1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
57 The following list shows the order in which we want to break ties
58 among insns in the ready list:
60 1. choose insn with the longest path to end of bb, ties
62 2. choose insn with least contribution to register pressure,
64 3. prefer in-block upon interblock motion, ties broken by
65 4. prefer useful upon speculative motion, ties broken by
66 5. choose insn with largest control flow probability, ties
68 6. choose insn with the least dependences upon the previously
69 scheduled insn, or finally
70 7 choose the insn which has the most insns dependent on it.
71 8. choose insn with lowest UID.
73 Memory references complicate matters. Only if we can be certain
74 that memory references are not part of the data dependency graph
75 (via true, anti, or output dependence), can we move operations past
76 memory references. To first approximation, reads can be done
77 independently, while writes introduce dependencies. Better
78 approximations will yield fewer dependencies.
80 Before reload, an extended analysis of interblock data dependences
81 is required for interblock scheduling. This is performed in
82 compute_block_backward_dependences ().
84 Dependencies set up by memory references are treated in exactly the
85 same way as other dependencies, by using insn backward dependences
86 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
87 INSN_FORW_DEPS the purpose of forward list scheduling.
89 Having optimized the critical path, we may have also unduly
90 extended the lifetimes of some registers. If an operation requires
91 that constants be loaded into registers, it is certainly desirable
92 to load those constants as early as necessary, but no earlier.
93 I.e., it will not do to load up a bunch of registers at the
94 beginning of a basic block only to use them at the end, if they
95 could be loaded later, since this may result in excessive register
98 Note that since branches are never in basic blocks, but only end
99 basic blocks, this pass will not move branches. But that is ok,
100 since we can use GNU's delayed branch scheduling pass to take care
103 Also note that no further optimizations based on algebraic
104 identities are performed, so this pass would be a good one to
105 perform instruction splitting, such as breaking up a multiply
106 instruction into shifts and adds where that is profitable.
108 Given the memory aliasing analysis that this pass should perform,
109 it should be possible to remove redundant stores to memory, and to
110 load values from registers instead of hitting memory.
112 Before reload, speculative insns are moved only if a 'proof' exists
113 that no exception will be caused by this, and if no live registers
114 exist that inhibit the motion (live registers constraints are not
115 represented by data dependence edges).
117 This pass must update information that subsequent passes expect to
118 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
119 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
121 The information in the line number notes is carefully retained by
122 this pass. Notes that refer to the starting and ending of
123 exception regions are also carefully retained by this pass. All
124 other NOTE insns are grouped in their same relative order at the
125 beginning of basic blocks and regions that have been scheduled. */
129 #include "coretypes.h"
134 #include "hard-reg-set.h"
136 #include "function.h"
138 #include "insn-config.h"
139 #include "insn-attr.h"
143 #include "sched-int.h"
152 #ifdef INSN_SCHEDULING
154 /* issue_rate is the number of insns that can be scheduled in the same
155 machine cycle. It can be defined in the config/mach/mach.h file,
156 otherwise we set it to 1. */
160 /* sched-verbose controls the amount of debugging output the
161 scheduler prints. It is controlled by -fsched-verbose=N:
162 N>0 and no -DSR : the output is directed to stderr.
163 N>=10 will direct the printouts to stderr (regardless of -dSR).
165 N=2: bb's probabilities, detailed ready list info, unit/insn info.
166 N=3: rtl at abort point, control-flow, regions info.
167 N=5: dependences info. */
169 static int sched_verbose_param = 0;
170 int sched_verbose = 0;
172 /* Debugging file. All printouts are sent to dump, which is always set,
173 either to stderr, or to the dump listing file (-dRS). */
174 FILE *sched_dump = 0;
176 /* fix_sched_param() is called from toplev.c upon detection
177 of the -fsched-verbose=N option. */
180 fix_sched_param (const char *param, const char *val)
182 if (!strcmp (param, "verbose"))
183 sched_verbose_param = atoi (val);
185 warning (0, "fix_sched_param: unknown param: %s", param);
188 /* This is a placeholder for the scheduler parameters common
189 to all schedulers. */
190 struct common_sched_info_def *common_sched_info;
192 #define INSN_TICK(INSN) (HID (INSN)->tick)
193 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
195 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
196 then it should be recalculated from scratch. */
197 #define INVALID_TICK (-(max_insn_queue_index + 1))
198 /* The minimal value of the INSN_TICK of an instruction. */
199 #define MIN_TICK (-max_insn_queue_index)
201 /* Issue points are used to distinguish between instructions in max_issue ().
202 For now, all instructions are equally good. */
203 #define ISSUE_POINTS(INSN) 1
205 /* List of important notes we must keep around. This is a pointer to the
206 last element in the list. */
209 static struct spec_info_def spec_info_var;
210 /* Description of the speculative part of the scheduling.
211 If NULL - no speculation. */
212 spec_info_t spec_info = NULL;
214 /* True, if recovery block was added during scheduling of current block.
215 Used to determine, if we need to fix INSN_TICKs. */
216 static bool haifa_recovery_bb_recently_added_p;
218 /* True, if recovery block was added during this scheduling pass.
219 Used to determine if we should have empty memory pools of dependencies
220 after finishing current region. */
221 bool haifa_recovery_bb_ever_added_p;
223 /* Counters of different types of speculative instructions. */
224 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
226 /* Array used in {unlink, restore}_bb_notes. */
227 static rtx *bb_header = 0;
229 /* Basic block after which recovery blocks will be created. */
230 static basic_block before_recovery;
232 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
234 basic_block after_recovery;
236 /* FALSE if we add bb to another region, so we don't need to initialize it. */
237 bool adding_bb_to_current_region_p = true;
241 /* An instruction is ready to be scheduled when all insns preceding it
242 have already been scheduled. It is important to ensure that all
243 insns which use its result will not be executed until its result
244 has been computed. An insn is maintained in one of four structures:
246 (P) the "Pending" set of insns which cannot be scheduled until
247 their dependencies have been satisfied.
248 (Q) the "Queued" set of insns that can be scheduled when sufficient
250 (R) the "Ready" list of unscheduled, uncommitted insns.
251 (S) the "Scheduled" list of insns.
253 Initially, all insns are either "Pending" or "Ready" depending on
254 whether their dependencies are satisfied.
256 Insns move from the "Ready" list to the "Scheduled" list as they
257 are committed to the schedule. As this occurs, the insns in the
258 "Pending" list have their dependencies satisfied and move to either
259 the "Ready" list or the "Queued" set depending on whether
260 sufficient time has passed to make them ready. As time passes,
261 insns move from the "Queued" set to the "Ready" list.
263 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
264 unscheduled insns, i.e., those that are ready, queued, and pending.
265 The "Queued" set (Q) is implemented by the variable `insn_queue'.
266 The "Ready" list (R) is implemented by the variables `ready' and
268 The "Scheduled" list (S) is the new insn chain built by this pass.
270 The transition (R->S) is implemented in the scheduling loop in
271 `schedule_block' when the best insn to schedule is chosen.
272 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
273 insns move from the ready list to the scheduled list.
274 The transition (Q->R) is implemented in 'queue_to_insn' as time
275 passes or stalls are introduced. */
277 /* Implement a circular buffer to delay instructions until sufficient
278 time has passed. For the new pipeline description interface,
279 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
280 than maximal time of instruction execution computed by genattr.c on
281 the base maximal time of functional unit reservations and getting a
282 result. This is the longest time an insn may be queued. */
284 static rtx *insn_queue;
285 static int q_ptr = 0;
286 static int q_size = 0;
287 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
288 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
290 #define QUEUE_SCHEDULED (-3)
291 #define QUEUE_NOWHERE (-2)
292 #define QUEUE_READY (-1)
293 /* QUEUE_SCHEDULED - INSN is scheduled.
294 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
296 QUEUE_READY - INSN is in ready list.
297 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
299 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
301 /* The following variable value refers for all current and future
302 reservations of the processor units. */
305 /* The following variable value is size of memory representing all
306 current and future reservations of the processor units. */
307 size_t dfa_state_size;
309 /* The following array is used to find the best insn from ready when
310 the automaton pipeline interface is used. */
311 char *ready_try = NULL;
313 /* The ready list. */
314 struct ready_list ready = {NULL, 0, 0, 0, 0};
316 /* The pointer to the ready list (to be removed). */
317 static struct ready_list *readyp = &ready;
319 /* Scheduling clock. */
320 static int clock_var;
322 static int may_trap_exp (const_rtx, int);
324 /* Nonzero iff the address is comprised from at most 1 register. */
325 #define CONST_BASED_ADDRESS_P(x) \
327 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
328 || (GET_CODE (x) == LO_SUM)) \
329 && (CONSTANT_P (XEXP (x, 0)) \
330 || CONSTANT_P (XEXP (x, 1)))))
332 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
333 as found by analyzing insn's expression. */
336 static int haifa_luid_for_non_insn (rtx x);
338 /* Haifa version of sched_info hooks common to all headers. */
339 const struct common_sched_info_def haifa_common_sched_info =
341 NULL, /* fix_recovery_cfg */
342 NULL, /* add_block */
343 NULL, /* estimate_number_of_insns */
344 haifa_luid_for_non_insn, /* luid_for_non_insn */
345 SCHED_PASS_UNKNOWN /* sched_pass_id */
348 const struct sched_scan_info_def *sched_scan_info;
350 /* Mapping from instruction UID to its Logical UID. */
351 VEC (int, heap) *sched_luids = NULL;
353 /* Next LUID to assign to an instruction. */
354 int sched_max_luid = 1;
356 /* Haifa Instruction Data. */
357 VEC (haifa_insn_data_def, heap) *h_i_d = NULL;
359 void (* sched_init_only_bb) (basic_block, basic_block);
361 /* Split block function. Different schedulers might use different functions
362 to handle their internal data consistent. */
363 basic_block (* sched_split_block) (basic_block, rtx);
365 /* Create empty basic block after the specified block. */
366 basic_block (* sched_create_empty_bb) (basic_block);
369 may_trap_exp (const_rtx x, int is_store)
378 if (code == MEM && may_trap_p (x))
385 /* The insn uses memory: a volatile load. */
386 if (MEM_VOLATILE_P (x))
388 /* An exception-free load. */
391 /* A load with 1 base register, to be further checked. */
392 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
393 return PFREE_CANDIDATE;
394 /* No info on the load, to be further checked. */
395 return PRISKY_CANDIDATE;
400 int i, insn_class = TRAP_FREE;
402 /* Neither store nor load, check if it may cause a trap. */
405 /* Recursive step: walk the insn... */
406 fmt = GET_RTX_FORMAT (code);
407 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
411 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
412 insn_class = WORST_CLASS (insn_class, tmp_class);
414 else if (fmt[i] == 'E')
417 for (j = 0; j < XVECLEN (x, i); j++)
419 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
420 insn_class = WORST_CLASS (insn_class, tmp_class);
421 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
425 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
432 /* Classifies rtx X of an insn for the purpose of verifying that X can be
433 executed speculatively (and consequently the insn can be moved
434 speculatively), by examining X, returning:
