFICIENTS (lle2)[i])
222 /* Create a new linear expression with dimension DIM, and total number
223 of invariants INVARIANTS. */
225 lambda_linear_expression
226 lambda_linear_expression_new (int dim, int invariants)
228 lambda_linear_expression ret;
230 ret = ggc_alloc_cleared (sizeof (*ret));
232 LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
233 LLE_CONSTANT (ret) = 0;
234 LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
235 LLE_DENOMINATOR (ret) = 1;
236 LLE_NEXT (ret) = NULL;
241 /* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
242 The starting letter used for variable names is START. */
245 print_linear_expression (FILE * outfile, lambda_vector expr, int size,
250 for (i = 0; i < size; i++)
257 fprintf (outfile, "-");
260 else if (expr[i] > 0)
261 fprintf (outfile, " + ");
263 fprintf (outfile, " - ");
264 if (abs (expr[i]) == 1)
265 fprintf (outfile, "%c", start + i);
267 fprintf (outfile, "%d%c", abs (expr[i]), start + i);
272 /* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
273 depth/number of coefficients is given by DEPTH, the number of invariants is
274 given by INVARIANTS, and the character to start variable names with is given
278 print_lambda_linear_expression (FILE * outfile,
279 lambda_linear_expression expr,
280 int depth, int invariants, char start)
282 fprintf (outfile, "\tLinear expression: ");
283 print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
284 fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
285 fprintf (outfile, " invariants: ");
286 print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
288 fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
291 /* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
292 coefficients is given by DEPTH, the number of invariants is
293 given by INVARIANTS, and the character to start variable names with is given
297 print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
298 int invariants, char start)
301 lambda_linear_expression expr;
305 expr = LL_LINEAR_OFFSET (loop);
306 step = LL_STEP (loop);
307 fprintf (outfile, " step size = %d \n", step);
311 fprintf (outfile, " linear offset: \n");
312 print_lambda_linear_expression (outfile, expr, depth, invariants,
316 fprintf (outfile, " lower bound: \n");
317 for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
318 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
319 fprintf (outfile, " upper bound: \n");
320 for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
321 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
324 /* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
325 number of invariants. */
328 lambda_loopnest_new (int depth, int invariants)
331 ret = ggc_alloc (sizeof (*ret));
333 LN_LOOPS (ret) = ggc_alloc_cleared (depth * sizeof (lambda_loop));
334 LN_DEPTH (ret) = depth;
335 LN_INVARIANTS (ret) = invariants;
340 /* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
341 character to use for loop names is given by START. */
344 print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
347 for (i = 0; i < LN_DEPTH (nest); i++)
349 fprintf (outfile, "Loop %c\n", start + i);
350 print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
351 LN_INVARIANTS (nest), 'i');
352 fprintf (outfile, "\n");
356 /* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
359 static lambda_lattice
360 lambda_lattice_new (int depth, int invariants)
363 ret = ggc_alloc (sizeof (*ret));
364 LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
365 LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
366 LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
367 LATTICE_DIMENSION (ret) = depth;
368 LATTICE_INVARIANTS (ret) = invariants;
372 /* Compute the lattice base for NEST. The lattice base is essentially a
373 non-singular transform from a dense base space to a sparse iteration space.
374 We use it so that we don't have to specially handle the case of a sparse
375 iteration space in other parts of the algorithm. As a result, this routine
376 only does something interesting (IE produce a matrix that isn't the
377 identity matrix) if NEST is a sparse space. */
379 static lambda_lattice
380 lambda_lattice_compute_base (lambda_loopnest nest)
383 int depth, invariants;
388 lambda_linear_expression expression;
390 depth = LN_DEPTH (nest);
391 invariants = LN_INVARIANTS (nest);
393 ret = lambda_lattice_new (depth, invariants);
394 base = LATTICE_BASE (ret);
395 for (i = 0; i < depth; i++)
397 loop = LN_LOOPS (nest)[i];
399 step = LL_STEP (loop);
400 /* If we have a step of 1, then the base is one, and the
401 origin and invariant coefficients are 0. */
404 for (j = 0; j < depth; j++)
407 LATTICE_ORIGIN (ret)[i] = 0;
408 for (j = 0; j < invariants; j++)
409 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
413 /* Otherwise, we need the lower bound expression (which must
414 be an affine function) to determine the base. */
415 expression = LL_LOWER_BOUND (loop);
416 gcc_assert (expression && !LLE_NEXT (expression)
417 && LLE_DENOMINATOR (expression) == 1);
419 /* The lower triangular portion of the base is going to be the
420 coefficient times the step */
421 for (j = 0; j < i; j++)
422 base[i][j] = LLE_COEFFICIENTS (expression)[j]
423 * LL_STEP (LN_LOOPS (nest)[j]);
425 for (j = i + 1; j < depth; j++)
428 /* Origin for this loop is the constant of the lower bound
430 LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
432 /* Coefficient for the invariants are equal to the invariant
433 coefficients in the expression. */
434 for (j = 0; j < invariants; j++)
435 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
436 LLE_INVARIANT_COEFFICIENTS (expression)[j];
442 /* Compute the least common multiple of two numbers A and B . */
445 least_common_multiple (int a, int b)
447 return (abs (a) * abs (b) / gcd (a, b));
450 /* Perform Fourier-Motzkin elimination to calculate the bounds of the
452 Fourier-Motzkin is a way of reducing systems of linear inequalities so that
453 it is easy to calculate the answer and bounds.
454 A sketch of how it works:
455 Given a system of linear inequalities, ai * xj >= bk, you can always
456 rewrite the constraints so they are all of the form
457 a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
458 in b1 ... bk, and some a in a1...ai)
459 You can then eliminate this x from the non-constant inequalities by
460 rewriting these as a <= b, x >= constant, and delete the x variable.
461 You can then repeat this for any remaining x variables, and then we have
462 an easy to use variable <= constant (or no variables at all) form that we
463 can construct our bounds from.
465 In our case, each time we eliminate, we construct part of the bound from
466 the ith variable, then delete the ith variable.
468 Remember the constant are in our vector a, our coefficient matrix is A,
469 and our invariant coefficient matrix is B.
