OSDN Git Service

Rewrite conversion of named types to backend representation.
[pf3gnuchains/gcc-fork.git] / gcc / go / gofrontend / gogo.cc
1 // gogo.cc -- Go frontend parsed representation.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include "go-c.h"
10 #include "go-dump.h"
11 #include "lex.h"
12 #include "types.h"
13 #include "statements.h"
14 #include "expressions.h"
15 #include "dataflow.h"
16 #include "import.h"
17 #include "export.h"
18 #include "gogo.h"
19
20 // Class Gogo.
21
22 Gogo::Gogo(int int_type_size, int pointer_size)
23   : package_(NULL),
24     functions_(),
25     globals_(new Bindings(NULL)),
26     imports_(),
27     imported_unsafe_(false),
28     packages_(),
29     map_descriptors_(NULL),
30     type_descriptor_decls_(NULL),
31     init_functions_(),
32     need_init_fn_(false),
33     init_fn_name_(),
34     imported_init_fns_(),
35     unique_prefix_(),
36     unique_prefix_specified_(false),
37     interface_types_(),
38     named_types_are_converted_(false)
39 {
40   const source_location loc = BUILTINS_LOCATION;
41
42   Named_type* uint8_type = Type::make_integer_type("uint8", true, 8,
43                                                    RUNTIME_TYPE_KIND_UINT8);
44   this->add_named_type(uint8_type);
45   this->add_named_type(Type::make_integer_type("uint16", true,  16,
46                                                RUNTIME_TYPE_KIND_UINT16));
47   this->add_named_type(Type::make_integer_type("uint32", true,  32,
48                                                RUNTIME_TYPE_KIND_UINT32));
49   this->add_named_type(Type::make_integer_type("uint64", true,  64,
50                                                RUNTIME_TYPE_KIND_UINT64));
51
52   this->add_named_type(Type::make_integer_type("int8",  false,   8,
53                                                RUNTIME_TYPE_KIND_INT8));
54   this->add_named_type(Type::make_integer_type("int16", false,  16,
55                                                RUNTIME_TYPE_KIND_INT16));
56   this->add_named_type(Type::make_integer_type("int32", false,  32,
57                                                RUNTIME_TYPE_KIND_INT32));
58   this->add_named_type(Type::make_integer_type("int64", false,  64,
59                                                RUNTIME_TYPE_KIND_INT64));
60
61   this->add_named_type(Type::make_float_type("float32", 32,
62                                              RUNTIME_TYPE_KIND_FLOAT32));
63   this->add_named_type(Type::make_float_type("float64", 64,
64                                              RUNTIME_TYPE_KIND_FLOAT64));
65
66   this->add_named_type(Type::make_complex_type("complex64", 64,
67                                                RUNTIME_TYPE_KIND_COMPLEX64));
68   this->add_named_type(Type::make_complex_type("complex128", 128,
69                                                RUNTIME_TYPE_KIND_COMPLEX128));
70
71   if (int_type_size < 32)
72     int_type_size = 32;
73   this->add_named_type(Type::make_integer_type("uint", true,
74                                                int_type_size,
75                                                RUNTIME_TYPE_KIND_UINT));
76   Named_type* int_type = Type::make_integer_type("int", false, int_type_size,
77                                                  RUNTIME_TYPE_KIND_INT);
78   this->add_named_type(int_type);
79
80   // "byte" is an alias for "uint8".  Construct a Named_object which
81   // points to UINT8_TYPE.  Note that this breaks the normal pairing
82   // in which a Named_object points to a Named_type which points back
83   // to the same Named_object.
84   Named_object* byte_type = this->declare_type("byte", loc);
85   byte_type->set_type_value(uint8_type);
86
87   this->add_named_type(Type::make_integer_type("uintptr", true,
88                                                pointer_size,
89                                                RUNTIME_TYPE_KIND_UINTPTR));
90
91   this->add_named_type(Type::make_named_bool_type());
92
93   this->add_named_type(Type::make_named_string_type());
94
95   this->globals_->add_constant(Typed_identifier("true",
96                                                 Type::make_boolean_type(),
97                                                 loc),
98                                NULL,
99                                Expression::make_boolean(true, loc),
100                                0);
101   this->globals_->add_constant(Typed_identifier("false",
102                                                 Type::make_boolean_type(),
103                                                 loc),
104                                NULL,
105                                Expression::make_boolean(false, loc),
106                                0);
107
108   this->globals_->add_constant(Typed_identifier("nil", Type::make_nil_type(),
109                                                 loc),
110                                NULL,
111                                Expression::make_nil(loc),
112                                0);
113
114   Type* abstract_int_type = Type::make_abstract_integer_type();
115   this->globals_->add_constant(Typed_identifier("iota", abstract_int_type,
116                                                 loc),
117                                NULL,
118                                Expression::make_iota(),
119                                0);
120
121   Function_type* new_type = Type::make_function_type(NULL, NULL, NULL, loc);
122   new_type->set_is_varargs();
123   new_type->set_is_builtin();
124   this->globals_->add_function_declaration("new", NULL, new_type, loc);
125
126   Function_type* make_type = Type::make_function_type(NULL, NULL, NULL, loc);
127   make_type->set_is_varargs();
128   make_type->set_is_builtin();
129   this->globals_->add_function_declaration("make", NULL, make_type, loc);
130
131   Typed_identifier_list* len_result = new Typed_identifier_list();
132   len_result->push_back(Typed_identifier("", int_type, loc));
133   Function_type* len_type = Type::make_function_type(NULL, NULL, len_result,
134                                                      loc);
135   len_type->set_is_builtin();
136   this->globals_->add_function_declaration("len", NULL, len_type, loc);
137
138   Typed_identifier_list* cap_result = new Typed_identifier_list();
139   cap_result->push_back(Typed_identifier("", int_type, loc));
140   Function_type* cap_type = Type::make_function_type(NULL, NULL, len_result,
141                                                      loc);
142   cap_type->set_is_builtin();
143   this->globals_->add_function_declaration("cap", NULL, cap_type, loc);
144
145   Function_type* print_type = Type::make_function_type(NULL, NULL, NULL, loc);
146   print_type->set_is_varargs();
147   print_type->set_is_builtin();
148   this->globals_->add_function_declaration("print", NULL, print_type, loc);
149
150   print_type = Type::make_function_type(NULL, NULL, NULL, loc);
151   print_type->set_is_varargs();
152   print_type->set_is_builtin();
153   this->globals_->add_function_declaration("println", NULL, print_type, loc);
154
155   Type *empty = Type::make_interface_type(NULL, loc);
156   Typed_identifier_list* panic_parms = new Typed_identifier_list();
157   panic_parms->push_back(Typed_identifier("e", empty, loc));
158   Function_type *panic_type = Type::make_function_type(NULL, panic_parms,
159                                                        NULL, loc);
160   panic_type->set_is_builtin();
161   this->globals_->add_function_declaration("panic", NULL, panic_type, loc);
162
163   Typed_identifier_list* recover_result = new Typed_identifier_list();
164   recover_result->push_back(Typed_identifier("", empty, loc));
165   Function_type* recover_type = Type::make_function_type(NULL, NULL,
166                                                          recover_result,
167                                                          loc);
168   recover_type->set_is_builtin();
169   this->globals_->add_function_declaration("recover", NULL, recover_type, loc);
170
171   Function_type* close_type = Type::make_function_type(NULL, NULL, NULL, loc);
172   close_type->set_is_varargs();
173   close_type->set_is_builtin();
174   this->globals_->add_function_declaration("close", NULL, close_type, loc);
175
176   Typed_identifier_list* closed_result = new Typed_identifier_list();
177   closed_result->push_back(Typed_identifier("", Type::lookup_bool_type(),
178                                             loc));
179   Function_type* closed_type = Type::make_function_type(NULL, NULL,
180                                                         closed_result, loc);
181   closed_type->set_is_varargs();
182   closed_type->set_is_builtin();
183   this->globals_->add_function_declaration("closed", NULL, closed_type, loc);
184
185   Typed_identifier_list* copy_result = new Typed_identifier_list();
186   copy_result->push_back(Typed_identifier("", int_type, loc));
187   Function_type* copy_type = Type::make_function_type(NULL, NULL,
188                                                       copy_result, loc);
189   copy_type->set_is_varargs();
190   copy_type->set_is_builtin();
191   this->globals_->add_function_declaration("copy", NULL, copy_type, loc);
192
193   Function_type* append_type = Type::make_function_type(NULL, NULL, NULL, loc);
194   append_type->set_is_varargs();
195   append_type->set_is_builtin();
196   this->globals_->add_function_declaration("append", NULL, append_type, loc);
197
198   Function_type* complex_type = Type::make_function_type(NULL, NULL, NULL, loc);
199   complex_type->set_is_varargs();
200   complex_type->set_is_builtin();
201   this->globals_->add_function_declaration("complex", NULL, complex_type, loc);
202
203   Function_type* real_type = Type::make_function_type(NULL, NULL, NULL, loc);
204   real_type->set_is_varargs();
205   real_type->set_is_builtin();
206   this->globals_->add_function_declaration("real", NULL, real_type, loc);
207
208   Function_type* imag_type = Type::make_function_type(NULL, NULL, NULL, loc);
209   imag_type->set_is_varargs();
210   imag_type->set_is_builtin();
211   this->globals_->add_function_declaration("imag", NULL, imag_type, loc);
212
213   this->define_builtin_function_trees();
214
215   // Declare "init", to ensure that it is not defined with parameters
216   // or return values.
217   this->declare_function("init",
218                          Type::make_function_type(NULL, NULL, NULL, loc),
219                          loc);
220 }
221
222 // Munge name for use in an error message.