435 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
436 TRAP_FREE: non-load insn.
437 IFREE: load from a globally safe location.
438 IRISKY: volatile load.
439 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
440 being either PFREE or PRISKY. */
443 haifa_classify_rtx (const_rtx x)
445 int tmp_class = TRAP_FREE;
446 int insn_class = TRAP_FREE;
449 if (GET_CODE (x) == PARALLEL)
451 int i, len = XVECLEN (x, 0);
453 for (i = len - 1; i >= 0; i--)
455 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
456 insn_class = WORST_CLASS (insn_class, tmp_class);
457 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
467 /* Test if it is a 'store'. */
468 tmp_class = may_trap_exp (XEXP (x, 0), 1);
471 /* Test if it is a store. */
472 tmp_class = may_trap_exp (SET_DEST (x), 1);
473 if (tmp_class == TRAP_RISKY)
475 /* Test if it is a load. */
477 WORST_CLASS (tmp_class,
478 may_trap_exp (SET_SRC (x), 0));
481 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
482 if (tmp_class == TRAP_RISKY)
484 tmp_class = WORST_CLASS (tmp_class,
485 may_trap_exp (COND_EXEC_TEST (x), 0));
488 tmp_class = TRAP_RISKY;
492 insn_class = tmp_class;
499 haifa_classify_insn (const_rtx insn)
501 return haifa_classify_rtx (PATTERN (insn));
504 /* Forward declarations. */
506 static int priority (rtx);
507 static int rank_for_schedule (const void *, const void *);
508 static void swap_sort (rtx *, int);
509 static void queue_insn (rtx, int);
510 static int schedule_insn (rtx);
511 static void adjust_priority (rtx);
512 static void advance_one_cycle (void);
513 static void extend_h_i_d (void);
516 /* Notes handling mechanism:
517 =========================
518 Generally, NOTES are saved before scheduling and restored after scheduling.
519 The scheduler distinguishes between two types of notes:
521 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
522 Before scheduling a region, a pointer to the note is added to the insn
523 that follows or precedes it. (This happens as part of the data dependence
524 computation). After scheduling an insn, the pointer contained in it is
525 used for regenerating the corresponding note (in reemit_notes).
527 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
528 these notes are put in a list (in rm_other_notes() and
529 unlink_other_notes ()). After scheduling the block, these notes are
530 inserted at the beginning of the block (in schedule_block()). */
532 static void ready_add (struct ready_list *, rtx, bool);
533 static rtx ready_remove_first (struct ready_list *);
535 static void queue_to_ready (struct ready_list *);
536 static int early_queue_to_ready (state_t, struct ready_list *);
538 static void debug_ready_list (struct ready_list *);
540 /* The following functions are used to implement multi-pass scheduling
541 on the first cycle. */
542 static rtx ready_remove (struct ready_list *, int);
543 static void ready_remove_insn (rtx);
545 static int choose_ready (struct ready_list *, rtx *);
547 static void fix_inter_tick (rtx, rtx);
548 static int fix_tick_ready (rtx);
549 static void change_queue_index (rtx, int);
551 /* The following functions are used to implement scheduling of data/control
552 speculative instructions. */
554 static void extend_h_i_d (void);
555 static void init_h_i_d (rtx);
556 static void generate_recovery_code (rtx);
557 static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
558 static void begin_speculative_block (rtx);
559 static void add_to_speculative_block (rtx);
560 static void init_before_recovery (basic_block *);
561 static void create_check_block_twin (rtx, bool);
562 static void fix_recovery_deps (basic_block);
563 static void haifa_change_pattern (rtx, rtx);
564 static void dump_new_block_header (int, basic_block, rtx, rtx);
565 static void restore_bb_notes (basic_block);
566 static void fix_jump_move (rtx);
567 static void move_block_after_check (rtx);
568 static void move_succs (VEC(edge,gc) **, basic_block);
569 static void sched_remove_insn (rtx);
570 static void clear_priorities (rtx, rtx_vec_t *);
571 static void calc_priorities (rtx_vec_t);
572 static void add_jump_dependencies (rtx, rtx);
573 #ifdef ENABLE_CHECKING
574 static int has_edge_p (VEC(edge,gc) *, int);
575 static void check_cfg (rtx, rtx);
578 #endif /* INSN_SCHEDULING */
580 /* Point to state used for the current scheduling pass. */
581 struct haifa_sched_info *current_sched_info;
583 #ifndef INSN_SCHEDULING
585 schedule_insns (void)
590 /* Do register pressure sensitive insn scheduling if the flag is set
592 bool sched_pressure_p;
594 /* Map regno -> its cover class. The map defined only when
595 SCHED_PRESSURE_P is true. */
596 enum reg_class *sched_regno_cover_class;
598 /* The current register pressure. Only elements corresponding cover
599 classes are defined. */
600 static int curr_reg_pressure[N_REG_CLASSES];
602 /* Saved value of the previous array. */
603 static int saved_reg_pressure[N_REG_CLASSES];
605 /* Register living at given scheduling point. */
606 static bitmap curr_reg_live;
608 /* Saved value of the previous array. */
609 static bitmap saved_reg_live;
611 /* Registers mentioned in the current region. */
612 static bitmap region_ref_regs;
614 /* Initiate register pressure relative info for scheduling the current
615 region. Currently it is only clearing register mentioned in the
618 sched_init_region_reg_pressure_info (void)
620 bitmap_clear (region_ref_regs);
623 /* Update current register pressure related info after birth (if
624 BIRTH_P) or death of register REGNO. */
626 mark_regno_birth_or_death (int regno, bool birth_p)
628 enum reg_class cover_class;
630 cover_class = sched_regno_cover_class[regno];
631 if (regno >= FIRST_PSEUDO_REGISTER)
633 if (cover_class != NO_REGS)
637 bitmap_set_bit (curr_reg_live, regno);
638 curr_reg_pressure[cover_class]
639 += ira_reg_class_nregs[cover_class][PSEUDO_REGNO_MODE (regno)];
643 bitmap_clear_bit (curr_reg_live, regno);
644 curr_reg_pressure[cover_class]
645 -= ira_reg_class_nregs[cover_class][PSEUDO_REGNO_MODE (regno)];
649 else if (cover_class != NO_REGS
650 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
654 bitmap_set_bit (curr_reg_live, regno);
655 curr_reg_pressure[cover_class]++;
659 bitmap_clear_bit (curr_reg_live, regno);
660 curr_reg_pressure[cover_class]--;
665 /* Initiate current register pressure related info from living
666 registers given by LIVE. */
668 initiate_reg_pressure_info (bitmap live)
674 for (i = 0; i < ira_reg_class_cover_size; i++)
675 curr_reg_pressure[ira_reg_class_cover[i]] = 0;
676 bitmap_clear (curr_reg_live);
677 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
678 if (current_nr_blocks == 1 || bitmap_bit_p (region_ref_regs, j))
679 mark_regno_birth_or_death (j, true);
682 /* Mark registers in X as mentioned in the current region. */
684 setup_ref_regs (rtx x)
687 const RTX_CODE code = GET_CODE (x);
693 if (regno >= FIRST_PSEUDO_REGISTER)
694 bitmap_set_bit (region_ref_regs, REGNO (x));
696 for (i = hard_regno_nregs[regno][GET_MODE (x)] - 1; i >= 0; i--)
697 bitmap_set_bit (region_ref_regs, regno + i);
700 fmt = GET_RTX_FORMAT (code);
701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
703 setup_ref_regs (XEXP (x, i));
704 else if (fmt[i] == 'E')
706 for (j = 0; j < XVECLEN (x, i); j++)
707 setup_ref_regs (XVECEXP (x, i, j));
711 /* Initiate current register pressure related info at the start of
714 initiate_bb_reg_pressure_info (basic_block bb)
719 if (current_nr_blocks > 1)
720 FOR_BB_INSNS (bb, insn)
722 setup_ref_regs (PATTERN (insn));
723 initiate_reg_pressure_info (df_get_live_in (bb));
724 #ifdef EH_RETURN_DATA_REGNO
725 if (bb_has_eh_pred (bb))
728 unsigned int regno = EH_RETURN_DATA_REGNO (i);
730 if (regno == INVALID_REGNUM)
732 if (! bitmap_bit_p (df_get_live_in (bb), regno))
733 mark_regno_birth_or_death (regno, true);
738 /* Save current register pressure related info. */
740 save_reg_pressure (void)
744 for (i = 0; i < ira_reg_class_cover_size; i++)
745 saved_reg_pressure[ira_reg_class_cover[i]]
746 = curr_reg_pressure[ira_reg_class_cover[i]];
747 bitmap_copy (saved_reg_live, curr_reg_live);
750 /* Restore saved register pressure related info. */
752 restore_reg_pressure (void)
756 for (i = 0; i < ira_reg_class_cover_size; i++)
757 curr_reg_pressure[ira_reg_class_cover[i]]
758 = saved_reg_pressure[ira_reg_class_cover[i]];
759 bitmap_copy (curr_reg_live, saved_reg_live);
762 /* Return TRUE if the register is dying after its USE. */
764 dying_use_p (struct reg_use_data *use)
766 struct reg_use_data *next;
768 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
769 if (NONDEBUG_INSN_P (next->insn)
770 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
775 /* Print info about the current register pressure and its excess for
778 print_curr_reg_pressure (void)
783 fprintf (sched_dump, ";;\t");
784 for (i = 0; i < ira_reg_class_cover_size; i++)
786 cl = ira_reg_class_cover[i];
787 gcc_assert (curr_reg_pressure[cl] >= 0);
788 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
789 curr_reg_pressure[cl],
790 curr_reg_pressure[cl] - ira_available_class_regs[cl]);
792 fprintf (sched_dump, "\n");
795 /* Pointer to the last instruction scheduled. Used by rank_for_schedule,
796 so that insns independent of the last scheduled insn will be preferred
797 over dependent instructions. */
799 static rtx last_scheduled_insn;
801 /* Cached cost of the instruction. Use below function to get cost of the
802 insn. -1 here means that the field is not initialized. */
803 #define INSN_COST(INSN) (HID (INSN)->cost)
805 /* Compute cost of executing INSN.
806 This is the number of cycles between instruction issue and
807 instruction results. */
815 if (recog_memoized (insn) < 0)
818 cost = insn_default_latency (insn);
825 cost = INSN_COST (insn);
829 /* A USE insn, or something else we don't need to
830 understand. We can't pass these directly to
831 result_ready_cost or insn_default_latency because it will
832 trigger a fatal error for unrecognizable insns. */
833 if (recog_memoized (insn) < 0)
835 INSN_COST (insn) = 0;
840 cost = insn_default_latency (insn);
844 INSN_COST (insn) = cost;
851 /* Compute cost of dependence LINK.
852 This is the number of cycles between instruction issue and
854 ??? We also use this function to call recog_memoized on all insns. */
856 dep_cost_1 (dep_t link, dw_t dw)
858 rtx insn = DEP_PRO (link);
859 rtx used = DEP_CON (link);
862 /* A USE insn should never require the value used to be computed.