471 SIZE is the size of the matrices being passed.
472 DEPTH is the loop nest depth.
473 INVARIANTS is the number of loop invariants.
474 A, B, and a are the coefficient matrix, invariant coefficient, and a
475 vector of constants, respectively. */
477 static lambda_loopnest
478 compute_nest_using_fourier_motzkin (int size,
486 int multiple, f1, f2;
488 lambda_linear_expression expression;
490 lambda_loopnest auxillary_nest;
491 lambda_matrix swapmatrix, A1, B1;
492 lambda_vector swapvector, a1;
495 A1 = lambda_matrix_new (128, depth);
496 B1 = lambda_matrix_new (128, invariants);
497 a1 = lambda_vector_new (128);
499 auxillary_nest = lambda_loopnest_new (depth, invariants);
501 for (i = depth - 1; i >= 0; i--)
503 loop = lambda_loop_new ();
504 LN_LOOPS (auxillary_nest)[i] = loop;
507 for (j = 0; j < size; j++)
511 /* Any linear expression in the matrix with a coefficient less
512 than 0 becomes part of the new lower bound. */
513 expression = lambda_linear_expression_new (depth, invariants);
515 for (k = 0; k < i; k++)
516 LLE_COEFFICIENTS (expression)[k] = A[j][k];
518 for (k = 0; k < invariants; k++)
519 LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
521 LLE_DENOMINATOR (expression) = -1 * A[j][i];
522 LLE_CONSTANT (expression) = -1 * a[j];
524 /* Ignore if identical to the existing lower bound. */
525 if (!lle_equal (LL_LOWER_BOUND (loop),
526 expression, depth, invariants))
528 LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
529 LL_LOWER_BOUND (loop) = expression;
533 else if (A[j][i] > 0)
535 /* Any linear expression with a coefficient greater than 0
536 becomes part of the new upper bound. */
537 expression = lambda_linear_expression_new (depth, invariants);
538 for (k = 0; k < i; k++)
539 LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
541 for (k = 0; k < invariants; k++)
542 LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
544 LLE_DENOMINATOR (expression) = A[j][i];
545 LLE_CONSTANT (expression) = a[j];
547 /* Ignore if identical to the existing upper bound. */
548 if (!lle_equal (LL_UPPER_BOUND (loop),
549 expression, depth, invariants))
551 LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
552 LL_UPPER_BOUND (loop) = expression;
558 /* This portion creates a new system of linear inequalities by deleting
559 the i'th variable, reducing the system by one variable. */
561 for (j = 0; j < size; j++)
563 /* If the coefficient for the i'th variable is 0, then we can just
564 eliminate the variable straightaway. Otherwise, we have to
565 multiply through by the coefficients we are eliminating. */
568 lambda_vector_copy (A[j], A1[newsize], depth);
569 lambda_vector_copy (B[j], B1[newsize], invariants);
573 else if (A[j][i] > 0)
575 for (k = 0; k < size; k++)
579 multiple = least_common_multiple (A[j][i], A[k][i]);
580 f1 = multiple / A[j][i];
581 f2 = -1 * multiple / A[k][i];
583 lambda_vector_add_mc (A[j], f1, A[k], f2,
585 lambda_vector_add_mc (B[j], f1, B[k], f2,
586 B1[newsize], invariants);
587 a1[newsize] = f1 * a[j] + f2 * a[k];
609 return auxillary_nest;
612 /* Compute the loop bounds for the auxiliary space NEST.
613 Input system used is Ax <= b. TRANS is the unimodular transformation.
614 Given the original nest, this function will
615 1. Convert the nest into matrix form, which consists of a matrix for the
616 coefficients, a matrix for the
617 invariant coefficients, and a vector for the constants.
618 2. Use the matrix form to calculate the lattice base for the nest (which is
620 3. Compose the dense space transform with the user specified transform, to
621 get a transform we can easily calculate transformed bounds for.
622 4. Multiply the composed transformation matrix times the matrix form of the
624 5. Transform the newly created matrix (from step 4) back into a loop nest
625 using Fourier-Motzkin elimination to figure out the bounds. */
627 static lambda_loopnest
628 lambda_compute_auxillary_space (lambda_loopnest nest,
629 lambda_trans_matrix trans)
631 lambda_matrix A, B, A1, B1;
633 lambda_matrix invertedtrans;
634 int depth, invariants, size;
637 lambda_linear_expression expression;
638 lambda_lattice lattice;
640 depth = LN_DEPTH (nest);
641 invariants = LN_INVARIANTS (nest);
643 /* Unfortunately, we can't know the number of constraints we'll have
644 ahead of time, but this should be enough even in ridiculous loop nest
645 cases. We must not go over this limit. */
646 A = lambda_matrix_new (128, depth);
647 B = lambda_matrix_new (128, invariants);
648 a = lambda_vector_new (128);
650 A1 = lambda_matrix_new (128, depth);
651 B1 = lambda_matrix_new (128, invariants);
652 a1 = lambda_vector_new (128);
654 /* Store the bounds in the equation matrix A, constant vector a, and
655 invariant matrix B, so that we have Ax <= a + B.
656 This requires a little equation rearranging so that everything is on the
657 correct side of the inequality. */
659 for (i = 0; i < depth; i++)
661 loop = LN_LOOPS (nest)[i];
663 /* First we do the lower bound. */
664 if (LL_STEP (loop) > 0)
665 expression = LL_LOWER_BOUND (loop);
667 expression = LL_UPPER_BOUND (loop);
669 for (; expression != NULL; expression = LLE_NEXT (expression))
671 /* Fill in the coefficient. */
672 for (j = 0; j < i; j++)
673 A[size][j] = LLE_COEFFICIENTS (expression)[j];
675 /* And the invariant coefficient. */
676 for (j = 0; j < invariants; j++)
677 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
679 /* And the constant. */
680 a[size] = LLE_CONSTANT (expression);
682 /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
683 constants and single variables on */
684 A[size][i] = -1 * LLE_DENOMINATOR (expression);
686 for (j = 0; j < invariants; j++)
690 /* Need to increase matrix sizes above. */
691 gcc_assert (size <= 127);
695 /* Then do the exact same thing for the upper bounds. */
696 if (LL_STEP (loop) > 0)
697 expression = LL_UPPER_BOUND (loop);
699 expression = LL_LOWER_BOUND (loop);
701 for (; expression != NULL; expression = LLE_NEXT (expression))
703 /* Fill in the coefficient. */
704 for (j = 0; j < i; j++)
705 A[size][j] = LLE_COEFFICIENTS (expression)[j];
707 /* And the invariant coefficient. */
708 for (j = 0; j < invariants; j++)
709 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
711 /* And the constant. */
712 a[size] = LLE_CONSTANT (expression);
714 /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
715 for (j = 0; j < i; j++)
717 A[size][i] = LLE_DENOMINATOR (expression);
719 /* Need to increase matrix sizes above. */
720 gcc_assert (size <= 127);
725 /* Compute the lattice base x = base * y + origin, where y is the
727 lattice = lambda_lattice_compute_base (nest);
729 /* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
732 lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
734 /* a1 = a - A * origin constant. */
735 lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
736 lambda_vector_add_mc (a, 1, a1, -1, a1, size);
738 /* B1 = B - A * origin invariant. */
739 lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
741 lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
743 /* Now compute the auxiliary space bounds by first inverting U, multiplying
744 it by A1, then performing Fourier-Motzkin. */
746 invertedtrans = lambda_matrix_new (depth, depth);
748 /* Compute the inverse of U. */
749 lambda_matrix_inverse (LTM_MATRIX (trans),
750 invertedtrans, depth);
753 lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
755 return compute_nest_using_fourier_motzkin (size, depth, invariants,
759 /* Compute the loop bounds for the target space, using the bounds of
760 the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
761 The target space loop bounds are computed by multiplying the triangular
762 matrix H by the auxiliary nest, to get the new loop bounds. The sign of
763 the loop steps (positive or negative) is then used to swap the bounds if
764 the loop counts downwards.