223
224 std::string
225 Gogo::message_name(const std::string& name)
226 {
227   return go_localize_identifier(Gogo::unpack_hidden_name(name).c_str());
228 }
229
230 // Get the package name.
231
232 const std::string&
233 Gogo::package_name() const
234 {
235   gcc_assert(this->package_ != NULL);
236   return this->package_->name();
237 }
238
239 // Set the package name.
240
241 void
242 Gogo::set_package_name(const std::string& package_name,
243                        source_location location)
244 {
245   if (this->package_ != NULL && this->package_->name() != package_name)
246     {
247       error_at(location, "expected package %<%s%>",
248                Gogo::message_name(this->package_->name()).c_str());
249       return;
250     }
251
252   // If the user did not specify a unique prefix, we always use "go".
253   // This in effect requires that the package name be unique.
254   if (this->unique_prefix_.empty())
255     this->unique_prefix_ = "go";
256
257   this->package_ = this->register_package(package_name, this->unique_prefix_,
258                                           location);
259
260   // We used to permit people to qualify symbols with the current
261   // package name (e.g., P.x), but we no longer do.
262   // this->globals_->add_package(package_name, this->package_);
263
264   if (this->is_main_package())
265     {
266       // Declare "main" as a function which takes no parameters and
267       // returns no value.
268       this->declare_function("main",
269                              Type::make_function_type(NULL, NULL, NULL,
270                                                       BUILTINS_LOCATION),
271                              BUILTINS_LOCATION);
272     }
273 }
274
275 // Return whether this is the "main" package.  This is not true if
276 // -fgo-prefix was used.
277
278 bool
279 Gogo::is_main_package() const
280 {
281   return this->package_name() == "main" && !this->unique_prefix_specified_;
282 }
283
284 // Import a package.
285
286 void
287 Gogo::import_package(const std::string& filename,
288                      const std::string& local_name,
289                      bool is_local_name_exported,
290                      source_location location)
291 {
292   if (filename == "unsafe")
293     {
294       this->import_unsafe(local_name, is_local_name_exported, location);
295       return;
296     }
297
298   Imports::const_iterator p = this->imports_.find(filename);
299   if (p != this->imports_.end())
300     {
301       Package* package = p->second;
302       package->set_location(location);
303       package->set_is_imported();
304       std::string ln = local_name;
305       bool is_ln_exported = is_local_name_exported;
306       if (ln.empty())
307         {
308           ln = package->name();
309           is_ln_exported = Lex::is_exported_name(ln);
310         }
311       if (ln != ".")
312         {
313           ln = this->pack_hidden_name(ln, is_ln_exported);
314           this->package_->bindings()->add_package(ln, package);
315         }
316       else
317         {
318           Bindings* bindings = package->bindings();
319           for (Bindings::const_declarations_iterator p =
320                  bindings->begin_declarations();
321                p != bindings->end_declarations();
322                ++p)
323             this->add_named_object(p->second);
324         }
325       return;
326     }
327
328   Import::Stream* stream = Import::open_package(filename, location);
329   if (stream == NULL)
330     {
331       error_at(location, "import file %qs not found", filename.c_str());
332       return;
333     }
334
335   Import imp(stream, location);
336   imp.register_builtin_types(this);
337   Package* package = imp.import(this, local_name, is_local_name_exported);
338   if (package != NULL)
339     {
340       if (package->name() == this->package_name()
341           && package->unique_prefix() == this->unique_prefix())
342         error_at(location,
343                  ("imported package uses same package name and prefix "
344                   "as package being compiled (see -fgo-prefix option)"));
345
346       this->imports_.insert(std::make_pair(filename, package));
347       package->set_is_imported();
348     }
349
350   delete stream;
351 }
352
353 // Add an import control function for an imported package to the list.
354
355 void
356 Gogo::add_import_init_fn(const std::string& package_name,
357                          const std::string& init_name, int prio)
358 {
359   for (std::set<Import_init>::const_iterator p =
360          this->imported_init_fns_.begin();
361        p != this->imported_init_fns_.end();
362        ++p)
363     {
364       if (p->init_name() == init_name
365           && (p->package_name() != package_name || p->priority() != prio))
366         {
367           error("duplicate package initialization name %qs",
368                 Gogo::message_name(init_name).c_str());
369           inform(UNKNOWN_LOCATION, "used by package %qs at priority %d",
370                  Gogo::message_name(p->package_name()).c_str(),
371                  p->priority());
372           inform(UNKNOWN_LOCATION, " and by package %qs at priority %d",
373                  Gogo::message_name(package_name).c_str(), prio);
374           return;
375         }
376     }
377
378   this->imported_init_fns_.insert(Import_init(package_name, init_name,
379                                               prio));
380 }
381
382 // Return whether we are at the global binding level.
383
384 bool
385 Gogo::in_global_scope() const
386 {
387   return this->functions_.empty();
388 }
389
390 // Return the current binding contour.
391
392 Bindings*
393 Gogo::current_bindings()
394 {
395   if (!this->functions_.empty())
396     return this->functions_.back().blocks.back()->bindings();
397   else if (this->package_ != NULL)
398     return this->package_->bindings();
399   else
400     return this->globals_;
401 }
402
403 const Bindings*
404 Gogo::current_bindings() const
405 {
406   if (!this->functions_.empty())
407     return this->functions_.back().blocks.back()->bindings();
408   else if (this->package_ != NULL)
409     return this->package_->bindings();
410   else
411     return this->globals_;
412 }
413
414 // Return the current block.
415
416 Block*
417 Gogo::current_block()
418 {
419   if (this->functions_.empty())
420     return NULL;
421   else
422     return this->functions_.back().blocks.back();
423 }
424
425 // Look up a name in the current binding contour.  If PFUNCTION is not
426 // NULL, set it to the function in which the name is defined, or NULL
427 // if the name is defined in global scope.
428
429 Named_object*
430 Gogo::lookup(const std::string& name, Named_object** pfunction) const
431 {
432   if (pfunction != NULL)
433     *pfunction = NULL;
434
435   if (Gogo::is_sink_name(name))
436     return Named_object::make_sink();
437
438   for (Open_functions::const_reverse_iterator p = this->functions_.rbegin();
439        p != this->functions_.rend();
440        ++p)
441     {
442       Named_object* ret = p->blocks.back()->bindings()->lookup(name);
443       if (ret != NULL)
444         {
445           if (pfunction != NULL)
446             *pfunction = p->function;
447           return ret;
448         }
449     }
450
451   if (this->package_ != NULL)
452     {
453       Named_object* ret = this->package_->bindings()->lookup(name);
454       if (ret != NULL)
455         {
456           if (ret->package() != NULL)
457             ret->package()->set_used();
458           return ret;
459         }
460     }
461
462   // We do not look in the global namespace.  If we did, the global
463   // namespace would effectively hide names which were defined in
464   // package scope which we have not yet seen.  Instead,
465   // define_global_names is called after parsing is over to connect
466   // undefined names at package scope with names defined at global
467   // scope.
468
469   return NULL;
470 }
471
472 // Look up a name in the current block, without searching enclosing
473 // blocks.
474
475 Named_object*
476 Gogo::lookup_in_block(const std::string& name) const
477 {
478   gcc_assert(!this->functions_.empty());
479   gcc_assert(!this->functions_.back().blocks.empty());
480   return this->functions_.back().blocks.back()->bindings()->lookup_local(name);
481 }
482
483 // Look up a name in the global namespace.
484
485 Named_object*
486 Gogo::lookup_global(const char* name) const
487 {
488   return this->globals_->lookup(name);
489 }
490
491 // Add an imported package.
492
493 Package*
494 Gogo::add_imported_package(const std::string& real_name,
495                            const std::string& alias_arg,
496                            bool is_alias_exported,
497                            const std::string& unique_prefix,
498                            source_location location,
499                            bool* padd_to_globals)
500 {
501   // FIXME: Now that we compile packages as a whole, should we permit
502   // importing the current package?
503   if (this->package_name() == real_name
504       && this->unique_prefix() == unique_prefix)
505     {
506       *padd_to_globals = false;
507       if (!alias_arg.empty() && alias_arg != ".")
508         {
509           std::string alias = this->pack_hidden_name(alias_arg,
510                                                      is_alias_exported);
511           this->package_->bindings()->add_package(alias, this->package_);
512         }
513       return this->package_;
514     }
515   else if (alias_arg == ".")
516     {
517       *padd_to_globals = true;
518       return this->register_package(real_name, unique_prefix, location);
519     }
520   else if (alias_arg == "_")
521     {
522       Package* ret = this->register_package(real_name, unique_prefix, location);
523       ret->set_uses_sink_alias();
524       return ret;
525     }
526   else
527     {
528       *padd_to_globals = false;
529       std::string alias = alias_arg;
530       if (alias.empty())
531         {
532           alias = real_name;
533           is_alias_exported = Lex::is_exported_name(alias);
534         }
535       alias = this->pack_hidden_name(alias, is_alias_exported);
536       Named_object* no = this->add_package(real_name, alias, unique_prefix,
537                                            location);
538       if (!no->is_package())
539         return NULL;
540       return no->package_value();
541     }
542 }
543
544 // Add a package.
545
546 Named_object*
547 Gogo::add_package(const std::string& real_name, const std::string& alias,
548                   const std::string& unique_prefix, source_location location)
549 {
550   gcc_assert(this->in_global_scope());
551
552   // Register the package.  Note that we might have already seen it in
553   // an earlier import.
554   Package* package = this->register_package(real_name, unique_prefix, location);
555
556   return this->package_->bindings()->add_package(alias, package);
557 }
558
559 // Register a package.  This package may or may not be imported.  This
560 // returns the Package structure for the package, creating if it
561 // necessary.