863 This allows the computation of a function's result and parameter
864 values to overlap the return and call. We don't care about the
865 the dependence cost when only decreasing register pressure. */
866 if (recog_memoized (used) < 0)
869 recog_memoized (insn);
873 enum reg_note dep_type = DEP_TYPE (link);
875 cost = insn_cost (insn);
877 if (INSN_CODE (insn) >= 0)
879 if (dep_type == REG_DEP_ANTI)
881 else if (dep_type == REG_DEP_OUTPUT)
883 cost = (insn_default_latency (insn)
884 - insn_default_latency (used));
888 else if (bypass_p (insn))
889 cost = insn_latency (insn, used);
893 if (targetm.sched.adjust_cost_2)
894 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
896 else if (targetm.sched.adjust_cost != NULL)
898 /* This variable is used for backward compatibility with the
900 rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);
902 /* Make it self-cycled, so that if some tries to walk over this
903 incomplete list he/she will be caught in an endless loop. */
904 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
906 /* Targets use only REG_NOTE_KIND of the link. */
907 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
909 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
912 free_INSN_LIST_node (dep_cost_rtx_link);
922 /* Compute cost of dependence LINK.
923 This is the number of cycles between instruction issue and
924 instruction results. */
926 dep_cost (dep_t link)
928 return dep_cost_1 (link, 0);
931 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
932 INSN_PRIORITY explicitly. */
934 increase_insn_priority (rtx insn, int amount)
938 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
939 if (INSN_PRIORITY_KNOWN (insn))
940 INSN_PRIORITY (insn) += amount;
944 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
945 Use EXPR_PRIORITY instead. */
946 sel_add_to_insn_priority (insn, amount);
950 /* Return 'true' if DEP should be included in priority calculations. */
952 contributes_to_priority_p (dep_t dep)
954 if (DEBUG_INSN_P (DEP_CON (dep))
955 || DEBUG_INSN_P (DEP_PRO (dep)))
958 /* Critical path is meaningful in block boundaries only. */
959 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
963 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
964 then speculative instructions will less likely be
965 scheduled. That is because the priority of
966 their producers will increase, and, thus, the
967 producers will more likely be scheduled, thus,
968 resolving the dependence. */
969 if (sched_deps_info->generate_spec_deps
970 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
971 && (DEP_STATUS (dep) & SPECULATIVE))
977 /* Compute the number of nondebug forward deps of an insn. */
980 dep_list_size (rtx insn)
982 sd_iterator_def sd_it;
984 int dbgcount = 0, nodbgcount = 0;
986 if (!MAY_HAVE_DEBUG_INSNS)
987 return sd_lists_size (insn, SD_LIST_FORW);
989 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
991 if (DEBUG_INSN_P (DEP_CON (dep)))
993 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
997 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, SD_LIST_FORW));
1002 /* Compute the priority number for INSN. */
1006 if (! INSN_P (insn))
1009 /* We should not be interested in priority of an already scheduled insn. */
1010 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1012 if (!INSN_PRIORITY_KNOWN (insn))
1014 int this_priority = -1;
1016 if (dep_list_size (insn) == 0)
1017 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1018 some forward deps but all of them are ignored by
1019 contributes_to_priority hook. At the moment we set priority of
1021 this_priority = insn_cost (insn);
1024 rtx prev_first, twin;
1027 /* For recovery check instructions we calculate priority slightly
1028 different than that of normal instructions. Instead of walking
1029 through INSN_FORW_DEPS (check) list, we walk through
1030 INSN_FORW_DEPS list of each instruction in the corresponding
1033 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1034 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1035 if (!rec || rec == EXIT_BLOCK_PTR)
1037 prev_first = PREV_INSN (insn);
1042 prev_first = NEXT_INSN (BB_HEAD (rec));
1043 twin = PREV_INSN (BB_END (rec));
1048 sd_iterator_def sd_it;
1051 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1056 next = DEP_CON (dep);
1058 if (BLOCK_FOR_INSN (next) != rec)
1062 if (!contributes_to_priority_p (dep))
1066 cost = dep_cost (dep);
1069 struct _dep _dep1, *dep1 = &_dep1;
1071 init_dep (dep1, insn, next, REG_DEP_ANTI);
1073 cost = dep_cost (dep1);
1076 next_priority = cost + priority (next);
1078 if (next_priority > this_priority)
1079 this_priority = next_priority;
1083 twin = PREV_INSN (twin);
1085 while (twin != prev_first);
1088 if (this_priority < 0)
1090 gcc_assert (this_priority == -1);
1092 this_priority = insn_cost (insn);
1095 INSN_PRIORITY (insn) = this_priority;
1096 INSN_PRIORITY_STATUS (insn) = 1;
1099 return INSN_PRIORITY (insn);
1102 /* Macros and functions for keeping the priority queue sorted, and
1103 dealing with queuing and dequeuing of instructions. */
1105 #define SCHED_SORT(READY, N_READY) \
1106 do { if ((N_READY) == 2) \
1107 swap_sort (READY, N_READY); \
1108 else if ((N_READY) > 2) \
1109 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
1112 /* Setup info about the current register pressure impact of scheduling
1113 INSN at the current scheduling point. */
1115 setup_insn_reg_pressure_info (rtx insn)
1117 int i, change, before, after, hard_regno;
1118 int excess_cost_change;
1119 enum machine_mode mode;
1121 struct reg_pressure_data *pressure_info;
1122 int *max_reg_pressure;
1123 struct reg_use_data *use;
1124 static int death[N_REG_CLASSES];
1126 excess_cost_change = 0;
1127 for (i = 0; i < ira_reg_class_cover_size; i++)
1128 death[ira_reg_class_cover[i]] = 0;
1129 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1130 if (dying_use_p (use))
1132 cl = sched_regno_cover_class[use->regno];
1133 if (use->regno < FIRST_PSEUDO_REGISTER)
1136 death[cl] += ira_reg_class_nregs[cl][PSEUDO_REGNO_MODE (use->regno)];
1138 pressure_info = INSN_REG_PRESSURE (insn);
1139 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1140 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1141 for (i = 0; i < ira_reg_class_cover_size; i++)
1143 cl = ira_reg_class_cover[i];
1144 gcc_assert (curr_reg_pressure[cl] >= 0);
1145 change = (int) pressure_info[i].set_increase - death[cl];
1146 before = MAX (0, max_reg_pressure[i] - ira_available_class_regs[cl]);
1147 after = MAX (0, max_reg_pressure[i] + change
1148 - ira_available_class_regs[cl]);
1149 hard_regno = ira_class_hard_regs[cl][0];
1150 gcc_assert (hard_regno >= 0);
1151 mode = reg_raw_mode[hard_regno];
1152 excess_cost_change += ((after - before)
1153 * (ira_memory_move_cost[mode][cl][0]
1154 + ira_memory_move_cost[mode][cl][1]));
1156 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1159 /* Returns a positive value if x is preferred; returns a negative value if
1160 y is preferred. Should never return 0, since that will make the sort
1164 rank_for_schedule (const void *x, const void *y)
1166 rtx tmp = *(const rtx *) y;
1167 rtx tmp2 = *(const rtx *) x;
1169 int tmp_class, tmp2_class;
1170 int val, priority_val, info_val;
1172 if (MAY_HAVE_DEBUG_INSNS)
1174 /* Schedule debug insns as early as possible. */
1175 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
1177 else if (DEBUG_INSN_P (tmp2))
1181 /* The insn in a schedule group should be issued the first. */
1182 if (flag_sched_group_heuristic &&
1183 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
1184 return SCHED_GROUP_P (tmp2) ? 1 : -1;
1186 /* Make sure that priority of TMP and TMP2 are initialized. */
1187 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
1189 if (sched_pressure_p)
1193 /* Prefer insn whose scheduling results in the smallest register
1195 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
1196 + (INSN_TICK (tmp) > clock_var
1197 ? INSN_TICK (tmp) - clock_var : 0)
1198 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
1199 - (INSN_TICK (tmp2) > clock_var
1200 ? INSN_TICK (tmp2) - clock_var : 0))) != 0)
1205 if (sched_pressure_p
1206 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var))
1208 if (INSN_TICK (tmp) <= clock_var)
1210 else if (INSN_TICK (tmp2) <= clock_var)
1213 return INSN_TICK (tmp) - INSN_TICK (tmp2);
1215 /* Prefer insn with higher priority. */
1216 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
1218 if (flag_sched_critical_path_heuristic && priority_val)
1219 return priority_val;
1221 /* Prefer speculative insn with greater dependencies weakness. */
1222 if (flag_sched_spec_insn_heuristic && spec_info)
1228 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
1230 dw1 = ds_weak (ds1);
1234 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
1236 dw2 = ds_weak (ds2);
1241 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
1245 info_val = (*current_sched_info->rank) (tmp, tmp2);
1246 if(flag_sched_rank_heuristic && info_val)
1249 if (flag_sched_last_insn_heuristic)
1251 last = last_scheduled_insn;
1253 if (DEBUG_INSN_P (last) && last != current_sched_info->prev_head)
1255 last = PREV_INSN (last);
1256 while (!NONDEBUG_INSN_P (last)
1257 && last != current_sched_info->prev_head);
1260 /* Compare insns based on their relation to the last scheduled
1262 if (flag_sched_last_insn_heuristic && NONDEBUG_INSN_P (last))
1267 /* Classify the instructions into three classes:
1268 1) Data dependent on last schedule insn.
1269 2) Anti/Output dependent on last scheduled insn.
1270 3) Independent of last scheduled insn, or has latency of one.
1271 Choose the insn from the highest numbered class if different. */
1272 dep1 = sd_find_dep_between (last, tmp, true);
1274 if (dep1 == NULL || dep_cost (dep1) == 1)
1276 else if (/* Data dependence. */
1277 DEP_TYPE (dep1) == REG_DEP_TRUE)
1282 dep2 = sd_find_dep_between (last, tmp2, true);
1284 if (dep2 == NULL || dep_cost (dep2) == 1)
1286 else if (/* Data dependence. */
1287 DEP_TYPE (dep2) == REG_DEP_TRUE)
1292 if ((val = tmp2_class - tmp_class))
1296 /* Prefer the insn which has more later insns that depend on it.