765 Return the target loopnest. */
767 static lambda_loopnest
768 lambda_compute_target_space (lambda_loopnest auxillary_nest,
769 lambda_trans_matrix H, lambda_vector stepsigns)
771 lambda_matrix inverse, H1;
772 int determinant, i, j;
776 lambda_loopnest target_nest;
777 int depth, invariants;
778 lambda_matrix target;
780 lambda_loop auxillary_loop, target_loop;
781 lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
783 depth = LN_DEPTH (auxillary_nest);
784 invariants = LN_INVARIANTS (auxillary_nest);
786 inverse = lambda_matrix_new (depth, depth);
787 determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
789 /* H1 is H excluding its diagonal. */
790 H1 = lambda_matrix_new (depth, depth);
791 lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
793 for (i = 0; i < depth; i++)
796 /* Computes the linear offsets of the loop bounds. */
797 target = lambda_matrix_new (depth, depth);
798 lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
800 target_nest = lambda_loopnest_new (depth, invariants);
802 for (i = 0; i < depth; i++)
805 /* Get a new loop structure. */
806 target_loop = lambda_loop_new ();
807 LN_LOOPS (target_nest)[i] = target_loop;
809 /* Computes the gcd of the coefficients of the linear part. */
810 gcd1 = lambda_vector_gcd (target[i], i);
812 /* Include the denominator in the GCD. */
813 gcd1 = gcd (gcd1, determinant);
815 /* Now divide through by the gcd. */
816 for (j = 0; j < i; j++)
817 target[i][j] = target[i][j] / gcd1;
819 expression = lambda_linear_expression_new (depth, invariants);
820 lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
821 LLE_DENOMINATOR (expression) = determinant / gcd1;
822 LLE_CONSTANT (expression) = 0;
823 lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
825 LL_LINEAR_OFFSET (target_loop) = expression;
828 /* For each loop, compute the new bounds from H. */
829 for (i = 0; i < depth; i++)
831 auxillary_loop = LN_LOOPS (auxillary_nest)[i];
832 target_loop = LN_LOOPS (target_nest)[i];
833 LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
834 factor = LTM_MATRIX (H)[i][i];
836 /* First we do the lower bound. */
837 auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
839 for (; auxillary_expr != NULL;
840 auxillary_expr = LLE_NEXT (auxillary_expr))
842 target_expr = lambda_linear_expression_new (depth, invariants);
843 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
844 depth, inverse, depth,
845 LLE_COEFFICIENTS (target_expr));
846 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
847 LLE_COEFFICIENTS (target_expr), depth,
850 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
851 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
852 LLE_INVARIANT_COEFFICIENTS (target_expr),
854 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
855 LLE_INVARIANT_COEFFICIENTS (target_expr),
857 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
859 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
861 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
863 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
865 LLE_INVARIANT_COEFFICIENTS
866 (target_expr), invariants,
868 LLE_DENOMINATOR (target_expr) =
869 LLE_DENOMINATOR (target_expr) * determinant;
871 /* Find the gcd and divide by it here, rather than doing it
872 at the tree level. */
873 gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
874 gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
876 gcd1 = gcd (gcd1, gcd2);
877 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
878 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
879 for (j = 0; j < depth; j++)
880 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
881 for (j = 0; j < invariants; j++)
882 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
883 LLE_CONSTANT (target_expr) /= gcd1;
884 LLE_DENOMINATOR (target_expr) /= gcd1;
885 /* Ignore if identical to existing bound. */
886 if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
889 LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
890 LL_LOWER_BOUND (target_loop) = target_expr;
893 /* Now do the upper bound. */
894 auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
896 for (; auxillary_expr != NULL;
897 auxillary_expr = LLE_NEXT (auxillary_expr))
899 target_expr = lambda_linear_expression_new (depth, invariants);
900 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
901 depth, inverse, depth,
902 LLE_COEFFICIENTS (target_expr));
903 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
904 LLE_COEFFICIENTS (target_expr), depth,
906 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
907 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
908 LLE_INVARIANT_COEFFICIENTS (target_expr),
910 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
911 LLE_INVARIANT_COEFFICIENTS (target_expr),
913 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
915 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
917 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
919 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
921 LLE_INVARIANT_COEFFICIENTS
922 (target_expr), invariants,
924 LLE_DENOMINATOR (target_expr) =
925 LLE_DENOMINATOR (target_expr) * determinant;
927 /* Find the gcd and divide by it here, instead of at the
929 gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
930 gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
932 gcd1 = gcd (gcd1, gcd2);
933 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
934 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
935 for (j = 0; j < depth; j++)
936 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
937 for (j = 0; j < invariants; j++)
938 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
939 LLE_CONSTANT (target_expr) /= gcd1;
940 LLE_DENOMINATOR (target_expr) /= gcd1;
941 /* Ignore if equal to existing bound. */
942 if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
945 LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
946 LL_UPPER_BOUND (target_loop) = target_expr;
950 for (i = 0; i < depth; i++)
952 target_loop = LN_LOOPS (target_nest)[i];
953 /* If necessary, exchange the upper and lower bounds and negate
955 if (stepsigns[i] < 0)
957 LL_STEP (target_loop) *= -1;
958 tmp_expr = LL_LOWER_BOUND (target_loop);
959 LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
960 LL_UPPER_BOUND (target_loop) = tmp_expr;
966 /* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
970 lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
972 lambda_matrix matrix, H;
974 lambda_vector newsteps;
975 int i, j, factor, minimum_column;
978 matrix = LTM_MATRIX (trans);
979 size = LTM_ROWSIZE (trans);
980 H = lambda_matrix_new (size, size);
982 newsteps = lambda_vector_new (size);
983 lambda_vector_copy (stepsigns, newsteps, size);
985 lambda_matrix_copy (matrix, H, size, size);
987 for (j = 0; j < size; j++)
991 for (i = j; i < size; i++)
993 lambda_matrix_col_negate (H, size, i);
994 while (lambda_vector_first_nz (row, size, j + 1) < size)
996 minimum_column = lambda_vector_min_nz (row, size, j);
997 lambda_matrix_col_exchange (H, size, j, minimum_column);
1000 newsteps[j] = newsteps[minimum_column];
1001 newsteps[minimum_column] = temp;
1003 for (i = j + 1; i < size; i++)
1005 factor = row[i] / row[j];
1006 lambda_matrix_col_add (H, size, j, i, -1 * factor);
1013 /* Transform NEST according to TRANS, and return the new loopnest.
1015 1. Computing a lattice base for the transformation
1016 2. Composing the dense base with the specified transformation (TRANS)
1017 3. Decomposing the combined transformation into a lower triangular portion,
1018 and a unimodular portion.
1019 4. Computing the auxiliary nest using the unimodular portion.
1020 5. Computing the target nest using the auxiliary nest and the lower
1021 triangular portion. */
1024 lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
1026 lambda_loopnest auxillary_nest, target_nest;
1028 int depth, invariants;
1030 lambda_lattice lattice;
1031 lambda_trans_matrix trans1, H, U;
1033 lambda_linear_expression expression;
1034 lambda_vector origin;
1035 lambda_matrix origin_invariants;
1036 lambda_vector stepsigns;
1039 depth = LN_DEPTH (nest);
1040 invariants = LN_INVARIANTS (nest);
1042 /* Keep track of the signs of the loop steps. */
1043 stepsigns = lambda_vector_new (depth);
1044 for (i = 0; i < depth; i++)
1046 if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
1052 /* Compute the lattice base. */
1053 lattice = lambda_lattice_compute_base (nest);
1054 trans1 = lambda_trans_matrix_new (depth, depth);
1056 /* Multiply the transformation matrix by the lattice base. */
1058 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
1059 LTM_MATRIX (trans1), depth, depth, depth);
1061 /* Compute the Hermite normal form for the new transformation matrix. */
1062 H = lambda_trans_matrix_new (depth, depth);
1063 U = lambda_trans_matrix_new (depth, depth);
1064 lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
1067 /* Compute the auxiliary loop nest's space from the unimodular
1069 auxillary_nest = lambda_compute_auxillary_space (nest, U);
1071 /* Compute the loop step signs from the old step signs and the
1072 transformation matrix. */
1073 stepsigns = lambda_compute_step_signs (trans1, stepsigns);
1075 /* Compute the target loop nest space from the auxiliary nest and
1076 the lower triangular matrix H. */
1077 target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns);
1078 origin = lambda_vector_new (depth);
1079 origin_invariants = lambda_matrix_new (depth, invariants);
1080 lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
1081 LATTICE_ORIGIN (lattice), origin);
1082 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
1083 origin_invariants, depth, depth, invariants);
1085 for (i = 0; i < depth; i++)
1087 loop = LN_LOOPS (target_nest)[i];
1088 expression = LL_LINEAR_OFFSET (loop);
1089 if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
1092 f = LLE_DENOMINATOR (expression);
1094 LLE_CONSTANT (expression) += f * origin[i];
1096 for (j = 0; j < invariants; j++)
1097 LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
1098 f * origin_invariants[i][j];
1105 /* Convert a gcc tree expression EXPR to a lambda linear expression, and
1106 return the new expression. DEPTH is the depth of the loopnest.