562
563 Package*
564 Gogo::register_package(const std::string& package_name,
565                        const std::string& unique_prefix,
566                        source_location location)
567 {
568   gcc_assert(!unique_prefix.empty() && !package_name.empty());
569   std::string name = unique_prefix + '.' + package_name;
570   Package* package = NULL;
571   std::pair<Packages::iterator, bool> ins =
572     this->packages_.insert(std::make_pair(name, package));
573   if (!ins.second)
574     {
575       // We have seen this package name before.
576       package = ins.first->second;
577       gcc_assert(package != NULL);
578       gcc_assert(package->name() == package_name
579                  && package->unique_prefix() == unique_prefix);
580       if (package->location() == UNKNOWN_LOCATION)
581         package->set_location(location);
582     }
583   else
584     {
585       // First time we have seen this package name.
586       package = new Package(package_name, unique_prefix, location);
587       gcc_assert(ins.first->second == NULL);
588       ins.first->second = package;
589     }
590
591   return package;
592 }
593
594 // Start compiling a function.
595
596 Named_object*
597 Gogo::start_function(const std::string& name, Function_type* type,
598                      bool add_method_to_type, source_location location)
599 {
600   bool at_top_level = this->functions_.empty();
601
602   Block* block = new Block(NULL, location);
603
604   Function* enclosing = (at_top_level
605                          ? NULL
606                          : this->functions_.back().function->func_value());
607
608   Function* function = new Function(type, enclosing, block, location);
609
610   if (type->is_method())
611     {
612       const Typed_identifier* receiver = type->receiver();
613       Variable* this_param = new Variable(receiver->type(), NULL, false,
614                                           true, true, location);
615       std::string name = receiver->name();
616       if (name.empty())
617         {
618           // We need to give receivers a name since they wind up in
619           // DECL_ARGUMENTS.  FIXME.
620           static unsigned int count;
621           char buf[50];
622           snprintf(buf, sizeof buf, "r.%u", count);
623           ++count;
624           name = buf;
625         }
626       block->bindings()->add_variable(name, NULL, this_param);
627     }
628
629   const Typed_identifier_list* parameters = type->parameters();
630   bool is_varargs = type->is_varargs();
631   if (parameters != NULL)
632     {
633       for (Typed_identifier_list::const_iterator p = parameters->begin();
634            p != parameters->end();
635            ++p)
636         {
637           Variable* param = new Variable(p->type(), NULL, false, true, false,
638                                          location);
639           if (is_varargs && p + 1 == parameters->end())
640             param->set_is_varargs_parameter();
641
642           std::string name = p->name();
643           if (name.empty() || Gogo::is_sink_name(name))
644             {
645               // We need to give parameters a name since they wind up
646               // in DECL_ARGUMENTS.  FIXME.
647               static unsigned int count;
648               char buf[50];
649               snprintf(buf, sizeof buf, "p.%u", count);
650               ++count;
651               name = buf;
652             }
653           block->bindings()->add_variable(name, NULL, param);
654         }
655     }
656
657   function->create_named_result_variables(this);
658
659   const std::string* pname;
660   std::string nested_name;
661   if (!name.empty())
662     pname = &name;
663   else
664     {
665       // Invent a name for a nested function.
666       static int nested_count;
667       char buf[30];
668       snprintf(buf, sizeof buf, ".$nested%d", nested_count);
669       ++nested_count;
670       nested_name = buf;
671       pname = &nested_name;
672     }
673
674   Named_object* ret;
675   if (Gogo::is_sink_name(*pname))
676     {
677       static int sink_count;
678       char buf[30];
679       snprintf(buf, sizeof buf, ".$sink%d", sink_count);
680       ++sink_count;
681       ret = Named_object::make_function(buf, NULL, function);
682     }
683   else if (!type->is_method())
684     {
685       ret = this->package_->bindings()->add_function(*pname, NULL, function);
686       if (!ret->is_function() || ret->func_value() != function)
687         {
688           // Redefinition error.  Invent a name to avoid knockon
689           // errors.
690           static int redefinition_count;
691           char buf[30];
692           snprintf(buf, sizeof buf, ".$redefined%d", redefinition_count);
693           ++redefinition_count;
694           ret = this->package_->bindings()->add_function(buf, NULL, function);
695         }
696     }
697   else
698     {
699       if (!add_method_to_type)
700         ret = Named_object::make_function(name, NULL, function);
701       else
702         {
703           gcc_assert(at_top_level);
704           Type* rtype = type->receiver()->type();
705
706           // We want to look through the pointer created by the
707           // parser, without getting an error if the type is not yet
708           // defined.
709           if (rtype->classification() == Type::TYPE_POINTER)
710             rtype = rtype->points_to();
711
712           if (rtype->is_error_type())
713             ret = Named_object::make_function(name, NULL, function);
714           else if (rtype->named_type() != NULL)
715             {
716               ret = rtype->named_type()->add_method(name, function);
717               if (!ret->is_function())
718                 {
719                   // Redefinition error.
720                   ret = Named_object::make_function(name, NULL, function);
721                 }
722             }
723           else if (rtype->forward_declaration_type() != NULL)
724             {
725               Named_object* type_no =
726                 rtype->forward_declaration_type()->named_object();
727               if (type_no->is_unknown())
728                 {
729                   // If we are seeing methods it really must be a
730                   // type.  Declare it as such.  An alternative would
731                   // be to support lists of methods for unknown
732                   // expressions.  Either way the error messages if
733                   // this is not a type are going to get confusing.
734                   Named_object* declared =
735                     this->declare_package_type(type_no->name(),
736                                                type_no->location());
737                   gcc_assert(declared
738                              == type_no->unknown_value()->real_named_object());
739                 }
740               ret = rtype->forward_declaration_type()->add_method(name,
741                                                                   function);
742             }
743           else
744             gcc_unreachable();
745         }
746       this->package_->bindings()->add_method(ret);
747     }
748
749   this->functions_.resize(this->functions_.size() + 1);
750   Open_function& of(this->functions_.back());
751   of.function = ret;
752   of.blocks.push_back(block);
753
754   if (!type->is_method() && Gogo::unpack_hidden_name(name) == "init")
755     {
756       this->init_functions_.push_back(ret);
757       this->need_init_fn_ = true;
758     }
759
760   return ret;
761 }
762
763 // Finish compiling a function.
764
765 void
766 Gogo::finish_function(source_location location)
767 {
768   this->finish_block(location);
769   gcc_assert(this->functions_.back().blocks.empty());
770   this->functions_.pop_back();
771 }
772
773 // Return the current function.
774
775 Named_object*
776 Gogo::current_function() const
777 {
778   gcc_assert(!this->functions_.empty());
779   return this->functions_.back().function;
780 }
781
782 // Start a new block.
783
784 void
785 Gogo::start_block(source_location location)
786 {
787   gcc_assert(!this->functions_.empty());
788   Block* block = new Block(this->current_block(), location);
789   this->functions_.back().blocks.push_back(block);
790 }
791
792 // Finish a block.
793
794 Block*
795 Gogo::finish_block(source_location location)
796 {
797   gcc_assert(!this->functions_.empty());
798   gcc_assert(!this->functions_.back().blocks.empty());
799   Block* block = this->functions_.back().blocks.back();
800   this->functions_.back().blocks.pop_back();
801   block->set_end_location(location);
802   return block;
803 }
804
805 // Add an unknown name.
806
807 Named_object*
808 Gogo::add_unknown_name(const std::string& name, source_location location)
809 {
810   return this->package_->bindings()->add_unknown_name(name, location);
811 }
812
813 // Declare a function.
814
815 Named_object*
816 Gogo::declare_function(const std::string& name, Function_type* type,
817                        source_location location)
818 {
819   if (!type->is_method())
820     return this->current_bindings()->add_function_declaration(name, NULL, type,
821                                                               location);
822   else
823     {
824       // We don't bother to add this to the list of global
825       // declarations.
826       Type* rtype = type->receiver()->type();
827
828       // We want to look through the pointer created by the
829       // parser, without getting an error if the type is not yet
830       // defined.
831       if (rtype->classification() == Type::TYPE_POINTER)
832         rtype = rtype->points_to();
833
834       if (rtype->is_error_type())
835         return NULL;
836       else if (rtype->named_type() != NULL)
837         return rtype->named_type()->add_method_declaration(name, NULL, type,
838                                                            location);
839       else if (rtype->forward_declaration_type() != NULL)
840         {
841           Forward_declaration_type* ftype = rtype->forward_declaration_type();
842           return ftype->add_method_declaration(name, type, location);
843         }
844       else
845         gcc_unreachable();
846     }
847 }
848
849 // Add a label definition.
850
851 Label*
852 Gogo::add_label_definition(const std::string& label_name,
853                            source_location location)
854 {
855   gcc_assert(!this->functions_.empty());
856   Function* func = this->functions_.back().function->func_value();
857   Label* label = func->add_label_definition(label_name, location);
858   this->add_statement(Statement::make_label_statement(label, location));
859   return label;
860 }
861
862 // Add a label reference.
863
864 Label*
865 Gogo::add_label_reference(const std::string& label_name)
866 {
867   gcc_assert(!this->functions_.empty());
868   Function* func = this->functions_.back().function->func_value();
869   return func->add_label_reference(label_name);
870 }
871
872 // Add a statement.
873
874 void
875 Gogo::add_statement(Statement* statement)
876 {
877   gcc_assert(!this->functions_.empty()
878              && !this->functions_.back().blocks.empty());
879   this->functions_.back().blocks.back()->add_statement(statement);
880 }
881
882 // Add a block.
883
884 void
885 Gogo::add_block(Block* block, source_location location)
886 {
887   gcc_assert(!this->functions_.empty()
888              && !this->functions_.back().blocks.empty());
889   Statement* statement = Statement::make_block_statement(block, location);
890   this->functions_.back().blocks.back()->add_statement(statement);
891 }
892
893 // Add a constant.