1297 This gives the scheduler more freedom when scheduling later
1298 instructions at the expense of added register pressure. */
1300 val = (dep_list_size (tmp2) - dep_list_size (tmp));
1302 if (flag_sched_dep_count_heuristic && val != 0)
1305 /* If insns are equally good, sort by INSN_LUID (original insn order),
1306 so that we make the sort stable. This minimizes instruction movement,
1307 thus minimizing sched's effect on debugging and cross-jumping. */
1308 return INSN_LUID (tmp) - INSN_LUID (tmp2);
1311 /* Resort the array A in which only element at index N may be out of order. */
1313 HAIFA_INLINE static void
1314 swap_sort (rtx *a, int n)
1316 rtx insn = a[n - 1];
1319 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
1327 /* Add INSN to the insn queue so that it can be executed at least
1328 N_CYCLES after the currently executing insn. Preserve insns
1329 chain for debugging purposes. */
1331 HAIFA_INLINE static void
1332 queue_insn (rtx insn, int n_cycles)
1334 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
1335 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
1337 gcc_assert (n_cycles <= max_insn_queue_index);
1338 gcc_assert (!DEBUG_INSN_P (insn));
1340 insn_queue[next_q] = link;
1343 if (sched_verbose >= 2)
1345 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
1346 (*current_sched_info->print_insn) (insn, 0));
1348 fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
1351 QUEUE_INDEX (insn) = next_q;
1354 /* Remove INSN from queue. */
1356 queue_remove (rtx insn)
1358 gcc_assert (QUEUE_INDEX (insn) >= 0);
1359 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
1361 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
1364 /* Return a pointer to the bottom of the ready list, i.e. the insn
1365 with the lowest priority. */
1368 ready_lastpos (struct ready_list *ready)
1370 gcc_assert (ready->n_ready >= 1);
1371 return ready->vec + ready->first - ready->n_ready + 1;
1374 /* Add an element INSN to the ready list so that it ends up with the
1375 lowest/highest priority depending on FIRST_P. */
1377 HAIFA_INLINE static void
1378 ready_add (struct ready_list *ready, rtx insn, bool first_p)
1382 if (ready->first == ready->n_ready)
1384 memmove (ready->vec + ready->veclen - ready->n_ready,
1385 ready_lastpos (ready),
1386 ready->n_ready * sizeof (rtx));
1387 ready->first = ready->veclen - 1;
1389 ready->vec[ready->first - ready->n_ready] = insn;
1393 if (ready->first == ready->veclen - 1)
1396 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
1397 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
1398 ready_lastpos (ready),
1399 ready->n_ready * sizeof (rtx));
1400 ready->first = ready->veclen - 2;
1402 ready->vec[++(ready->first)] = insn;
1406 if (DEBUG_INSN_P (insn))
1409 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
1410 QUEUE_INDEX (insn) = QUEUE_READY;
1413 /* Remove the element with the highest priority from the ready list and
1416 HAIFA_INLINE static rtx
1417 ready_remove_first (struct ready_list *ready)
1421 gcc_assert (ready->n_ready);
1422 t = ready->vec[ready->first--];
1424 if (DEBUG_INSN_P (t))
1426 /* If the queue becomes empty, reset it. */
1427 if (ready->n_ready == 0)
1428 ready->first = ready->veclen - 1;
1430 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
1431 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1436 /* The following code implements multi-pass scheduling for the first
1437 cycle. In other words, we will try to choose ready insn which
1438 permits to start maximum number of insns on the same cycle. */
1440 /* Return a pointer to the element INDEX from the ready. INDEX for
1441 insn with the highest priority is 0, and the lowest priority has
1445 ready_element (struct ready_list *ready, int index)
1447 gcc_assert (ready->n_ready && index < ready->n_ready);
1449 return ready->vec[ready->first - index];
1452 /* Remove the element INDEX from the ready list and return it. INDEX
1453 for insn with the highest priority is 0, and the lowest priority
1456 HAIFA_INLINE static rtx
1457 ready_remove (struct ready_list *ready, int index)
1463 return ready_remove_first (ready);
1464 gcc_assert (ready->n_ready && index < ready->n_ready);
1465 t = ready->vec[ready->first - index];
1467 if (DEBUG_INSN_P (t))
1469 for (i = index; i < ready->n_ready; i++)
1470 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
1471 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1475 /* Remove INSN from the ready list. */
1477 ready_remove_insn (rtx insn)
1481 for (i = 0; i < readyp->n_ready; i++)
1482 if (ready_element (readyp, i) == insn)
1484 ready_remove (readyp, i);
1490 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
1494 ready_sort (struct ready_list *ready)
1497 rtx *first = ready_lastpos (ready);
1499 if (sched_pressure_p)
1501 for (i = 0; i < ready->n_ready; i++)
1502 setup_insn_reg_pressure_info (first[i]);
1504 SCHED_SORT (first, ready->n_ready);
1507 /* PREV is an insn that is ready to execute. Adjust its priority if that
1508 will help shorten or lengthen register lifetimes as appropriate. Also
1509 provide a hook for the target to tweak itself. */
1511 HAIFA_INLINE static void
1512 adjust_priority (rtx prev)
1514 /* ??? There used to be code here to try and estimate how an insn
1515 affected register lifetimes, but it did it by looking at REG_DEAD
1516 notes, which we removed in schedule_region. Nor did it try to
1517 take into account register pressure or anything useful like that.
1519 Revisit when we have a machine model to work with and not before. */
1521 if (targetm.sched.adjust_priority)
1522 INSN_PRIORITY (prev) =
1523 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
1526 /* Advance DFA state STATE on one cycle. */
1528 advance_state (state_t state)
1530 if (targetm.sched.dfa_pre_advance_cycle)
1531 targetm.sched.dfa_pre_advance_cycle ();
1533 if (targetm.sched.dfa_pre_cycle_insn)
1534 state_transition (state,
1535 targetm.sched.dfa_pre_cycle_insn ());
1537 state_transition (state, NULL);
1539 if (targetm.sched.dfa_post_cycle_insn)
1540 state_transition (state,
1541 targetm.sched.dfa_post_cycle_insn ());
1543 if (targetm.sched.dfa_post_advance_cycle)
1544 targetm.sched.dfa_post_advance_cycle ();
1547 /* Advance time on one cycle. */
1548 HAIFA_INLINE static void
1549 advance_one_cycle (void)
1551 advance_state (curr_state);
1552 if (sched_verbose >= 6)
1553 fprintf (sched_dump, ";;\tAdvanced a state.\n");
1556 /* Clock at which the previous instruction was issued. */
1557 static int last_clock_var;
1559 /* Update register pressure after scheduling INSN. */
1561 update_register_pressure (rtx insn)
1563 struct reg_use_data *use;
1564 struct reg_set_data *set;
1566 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1567 if (dying_use_p (use) && bitmap_bit_p (curr_reg_live, use->regno))
1568 mark_regno_birth_or_death (use->regno, false);
1569 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
1570 mark_regno_birth_or_death (set->regno, true);
1573 /* Set up or update (if UPDATE_P) max register pressure (see its
1574 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
1575 after insn AFTER. */
1577 setup_insn_max_reg_pressure (rtx after, bool update_p)
1582 static int max_reg_pressure[N_REG_CLASSES];
1584 save_reg_pressure ();
1585 for (i = 0; i < ira_reg_class_cover_size; i++)
1586 max_reg_pressure[ira_reg_class_cover[i]]
1587 = curr_reg_pressure[ira_reg_class_cover[i]];
1588 for (insn = NEXT_INSN (after);
1589 insn != NULL_RTX && ! BARRIER_P (insn)
1590 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
1591 insn = NEXT_INSN (insn))
1592 if (NONDEBUG_INSN_P (insn))
1595 for (i = 0; i < ira_reg_class_cover_size; i++)
1597 p = max_reg_pressure[ira_reg_class_cover[i]];
1598 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
1601 INSN_MAX_REG_PRESSURE (insn)[i]
1602 = max_reg_pressure[ira_reg_class_cover[i]];
1605 if (update_p && eq_p)
1607 update_register_pressure (insn);
1608 for (i = 0; i < ira_reg_class_cover_size; i++)
1609 if (max_reg_pressure[ira_reg_class_cover[i]]
1610 < curr_reg_pressure[ira_reg_class_cover[i]])
1611 max_reg_pressure[ira_reg_class_cover[i]]
1612 = curr_reg_pressure[ira_reg_class_cover[i]];
1614 restore_reg_pressure ();
1617 /* Update the current register pressure after scheduling INSN. Update
1618 also max register pressure for unscheduled insns of the current
1621 update_reg_and_insn_max_reg_pressure (rtx insn)
1624 int before[N_REG_CLASSES];
1626 for (i = 0; i < ira_reg_class_cover_size; i++)
1627 before[i] = curr_reg_pressure[ira_reg_class_cover[i]];
1628 update_register_pressure (insn);
1629 for (i = 0; i < ira_reg_class_cover_size; i++)
1630 if (curr_reg_pressure[ira_reg_class_cover[i]] != before[i])
1632 if (i < ira_reg_class_cover_size)
1633 setup_insn_max_reg_pressure (insn, true);
1636 /* Set up register pressure at the beginning of basic block BB whose
1637 insns starting after insn AFTER. Set up also max register pressure
1638 for all insns of the basic block. */
1640 sched_setup_bb_reg_pressure_info (basic_block bb, rtx after)
1642 gcc_assert (sched_pressure_p);
1643 initiate_bb_reg_pressure_info (bb);
1644 setup_insn_max_reg_pressure (after, false);
1647 /* INSN is the "currently executing insn". Launch each insn which was
1648 waiting on INSN. READY is the ready list which contains the insns
1649 that are ready to fire. CLOCK is the current cycle. The function
1650 returns necessary cycle advance after issuing the insn (it is not
1651 zero for insns in a schedule group). */
1654 schedule_insn (rtx insn)
1656 sd_iterator_def sd_it;
1661 if (sched_verbose >= 1)
1663 struct reg_pressure_data *pressure_info;
1666 print_insn (buf, insn, 0);
1668 fprintf (sched_dump, ";;\t%3i--> %-40s:", clock_var, buf);
1670 if (recog_memoized (insn) < 0)
1671 fprintf (sched_dump, "nothing");
1673 print_reservation (sched_dump, insn);
1674 pressure_info = INSN_REG_PRESSURE (insn);
1675 if (pressure_info != NULL)
1677 fputc (':', sched_dump);
1678 for (i = 0; i < ira_reg_class_cover_size; i++)
1679 fprintf (sched_dump, "%s%+d(%d)",
1680 reg_class_names[ira_reg_class_cover[i]],
1681 pressure_info[i].set_increase, pressure_info[i].change);
1683 fputc ('\n', sched_dump);
1686 if (sched_pressure_p)
1687 update_reg_and_insn_max_reg_pressure (insn);
1689 /* Scheduling instruction should have all its dependencies resolved and
1690 should have been removed from the ready list. */
1691 gcc_assert (sd_lists_empty_p (insn, SD_LIST_BACK));
1693 /* Reset debug insns invalidated by moving this insn. */
1694 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
1695 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1696 sd_iterator_cond (&sd_it, &dep);)
1698 rtx dbg = DEP_PRO (dep);
1699 struct reg_use_data *use, *next;
1701 gcc_assert (DEBUG_INSN_P (dbg));
1703 if (sched_verbose >= 6)
1704 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
1707 /* ??? Rather than resetting the debug insn, we might be able
1708 to emit a debug temp before the just-scheduled insn, but
1709 this would involve checking that the expression at the
1710 point of the debug insn is equivalent to the expression
1711 before the just-scheduled insn. They might not be: the
1712 expression in the debug insn may depend on other insns not
1713 yet scheduled that set MEMs, REGs or even other debug
1714 insns. It's not clear that attempting to preserve debug
1715 information in these cases is worth the effort, given how
1716 uncommon these resets are and the likelihood that the debug
1717 temps introduced won't survive the schedule change. */
1718 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
1719 df_insn_rescan (dbg);
1721 /* Unknown location doesn't use any registers. */
1722 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
1724 next = use->next_insn_use;
1727 INSN_REG_USE_LIST (dbg) = NULL;
1729 /* We delete rather than resolve these deps, otherwise we
1730 crash in sched_free_deps(), because forward deps are
1731 expected to be released before backward deps. */
1732 sd_delete_dep (sd_it);
1735 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
1736 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
1738 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
1739 if (INSN_TICK (insn) > clock_var)
1740 /* INSN has been prematurely moved from the queue to the ready list.