1107 OUTERINDUCTIONVARS is an array of the induction variables for outer loops
1108 in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
1109 is the amount we have to add/subtract from the expression because of the
1110 type of comparison it is used in. */
1112 static lambda_linear_expression
1113 gcc_tree_to_linear_expression (int depth, tree expr,
1114 VEC(tree,heap) *outerinductionvars,
1115 VEC(tree,heap) *invariants, int extra)
1117 lambda_linear_expression lle = NULL;
1118 switch (TREE_CODE (expr))
1122 lle = lambda_linear_expression_new (depth, 2 * depth);
1123 LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
1125 LLE_CONSTANT (lle) += extra;
1127 LLE_DENOMINATOR (lle) = 1;
1134 for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
1137 if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
1139 lle = lambda_linear_expression_new (depth, 2 * depth);
1140 LLE_COEFFICIENTS (lle)[i] = 1;
1142 LLE_CONSTANT (lle) = extra;
1144 LLE_DENOMINATOR (lle) = 1;
1147 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1150 if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
1152 lle = lambda_linear_expression_new (depth, 2 * depth);
1153 LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
1155 LLE_CONSTANT (lle) = extra;
1156 LLE_DENOMINATOR (lle) = 1;
1168 /* Return the depth of the loopnest NEST */
1171 depth_of_nest (struct loop *nest)
1183 /* Return true if OP is invariant in LOOP and all outer loops. */
1186 invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
1188 if (is_gimple_min_invariant (op))
1190 if (loop_depth (loop) == 0)
1192 if (!expr_invariant_in_loop_p (loop, op))
1194 if (!invariant_in_loop_and_outer_loops (loop_outer (loop), op))
1199 /* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
1200 or NULL if it could not be converted.
1201 DEPTH is the depth of the loop.
1202 INVARIANTS is a pointer to the array of loop invariants.
1203 The induction variable for this loop should be stored in the parameter
1205 OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
1208 gcc_loop_to_lambda_loop (struct loop *loop, int depth,
1209 VEC(tree,heap) ** invariants,
1210 tree * ourinductionvar,
1211 VEC(tree,heap) * outerinductionvars,
1212 VEC(tree,heap) ** lboundvars,
1213 VEC(tree,heap) ** uboundvars,
1214 VEC(int,heap) ** steps)
1218 tree access_fn, inductionvar;
1220 lambda_loop lloop = NULL;
1221 lambda_linear_expression lbound, ubound;
1225 tree lboundvar, uboundvar, uboundresult;
1227 /* Find out induction var and exit condition. */
1228 inductionvar = find_induction_var_from_exit_cond (loop);
1229 exit_cond = get_loop_exit_condition (loop);
1231 if (inductionvar == NULL || exit_cond == NULL)
1233 if (dump_file && (dump_flags & TDF_DETAILS))
1235 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
1239 test = TREE_OPERAND (exit_cond, 0);
1241 if (SSA_NAME_DEF_STMT (inductionvar) == NULL_TREE)
1244 if (dump_file && (dump_flags & TDF_DETAILS))
1246 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1251 phi = SSA_NAME_DEF_STMT (inductionvar);
1252 if (TREE_CODE (phi) != PHI_NODE)
1254 phi = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
1258 if (dump_file && (dump_flags & TDF_DETAILS))
1260 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1265 phi = SSA_NAME_DEF_STMT (phi);
1266 if (TREE_CODE (phi) != PHI_NODE)
1269 if (dump_file && (dump_flags & TDF_DETAILS))
1271 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1277 /* The induction variable name/version we want to put in the array is the
1278 result of the induction variable phi node. */
1279 *ourinductionvar = PHI_RESULT (phi);
1280 access_fn = instantiate_parameters
1281 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1282 if (access_fn == chrec_dont_know)
1284 if (dump_file && (dump_flags & TDF_DETAILS))
1286 "Unable to convert loop: Access function for induction variable phi is unknown\n");
1291 step = evolution_part_in_loop_num (access_fn, loop->num);
1292 if (!step || step == chrec_dont_know)
1294 if (dump_file && (dump_flags & TDF_DETAILS))
1296 "Unable to convert loop: Cannot determine step of loop.\n");
1300 if (TREE_CODE (step) != INTEGER_CST)
1303 if (dump_file && (dump_flags & TDF_DETAILS))
1305 "Unable to convert loop: Step of loop is not integer.\n");
1309 stepint = TREE_INT_CST_LOW (step);
1311 /* Only want phis for induction vars, which will have two
1313 if (PHI_NUM_ARGS (phi) != 2)
1315 if (dump_file && (dump_flags & TDF_DETAILS))
1317 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
1321 /* Another induction variable check. One argument's source should be
1322 in the loop, one outside the loop. */
1323 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src)
1324 && flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 1)->src))
1327 if (dump_file && (dump_flags & TDF_DETAILS))
1329 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
1334 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src))
1336 lboundvar = PHI_ARG_DEF (phi, 1);
1337 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1338 outerinductionvars, *invariants,
1343 lboundvar = PHI_ARG_DEF (phi, 0);
1344 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1345 outerinductionvars, *invariants,
1352 if (dump_file && (dump_flags & TDF_DETAILS))
1354 "Unable to convert loop: Cannot convert lower bound to linear expression\n");
1358 /* One part of the test may be a loop invariant tree. */
1359 VEC_reserve (tree, heap, *invariants, 1);
1360 if (TREE_CODE (TREE_OPERAND (test, 1)) == SSA_NAME
1361 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 1)))
1362 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 1));
1363 else if (TREE_CODE (TREE_OPERAND (test, 0)) == SSA_NAME
1364 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 0)))
1365 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 0));
1367 /* The non-induction variable part of the test is the upper bound variable.
1369 if (TREE_OPERAND (test, 0) == inductionvar)
1370 uboundvar = TREE_OPERAND (test, 1);
1372 uboundvar = TREE_OPERAND (test, 0);
1375 /* We only size the vectors assuming we have, at max, 2 times as many
1376 invariants as we do loops (one for each bound).
1377 This is just an arbitrary number, but it has to be matched against the
1379 gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
1382 /* We might have some leftover. */
1383 if (TREE_CODE (test) == LT_EXPR)
1384 extra = -1 * stepint;
1385 else if (TREE_CODE (test) == NE_EXPR)
1386 extra = -1 * stepint;
1387 else if (TREE_CODE (test) == GT_EXPR)
1388 extra = -1 * stepint;
1389 else if (TREE_CODE (test) == EQ_EXPR)
1390 extra = 1 * stepint;
1392 ubound = gcc_tree_to_linear_expression (depth, uboundvar,
1394 *invariants, extra);
1395 uboundresult = build2 (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
1396 build_int_cst (TREE_TYPE (uboundvar), extra));
1397 VEC_safe_push (tree, heap, *uboundvars, uboundresult);
1398 VEC_safe_push (tree, heap, *lboundvars, lboundvar);
1399 VEC_safe_push (int, heap, *steps, stepint);
1402 if (dump_file && (dump_flags & TDF_DETAILS))
1404 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
1408 lloop = lambda_loop_new ();
1409 LL_STEP (lloop) = stepint;
1410 LL_LOWER_BOUND (lloop) = lbound;
1411 LL_UPPER_BOUND (lloop) = ubound;
1415 /* Given a LOOP, find the induction variable it is testing against in the exit
1416 condition. Return the induction variable if found, NULL otherwise. */
1419 find_induction_var_from_exit_cond (struct loop *loop)
1421 tree expr = get_loop_exit_condition (loop);
1424 if (expr == NULL_TREE)
1426 if (TREE_CODE (expr) != COND_EXPR)
1428 test = TREE_OPERAND (expr, 0);
1429 if (!COMPARISON_CLASS_P (test))
1432 /* Find the side that is invariant in this loop. The ivar must be the other
1435 if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 0)))
1436 ivarop = TREE_OPERAND (test, 1);
1437 else if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 1)))
1438 ivarop = TREE_OPERAND (test, 0);
1442 if (TREE_CODE (ivarop) != SSA_NAME)
1447 DEF_VEC_P(lambda_loop);
1448 DEF_VEC_ALLOC_P(lambda_loop,heap);
1450 /* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
1451 Return the new loop nest.
1452 INDUCTIONVARS is a pointer to an array of induction variables for the
1453 loopnest that will be filled in during this process.