894
895 Named_object*
896 Gogo::add_constant(const Typed_identifier& tid, Expression* expr,
897                    int iota_value)
898 {
899   return this->current_bindings()->add_constant(tid, NULL, expr, iota_value);
900 }
901
902 // Add a type.
903
904 void
905 Gogo::add_type(const std::string& name, Type* type, source_location location)
906 {
907   Named_object* no = this->current_bindings()->add_type(name, NULL, type,
908                                                         location);
909   if (!this->in_global_scope() && no->is_type())
910     no->type_value()->set_in_function(this->functions_.back().function);
911 }
912
913 // Add a named type.
914
915 void
916 Gogo::add_named_type(Named_type* type)
917 {
918   gcc_assert(this->in_global_scope());
919   this->current_bindings()->add_named_type(type);
920 }
921
922 // Declare a type.
923
924 Named_object*
925 Gogo::declare_type(const std::string& name, source_location location)
926 {
927   Bindings* bindings = this->current_bindings();
928   Named_object* no = bindings->add_type_declaration(name, NULL, location);
929   if (!this->in_global_scope() && no->is_type_declaration())
930     {
931       Named_object* f = this->functions_.back().function;
932       no->type_declaration_value()->set_in_function(f);
933     }
934   return no;
935 }
936
937 // Declare a type at the package level.
938
939 Named_object*
940 Gogo::declare_package_type(const std::string& name, source_location location)
941 {
942   return this->package_->bindings()->add_type_declaration(name, NULL, location);
943 }
944
945 // Define a type which was already declared.
946
947 void
948 Gogo::define_type(Named_object* no, Named_type* type)
949 {
950   this->current_bindings()->define_type(no, type);
951 }
952
953 // Add a variable.
954
955 Named_object*
956 Gogo::add_variable(const std::string& name, Variable* variable)
957 {
958   Named_object* no = this->current_bindings()->add_variable(name, NULL,
959                                                             variable);
960
961   // In a function the middle-end wants to see a DECL_EXPR node.
962   if (no != NULL
963       && no->is_variable()
964       && !no->var_value()->is_parameter()
965       && !this->functions_.empty())
966     this->add_statement(Statement::make_variable_declaration(no));
967
968   return no;
969 }
970
971 // Add a sink--a reference to the blank identifier _.
972
973 Named_object*
974 Gogo::add_sink()
975 {
976   return Named_object::make_sink();
977 }
978
979 // Add a named object.
980
981 void
982 Gogo::add_named_object(Named_object* no)
983 {
984   this->current_bindings()->add_named_object(no);
985 }
986
987 // Record that we've seen an interface type.
988
989 void
990 Gogo::record_interface_type(Interface_type* itype)
991 {
992   this->interface_types_.push_back(itype);
993 }
994
995 // Return a name for a thunk object.
996
997 std::string
998 Gogo::thunk_name()
999 {
1000   static int thunk_count;
1001   char thunk_name[50];
1002   snprintf(thunk_name, sizeof thunk_name, "$thunk%d", thunk_count);
1003   ++thunk_count;
1004   return thunk_name;
1005 }
1006
1007 // Return whether a function is a thunk.
1008
1009 bool
1010 Gogo::is_thunk(const Named_object* no)
1011 {
1012   return no->name().compare(0, 6, "$thunk") == 0;
1013 }
1014
1015 // Define the global names.  We do this only after parsing all the
1016 // input files, because the program might define the global names
1017 // itself.
1018
1019 void
1020 Gogo::define_global_names()
1021 {
1022   for (Bindings::const_declarations_iterator p =
1023          this->globals_->begin_declarations();
1024        p != this->globals_->end_declarations();
1025        ++p)
1026     {
1027       Named_object* global_no = p->second;
1028       std::string name(Gogo::pack_hidden_name(global_no->name(), false));
1029       Named_object* no = this->package_->bindings()->lookup(name);
1030       if (no == NULL)
1031         continue;
1032       no = no->resolve();
1033       if (no->is_type_declaration())
1034         {
1035           if (global_no->is_type())
1036             {
1037               if (no->type_declaration_value()->has_methods())
1038                 error_at(no->location(),
1039                          "may not define methods for global type");
1040               no->set_type_value(global_no->type_value());
1041             }
1042           else
1043             {
1044               error_at(no->location(), "expected type");
1045               Type* errtype = Type::make_error_type();
1046               Named_object* err = Named_object::make_type("error", NULL,
1047                                                           errtype,
1048                                                           BUILTINS_LOCATION);
1049               no->set_type_value(err->type_value());
1050             }
1051         }
1052       else if (no->is_unknown())
1053         no->unknown_value()->set_real_named_object(global_no);
1054     }
1055 }
1056
1057 // Clear out names in file scope.
1058
1059 void
1060 Gogo::clear_file_scope()
1061 {
1062   this->package_->bindings()->clear_file_scope();
1063
1064   // Warn about packages which were imported but not used.
1065   for (Packages::iterator p = this->packages_.begin();
1066        p != this->packages_.end();
1067        ++p)
1068     {
1069       Package* package = p->second;
1070       if (package != this->package_
1071           && package->is_imported()
1072           && !package->used()
1073           && !package->uses_sink_alias()
1074           && !saw_errors())
1075         error_at(package->location(), "imported and not used: %s",
1076                  Gogo::message_name(package->name()).c_str());
1077       package->clear_is_imported();
1078       package->clear_uses_sink_alias();
1079       package->clear_used();
1080     }
1081 }
1082
1083 // Traverse the tree.
1084
1085 void
1086 Gogo::traverse(Traverse* traverse)
1087 {
1088   // Traverse the current package first for consistency.  The other
1089   // packages will only contain imported types, constants, and
1090   // declarations.
1091   if (this->package_->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
1092     return;
1093   for (Packages::const_iterator p = this->packages_.begin();
1094        p != this->packages_.end();
1095        ++p)
1096     {
1097       if (p->second != this->package_)
1098         {
1099           if (p->second->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
1100             break;
1101         }
1102     }
1103 }
1104
1105 // Traversal class used to verify types.
1106
1107 class Verify_types : public Traverse
1108 {
1109  public:
1110   Verify_types()
1111     : Traverse(traverse_types)
1112   { }
1113
1114   int
1115   type(Type*);
1116 };
1117
1118 // Verify that a type is correct.
1119
1120 int
1121 Verify_types::type(Type* t)
1122 {
1123   if (!t->verify())
1124     return TRAVERSE_SKIP_COMPONENTS;
1125   return TRAVERSE_CONTINUE;
1126 }
1127
1128 // Verify that all types are correct.
1129
1130 void
1131 Gogo::verify_types()
1132 {
1133   Verify_types traverse;
1134   this->traverse(&traverse);
1135 }
1136
1137 // Traversal class used to lower parse tree.
1138
1139 class Lower_parse_tree : public Traverse
1140 {
1141  public:
1142   Lower_parse_tree(Gogo* gogo, Named_object* function)
1143     : Traverse(traverse_variables
1144                | traverse_constants
1145                | traverse_functions
1146                | traverse_statements
1147                | traverse_expressions),
1148       gogo_(gogo), function_(function), iota_value_(-1)
1149   { }
1150
1151   int
1152   variable(Named_object*);
1153
1154   int
1155   constant(Named_object*, bool);
1156
1157   int
1158   function(Named_object*);
1159
1160   int
1161   statement(Block*, size_t* pindex, Statement*);
1162
1163   int
1164   expression(Expression**);
1165
1166  private:
1167   // General IR.
1168   Gogo* gogo_;
1169   // The function we are traversing.
1170   Named_object* function_;
1171   // Value to use for the predeclared constant iota.
1172   int iota_value_;
1173 };
1174
1175 // Lower variables.  We handle variables specially to break loops in
1176 // which a variable initialization expression refers to itself.  The
1177 // loop breaking is in lower_init_expression.
1178
1179 int
1180 Lower_parse_tree::variable(Named_object* no)
1181 {
1182   if (no->is_variable())
1183     no->var_value()->lower_init_expression(this->gogo_, this->function_);
1184   return TRAVERSE_CONTINUE;
1185 }
1186
1187 // Lower constants.  We handle constants specially so that we can set
1188 // the right value for the predeclared constant iota.  This works in
1189 // conjunction with the way we lower Const_expression objects.
1190
1191 int
1192 Lower_parse_tree::constant(Named_object* no, bool)
1193 {
1194   Named_constant* nc = no->const_value();
1195
1196   // Don't get into trouble if the constant's initializer expression
1197   // refers to the constant itself.
1198   if (nc->lowering())
1199     return TRAVERSE_CONTINUE;
1200   nc->set_lowering();
1201
1202   gcc_assert(this->iota_value_ == -1);
1203   this->iota_value_ = nc->iota_value();
1204   nc->traverse_expression(this);
1205   this->iota_value_ = -1;
1206
1207   nc->clear_lowering();
1208
1209   // We will traverse the expression a second time, but that will be
1210   // fast.
1211
1212   return TRAVERSE_CONTINUE;
1213 }
1214
1215 // Lower function closure types.  Record the function while lowering
1216 // it, so that we can pass it down when lowering an expression.
1217
1218 int
1219 Lower_parse_tree::function(Named_object* no)
1220 {
1221   no->func_value()->set_closure_type();
1222
1223   gcc_assert(this->function_ == NULL);
1224   this->function_ = no;
1225   int t = no->func_value()->traverse(this);
1226   this->function_ = NULL;
1227
1228   if (t == TRAVERSE_EXIT)
1229     return t;
1230   return TRAVERSE_SKIP_COMPONENTS;
1231 }
1232
1233 // Lower statement parse trees.