1741 This is possible only if following flag is set. */
1742 gcc_assert (flag_sched_stalled_insns);
1744 /* ??? Probably, if INSN is scheduled prematurely, we should leave
1745 INSN_TICK untouched. This is a machine-dependent issue, actually. */
1746 INSN_TICK (insn) = clock_var;
1748 /* Update dependent instructions. */
1749 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
1750 sd_iterator_cond (&sd_it, &dep);)
1752 rtx next = DEP_CON (dep);
1754 /* Resolve the dependence between INSN and NEXT.
1755 sd_resolve_dep () moves current dep to another list thus
1756 advancing the iterator. */
1757 sd_resolve_dep (sd_it);
1759 /* Don't bother trying to mark next as ready if insn is a debug
1760 insn. If insn is the last hard dependency, it will have
1761 already been discounted. */
1762 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
1765 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
1769 effective_cost = try_ready (next);
1771 if (effective_cost >= 0
1772 && SCHED_GROUP_P (next)
1773 && advance < effective_cost)
1774 advance = effective_cost;
1777 /* Check always has only one forward dependence (to the first insn in
1778 the recovery block), therefore, this will be executed only once. */
1780 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
1781 fix_recovery_deps (RECOVERY_BLOCK (insn));
1785 /* This is the place where scheduler doesn't *basically* need backward and
1786 forward dependencies for INSN anymore. Nevertheless they are used in
1787 heuristics in rank_for_schedule (), early_queue_to_ready () and in
1788 some targets (e.g. rs6000). Thus the earliest place where we *can*
1789 remove dependencies is after targetm.sched.md_finish () call in
1790 schedule_block (). But, on the other side, the safest place to remove
1791 dependencies is when we are finishing scheduling entire region. As we
1792 don't generate [many] dependencies during scheduling itself, we won't
1793 need memory until beginning of next region.
1794 Bottom line: Dependencies are removed for all insns in the end of
1795 scheduling the region. */
1797 /* Annotate the instruction with issue information -- TImode
1798 indicates that the instruction is expected not to be able
1799 to issue on the same cycle as the previous insn. A machine
1800 may use this information to decide how the instruction should
1803 && GET_CODE (PATTERN (insn)) != USE
1804 && GET_CODE (PATTERN (insn)) != CLOBBER
1805 && !DEBUG_INSN_P (insn))
1807 if (reload_completed)
1808 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
1809 last_clock_var = clock_var;
1815 /* Functions for handling of notes. */
1817 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
1819 concat_note_lists (rtx from_end, rtx *to_endp)
1823 /* It's easy when have nothing to concat. */
1824 if (from_end == NULL)
1827 /* It's also easy when destination is empty. */
1828 if (*to_endp == NULL)
1830 *to_endp = from_end;
1834 from_start = from_end;
1835 while (PREV_INSN (from_start) != NULL)
1836 from_start = PREV_INSN (from_start);
1838 PREV_INSN (from_start) = *to_endp;
1839 NEXT_INSN (*to_endp) = from_start;
1840 *to_endp = from_end;
1843 /* Delete notes between HEAD and TAIL and put them in the chain
1844 of notes ended by NOTE_LIST. */
1846 remove_notes (rtx head, rtx tail)
1848 rtx next_tail, insn, next;
1851 if (head == tail && !INSN_P (head))
1854 next_tail = NEXT_INSN (tail);
1855 for (insn = head; insn != next_tail; insn = next)
1857 next = NEXT_INSN (insn);
1861 switch (NOTE_KIND (insn))
1863 case NOTE_INSN_BASIC_BLOCK:
1866 case NOTE_INSN_EPILOGUE_BEG:
1870 add_reg_note (next, REG_SAVE_NOTE,
1871 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
1879 /* Add the note to list that ends at NOTE_LIST. */
1880 PREV_INSN (insn) = note_list;
1881 NEXT_INSN (insn) = NULL_RTX;
1883 NEXT_INSN (note_list) = insn;
1888 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
1893 /* Return the head and tail pointers of ebb starting at BEG and ending
1896 get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
1898 rtx beg_head = BB_HEAD (beg);
1899 rtx beg_tail = BB_END (beg);
1900 rtx end_head = BB_HEAD (end);
1901 rtx end_tail = BB_END (end);
1903 /* Don't include any notes or labels at the beginning of the BEG
1904 basic block, or notes at the end of the END basic blocks. */
1906 if (LABEL_P (beg_head))
1907 beg_head = NEXT_INSN (beg_head);
1909 while (beg_head != beg_tail)
1910 if (NOTE_P (beg_head) || BOUNDARY_DEBUG_INSN_P (beg_head))
1911 beg_head = NEXT_INSN (beg_head);
1918 end_head = beg_head;
1919 else if (LABEL_P (end_head))
1920 end_head = NEXT_INSN (end_head);
1922 while (end_head != end_tail)
1923 if (NOTE_P (end_tail) || BOUNDARY_DEBUG_INSN_P (end_tail))
1924 end_tail = PREV_INSN (end_tail);
1931 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
1934 no_real_insns_p (const_rtx head, const_rtx tail)
1936 while (head != NEXT_INSN (tail))
1938 if (!NOTE_P (head) && !LABEL_P (head)
1939 && !BOUNDARY_DEBUG_INSN_P (head))
1941 head = NEXT_INSN (head);
1946 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
1947 previously found among the insns. Insert them just before HEAD. */
1949 restore_other_notes (rtx head, basic_block head_bb)
1953 rtx note_head = note_list;
1956 head_bb = BLOCK_FOR_INSN (head);
1958 head = NEXT_INSN (bb_note (head_bb));
1960 while (PREV_INSN (note_head))
1962 set_block_for_insn (note_head, head_bb);
1963 note_head = PREV_INSN (note_head);
1965 /* In the above cycle we've missed this note. */
1966 set_block_for_insn (note_head, head_bb);
1968 PREV_INSN (note_head) = PREV_INSN (head);
1969 NEXT_INSN (PREV_INSN (head)) = note_head;
1970 PREV_INSN (head) = note_list;
1971 NEXT_INSN (note_list) = head;
1973 if (BLOCK_FOR_INSN (head) != head_bb)
1974 BB_END (head_bb) = note_list;
1982 /* Move insns that became ready to fire from queue to ready list. */
1985 queue_to_ready (struct ready_list *ready)
1991 q_ptr = NEXT_Q (q_ptr);
1993 if (dbg_cnt (sched_insn) == false)
1995 /* If debug counter is activated do not requeue insn next after
1996 last_scheduled_insn. */
1997 skip_insn = next_nonnote_insn (last_scheduled_insn);
1998 while (skip_insn && DEBUG_INSN_P (skip_insn))
1999 skip_insn = next_nonnote_insn (skip_insn);
2002 skip_insn = NULL_RTX;
2004 /* Add all pending insns that can be scheduled without stalls to the
2006 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
2008 insn = XEXP (link, 0);
2011 if (sched_verbose >= 2)
2012 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
2013 (*current_sched_info->print_insn) (insn, 0));
2015 /* If the ready list is full, delay the insn for 1 cycle.
2016 See the comment in schedule_block for the rationale. */
2017 if (!reload_completed
2018 && ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
2019 && !SCHED_GROUP_P (insn)
2020 && insn != skip_insn)
2022 if (sched_verbose >= 2)
2023 fprintf (sched_dump, "requeued because ready full\n");
2024 queue_insn (insn, 1);
2028 ready_add (ready, insn, false);
2029 if (sched_verbose >= 2)
2030 fprintf (sched_dump, "moving to ready without stalls\n");
2033 free_INSN_LIST_list (&insn_queue[q_ptr]);
2035 /* If there are no ready insns, stall until one is ready and add all
2036 of the pending insns at that point to the ready list. */
2037 if (ready->n_ready == 0)
2041 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
2043 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
2045 for (; link; link = XEXP (link, 1))
2047 insn = XEXP (link, 0);
2050 if (sched_verbose >= 2)
2051 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
2052 (*current_sched_info->print_insn) (insn, 0));
2054 ready_add (ready, insn, false);
2055 if (sched_verbose >= 2)
2056 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
2058 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
2060 advance_one_cycle ();
2065 advance_one_cycle ();
2068 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
2069 clock_var += stalls;
2073 /* Used by early_queue_to_ready. Determines whether it is "ok" to
2074 prematurely move INSN from the queue to the ready list. Currently,
2075 if a target defines the hook 'is_costly_dependence', this function
2076 uses the hook to check whether there exist any dependences which are
2077 considered costly by the target, between INSN and other insns that
2078 have already been scheduled. Dependences are checked up to Y cycles
2079 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
2080 controlling this value.
2081 (Other considerations could be taken into account instead (or in
2082 addition) depending on user flags and target hooks. */
2085 ok_for_early_queue_removal (rtx insn)
2088 rtx prev_insn = last_scheduled_insn;
2090 if (targetm.sched.is_costly_dependence)
2092 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
2094 for ( ; prev_insn; prev_insn = PREV_INSN (prev_insn))
2098 if (prev_insn == current_sched_info->prev_head)
2104 if (!NOTE_P (prev_insn))
2108 dep = sd_find_dep_between (prev_insn, insn, true);
2112 cost = dep_cost (dep);
2114 if (targetm.sched.is_costly_dependence (dep, cost,
2115 flag_sched_stalled_insns_dep - n_cycles))
2120 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
2126 prev_insn = PREV_INSN (prev_insn);
2134 /* Remove insns from the queue, before they become "ready" with respect
2135 to FU latency considerations. */
2138 early_queue_to_ready (state_t state, struct ready_list *ready)
2146 state_t temp_state = alloca (dfa_state_size);
2148 int insns_removed = 0;
2151 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
2154 X == 0: There is no limit on how many queued insns can be removed
2155 prematurely. (flag_sched_stalled_insns = -1).
2157 X >= 1: Only X queued insns can be removed prematurely in each
2158 invocation. (flag_sched_stalled_insns = X).