1454 INVARIANTS is a pointer to an array of invariants that will be filled in
1455 during this process. */
1458 gcc_loopnest_to_lambda_loopnest (struct loop *loop_nest,
1459 VEC(tree,heap) **inductionvars,
1460 VEC(tree,heap) **invariants)
1462 lambda_loopnest ret = NULL;
1463 struct loop *temp = loop_nest;
1464 int depth = depth_of_nest (loop_nest);
1466 VEC(lambda_loop,heap) *loops = NULL;
1467 VEC(tree,heap) *uboundvars = NULL;
1468 VEC(tree,heap) *lboundvars = NULL;
1469 VEC(int,heap) *steps = NULL;
1470 lambda_loop newloop;
1471 tree inductionvar = NULL;
1472 bool perfect_nest = perfect_nest_p (loop_nest);
1474 if (!perfect_nest && !can_convert_to_perfect_nest (loop_nest))
1479 newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
1480 &inductionvar, *inductionvars,
1481 &lboundvars, &uboundvars,
1486 VEC_safe_push (tree, heap, *inductionvars, inductionvar);
1487 VEC_safe_push (lambda_loop, heap, loops, newloop);
1493 if (!perfect_nestify (loop_nest, lboundvars, uboundvars, steps,
1498 "Not a perfect loop nest and couldn't convert to one.\n");
1503 "Successfully converted loop nest to perfect loop nest.\n");
1506 ret = lambda_loopnest_new (depth, 2 * depth);
1508 for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
1509 LN_LOOPS (ret)[i] = newloop;
1512 VEC_free (lambda_loop, heap, loops);
1513 VEC_free (tree, heap, uboundvars);
1514 VEC_free (tree, heap, lboundvars);
1515 VEC_free (int, heap, steps);
1520 /* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
1521 STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
1522 inserted for us are stored. INDUCTION_VARS is the array of induction
1523 variables for the loop this LBV is from. TYPE is the tree type to use for
1524 the variables and trees involved. */
1527 lbv_to_gcc_expression (lambda_body_vector lbv,
1528 tree type, VEC(tree,heap) *induction_vars,
1529 tree *stmts_to_insert)
1533 tree expr = build_linear_expr (type, LBV_COEFFICIENTS (lbv), induction_vars);
1535 k = LBV_DENOMINATOR (lbv);
1536 gcc_assert (k != 0);
1538 expr = fold_build2 (CEIL_DIV_EXPR, type, expr, build_int_cst (type, k));
1540 resvar = create_tmp_var (type, "lbvtmp");
1541 add_referenced_var (resvar);
1542 return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
1545 /* Convert a linear expression from coefficient and constant form to a
1547 Return the tree that represents the final value of the expression.
1548 LLE is the linear expression to convert.
1549 OFFSET is the linear offset to apply to the expression.
1550 TYPE is the tree type to use for the variables and math.
1551 INDUCTION_VARS is a vector of induction variables for the loops.
1552 INVARIANTS is a vector of the loop nest invariants.
1553 WRAP specifies what tree code to wrap the results in, if there is more than
1554 one (it is either MAX_EXPR, or MIN_EXPR).
1555 STMTS_TO_INSERT Is a pointer to the statement list we fill in with
1556 statements that need to be inserted for the linear expression. */
1559 lle_to_gcc_expression (lambda_linear_expression lle,
1560 lambda_linear_expression offset,
1562 VEC(tree,heap) *induction_vars,
1563 VEC(tree,heap) *invariants,
1564 enum tree_code wrap, tree *stmts_to_insert)
1568 tree expr = NULL_TREE;
1569 VEC(tree,heap) *results = NULL;
1571 gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
1573 /* Build up the linear expressions. */
1574 for (; lle != NULL; lle = LLE_NEXT (lle))
1576 expr = build_linear_expr (type, LLE_COEFFICIENTS (lle), induction_vars);
1577 expr = fold_build2 (PLUS_EXPR, type, expr,
1578 build_linear_expr (type,
1579 LLE_INVARIANT_COEFFICIENTS (lle),
1582 k = LLE_CONSTANT (lle);
1584 expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
1586 k = LLE_CONSTANT (offset);
1588 expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
1590 k = LLE_DENOMINATOR (lle);
1592 expr = fold_build2 (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
1593 type, expr, build_int_cst (type, k));
1596 VEC_safe_push (tree, heap, results, expr);
1601 /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
1602 if (VEC_length (tree, results) > 1)
1607 expr = VEC_index (tree, results, 0);
1608 for (i = 1; VEC_iterate (tree, results, i, op); i++)
1609 expr = fold_build2 (wrap, type, expr, op);
1612 VEC_free (tree, heap, results);
1614 resvar = create_tmp_var (type, "lletmp");
1615 add_referenced_var (resvar);
1616 return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
1619 /* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
1620 it, back into gcc code. This changes the
1621 loops, their induction variables, and their bodies, so that they
1622 match the transformed loopnest.
1623 OLD_LOOPNEST is the loopnest before we've replaced it with the new
1625 OLD_IVS is a vector of induction variables from the old loopnest.
1626 INVARIANTS is a vector of loop invariants from the old loopnest.
1627 NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
1628 TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
1632 lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
1633 VEC(tree,heap) *old_ivs,
1634 VEC(tree,heap) *invariants,
1635 lambda_loopnest new_loopnest,
1636 lambda_trans_matrix transform)
1641 VEC(tree,heap) *new_ivs = NULL;
1644 block_stmt_iterator bsi;
1648 transform = lambda_trans_matrix_inverse (transform);
1649 fprintf (dump_file, "Inverse of transformation matrix:\n");
1650 print_lambda_trans_matrix (dump_file, transform);
1652 depth = depth_of_nest (old_loopnest);
1653 temp = old_loopnest;
1657 lambda_loop newloop;
1660 tree ivvar, ivvarinced, exitcond, stmts;
1661 enum tree_code testtype;
1662 tree newupperbound, newlowerbound;
1663 lambda_linear_expression offset;
1668 oldiv = VEC_index (tree, old_ivs, i);
1669 type = TREE_TYPE (oldiv);
1671 /* First, build the new induction variable temporary */
1673 ivvar = create_tmp_var (type, "lnivtmp");
1674 add_referenced_var (ivvar);
1676 VEC_safe_push (tree, heap, new_ivs, ivvar);
1678 newloop = LN_LOOPS (new_loopnest)[i];
1680 /* Linear offset is a bit tricky to handle. Punt on the unhandled
1682 offset = LL_LINEAR_OFFSET (newloop);
1684 gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
1685 lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
1687 /* Now build the new lower bounds, and insert the statements
1688 necessary to generate it on the loop preheader. */
1689 newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
1690 LL_LINEAR_OFFSET (newloop),
1693 invariants, MAX_EXPR, &stmts);
1697 bsi_insert_on_edge (loop_preheader_edge (temp), stmts);
1698 bsi_commit_edge_inserts ();
1700 /* Build the new upper bound and insert its statements in the
1701 basic block of the exit condition */
1702 newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
1703 LL_LINEAR_OFFSET (newloop),
1706 invariants, MIN_EXPR, &stmts);
1707 exit = single_exit (temp);
1708 exitcond = get_loop_exit_condition (temp);
1709 bb = bb_for_stmt (exitcond);
1710 bsi = bsi_after_labels (bb);
1712 bsi_insert_before (&bsi, stmts, BSI_NEW_STMT);
1714 /* Create the new iv. */
1716 standard_iv_increment_position (temp, &bsi, &insert_after);
1717 create_iv (newlowerbound,
1718 build_int_cst (type, LL_STEP (newloop)),
1719 ivvar, temp, &bsi, insert_after, &ivvar,
1722 /* Unfortunately, the incremented ivvar that create_iv inserted may not
1723 dominate the block containing the exit condition.