1234
1235 int
1236 Lower_parse_tree::statement(Block* block, size_t* pindex, Statement* sorig)
1237 {
1238   // Lower the expressions first.
1239   int t = sorig->traverse_contents(this);
1240   if (t == TRAVERSE_EXIT)
1241     return t;
1242
1243   // Keep lowering until nothing changes.
1244   Statement* s = sorig;
1245   while (true)
1246     {
1247       Statement* snew = s->lower(this->gogo_, block);
1248       if (snew == s)
1249         break;
1250       s = snew;
1251       t = s->traverse_contents(this);
1252       if (t == TRAVERSE_EXIT)
1253         return t;
1254     }
1255
1256   if (s != sorig)
1257     block->replace_statement(*pindex, s);
1258
1259   return TRAVERSE_SKIP_COMPONENTS;
1260 }
1261
1262 // Lower expression parse trees.
1263
1264 int
1265 Lower_parse_tree::expression(Expression** pexpr)
1266 {
1267   // We have to lower all subexpressions first, so that we can get
1268   // their type if necessary.  This is awkward, because we don't have
1269   // a postorder traversal pass.
1270   if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
1271     return TRAVERSE_EXIT;
1272   // Keep lowering until nothing changes.
1273   while (true)
1274     {
1275       Expression* e = *pexpr;
1276       Expression* enew = e->lower(this->gogo_, this->function_,
1277                                   this->iota_value_);
1278       if (enew == e)
1279         break;
1280       *pexpr = enew;
1281     }
1282   return TRAVERSE_SKIP_COMPONENTS;
1283 }
1284
1285 // Lower the parse tree.  This is called after the parse is complete,
1286 // when all names should be resolved.
1287
1288 void
1289 Gogo::lower_parse_tree()
1290 {
1291   Lower_parse_tree lower_parse_tree(this, NULL);
1292   this->traverse(&lower_parse_tree);
1293 }
1294
1295 // Lower an expression.
1296
1297 void
1298 Gogo::lower_expression(Named_object* function, Expression** pexpr)
1299 {
1300   Lower_parse_tree lower_parse_tree(this, function);
1301   lower_parse_tree.expression(pexpr);
1302 }
1303
1304 // Lower a constant.  This is called when lowering a reference to a
1305 // constant.  We have to make sure that the constant has already been
1306 // lowered.
1307
1308 void
1309 Gogo::lower_constant(Named_object* no)
1310 {
1311   gcc_assert(no->is_const());
1312   Lower_parse_tree lower(this, NULL);
1313   lower.constant(no, false);
1314 }
1315
1316 // Look for interface types to finalize methods of inherited
1317 // interfaces.
1318
1319 class Finalize_methods : public Traverse
1320 {
1321  public:
1322   Finalize_methods(Gogo* gogo)
1323     : Traverse(traverse_types),
1324       gogo_(gogo)
1325   { }
1326
1327   int
1328   type(Type*);
1329
1330  private:
1331   Gogo* gogo_;
1332 };
1333
1334 // Finalize the methods of an interface type.
1335
1336 int
1337 Finalize_methods::type(Type* t)
1338 {
1339   // Check the classification so that we don't finalize the methods
1340   // twice for a named interface type.
1341   switch (t->classification())
1342     {
1343     case Type::TYPE_INTERFACE:
1344       t->interface_type()->finalize_methods();
1345       break;
1346
1347     case Type::TYPE_NAMED:
1348       {
1349         // We have to finalize the methods of the real type first.
1350         // But if the real type is a struct type, then we only want to
1351         // finalize the methods of the field types, not of the struct
1352         // type itself.  We don't want to add methods to the struct,
1353         // since it has a name.
1354         Type* rt = t->named_type()->real_type();
1355         if (rt->classification() != Type::TYPE_STRUCT)
1356           {
1357             if (Type::traverse(rt, this) == TRAVERSE_EXIT)
1358               return TRAVERSE_EXIT;
1359           }
1360         else
1361           {
1362             if (rt->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
1363               return TRAVERSE_EXIT;
1364           }
1365
1366         t->named_type()->finalize_methods(this->gogo_);
1367
1368         return TRAVERSE_SKIP_COMPONENTS;
1369       }
1370
1371     case Type::TYPE_STRUCT:
1372       t->struct_type()->finalize_methods(this->gogo_);
1373       break;
1374
1375     default:
1376       break;
1377     }
1378
1379   return TRAVERSE_CONTINUE;
1380 }
1381
1382 // Finalize method lists and build stub methods for types.
1383
1384 void
1385 Gogo::finalize_methods()
1386 {
1387   Finalize_methods finalize(this);
1388   this->traverse(&finalize);
1389 }
1390
1391 // Set types for unspecified variables and constants.
1392
1393 void
1394 Gogo::determine_types()
1395 {
1396   Bindings* bindings = this->current_bindings();
1397   for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
1398        p != bindings->end_definitions();
1399        ++p)
1400     {
1401       if ((*p)->is_function())
1402         (*p)->func_value()->determine_types();
1403       else if ((*p)->is_variable())
1404         (*p)->var_value()->determine_type();
1405       else if ((*p)->is_const())
1406         (*p)->const_value()->determine_type();
1407
1408       // See if a variable requires us to build an initialization
1409       // function.  We know that we will see all global variables
1410       // here.
1411       if (!this->need_init_fn_ && (*p)->is_variable())
1412         {
1413           Variable* variable = (*p)->var_value();
1414
1415           // If this is a global variable which requires runtime
1416           // initialization, we need an initialization function.
1417           if (!variable->is_global())
1418             ;
1419           else if (variable->init() == NULL)
1420             ;
1421           else if (variable->type()->interface_type() != NULL)
1422             this->need_init_fn_ = true;
1423           else if (variable->init()->is_constant())
1424             ;
1425           else if (!variable->init()->is_composite_literal())
1426             this->need_init_fn_ = true;
1427           else if (variable->init()->is_nonconstant_composite_literal())
1428             this->need_init_fn_ = true;
1429
1430           // If this is a global variable which holds a pointer value,
1431           // then we need an initialization function to register it as a
1432           // GC root.
1433           if (variable->is_global() && variable->type()->has_pointer())
1434             this->need_init_fn_ = true;
1435         }
1436     }
1437
1438   // Determine the types of constants in packages.
1439   for (Packages::const_iterator p = this->packages_.begin();
1440        p != this->packages_.end();
1441        ++p)
1442     p->second->determine_types();
1443 }
1444
1445 // Traversal class used for type checking.
1446
1447 class Check_types_traverse : public Traverse
1448 {
1449  public:
1450   Check_types_traverse(Gogo* gogo)
1451     : Traverse(traverse_variables
1452                | traverse_constants
1453                | traverse_statements
1454                | traverse_expressions),
1455       gogo_(gogo)
1456   { }
1457
1458   int
1459   variable(Named_object*);
1460
1461   int
1462   constant(Named_object*, bool);
1463
1464   int
1465   statement(Block*, size_t* pindex, Statement*);
1466
1467   int
1468   expression(Expression**);
1469
1470  private:
1471   // General IR.
1472   Gogo* gogo_;
1473 };
1474
1475 // Check that a variable initializer has the right type.
1476
1477 int
1478 Check_types_traverse::variable(Named_object* named_object)
1479 {
1480   if (named_object->is_variable())
1481     {
1482       Variable* var = named_object->var_value();
1483       Expression* init = var->init();
1484       std::string reason;
1485       if (init != NULL
1486           && !Type::are_assignable(var->type(), init->type(), &reason))
1487         {
1488           if (reason.empty())
1489             error_at(var->location(), "incompatible type in initialization");
1490           else
1491             error_at(var->location(),
1492                      "incompatible type in initialization (%s)",
1493                      reason.c_str());
1494           var->clear_init();
1495         }
1496     }
1497   return TRAVERSE_CONTINUE;
1498 }
1499
1500 // Check that a constant initializer has the right type.
1501
1502 int
1503 Check_types_traverse::constant(Named_object* named_object, bool)
1504 {
1505   Named_constant* constant = named_object->const_value();
1506   Type* ctype = constant->type();
1507   if (ctype->integer_type() == NULL
1508       && ctype->float_type() == NULL
1509       && ctype->complex_type() == NULL
1510       && !ctype->is_boolean_type()
1511       && !ctype->is_string_type())
1512     {
1513       if (!ctype->is_error_type())
1514         error_at(constant->location(), "invalid constant type");
1515       constant->set_error();
1516     }
1517   else if (!constant->expr()->is_constant())
1518     {
1519       error_at(constant->expr()->location(), "expression is not constant");
1520       constant->set_error();
1521     }
1522   else if (!Type::are_assignable(constant->type(), constant->expr()->type(),
1523                                  NULL))
1524     {
1525       error_at(constant->location(),
1526                "initialization expression has wrong type");
1527       constant->set_error();
1528     }
1529   return TRAVERSE_CONTINUE;
1530 }
1531
1532 // Check that types are valid in a statement.
1533
1534 int
1535 Check_types_traverse::statement(Block*, size_t*, Statement* s)
1536 {
1537   s->check_types(this->gogo_);
1538   return TRAVERSE_CONTINUE;
1539 }
1540
1541 // Check that types are valid in an expression.
1542
1543 int
1544 Check_types_traverse::expression(Expression** expr)
1545 {
1546   (*expr)->check_types(this->gogo_);
1547   return TRAVERSE_CONTINUE;
1548 }
1549
1550 // Check that types are valid.
1551
1552 void
1553 Gogo::check_types()
1554 {
1555   Check_types_traverse traverse(this);
1556   this->traverse(&traverse);
1557 }
1558
1559 // Check the types in a single block.