2160 Otherwise: Early queue removal is disabled.
2161 (flag_sched_stalled_insns = 0)
2164 if (! flag_sched_stalled_insns)
2167 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
2169 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
2171 if (sched_verbose > 6)
2172 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
2177 next_link = XEXP (link, 1);
2178 insn = XEXP (link, 0);
2179 if (insn && sched_verbose > 6)
2180 print_rtl_single (sched_dump, insn);
2182 memcpy (temp_state, state, dfa_state_size);
2183 if (recog_memoized (insn) < 0)
2184 /* non-negative to indicate that it's not ready
2185 to avoid infinite Q->R->Q->R... */
2188 cost = state_transition (temp_state, insn);
2190 if (sched_verbose >= 6)
2191 fprintf (sched_dump, "transition cost = %d\n", cost);
2193 move_to_ready = false;
2196 move_to_ready = ok_for_early_queue_removal (insn);
2197 if (move_to_ready == true)
2199 /* move from Q to R */
2201 ready_add (ready, insn, false);
2204 XEXP (prev_link, 1) = next_link;
2206 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
2208 free_INSN_LIST_node (link);
2210 if (sched_verbose >= 2)
2211 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
2212 (*current_sched_info->print_insn) (insn, 0));
2215 if (insns_removed == flag_sched_stalled_insns)
2216 /* Remove no more than flag_sched_stalled_insns insns
2217 from Q at a time. */
2218 return insns_removed;
2222 if (move_to_ready == false)
2229 } /* for stalls.. */
2231 return insns_removed;
2235 /* Print the ready list for debugging purposes. Callable from debugger. */
2238 debug_ready_list (struct ready_list *ready)
2243 if (ready->n_ready == 0)
2245 fprintf (sched_dump, "\n");
2249 p = ready_lastpos (ready);
2250 for (i = 0; i < ready->n_ready; i++)
2252 fprintf (sched_dump, " %s:%d",
2253 (*current_sched_info->print_insn) (p[i], 0),
2255 if (sched_pressure_p)
2256 fprintf (sched_dump, "(cost=%d",
2257 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
2258 if (INSN_TICK (p[i]) > clock_var)
2259 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
2260 if (sched_pressure_p)
2261 fprintf (sched_dump, ")");
2263 fprintf (sched_dump, "\n");
2266 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
2267 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
2268 replaces the epilogue note in the correct basic block. */
2270 reemit_notes (rtx insn)
2272 rtx note, last = insn;
2274 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2276 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
2278 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
2280 last = emit_note_before (note_type, last);
2281 remove_note (insn, note);
2286 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
2288 move_insn (rtx insn, rtx last, rtx nt)
2290 if (PREV_INSN (insn) != last)
2296 bb = BLOCK_FOR_INSN (insn);
2298 /* BB_HEAD is either LABEL or NOTE. */
2299 gcc_assert (BB_HEAD (bb) != insn);
2301 if (BB_END (bb) == insn)
2302 /* If this is last instruction in BB, move end marker one
2305 /* Jumps are always placed at the end of basic block. */
2306 jump_p = control_flow_insn_p (insn);
2309 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
2310 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
2311 || (common_sched_info->sched_pass_id
2312 == SCHED_EBB_PASS));
2314 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
2316 BB_END (bb) = PREV_INSN (insn);
2319 gcc_assert (BB_END (bb) != last);
2322 /* We move the block note along with jump. */
2326 note = NEXT_INSN (insn);
2327 while (NOTE_NOT_BB_P (note) && note != nt)
2328 note = NEXT_INSN (note);
2332 || BARRIER_P (note)))
2333 note = NEXT_INSN (note);
2335 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
2340 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
2341 PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
2343 NEXT_INSN (note) = NEXT_INSN (last);
2344 PREV_INSN (NEXT_INSN (last)) = note;
2346 NEXT_INSN (last) = insn;
2347 PREV_INSN (insn) = last;
2349 bb = BLOCK_FOR_INSN (last);
2353 fix_jump_move (insn);
2355 if (BLOCK_FOR_INSN (insn) != bb)
2356 move_block_after_check (insn);
2358 gcc_assert (BB_END (bb) == last);
2361 df_insn_change_bb (insn, bb);
2363 /* Update BB_END, if needed. */
2364 if (BB_END (bb) == last)
2368 SCHED_GROUP_P (insn) = 0;
2371 /* Return true if scheduling INSN will finish current clock cycle. */
2373 insn_finishes_cycle_p (rtx insn)
2375 if (SCHED_GROUP_P (insn))
2376 /* After issuing INSN, rest of the sched_group will be forced to issue
2377 in order. Don't make any plans for the rest of cycle. */
2380 /* Finishing the block will, apparently, finish the cycle. */
2381 if (current_sched_info->insn_finishes_block_p
2382 && current_sched_info->insn_finishes_block_p (insn))
2388 /* The following structure describe an entry of the stack of choices. */
2391 /* Ordinal number of the issued insn in the ready queue. */
2393 /* The number of the rest insns whose issues we should try. */
2395 /* The number of issued essential insns. */
2397 /* State after issuing the insn. */
2401 /* The following array is used to implement a stack of choices used in
2402 function max_issue. */
2403 static struct choice_entry *choice_stack;
2405 /* The following variable value is number of essential insns issued on
2406 the current cycle. An insn is essential one if it changes the
2407 processors state. */
2408 int cycle_issued_insns;
2410 /* This holds the value of the target dfa_lookahead hook. */
2413 /* The following variable value is maximal number of tries of issuing
2414 insns for the first cycle multipass insn scheduling. We define
2415 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
2416 need this constraint if all real insns (with non-negative codes)
2417 had reservations because in this case the algorithm complexity is
2418 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
2419 might be incomplete and such insn might occur. For such
2420 descriptions, the complexity of algorithm (without the constraint)
2421 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
2422 static int max_lookahead_tries;
2424 /* The following value is value of hook
2425 `first_cycle_multipass_dfa_lookahead' at the last call of
2427 static int cached_first_cycle_multipass_dfa_lookahead = 0;
2429 /* The following value is value of `issue_rate' at the last call of
2431 static int cached_issue_rate = 0;
2433 /* The following function returns maximal (or close to maximal) number
2434 of insns which can be issued on the same cycle and one of which
2435 insns is insns with the best rank (the first insn in READY). To
2436 make this function tries different samples of ready insns. READY
2437 is current queue `ready'. Global array READY_TRY reflects what
2438 insns are already issued in this try. MAX_POINTS is the sum of points
2439 of all instructions in READY. The function stops immediately,
2440 if it reached the such a solution, that all instruction can be issued.
2441 INDEX will contain index of the best insn in READY. The following
2442 function is used only for first cycle multipass scheduling.
2446 This function expects recognized insns only. All USEs,
2447 CLOBBERs, etc must be filtered elsewhere. */
2449 max_issue (struct ready_list *ready, int privileged_n, state_t state,
2452 int n, i, all, n_ready, best, delay, tries_num, max_points;
2454 struct choice_entry *top;
2457 n_ready = ready->n_ready;
2458 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
2459 && privileged_n <= n_ready);
2461 /* Init MAX_LOOKAHEAD_TRIES. */
2462 if (cached_first_cycle_multipass_dfa_lookahead != dfa_lookahead)
2464 cached_first_cycle_multipass_dfa_lookahead = dfa_lookahead;
2465 max_lookahead_tries = 100;
2466 for (i = 0; i < issue_rate; i++)
2467 max_lookahead_tries *= dfa_lookahead;
2470 /* Init max_points. */
2472 more_issue = issue_rate - cycle_issued_insns;
2474 /* ??? We used to assert here that we never issue more insns than issue_rate.
2475 However, some targets (e.g. MIPS/SB1) claim lower issue rate than can be
2476 achieved to get better performance. Until these targets are fixed to use
2477 scheduler hooks to manipulate insns priority instead, the assert should
2480 gcc_assert (more_issue >= 0); */
2482 for (i = 0; i < n_ready; i++)
2485 if (more_issue-- > 0)
2486 max_points += ISSUE_POINTS (ready_element (ready, i));
2491 /* The number of the issued insns in the best solution. */
2496 /* Set initial state of the search. */
2497 memcpy (top->state, state, dfa_state_size);
2498 top->rest = dfa_lookahead;
2501 /* Count the number of the insns to search among. */
2502 for (all = i = 0; i < n_ready; i++)
2506 /* I is the index of the insn to try next. */
2511 if (/* If we've reached a dead end or searched enough of what we have
2514 /* Or have nothing else to try. */
2517 /* ??? (... || i == n_ready). */
2518 gcc_assert (i <= n_ready);
2520 if (top == choice_stack)
2523 if (best < top - choice_stack)
2528 /* Try to find issued privileged insn. */
2529 while (n && !ready_try[--n]);
2532 if (/* If all insns are equally good... */
2534 /* Or a privileged insn will be issued. */
2536 /* Then we have a solution. */
2538 best = top - choice_stack;
2539 /* This is the index of the insn issued first in this
2541 *index = choice_stack [1].index;
2542 if (top->n == max_points || best == all)
2547 /* Set ready-list index to point to the last insn
2548 ('i++' below will advance it to the next insn). */
2554 memcpy (state, top->state, dfa_state_size);
2556 else if (!ready_try [i])
2559 if (tries_num > max_lookahead_tries)
2561 insn = ready_element (ready, i);
2562 delay = state_transition (state, insn);
2565 if (state_dead_lock_p (state)
2566 || insn_finishes_cycle_p (insn))
2567 /* We won't issue any more instructions in the next
2574 if (memcmp (top->state, state, dfa_state_size) != 0)
2575 n += ISSUE_POINTS (insn);
2577 /* Advance to the next choice_entry. */
2579 /* Initialize it. */
2580 top->rest = dfa_lookahead;
2583 memcpy (top->state, state, dfa_state_size);
2590 /* Increase ready-list index. */
2594 /* Restore the original state of the DFA. */
2595 memcpy (state, choice_stack->state, dfa_state_size);
2600 /* The following function chooses insn from READY and modifies
2601 READY. The following function is used only for first
2602 cycle multipass scheduling.