1724 So we simply create our own incremented iv to use in the new exit
1725 test, and let redundancy elimination sort it out. */
1726 inc_stmt = build2 (PLUS_EXPR, type,
1727 ivvar, build_int_cst (type, LL_STEP (newloop)));
1728 inc_stmt = build_gimple_modify_stmt (SSA_NAME_VAR (ivvar), inc_stmt);
1729 ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
1730 GIMPLE_STMT_OPERAND (inc_stmt, 0) = ivvarinced;
1731 bsi = bsi_for_stmt (exitcond);
1732 bsi_insert_before (&bsi, inc_stmt, BSI_SAME_STMT);
1734 /* Replace the exit condition with the new upper bound
1737 testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
1739 /* We want to build a conditional where true means exit the loop, and
1740 false means continue the loop.
1741 So swap the testtype if this isn't the way things are.*/
1743 if (exit->flags & EDGE_FALSE_VALUE)
1744 testtype = swap_tree_comparison (testtype);
1746 COND_EXPR_COND (exitcond) = build2 (testtype,
1748 newupperbound, ivvarinced);
1749 update_stmt (exitcond);
1750 VEC_replace (tree, new_ivs, i, ivvar);
1756 /* Rewrite uses of the old ivs so that they are now specified in terms of
1759 for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
1761 imm_use_iterator imm_iter;
1762 use_operand_p use_p;
1764 tree oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
1767 if (TREE_CODE (oldiv_stmt) == PHI_NODE)
1768 oldiv_def = PHI_RESULT (oldiv_stmt);
1770 oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
1771 gcc_assert (oldiv_def != NULL_TREE);
1773 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, oldiv_def)
1776 lambda_body_vector lbv, newlbv;
1778 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1780 /* Compute the new expression for the induction
1782 depth = VEC_length (tree, new_ivs);
1783 lbv = lambda_body_vector_new (depth);
1784 LBV_COEFFICIENTS (lbv)[i] = 1;
1786 newlbv = lambda_body_vector_compute_new (transform, lbv);
1788 newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
1792 bsi = bsi_for_stmt (stmt);
1793 bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
1796 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1797 propagate_value (use_p, newiv);
1801 VEC_free (tree, heap, new_ivs);
1804 /* Return TRUE if this is not interesting statement from the perspective of
1805 determining if we have a perfect loop nest. */
1808 not_interesting_stmt (tree stmt)
1810 /* Note that COND_EXPR's aren't interesting because if they were exiting the
1811 loop, we would have already failed the number of exits tests. */
1812 if (TREE_CODE (stmt) == LABEL_EXPR
1813 || TREE_CODE (stmt) == GOTO_EXPR
1814 || TREE_CODE (stmt) == COND_EXPR)
1819 /* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
1822 phi_loop_edge_uses_def (struct loop *loop, tree phi, tree def)
1825 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1826 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, i)->src))
1827 if (PHI_ARG_DEF (phi, i) == def)
1832 /* Return TRUE if STMT is a use of PHI_RESULT. */
1835 stmt_uses_phi_result (tree stmt, tree phi_result)
1837 tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1839 /* This is conservatively true, because we only want SIMPLE bumpers
1840 of the form x +- constant for our pass. */
1841 return (use == phi_result);
1844 /* STMT is a bumper stmt for LOOP if the version it defines is used in the
1845 in-loop-edge in a phi node, and the operand it uses is the result of that
1848 i_3 = PHI (0, i_29); */
1851 stmt_is_bumper_for_loop (struct loop *loop, tree stmt)
1855 imm_use_iterator iter;
1856 use_operand_p use_p;
1858 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
1862 FOR_EACH_IMM_USE_FAST (use_p, iter, def)
1864 use = USE_STMT (use_p);
1865 if (TREE_CODE (use) == PHI_NODE)
1867 if (phi_loop_edge_uses_def (loop, use, def))
1868 if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
1876 /* Return true if LOOP is a perfect loop nest.
1877 Perfect loop nests are those loop nests where all code occurs in the
1878 innermost loop body.
1879 If S is a program statement, then
1888 is not a perfect loop nest because of S1.
1896 is a perfect loop nest.
1898 Since we don't have high level loops anymore, we basically have to walk our
1899 statements and ignore those that are there because the loop needs them (IE
1900 the induction variable increment, and jump back to the top of the loop). */
1903 perfect_nest_p (struct loop *loop)
1911 bbs = get_loop_body (loop);
1912 exit_cond = get_loop_exit_condition (loop);
1913 for (i = 0; i < loop->num_nodes; i++)
1915 if (bbs[i]->loop_father == loop)
1917 block_stmt_iterator bsi;
1918 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
1920 tree stmt = bsi_stmt (bsi);
1921 if (stmt == exit_cond
1922 || not_interesting_stmt (stmt)
1923 || stmt_is_bumper_for_loop (loop, stmt))
1931 /* See if the inner loops are perfectly nested as well. */
1933 return perfect_nest_p (loop->inner);
1937 /* Replace the USES of X in STMT, or uses with the same step as X with Y.