1560
1561 void
1562 Gogo::check_types_in_block(Block* block)
1563 {
1564   Check_types_traverse traverse(this);
1565   block->traverse(&traverse);
1566 }
1567
1568 // A traversal class used to find a single shortcut operator within an
1569 // expression.
1570
1571 class Find_shortcut : public Traverse
1572 {
1573  public:
1574   Find_shortcut()
1575     : Traverse(traverse_blocks
1576                | traverse_statements
1577                | traverse_expressions),
1578       found_(NULL)
1579   { }
1580
1581   // A pointer to the expression which was found, or NULL if none was
1582   // found.
1583   Expression**
1584   found() const
1585   { return this->found_; }
1586
1587  protected:
1588   int
1589   block(Block*)
1590   { return TRAVERSE_SKIP_COMPONENTS; }
1591
1592   int
1593   statement(Block*, size_t*, Statement*)
1594   { return TRAVERSE_SKIP_COMPONENTS; }
1595
1596   int
1597   expression(Expression**);
1598
1599  private:
1600   Expression** found_;
1601 };
1602
1603 // Find a shortcut expression.
1604
1605 int
1606 Find_shortcut::expression(Expression** pexpr)
1607 {
1608   Expression* expr = *pexpr;
1609   Binary_expression* be = expr->binary_expression();
1610   if (be == NULL)
1611     return TRAVERSE_CONTINUE;
1612   Operator op = be->op();
1613   if (op != OPERATOR_OROR && op != OPERATOR_ANDAND)
1614     return TRAVERSE_CONTINUE;
1615   gcc_assert(this->found_ == NULL);
1616   this->found_ = pexpr;
1617   return TRAVERSE_EXIT;
1618 }
1619
1620 // A traversal class used to turn shortcut operators into explicit if
1621 // statements.
1622
1623 class Shortcuts : public Traverse
1624 {
1625  public:
1626   Shortcuts(Gogo* gogo)
1627     : Traverse(traverse_variables
1628                | traverse_statements),
1629       gogo_(gogo)
1630   { }
1631
1632  protected:
1633   int
1634   variable(Named_object*);
1635
1636   int
1637   statement(Block*, size_t*, Statement*);
1638
1639  private:
1640   // Convert a shortcut operator.
1641   Statement*
1642   convert_shortcut(Block* enclosing, Expression** pshortcut);
1643
1644   // The IR.
1645   Gogo* gogo_;
1646 };
1647
1648 // Remove shortcut operators in a single statement.
1649
1650 int
1651 Shortcuts::statement(Block* block, size_t* pindex, Statement* s)
1652 {
1653   // FIXME: This approach doesn't work for switch statements, because
1654   // we add the new statements before the whole switch when we need to
1655   // instead add them just before the switch expression.  The right
1656   // fix is probably to lower switch statements with nonconstant cases
1657   // to a series of conditionals.
1658   if (s->switch_statement() != NULL)
1659     return TRAVERSE_CONTINUE;
1660
1661   while (true)
1662     {
1663       Find_shortcut find_shortcut;
1664
1665       // If S is a variable declaration, then ordinary traversal won't
1666       // do anything.  We want to explicitly traverse the
1667       // initialization expression if there is one.
1668       Variable_declaration_statement* vds = s->variable_declaration_statement();
1669       Expression* init = NULL;
1670       if (vds == NULL)
1671         s->traverse_contents(&find_shortcut);
1672       else
1673         {
1674           init = vds->var()->var_value()->init();
1675           if (init == NULL)
1676             return TRAVERSE_CONTINUE;
1677           init->traverse(&init, &find_shortcut);
1678         }
1679       Expression** pshortcut = find_shortcut.found();
1680       if (pshortcut == NULL)
1681         return TRAVERSE_CONTINUE;
1682
1683       Statement* snew = this->convert_shortcut(block, pshortcut);
1684       block->insert_statement_before(*pindex, snew);
1685       ++*pindex;
1686
1687       if (pshortcut == &init)
1688         vds->var()->var_value()->set_init(init);
1689     }
1690 }
1691
1692 // Remove shortcut operators in the initializer of a global variable.
1693
1694 int
1695 Shortcuts::variable(Named_object* no)
1696 {
1697   if (no->is_result_variable())
1698     return TRAVERSE_CONTINUE;
1699   Variable* var = no->var_value();
1700   Expression* init = var->init();
1701   if (!var->is_global() || init == NULL)
1702     return TRAVERSE_CONTINUE;
1703
1704   while (true)
1705     {
1706       Find_shortcut find_shortcut;
1707       init->traverse(&init, &find_shortcut);
1708       Expression** pshortcut = find_shortcut.found();
1709       if (pshortcut == NULL)
1710         return TRAVERSE_CONTINUE;
1711
1712       Statement* snew = this->convert_shortcut(NULL, pshortcut);
1713       var->add_preinit_statement(this->gogo_, snew);
1714       if (pshortcut == &init)
1715         var->set_init(init);
1716     }
1717 }
1718
1719 // Given an expression which uses a shortcut operator, return a
1720 // statement which implements it, and update *PSHORTCUT accordingly.
1721
1722 Statement*
1723 Shortcuts::convert_shortcut(Block* enclosing, Expression** pshortcut)
1724 {
1725   Binary_expression* shortcut = (*pshortcut)->binary_expression();
1726   Expression* left = shortcut->left();
1727   Expression* right = shortcut->right();
1728   source_location loc = shortcut->location();
1729
1730   Block* retblock = new Block(enclosing, loc);
1731   retblock->set_end_location(loc);
1732
1733   Temporary_statement* ts = Statement::make_temporary(Type::make_boolean_type(),
1734                                                       left, loc);
1735   retblock->add_statement(ts);
1736
1737   Block* block = new Block(retblock, loc);
1738   block->set_end_location(loc);
1739   Expression* tmpref = Expression::make_temporary_reference(ts, loc);
1740   Statement* assign = Statement::make_assignment(tmpref, right, loc);
1741   block->add_statement(assign);
1742
1743   Expression* cond = Expression::make_temporary_reference(ts, loc);
1744   if (shortcut->binary_expression()->op() == OPERATOR_OROR)
1745     cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
1746
1747   Statement* if_statement = Statement::make_if_statement(cond, block, NULL,
1748                                                          loc);
1749   retblock->add_statement(if_statement);
1750
1751   *pshortcut = Expression::make_temporary_reference(ts, loc);
1752
1753   delete shortcut;
1754
1755   // Now convert any shortcut operators in LEFT and RIGHT.
1756   Shortcuts shortcuts(this->gogo_);
1757   retblock->traverse(&shortcuts);
1758
1759   return Statement::make_block_statement(retblock, loc);
1760 }
1761
1762 // Turn shortcut operators into explicit if statements.  Doing this
1763 // considerably simplifies the order of evaluation rules.
1764
1765 void
1766 Gogo::remove_shortcuts()
1767 {
1768   Shortcuts shortcuts(this);
1769   this->traverse(&shortcuts);
1770 }
1771
1772 // A traversal class which finds all the expressions which must be
1773 // evaluated in order within a statement or larger expression.  This
1774 // is used to implement the rules about order of evaluation.
1775
1776 class Find_eval_ordering : public Traverse
1777 {
1778  private:
1779   typedef std::vector<Expression**> Expression_pointers;
1780
1781  public:
1782   Find_eval_ordering()
1783     : Traverse(traverse_blocks
1784                | traverse_statements
1785                | traverse_expressions),
1786       exprs_()
1787   { }
1788
1789   size_t
1790   size() const
1791   { return this->exprs_.size(); }
1792
1793   typedef Expression_pointers::const_iterator const_iterator;
1794
1795   const_iterator
1796   begin() const
1797   { return this->exprs_.begin(); }
1798
1799   const_iterator
1800   end() const
1801   { return this->exprs_.end(); }
1802
1803  protected:
1804   int
1805   block(Block*)
1806   { return TRAVERSE_SKIP_COMPONENTS; }
1807
1808   int
1809   statement(Block*, size_t*, Statement*)
1810   { return TRAVERSE_SKIP_COMPONENTS; }
1811
1812   int
1813   expression(Expression**);
1814
1815  private:
1816   // A list of pointers to expressions with side-effects.
1817   Expression_pointers exprs_;
1818 };
1819
1820 // If an expression must be evaluated in order, put it on the list.
1821
1822 int
1823 Find_eval_ordering::expression(Expression** expression_pointer)
1824 {
1825   // We have to look at subexpressions before this one.
1826   if ((*expression_pointer)->traverse_subexpressions(this) == TRAVERSE_EXIT)
1827     return TRAVERSE_EXIT;
1828   if ((*expression_pointer)->must_eval_in_order())
1829     this->exprs_.push_back(expression_pointer);
1830   return TRAVERSE_SKIP_COMPONENTS;
1831 }
1832
1833 // A traversal class for ordering evaluations.
1834
1835 class Order_eval : public Traverse
1836 {
1837  public:
1838   Order_eval(Gogo* gogo)
1839     : Traverse(traverse_variables
1840                | traverse_statements),
1841       gogo_(gogo)
1842   { }
1843
1844   int
1845   variable(Named_object*);
1846
1847   int
1848   statement(Block*, size_t*, Statement*);
1849
1850  private:
1851   // The IR.
1852   Gogo* gogo_;
1853 };
1854
1855 // Implement the order of evaluation rules for a statement.
1856
1857 int
1858 Order_eval::statement(Block* block, size_t* pindex, Statement* s)
1859 {
1860   // FIXME: This approach doesn't work for switch statements, because
1861   // we add the new statements before the whole switch when we need to
1862   // instead add them just before the switch expression.  The right
1863   // fix is probably to lower switch statements with nonconstant cases
1864   // to a series of conditionals.