2604 -1 if cycle should be advanced,
2605 0 if INSN_PTR is set to point to the desirable insn,
2606 1 if choose_ready () should be restarted without advancing the cycle. */
2608 choose_ready (struct ready_list *ready, rtx *insn_ptr)
2612 if (dbg_cnt (sched_insn) == false)
2616 insn = next_nonnote_insn (last_scheduled_insn);
2618 if (QUEUE_INDEX (insn) == QUEUE_READY)
2619 /* INSN is in the ready_list. */
2621 ready_remove_insn (insn);
2626 /* INSN is in the queue. Advance cycle to move it to the ready list. */
2632 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
2633 lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
2634 if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
2635 || DEBUG_INSN_P (ready_element (ready, 0)))
2637 *insn_ptr = ready_remove_first (ready);
2642 /* Try to choose the better insn. */
2643 int index = 0, i, n;
2645 int try_data = 1, try_control = 1;
2648 insn = ready_element (ready, 0);
2649 if (INSN_CODE (insn) < 0)
2651 *insn_ptr = ready_remove_first (ready);
2656 && spec_info->flags & (PREFER_NON_DATA_SPEC
2657 | PREFER_NON_CONTROL_SPEC))
2659 for (i = 0, n = ready->n_ready; i < n; i++)
2664 x = ready_element (ready, i);
2667 if (spec_info->flags & PREFER_NON_DATA_SPEC
2668 && !(s & DATA_SPEC))
2671 if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
2676 if (spec_info->flags & PREFER_NON_CONTROL_SPEC
2677 && !(s & CONTROL_SPEC))
2680 if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
2686 ts = TODO_SPEC (insn);
2687 if ((ts & SPECULATIVE)
2688 && (((!try_data && (ts & DATA_SPEC))
2689 || (!try_control && (ts & CONTROL_SPEC)))
2690 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
2692 .first_cycle_multipass_dfa_lookahead_guard_spec (insn))))
2693 /* Discard speculative instruction that stands first in the ready
2696 change_queue_index (insn, 1);
2702 for (i = 1; i < ready->n_ready; i++)
2704 insn = ready_element (ready, i);
2707 = ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
2708 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC)));
2711 /* Let the target filter the search space. */
2712 for (i = 1; i < ready->n_ready; i++)
2715 insn = ready_element (ready, i);
2717 #ifdef ENABLE_CHECKING
2718 /* If this insn is recognizable we should have already
2719 recognized it earlier.
2720 ??? Not very clear where this is supposed to be done.
2722 gcc_assert (INSN_CODE (insn) >= 0
2723 || recog_memoized (insn) < 0);
2727 = (/* INSN_CODE check can be omitted here as it is also done later
2729 INSN_CODE (insn) < 0
2730 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2731 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2735 if (max_issue (ready, 1, curr_state, &index) == 0)
2737 *insn_ptr = ready_remove_first (ready);
2738 if (sched_verbose >= 4)
2739 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
2740 (*current_sched_info->print_insn) (*insn_ptr, 0));
2745 if (sched_verbose >= 4)
2746 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
2747 (*current_sched_info->print_insn)
2748 (ready_element (ready, index), 0));
2750 *insn_ptr = ready_remove (ready, index);
2756 /* Use forward list scheduling to rearrange insns of block pointed to by
2757 TARGET_BB, possibly bringing insns from subsequent blocks in the same
2761 schedule_block (basic_block *target_bb)
2763 int i, first_cycle_insn_p;
2765 state_t temp_state = NULL; /* It is used for multipass scheduling. */
2766 int sort_p, advance, start_clock_var;
2768 /* Head/tail info for this block. */
2769 rtx prev_head = current_sched_info->prev_head;
2770 rtx next_tail = current_sched_info->next_tail;
2771 rtx head = NEXT_INSN (prev_head);
2772 rtx tail = PREV_INSN (next_tail);
2774 /* We used to have code to avoid getting parameters moved from hard
2775 argument registers into pseudos.
2777 However, it was removed when it proved to be of marginal benefit
2778 and caused problems because schedule_block and compute_forward_dependences
2779 had different notions of what the "head" insn was. */
2781 gcc_assert (head != tail || INSN_P (head));
2783 haifa_recovery_bb_recently_added_p = false;
2787 dump_new_block_header (0, *target_bb, head, tail);
2789 state_reset (curr_state);
2791 /* Clear the ready list. */
2792 ready.first = ready.veclen - 1;
2796 /* It is used for first cycle multipass scheduling. */
2797 temp_state = alloca (dfa_state_size);
2799 if (targetm.sched.md_init)
2800 targetm.sched.md_init (sched_dump, sched_verbose, ready.veclen);
2802 /* We start inserting insns after PREV_HEAD. */
2803 last_scheduled_insn = prev_head;
2805 gcc_assert ((NOTE_P (last_scheduled_insn)
2806 || BOUNDARY_DEBUG_INSN_P (last_scheduled_insn))
2807 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
2809 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
2814 insn_queue = XALLOCAVEC (rtx, max_insn_queue_index + 1);
2815 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
2817 /* Start just before the beginning of time. */
2820 /* We need queue and ready lists and clock_var be initialized
2821 in try_ready () (which is called through init_ready_list ()). */
2822 (*current_sched_info->init_ready_list) ();
2824 /* The algorithm is O(n^2) in the number of ready insns at any given
2825 time in the worst case. Before reload we are more likely to have
2826 big lists so truncate them to a reasonable size. */
2827 if (!reload_completed
2828 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
2830 ready_sort (&ready);
2832 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
2833 If there are debug insns, we know they're first. */
2834 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
2835 if (!SCHED_GROUP_P (ready_element (&ready, i)))
2838 if (sched_verbose >= 2)
2840 fprintf (sched_dump,
2841 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
2842 fprintf (sched_dump,
2843 ";;\t\t before reload => truncated to %d insns\n", i);
2846 /* Delay all insns past it for 1 cycle. If debug counter is
2847 activated make an exception for the insn right after
2848 last_scheduled_insn. */
2852 if (dbg_cnt (sched_insn) == false)
2853 skip_insn = next_nonnote_insn (last_scheduled_insn);
2855 skip_insn = NULL_RTX;
2857 while (i < ready.n_ready)
2861 insn = ready_remove (&ready, i);
2863 if (insn != skip_insn)
2864 queue_insn (insn, 1);
2869 /* Now we can restore basic block notes and maintain precise cfg. */
2870 restore_bb_notes (*target_bb);
2872 last_clock_var = -1;
2877 /* Loop until all the insns in BB are scheduled. */
2878 while ((*current_sched_info->schedule_more_p) ())
2882 start_clock_var = clock_var;
2886 advance_one_cycle ();
2888 /* Add to the ready list all pending insns that can be issued now.
2889 If there are no ready insns, increment clock until one
2890 is ready and add all pending insns at that point to the ready
2892 queue_to_ready (&ready);
2894 gcc_assert (ready.n_ready);
2896 if (sched_verbose >= 2)
2898 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
2899 debug_ready_list (&ready);
2901 advance -= clock_var - start_clock_var;
2903 while (advance > 0);
2907 /* Sort the ready list based on priority. */
2908 ready_sort (&ready);
2910 if (sched_verbose >= 2)
2912 fprintf (sched_dump, ";;\t\tReady list after ready_sort: ");
2913 debug_ready_list (&ready);
2917 /* We don't want md sched reorder to even see debug isns, so put
2918 them out right away. */
2919 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
2921 if (control_flow_insn_p (last_scheduled_insn))
2923 *target_bb = current_sched_info->advance_target_bb
2930 x = next_real_insn (last_scheduled_insn);
2932 dump_new_block_header (1, *target_bb, x, tail);
2935 last_scheduled_insn = bb_note (*target_bb);
2938 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
2940 rtx insn = ready_remove_first (&ready);
2941 gcc_assert (DEBUG_INSN_P (insn));
2942 (*current_sched_info->begin_schedule_ready) (insn,
2943 last_scheduled_insn);
2944 move_insn (insn, last_scheduled_insn,
2945 current_sched_info->next_tail);
2946 last_scheduled_insn = insn;
2947 advance = schedule_insn (insn);
2948 gcc_assert (advance == 0);
2949 if (ready.n_ready > 0)
2950 ready_sort (&ready);
2957 /* Allow the target to reorder the list, typically for
2958 better instruction bundling. */
2959 if (sort_p && targetm.sched.reorder
2960 && (ready.n_ready == 0
2961 || !SCHED_GROUP_P (ready_element (&ready, 0))))
2963 targetm.sched.reorder (sched_dump, sched_verbose,
2964 ready_lastpos (&ready),
2965 &ready.n_ready, clock_var);
2967 can_issue_more = issue_rate;
2969 first_cycle_insn_p = 1;
2970 cycle_issued_insns = 0;
2977 if (sched_verbose >= 2)
2979 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
2981 debug_ready_list (&ready);
2982 if (sched_pressure_p)
2983 print_curr_reg_pressure ();
2986 if (ready.n_ready == 0
2988 && reload_completed)
2990 /* Allow scheduling insns directly from the queue in case
2991 there's nothing better to do (ready list is empty) but
2992 there are still vacant dispatch slots in the current cycle. */
2993 if (sched_verbose >= 6)
2994 fprintf (sched_dump,";;\t\tSecond chance\n");
2995 memcpy (temp_state, curr_state, dfa_state_size);
2996 if (early_queue_to_ready (temp_state, &ready))
2997 ready_sort (&ready);
3000 if (ready.n_ready == 0
3002 || state_dead_lock_p (curr_state)
3003 || !(*current_sched_info->schedule_more_p) ())
3006 /* Select and remove the insn from the ready list. */
3012 res = choose_ready (&ready, &insn);
3018 /* Restart choose_ready (). */
3021 gcc_assert (insn != NULL_RTX);
3024 insn = ready_remove_first (&ready);
3026 if (sched_pressure_p && INSN_TICK (insn) > clock_var)
3028 ready_add (&ready, insn, true);
3033 if (targetm.sched.dfa_new_cycle
3034 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
3035 insn, last_clock_var,
3036 clock_var, &sort_p))
3037 /* SORT_P is used by the target to override sorting
3038 of the ready list. This is needed when the target
3039 has modified its internal structures expecting that
3040 the insn will be issued next. As we need the insn
3041 to have the highest priority (so it will be returned by
3042 the ready_remove_first call above), we invoke
3043 ready_add (&ready, insn, true).
3044 But, still, there is one issue: INSN can be later
3045 discarded by scheduler's front end through
3046 current_sched_info->can_schedule_ready_p, hence, won't
3049 ready_add (&ready, insn, true);
3054 memcpy (temp_state, curr_state, dfa_state_size);
3055 if (recog_memoized (insn) < 0)
3057 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
3058 || asm_noperands (PATTERN (insn)) >= 0);
3059 if (!first_cycle_insn_p && asm_p)
3060 /* This is asm insn which is tried to be issued on the
3061 cycle not first. Issue it on the next cycle. */
3064 /* A USE insn, or something else we don't need to
3065 understand. We can't pass these directly to
3066 state_transition because it will trigger a
3067 fatal error for unrecognizable insns. */
3070 else if (sched_pressure_p)
3074 cost = state_transition (temp_state, insn);
3083 queue_insn (insn, cost);
3084 if (SCHED_GROUP_P (insn))
3093 if (current_sched_info->can_schedule_ready_p
3094 && ! (*current_sched_info->can_schedule_ready_p) (insn))
3095 /* We normally get here only if we don't want to move
3096 insn from the split block. */
3098 TODO_SPEC (insn) = (TODO_SPEC (insn) & ~SPECULATIVE) | HARD_DEP;
3102 /* DECISION is made. */
3104 if (TODO_SPEC (insn) & SPECULATIVE)
3105 generate_recovery_code (insn);
3107 if (control_flow_insn_p (last_scheduled_insn)
3108 /* This is used to switch basic blocks by request
3109 from scheduler front-end (actually, sched-ebb.c only).