1938 YINIT is the initial value of Y, REPLACEMENTS is a hash table to
1939 avoid creating duplicate temporaries and FIRSTBSI is statement
1940 iterator where new temporaries should be inserted at the beginning
1941 of body basic block. */
1944 replace_uses_equiv_to_x_with_y (struct loop *loop, tree stmt, tree x,
1945 int xstep, tree y, tree yinit,
1946 htab_t replacements,
1947 block_stmt_iterator *firstbsi)
1950 use_operand_p use_p;
1952 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1954 tree use = USE_FROM_PTR (use_p);
1955 tree step = NULL_TREE;
1956 tree scev, init, val, var, setstmt;
1957 struct tree_map *h, in;
1960 /* Replace uses of X with Y right away. */
1967 scev = instantiate_parameters (loop,
1968 analyze_scalar_evolution (loop, use));
1970 if (scev == NULL || scev == chrec_dont_know)
1973 step = evolution_part_in_loop_num (scev, loop->num);
1975 || step == chrec_dont_know
1976 || TREE_CODE (step) != INTEGER_CST
1977 || int_cst_value (step) != xstep)
1980 /* Use REPLACEMENTS hash table to cache already created
1982 in.hash = htab_hash_pointer (use);
1984 h = htab_find_with_hash (replacements, &in, in.hash);
1987 SET_USE (use_p, h->to);
1991 /* USE which has the same step as X should be replaced
1992 with a temporary set to Y + YINIT - INIT. */
1993 init = initial_condition_in_loop_num (scev, loop->num);
1994 gcc_assert (init != NULL && init != chrec_dont_know);
1995 if (TREE_TYPE (use) == TREE_TYPE (y))
1997 val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), init, yinit);
1998 val = fold_build2 (PLUS_EXPR, TREE_TYPE (y), y, val);
2001 /* If X has the same type as USE, the same step
2002 and same initial value, it can be replaced by Y. */
2009 val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), y, yinit);
2010 val = fold_convert (TREE_TYPE (use), val);
2011 val = fold_build2 (PLUS_EXPR, TREE_TYPE (use), val, init);
2014 /* Create a temporary variable and insert it at the beginning
2015 of the loop body basic block, right after the PHI node
2017 var = create_tmp_var (TREE_TYPE (use), "perfecttmp");
2018 add_referenced_var (var);
2019 val = force_gimple_operand_bsi (firstbsi, val, false, NULL);
2020 setstmt = build_gimple_modify_stmt (var, val);
2021 var = make_ssa_name (var, setstmt);
2022 GIMPLE_STMT_OPERAND (setstmt, 0) = var;
2023 bsi_insert_before (firstbsi, setstmt, BSI_SAME_STMT);
2024 update_stmt (setstmt);
2025 SET_USE (use_p, var);
2026 h = ggc_alloc (sizeof (struct tree_map));
2030 loc = htab_find_slot_with_hash (replacements, h, in.hash, INSERT);
2031 gcc_assert ((*(struct tree_map **)loc) == NULL);
2032 *(struct tree_map **) loc = h;
2036 /* Return true if STMT is an exit PHI for LOOP */
2039 exit_phi_for_loop_p (struct loop *loop, tree stmt)
2042 if (TREE_CODE (stmt) != PHI_NODE
2043 || PHI_NUM_ARGS (stmt) != 1
2044 || bb_for_stmt (stmt) != single_exit (loop)->dest)
2050 /* Return true if STMT can be put back into the loop INNER, by
2051 copying it to the beginning of that loop and changing the uses. */
2054 can_put_in_inner_loop (struct loop *inner, tree stmt)
2056 imm_use_iterator imm_iter;
2057 use_operand_p use_p;
2059 gcc_assert (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT);
2060 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)
2061 || !expr_invariant_in_loop_p (inner, GIMPLE_STMT_OPERAND (stmt, 1)))
2064 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, GIMPLE_STMT_OPERAND (stmt, 0))
2066 if (!exit_phi_for_loop_p (inner, USE_STMT (use_p)))
2068 basic_block immbb = bb_for_stmt (USE_STMT (use_p));
2070 if (!flow_bb_inside_loop_p (inner, immbb))
2077 /* Return true if STMT can be put *after* the inner loop of LOOP. */
2079 can_put_after_inner_loop (struct loop *loop, tree stmt)
2081 imm_use_iterator imm_iter;
2082 use_operand_p use_p;
2084 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
2087 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, GIMPLE_STMT_OPERAND (stmt, 0))
2089 if (!exit_phi_for_loop_p (loop, USE_STMT (use_p)))
2091 basic_block immbb = bb_for_stmt (USE_STMT (use_p));
2093 if (!dominated_by_p (CDI_DOMINATORS,
2095 loop->inner->header)
2096 && !can_put_in_inner_loop (loop->inner, stmt))
2105 /* Return TRUE if LOOP is an imperfect nest that we can convert to a
2106 perfect one. At the moment, we only handle imperfect nests of
2107 depth 2, where all of the statements occur after the inner loop. */
2110 can_convert_to_perfect_nest (struct loop *loop)
2113 tree exit_condition, phi;
2115 block_stmt_iterator bsi;
2116 basic_block exitdest;
2118 /* Can't handle triply nested+ loops yet. */
2119 if (!loop->inner || loop->inner->inner)
2122 bbs = get_loop_body (loop);
2123 exit_condition = get_loop_exit_condition (loop);
2124 for (i = 0; i < loop->num_nodes; i++)
2126 if (bbs[i]->loop_father == loop)
2128 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2130 tree stmt = bsi_stmt (bsi);
2132 if (stmt == exit_condition
2133 || not_interesting_stmt (stmt)
2134 || stmt_is_bumper_for_loop (loop, stmt))
2137 /* If this is a scalar operation that can be put back
2138 into the inner loop, or after the inner loop, through
2139 copying, then do so. This works on the theory that
2140 any amount of scalar code we have to reduplicate
2141 into or after the loops is less expensive that the
2142 win we get from rearranging the memory walk
2143 the loop is doing so that it has better
2145 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
2147 use_operand_p use_a, use_b;
2148 imm_use_iterator imm_iter;
2149 ssa_op_iter op_iter, op_iter1;
2150 tree op0 = GIMPLE_STMT_OPERAND (stmt, 0);
2151 tree scev = instantiate_parameters
2152 (loop, analyze_scalar_evolution (loop, op0));
2154 /* If the IV is simple, it can be duplicated. */
2155 if (!automatically_generated_chrec_p (scev))
2157 tree step = evolution_part_in_loop_num (scev, loop->num);
2158 if (step && step != chrec_dont_know
2159 && TREE_CODE (step) == INTEGER_CST)
2163 /* The statement should not define a variable used
2164 in the inner loop. */
2165 if (TREE_CODE (op0) == SSA_NAME)
2166 FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0)
2167 if (bb_for_stmt (USE_STMT (use_a))->loop_father
2171 FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE)
2173 tree node, op = USE_FROM_PTR (use_a);
2175 /* The variables should not be used in both loops. */
2176 FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op)
2177 if (bb_for_stmt (USE_STMT (use_b))->loop_father
2181 /* The statement should not use the value of a
2182 scalar that was modified in the loop. */
2183 node = SSA_NAME_DEF_STMT (op);
2184 if (TREE_CODE (node) == PHI_NODE)
2185 FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE)
2187 tree arg = USE_FROM_PTR (use_b);
2189 if (TREE_CODE (arg) == SSA_NAME)
2191 tree arg_stmt = SSA_NAME_DEF_STMT (arg);
2193 if (bb_for_stmt (arg_stmt)
2194 && (bb_for_stmt (arg_stmt)->loop_father
2201 if (can_put_in_inner_loop (loop->inner, stmt)
2202 || can_put_after_inner_loop (loop, stmt))
2206 /* Otherwise, if the bb of a statement we care about isn't
2207 dominated by the header of the inner loop, then we can't
2208 handle this case right now. This test ensures that the
2209 statement comes completely *after* the inner loop. */
2210 if (!dominated_by_p (CDI_DOMINATORS,
2212 loop->inner->header))
2218 /* We also need to make sure the loop exit only has simple copy phis in it,
2219 otherwise we don't know how to transform it into a perfect nest right
2221 exitdest = single_exit (loop)->dest;
2223 for (phi = phi_nodes (exitdest); phi; phi = PHI_CHAIN (phi))
2224 if (PHI_NUM_ARGS (phi) != 1)
2235 /* Transform the loop nest into a perfect nest, if possible.