1865   if (s->switch_statement() != NULL)
1866     return TRAVERSE_CONTINUE;
1867
1868   Find_eval_ordering find_eval_ordering;
1869
1870   // If S is a variable declaration, then ordinary traversal won't do
1871   // anything.  We want to explicitly traverse the initialization
1872   // expression if there is one.
1873   Variable_declaration_statement* vds = s->variable_declaration_statement();
1874   Expression* init = NULL;
1875   Expression* orig_init = NULL;
1876   if (vds == NULL)
1877     s->traverse_contents(&find_eval_ordering);
1878   else
1879     {
1880       init = vds->var()->var_value()->init();
1881       if (init == NULL)
1882         return TRAVERSE_CONTINUE;
1883       orig_init = init;
1884
1885       // It might seem that this could be
1886       // init->traverse_subexpressions.  Unfortunately that can fail
1887       // in a case like
1888       //   var err os.Error
1889       //   newvar, err := call(arg())
1890       // Here newvar will have an init of call result 0 of
1891       // call(arg()).  If we only traverse subexpressions, we will
1892       // only find arg(), and we won't bother to move anything out.
1893       // Then we get to the assignment to err, we will traverse the
1894       // whole statement, and this time we will find both call() and
1895       // arg(), and so we will move them out.  This will cause them to
1896       // be put into temporary variables before the assignment to err
1897       // but after the declaration of newvar.  To avoid that problem,
1898       // we traverse the entire expression here.
1899       Expression::traverse(&init, &find_eval_ordering);
1900     }
1901
1902   if (find_eval_ordering.size() <= 1)
1903     {
1904       // If there is only one expression with a side-effect, we can
1905       // leave it in place.
1906       return TRAVERSE_CONTINUE;
1907     }
1908
1909   bool is_thunk = s->thunk_statement() != NULL;
1910   for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
1911        p != find_eval_ordering.end();
1912        ++p)
1913     {
1914       Expression** pexpr = *p;
1915
1916       // If the last expression is a send or receive expression, we
1917       // may be ignoring the value; we don't want to evaluate it
1918       // early.
1919       if (p + 1 == find_eval_ordering.end()
1920           && ((*pexpr)->classification() == Expression::EXPRESSION_SEND
1921               || (*pexpr)->classification() == Expression::EXPRESSION_RECEIVE))
1922         break;
1923
1924       // The last expression in a thunk will be the call passed to go
1925       // or defer, which we must not evaluate early.
1926       if (is_thunk && p + 1 == find_eval_ordering.end())
1927         break;
1928
1929       source_location loc = (*pexpr)->location();
1930       Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr, loc);
1931       block->insert_statement_before(*pindex, ts);
1932       ++*pindex;
1933
1934       *pexpr = Expression::make_temporary_reference(ts, loc);
1935     }
1936
1937   if (init != orig_init)
1938     vds->var()->var_value()->set_init(init);
1939
1940   return TRAVERSE_CONTINUE;
1941 }
1942
1943 // Implement the order of evaluation rules for the initializer of a
1944 // global variable.
1945
1946 int
1947 Order_eval::variable(Named_object* no)
1948 {
1949   if (no->is_result_variable())
1950     return TRAVERSE_CONTINUE;
1951   Variable* var = no->var_value();
1952   Expression* init = var->init();
1953   if (!var->is_global() || init == NULL)
1954     return TRAVERSE_CONTINUE;
1955
1956   Find_eval_ordering find_eval_ordering;
1957   init->traverse_subexpressions(&find_eval_ordering);
1958
1959   if (find_eval_ordering.size() <= 1)
1960     {
1961       // If there is only one expression with a side-effect, we can
1962       // leave it in place.
1963       return TRAVERSE_SKIP_COMPONENTS;
1964     }
1965
1966   for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
1967        p != find_eval_ordering.end();
1968        ++p)
1969     {
1970       Expression** pexpr = *p;
1971       source_location loc = (*pexpr)->location();
1972       Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr, loc);
1973       var->add_preinit_statement(this->gogo_, ts);
1974       *pexpr = Expression::make_temporary_reference(ts, loc);
1975     }
1976
1977   return TRAVERSE_SKIP_COMPONENTS;
1978 }
1979
1980 // Use temporary variables to implement the order of evaluation rules.
1981
1982 void
1983 Gogo::order_evaluations()
1984 {
1985   Order_eval order_eval(this);
1986   this->traverse(&order_eval);
1987 }
1988
1989 // Traversal to convert calls to the predeclared recover function to
1990 // pass in an argument indicating whether it can recover from a panic
1991 // or not.
1992
1993 class Convert_recover : public Traverse
1994 {
1995  public:
1996   Convert_recover(Named_object* arg)
1997     : Traverse(traverse_expressions),
1998       arg_(arg)
1999   { }
2000
2001  protected:
2002   int
2003   expression(Expression**);
2004
2005  private:
2006   // The argument to pass to the function.
2007   Named_object* arg_;
2008 };
2009
2010 // Convert calls to recover.
2011
2012 int
2013 Convert_recover::expression(Expression** pp)
2014 {
2015   Call_expression* ce = (*pp)->call_expression();
2016   if (ce != NULL && ce->is_recover_call())
2017     ce->set_recover_arg(Expression::make_var_reference(this->arg_,
2018                                                        ce->location()));
2019   return TRAVERSE_CONTINUE;
2020 }
2021
2022 // Traversal for build_recover_thunks.
2023
2024 class Build_recover_thunks : public Traverse
2025 {
2026  public:
2027   Build_recover_thunks(Gogo* gogo)
2028     : Traverse(traverse_functions),
2029       gogo_(gogo)
2030   { }
2031
2032   int
2033   function(Named_object*);
2034
2035  private:
2036   Expression*
2037   can_recover_arg(source_location);
2038
2039   // General IR.
2040   Gogo* gogo_;
2041 };
2042
2043 // If this function calls recover, turn it into a thunk.
2044
2045 int
2046 Build_recover_thunks::function(Named_object* orig_no)
2047 {
2048   Function* orig_func = orig_no->func_value();
2049   if (!orig_func->calls_recover()
2050       || orig_func->is_recover_thunk()
2051       || orig_func->has_recover_thunk())
2052     return TRAVERSE_CONTINUE;
2053
2054   Gogo* gogo = this->gogo_;
2055   source_location location = orig_func->location();
2056
2057   static int count;
2058   char buf[50];
2059
2060   Function_type* orig_fntype = orig_func->type();
2061   Typed_identifier_list* new_params = new Typed_identifier_list();
2062   std::string receiver_name;
2063   if (orig_fntype->is_method())
2064     {
2065       const Typed_identifier* receiver = orig_fntype->receiver();
2066       snprintf(buf, sizeof buf, "rt.%u", count);
2067       ++count;
2068       receiver_name = buf;
2069       new_params->push_back(Typed_identifier(receiver_name, receiver->type(),
2070                                              receiver->location()));
2071     }
2072   const Typed_identifier_list* orig_params = orig_fntype->parameters();
2073   if (orig_params != NULL && !orig_params->empty())
2074     {
2075       for (Typed_identifier_list::const_iterator p = orig_params->begin();
2076            p != orig_params->end();
2077            ++p)
2078         {
2079           snprintf(buf, sizeof buf, "pt.%u", count);
2080           ++count;
2081           new_params->push_back(Typed_identifier(buf, p->type(),
2082                                                  p->location()));
2083         }
2084     }
2085   snprintf(buf, sizeof buf, "pr.%u", count);
2086   ++count;
2087   std::string can_recover_name = buf;
2088   new_params->push_back(Typed_identifier(can_recover_name,
2089                                          Type::make_boolean_type(),
2090                                          orig_fntype->location()));
2091
2092   const Typed_identifier_list* orig_results = orig_fntype->results();
2093   Typed_identifier_list* new_results;
2094   if (orig_results == NULL || orig_results->empty())
2095     new_results = NULL;
2096   else
2097     {
2098       new_results = new Typed_identifier_list();
2099       for (Typed_identifier_list::const_iterator p = orig_results->begin();
2100            p != orig_results->end();
2101            ++p)
2102         new_results->push_back(Typed_identifier("", p->type(), p->location()));
2103     }
2104
2105   Function_type *new_fntype = Type::make_function_type(NULL, new_params,
2106                                                        new_results,
2107                                                        orig_fntype->location());
2108   if (orig_fntype->is_varargs())
2109     new_fntype->set_is_varargs();
2110
2111   std::string name = orig_no->name() + "$recover";
2112   Named_object *new_no = gogo->start_function(name, new_fntype, false,
2113                                               location);
2114   Function *new_func = new_no->func_value();
2115   if (orig_func->enclosing() != NULL)
2116     new_func->set_enclosing(orig_func->enclosing());
2117
2118   // We build the code for the original function attached to the new
2119   // function, and then swap the original and new function bodies.
2120   // This means that existing references to the original function will
2121   // then refer to the new function.  That makes this code a little
2122   // confusing, in that the reference to NEW_NO really refers to the
2123   // other function, not the one we are building.
2124
2125   Expression* closure = NULL;
2126   if (orig_func->needs_closure())
2127     {
2128       Named_object* orig_closure_no = orig_func->closure_var();
2129       Variable* orig_closure_var = orig_closure_no->var_value();
2130       Variable* new_var = new Variable(orig_closure_var->type(), NULL, false,
2131                                        true, false, location);
2132       snprintf(buf, sizeof buf, "closure.%u", count);
2133       ++count;
2134       Named_object* new_closure_no = Named_object::make_variable(buf, NULL,
2135                                                                  new_var);
2136       new_func->set_closure_var(new_closure_no);
2137       closure = Expression::make_var_reference(new_closure_no, location);
2138     }
2139
2140   Expression* fn = Expression::make_func_reference(new_no, closure, location);
2141
2142   Expression_list* args = new Expression_list();
2143   if (new_params != NULL)
2144     {
2145       // Note that we skip the last parameter, which is the boolean
2146       // indicating whether recover can succed.