3110 This is used to process blocks with single fallthru
3111 edge. If succeeding block has jump, it [jump] will try
3112 move at the end of current bb, thus corrupting CFG. */
3113 || current_sched_info->advance_target_bb (*target_bb, insn))
3115 *target_bb = current_sched_info->advance_target_bb
3122 x = next_real_insn (last_scheduled_insn);
3124 dump_new_block_header (1, *target_bb, x, tail);
3127 last_scheduled_insn = bb_note (*target_bb);
3130 /* Update counters, etc in the scheduler's front end. */
3131 (*current_sched_info->begin_schedule_ready) (insn,
3132 last_scheduled_insn);
3134 move_insn (insn, last_scheduled_insn, current_sched_info->next_tail);
3135 reemit_notes (insn);
3136 last_scheduled_insn = insn;
3138 if (memcmp (curr_state, temp_state, dfa_state_size) != 0)
3140 cycle_issued_insns++;
3141 memcpy (curr_state, temp_state, dfa_state_size);
3144 if (targetm.sched.variable_issue)
3146 targetm.sched.variable_issue (sched_dump, sched_verbose,
3147 insn, can_issue_more);
3148 /* A naked CLOBBER or USE generates no instruction, so do
3149 not count them against the issue rate. */
3150 else if (GET_CODE (PATTERN (insn)) != USE
3151 && GET_CODE (PATTERN (insn)) != CLOBBER)
3153 advance = schedule_insn (insn);
3155 /* After issuing an asm insn we should start a new cycle. */
3156 if (advance == 0 && asm_p)
3161 first_cycle_insn_p = 0;
3163 /* Sort the ready list based on priority. This must be
3164 redone here, as schedule_insn may have readied additional
3165 insns that will not be sorted correctly. */
3166 if (ready.n_ready > 0)
3167 ready_sort (&ready);
3169 /* Quickly go through debug insns such that md sched
3170 reorder2 doesn't have to deal with debug insns. */
3171 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
3172 && (*current_sched_info->schedule_more_p) ())
3174 if (control_flow_insn_p (last_scheduled_insn))
3176 *target_bb = current_sched_info->advance_target_bb
3183 x = next_real_insn (last_scheduled_insn);
3185 dump_new_block_header (1, *target_bb, x, tail);
3188 last_scheduled_insn = bb_note (*target_bb);
3191 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
3193 insn = ready_remove_first (&ready);
3194 gcc_assert (DEBUG_INSN_P (insn));
3195 (*current_sched_info->begin_schedule_ready)
3196 (insn, last_scheduled_insn);
3197 move_insn (insn, last_scheduled_insn,
3198 current_sched_info->next_tail);
3199 advance = schedule_insn (insn);
3200 last_scheduled_insn = insn;
3201 gcc_assert (advance == 0);
3202 if (ready.n_ready > 0)
3203 ready_sort (&ready);
3207 if (targetm.sched.reorder2
3208 && (ready.n_ready == 0
3209 || !SCHED_GROUP_P (ready_element (&ready, 0))))
3212 targetm.sched.reorder2 (sched_dump, sched_verbose,
3214 ? ready_lastpos (&ready) : NULL,
3215 &ready.n_ready, clock_var);
3223 fprintf (sched_dump, ";;\tReady list (final): ");
3224 debug_ready_list (&ready);
3227 if (current_sched_info->queue_must_finish_empty)
3228 /* Sanity check -- queue must be empty now. Meaningless if region has
3230 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
3233 /* We must maintain QUEUE_INDEX between blocks in region. */
3234 for (i = ready.n_ready - 1; i >= 0; i--)
3238 x = ready_element (&ready, i);
3239 QUEUE_INDEX (x) = QUEUE_NOWHERE;
3240 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
3244 for (i = 0; i <= max_insn_queue_index; i++)
3247 for (link = insn_queue[i]; link; link = XEXP (link, 1))
3252 QUEUE_INDEX (x) = QUEUE_NOWHERE;
3253 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
3255 free_INSN_LIST_list (&insn_queue[i]);
3260 fprintf (sched_dump, ";; total time = %d\n", clock_var);
3262 if (!current_sched_info->queue_must_finish_empty
3263 || haifa_recovery_bb_recently_added_p)
3265 /* INSN_TICK (minimum clock tick at which the insn becomes
3266 ready) may be not correct for the insn in the subsequent
3267 blocks of the region. We should use a correct value of
3268 `clock_var' or modify INSN_TICK. It is better to keep
3269 clock_var value equal to 0 at the start of a basic block.
3270 Therefore we modify INSN_TICK here. */
3271 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
3274 if (targetm.sched.md_finish)
3276 targetm.sched.md_finish (sched_dump, sched_verbose);
3277 /* Target might have added some instructions to the scheduled block
3278 in its md_finish () hook. These new insns don't have any data
3279 initialized and to identify them we extend h_i_d so that they'll
3281 sched_init_luids (NULL, NULL, NULL, NULL);
3285 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n\n",
3286 INSN_UID (head), INSN_UID (tail));
3288 /* Update head/tail boundaries. */
3289 head = NEXT_INSN (prev_head);
3290 tail = last_scheduled_insn;
3292 head = restore_other_notes (head, NULL);
3294 current_sched_info->head = head;
3295 current_sched_info->tail = tail;
3298 /* Set_priorities: compute priority of each insn in the block. */
3301 set_priorities (rtx head, rtx tail)
3305 int sched_max_insns_priority =
3306 current_sched_info->sched_max_insns_priority;
3309 if (head == tail && (! INSN_P (head) || BOUNDARY_DEBUG_INSN_P (head)))
3314 prev_head = PREV_INSN (head);
3315 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
3321 (void) priority (insn);
3323 gcc_assert (INSN_PRIORITY_KNOWN (insn));
3325 sched_max_insns_priority = MAX (sched_max_insns_priority,
3326 INSN_PRIORITY (insn));
3329 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
3334 /* Set dump and sched_verbose for the desired debugging output. If no
3335 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
3336 For -fsched-verbose=N, N>=10, print everything to stderr. */
3338 setup_sched_dump (void)
3340 sched_verbose = sched_verbose_param;
3341 if (sched_verbose_param == 0 && dump_file)
3343 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
3344 ? stderr : dump_file);
3347 /* Initialize some global state for the scheduler. This function works
3348 with the common data shared between all the schedulers. It is called
3349 from the scheduler specific initialization routine. */
3354 /* Disable speculative loads in their presence if cc0 defined. */
3356 flag_schedule_speculative_load = 0;
3359 sched_pressure_p = (flag_sched_pressure && ! reload_completed
3360 && common_sched_info->sched_pass_id == SCHED_RGN_PASS);
3361 if (sched_pressure_p)
3362 ira_setup_eliminable_regset ();
3364 /* Initialize SPEC_INFO. */
3365 if (targetm.sched.set_sched_flags)
3367 spec_info = &spec_info_var;
3368 targetm.sched.set_sched_flags (spec_info);
3370 if (spec_info->mask != 0)
3372 spec_info->data_weakness_cutoff =
3373 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
3374 spec_info->control_weakness_cutoff =
3375 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
3376 * REG_BR_PROB_BASE) / 100;
3379 /* So we won't read anything accidentally. */
3384 /* So we won't read anything accidentally. */
3387 /* Initialize issue_rate. */
3388 if (targetm.sched.issue_rate)
3389 issue_rate = targetm.sched.issue_rate ();
3393 if (cached_issue_rate != issue_rate)
3395 cached_issue_rate = issue_rate;
3396 /* To invalidate max_lookahead_tries: */
3397 cached_first_cycle_multipass_dfa_lookahead = 0;
3400 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
3401 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
3405 if (targetm.sched.init_dfa_pre_cycle_insn)
3406 targetm.sched.init_dfa_pre_cycle_insn ();
3408 if (targetm.sched.init_dfa_post_cycle_insn)
3409 targetm.sched.init_dfa_post_cycle_insn ();
3412 dfa_state_size = state_size ();
3414 init_alias_analysis ();
3416 df_set_flags (DF_LR_RUN_DCE);
3417 df_note_add_problem ();
3419 /* More problems needed for interloop dep calculation in SMS. */
3420 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
3422 df_rd_add_problem ();
3423 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
3428 /* Do not run DCE after reload, as this can kill nops inserted
3430 if (reload_completed)
3431 df_clear_flags (DF_LR_RUN_DCE);
3433 regstat_compute_calls_crossed ();
3435 if (targetm.sched.md_init_global)
3436 targetm.sched.md_init_global (sched_dump, sched_verbose,
3437 get_max_uid () + 1);
3439 if (sched_pressure_p)
3441 int i, max_regno = max_reg_num ();
3443 ira_set_pseudo_classes (sched_verbose ? sched_dump : NULL);
3444 sched_regno_cover_class
3445 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
3446 for (i = 0; i < max_regno; i++)
3447 sched_regno_cover_class[i]
3448 = (i < FIRST_PSEUDO_REGISTER
3449 ? ira_class_translate[REGNO_REG_CLASS (i)]
3450 : reg_cover_class (i));
3451 curr_reg_live = BITMAP_ALLOC (NULL);
3452 saved_reg_live = BITMAP_ALLOC (NULL);
3453 region_ref_regs = BITMAP_ALLOC (NULL);
3456 curr_state = xmalloc (dfa_state_size);
3459 static void haifa_init_only_bb (basic_block, basic_block);
3461 /* Initialize data structures specific to the Haifa scheduler. */
3463 haifa_sched_init (void)
3465 setup_sched_dump ();
3468 if (spec_info != NULL)
3470 sched_deps_info->use_deps_list = 1;
3471 sched_deps_info->generate_spec_deps = 1;
3474 /* Initialize luids, dependency caches, target and h_i_d for the
3477 bb_vec_t bbs = VEC_alloc (basic_block, heap, n_basic_blocks);
3483 VEC_quick_push (basic_block, bbs, bb);
3484 sched_init_luids (bbs, NULL, NULL, NULL);
3485 sched_deps_init (true);
3486 sched_extend_target ();
3487 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
3489 VEC_free (basic_block, heap, bbs);
3492 sched_init_only_bb = haifa_init_only_bb;
3493 sched_split_block = sched_split_block_1;
3494 sched_create_empty_bb = sched_create_empty_bb_1;
3495 haifa_recovery_bb_ever_added_p = false;
3497 #ifdef ENABLE_CHECKING
3498 /* This is used preferably for finding bugs in check_cfg () itself.
3499 We must call sched_bbs_init () before check_cfg () because check_cfg ()
3500 assumes that the last insn in the last bb has a non-null successor. */
3504 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
3505 before_recovery = 0;
3509 /* Finish work with the data specific to the Haifa scheduler. */
3511 haifa_sched_finish (void)
3513 sched_create_empty_bb = NULL;
3514 sched_split_block = NULL;
3515 sched_init_only_bb = NULL;
3517 if (spec_info && spec_info->dump)
3519 char c = reload_completed ? 'a' : 'b';
3521 fprintf (spec_info->dump,
3522 ";; %s:\n", current_function_name ());
3524 fprintf (spec_info->dump,
3525 ";; Procedure %cr-begin-data-spec motions == %d\n",