2236 LOOP is the loop nest to transform into a perfect nest
2237 LBOUNDS are the lower bounds for the loops to transform
2238 UBOUNDS are the upper bounds for the loops to transform
2239 STEPS is the STEPS for the loops to transform.
2240 LOOPIVS is the induction variables for the loops to transform.
2242 Basically, for the case of
2244 FOR (i = 0; i < 50; i++)
2246 FOR (j =0; j < 50; j++)
2253 This function will transform it into a perfect loop nest by splitting the
2254 outer loop into two loops, like so:
2256 FOR (i = 0; i < 50; i++)
2258 FOR (j = 0; j < 50; j++)
2264 FOR (i = 0; i < 50; i ++)
2269 Return FALSE if we can't make this loop into a perfect nest. */
2272 perfect_nestify (struct loop *loop,
2273 VEC(tree,heap) *lbounds,
2274 VEC(tree,heap) *ubounds,
2275 VEC(int,heap) *steps,
2276 VEC(tree,heap) *loopivs)
2279 tree exit_condition;
2281 basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
2283 block_stmt_iterator bsi, firstbsi;
2286 struct loop *newloop;
2290 tree oldivvar, ivvar, ivvarinced;
2291 VEC(tree,heap) *phis = NULL;
2292 htab_t replacements = NULL;
2294 /* Create the new loop. */
2295 olddest = single_exit (loop)->dest;
2296 preheaderbb = split_edge (single_exit (loop));
2297 headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2299 /* Push the exit phi nodes that we are moving. */
2300 for (phi = phi_nodes (olddest); phi; phi = PHI_CHAIN (phi))
2302 VEC_reserve (tree, heap, phis, 2);
2303 VEC_quick_push (tree, phis, PHI_RESULT (phi));
2304 VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
2306 e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
2308 /* Remove the exit phis from the old basic block. */
2309 while (phi_nodes (olddest) != NULL)
2310 remove_phi_node (phi_nodes (olddest), NULL, false);
2312 /* and add them back to the new basic block. */
2313 while (VEC_length (tree, phis) != 0)
2317 def = VEC_pop (tree, phis);
2318 phiname = VEC_pop (tree, phis);
2319 phi = create_phi_node (phiname, preheaderbb);
2320 add_phi_arg (phi, def, single_pred_edge (preheaderbb));
2322 flush_pending_stmts (e);
2323 VEC_free (tree, heap, phis);
2325 bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2326 latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2327 make_edge (headerbb, bodybb, EDGE_FALLTHRU);
2328 cond_stmt = build3 (COND_EXPR, void_type_node,
2329 build2 (NE_EXPR, boolean_type_node,
2332 NULL_TREE, NULL_TREE);
2333 bsi = bsi_start (bodybb);
2334 bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
2335 e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
2336 make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
2337 make_edge (latchbb, headerbb, EDGE_FALLTHRU);
2339 /* Update the loop structures. */
2340 newloop = duplicate_loop (loop, olddest->loop_father);
2341 newloop->header = headerbb;
2342 newloop->latch = latchbb;
2343 add_bb_to_loop (latchbb, newloop);
2344 add_bb_to_loop (bodybb, newloop);
2345 add_bb_to_loop (headerbb, newloop);
2346 set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
2347 set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
2348 set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
2349 single_exit (loop)->src);
2350 set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
2351 set_immediate_dominator (CDI_DOMINATORS, olddest,
2352 recompute_dominator (CDI_DOMINATORS, olddest));
2353 /* Create the new iv. */
2354 oldivvar = VEC_index (tree, loopivs, 0);
2355 ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv");
2356 add_referenced_var (ivvar);
2357 standard_iv_increment_position (newloop, &bsi, &insert_after);
2358 create_iv (VEC_index (tree, lbounds, 0),
2359 build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)),
2360 ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
2362 /* Create the new upper bound. This may be not just a variable, so we copy
2363 it to one just in case. */
2365 exit_condition = get_loop_exit_condition (newloop);
2366 uboundvar = create_tmp_var (integer_type_node, "uboundvar");
2367 add_referenced_var (uboundvar);
2368 stmt = build_gimple_modify_stmt (uboundvar, VEC_index (tree, ubounds, 0));
2369 uboundvar = make_ssa_name (uboundvar, stmt);
2370 GIMPLE_STMT_OPERAND (stmt, 0) = uboundvar;
2373 bsi_insert_after (&bsi, stmt, BSI_SAME_STMT);
2375 bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
2377 COND_EXPR_COND (exit_condition) = build2 (GE_EXPR,
2381 update_stmt (exit_condition);
2382 replacements = htab_create_ggc (20, tree_map_hash,
2384 bbs = get_loop_body_in_dom_order (loop);
2385 /* Now move the statements, and replace the induction variable in the moved
2386 statements with the correct loop induction variable. */
2387 oldivvar = VEC_index (tree, loopivs, 0);
2388 firstbsi = bsi_start (bodybb);
2389 for (i = loop->num_nodes - 1; i >= 0 ; i--)
2391 block_stmt_iterator tobsi = bsi_last (bodybb);
2392 if (bbs[i]->loop_father == loop)
2394 /* If this is true, we are *before* the inner loop.
2395 If this isn't true, we are *after* it.
2397 The only time can_convert_to_perfect_nest returns true when we
2398 have statements before the inner loop is if they can be moved
2399 into the inner loop.
2401 The only time can_convert_to_perfect_nest returns true when we
2402 have statements after the inner loop is if they can be moved into
2403 the new split loop. */
2405 if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i]))
2407 block_stmt_iterator header_bsi
2408 = bsi_after_labels (loop->inner->header);
2410 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2412 tree stmt = bsi_stmt (bsi);
2414 if (stmt == exit_condition
2415 || not_interesting_stmt (stmt)
2416 || stmt_is_bumper_for_loop (loop, stmt))
2422 bsi_move_before (&bsi, &header_bsi);
2427 /* Note that the bsi only needs to be explicitly incremented
2428 when we don't move something, since it is automatically
2429 incremented when we do. */
2430 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2433 tree n, stmt = bsi_stmt (bsi);
2435 if (stmt == exit_condition
2436 || not_interesting_stmt (stmt)
2437 || stmt_is_bumper_for_loop (loop, stmt))
2443 replace_uses_equiv_to_x_with_y
2444 (loop, stmt, oldivvar, VEC_index (int, steps, 0), ivvar,
2445 VEC_index (tree, lbounds, 0), replacements, &firstbsi);
2447 bsi_move_before (&bsi, &tobsi);
2449 /* If the statement has any virtual operands, they may
2450 need to be rewired because the original loop may
2451 still reference them. */
2452 FOR_EACH_SSA_TREE_OPERAND (n, stmt, i, SSA_OP_ALL_VIRTUALS)
2453 mark_sym_for_renaming (SSA_NAME_VAR (n));
2461 htab_delete (replacements);
2462 return perfect_nest_p (loop);
2465 /* Return true if TRANS is a legal transformation matrix that respects
2466 the dependence vectors in DISTS and DIRS. The conservative answer
2469 "Wolfe proves that a unimodular transformation represented by the
2470 matrix T is legal when applied to a loop nest with a set of
2471 lexicographically non-negative distance vectors RDG if and only if
2472 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
2473 i.e.: if and only if it transforms the lexicographically positive
2474 distance vectors to lexicographically positive vectors. Note that
2475 a unimodular matrix must transform the zero vector (and only it) to
2476 the zero vector." S.Muchnick. */
2479 lambda_transform_legal_p (lambda_trans_matrix trans,
2481 VEC (ddr_p, heap) *dependence_relations)
2484 lambda_vector distres;
2485 struct data_dependence_relation *ddr;
2487 gcc_assert (LTM_COLSIZE (trans) == nb_loops
2488 && LTM_ROWSIZE (trans) == nb_loops);
2490 /* When there is an unknown relation in the dependence_relations, we
2491 know that it is no worth looking at this loop nest: give up. */
2492 ddr = VEC_index (ddr_p, dependence_relations, 0);
2495 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2498 distres = lambda_vector_new (nb_loops);
2500 /* For each distance vector in the dependence graph. */
2501 for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
2503 /* Don't care about relations for which we know that there is no
2504 dependence, nor about read-read (aka. output-dependences):
2505 these data accesses can happen in any order. */
2506 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
2507 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
2510 /* Conservatively answer: "this transformation is not valid". */
2511 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2514 /* If the dependence could not be captured by a distance vector,
2515 conservatively answer that the transform is not valid. */
2516 if (DDR_NUM_DIST_VECTS (ddr) == 0)
2519 /* Compute trans.dist_vect */
2520 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
2522 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
2523 DDR_DIST_VECT (ddr, j), distres);
2525 if (!lambda_vector_lexico_pos (distres, nb_loops))