2147       for (Typed_identifier_list::const_iterator p = new_params->begin();
2148            p + 1 != new_params->end();
2149            ++p)
2150         {
2151           Named_object* p_no = gogo->lookup(p->name(), NULL);
2152           gcc_assert(p_no != NULL
2153                      && p_no->is_variable()
2154                      && p_no->var_value()->is_parameter());
2155           args->push_back(Expression::make_var_reference(p_no, location));
2156         }
2157     }
2158   args->push_back(this->can_recover_arg(location));
2159
2160   Call_expression* call = Expression::make_call(fn, args, false, location);
2161
2162   Statement* s;
2163   if (orig_fntype->results() == NULL || orig_fntype->results()->empty())
2164     s = Statement::make_statement(call);
2165   else
2166     {
2167       Expression_list* vals = new Expression_list();
2168       size_t rc = orig_fntype->results()->size();
2169       if (rc == 1)
2170         vals->push_back(call);
2171       else
2172         {
2173           for (size_t i = 0; i < rc; ++i)
2174             vals->push_back(Expression::make_call_result(call, i));
2175         }
2176       s = Statement::make_return_statement(new_func->type()->results(),
2177                                            vals, location);
2178     }
2179   s->determine_types();
2180   gogo->add_statement(s);
2181
2182   gogo->finish_function(location);
2183
2184   // Swap the function bodies and types.
2185   new_func->swap_for_recover(orig_func);
2186   orig_func->set_is_recover_thunk();
2187   new_func->set_calls_recover();
2188   new_func->set_has_recover_thunk();
2189
2190   Bindings* orig_bindings = orig_func->block()->bindings();
2191   Bindings* new_bindings = new_func->block()->bindings();
2192   if (orig_fntype->is_method())
2193     {
2194       // We changed the receiver to be a regular parameter.  We have
2195       // to update the binding accordingly in both functions.
2196       Named_object* orig_rec_no = orig_bindings->lookup_local(receiver_name);
2197       gcc_assert(orig_rec_no != NULL
2198                  && orig_rec_no->is_variable()
2199                  && !orig_rec_no->var_value()->is_receiver());
2200       orig_rec_no->var_value()->set_is_receiver();
2201
2202       const std::string& new_receiver_name(orig_fntype->receiver()->name());
2203       Named_object* new_rec_no = new_bindings->lookup_local(new_receiver_name);
2204       if (new_rec_no == NULL)
2205         gcc_assert(saw_errors());
2206       else
2207         {
2208           gcc_assert(new_rec_no->is_variable()
2209                      && new_rec_no->var_value()->is_receiver());
2210           new_rec_no->var_value()->set_is_not_receiver();
2211         }
2212     }
2213
2214   // Because we flipped blocks but not types, the can_recover
2215   // parameter appears in the (now) old bindings as a parameter.
2216   // Change it to a local variable, whereupon it will be discarded.
2217   Named_object* can_recover_no = orig_bindings->lookup_local(can_recover_name);
2218   gcc_assert(can_recover_no != NULL
2219              && can_recover_no->is_variable()
2220              && can_recover_no->var_value()->is_parameter());
2221   orig_bindings->remove_binding(can_recover_no);
2222
2223   // Add the can_recover argument to the (now) new bindings, and
2224   // attach it to any recover statements.
2225   Variable* can_recover_var = new Variable(Type::make_boolean_type(), NULL,
2226                                            false, true, false, location);
2227   can_recover_no = new_bindings->add_variable(can_recover_name, NULL,
2228                                               can_recover_var);
2229   Convert_recover convert_recover(can_recover_no);
2230   new_func->traverse(&convert_recover);
2231
2232   // Update the function pointers in any named results.
2233   new_func->update_named_result_variables();
2234   orig_func->update_named_result_variables();
2235
2236   return TRAVERSE_CONTINUE;
2237 }
2238
2239 // Return the expression to pass for the .can_recover parameter to the
2240 // new function.  This indicates whether a call to recover may return
2241 // non-nil.  The expression is
2242 // __go_can_recover(__builtin_return_address()).
2243
2244 Expression*
2245 Build_recover_thunks::can_recover_arg(source_location location)
2246 {
2247   static Named_object* builtin_return_address;
2248   if (builtin_return_address == NULL)
2249     {
2250       const source_location bloc = BUILTINS_LOCATION;
2251
2252       Typed_identifier_list* param_types = new Typed_identifier_list();
2253       Type* uint_type = Type::lookup_integer_type("uint");
2254       param_types->push_back(Typed_identifier("l", uint_type, bloc));
2255
2256       Typed_identifier_list* return_types = new Typed_identifier_list();
2257       Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
2258       return_types->push_back(Typed_identifier("", voidptr_type, bloc));
2259
2260       Function_type* fntype = Type::make_function_type(NULL, param_types,
2261                                                        return_types, bloc);
2262       builtin_return_address =
2263         Named_object::make_function_declaration("__builtin_return_address",
2264                                                 NULL, fntype, bloc);
2265       const char* n = "__builtin_return_address";
2266       builtin_return_address->func_declaration_value()->set_asm_name(n);
2267     }
2268
2269   static Named_object* can_recover;
2270   if (can_recover == NULL)
2271     {
2272       const source_location bloc = BUILTINS_LOCATION;
2273       Typed_identifier_list* param_types = new Typed_identifier_list();
2274       Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
2275       param_types->push_back(Typed_identifier("a", voidptr_type, bloc));
2276       Type* boolean_type = Type::make_boolean_type();
2277       Typed_identifier_list* results = new Typed_identifier_list();
2278       results->push_back(Typed_identifier("", boolean_type, bloc));
2279       Function_type* fntype = Type::make_function_type(NULL, param_types,
2280                                                        results, bloc);
2281       can_recover = Named_object::make_function_declaration("__go_can_recover",
2282                                                             NULL, fntype,
2283                                                             bloc);
2284       can_recover->func_declaration_value()->set_asm_name("__go_can_recover");
2285     }
2286
2287   Expression* fn = Expression::make_func_reference(builtin_return_address,
2288                                                    NULL, location);
2289
2290   mpz_t zval;
2291   mpz_init_set_ui(zval, 0UL);
2292   Expression* zexpr = Expression::make_integer(&zval, NULL, location);
2293   mpz_clear(zval);
2294   Expression_list *args = new Expression_list();
2295   args->push_back(zexpr);
2296
2297   Expression* call = Expression::make_call(fn, args, false, location);
2298
2299   args = new Expression_list();
2300   args->push_back(call);
2301
2302   fn = Expression::make_func_reference(can_recover, NULL, location);
2303   return Expression::make_call(fn, args, false, location);
2304 }
2305
2306 // Build thunks for functions which call recover.  We build a new
2307 // function with an extra parameter, which is whether a call to
2308 // recover can succeed.  We then move the body of this function to
2309 // that one.  We then turn this function into a thunk which calls the
2310 // new one, passing the value of
2311 // __go_can_recover(__builtin_return_address()).  The function will be
2312 // marked as not splitting the stack.  This will cooperate with the
2313 // implementation of defer to make recover do the right thing.
2314
2315 void
2316 Gogo::build_recover_thunks()
2317 {
2318   Build_recover_thunks build_recover_thunks(this);
2319   this->traverse(&build_recover_thunks);
2320 }
2321
2322 // Look for named types to see whether we need to create an interface
2323 // method table.
2324
2325 class Build_method_tables : public Traverse
2326 {
2327  public:
2328   Build_method_tables(Gogo* gogo,
2329                       const std::vector<Interface_type*>& interfaces)
2330     : Traverse(traverse_types),
2331       gogo_(gogo), interfaces_(interfaces)
2332   { }
2333
2334   int
2335   type(Type*);
2336
2337  private:
2338   // The IR.
2339   Gogo* gogo_;
2340   // A list of locally defined interfaces which have hidden methods.
2341   const std::vector<Interface_type*>& interfaces_;
2342 };
2343
2344 // Build all required interface method tables for types.  We need to
2345 // ensure that we have an interface method table for every interface
2346 // which has a hidden method, for every named type which implements
2347 // that interface.  Normally we can just build interface method tables
2348 // as we need them.  However, in some cases we can require an
2349 // interface method table for an interface defined in a different
2350 // package for a type defined in that package.  If that interface and
2351 // type both use a hidden method, that is OK.  However, we will not be
2352 // able to build that interface method table when we need it, because
2353 // the type's hidden method will be static.  So we have to build it
2354 // here, and just refer it from other packages as needed.
2355
2356 void
2357 Gogo::build_interface_method_tables()
2358 {
2359   std::vector<Interface_type*> hidden_interfaces;
2360   hidden_interfaces.reserve(this->interface_types_.size());
2361   for (std::vector<Interface_type*>::const_iterator pi =
2362          this->interface_types_.begin();
2363        pi != this->interface_types_.end();
2364        ++pi)
2365     {
2366       const Typed_identifier_list* methods = (*pi)->methods();
2367       if (methods == NULL)
2368         continue;
2369       for (Typed_identifier_list::const_iterator pm = methods->begin();
2370            pm != methods->end();
2371            ++pm)
2372         {
2373           if (Gogo::is_hidden_name(pm->name()))
2374             {
2375               hidden_interfaces.push_back(*pi);
2376               break;
2377             }
2378         }
2379     }
2380
2381   if (!hidden_interfaces.empty())
2382     {
2383       // Now traverse the tree looking for all named types.
2384       Build_method_tables bmt(this, hidden_interfaces);
2385       this->traverse(&bmt);
2386     }
2387
2388   // We no longer need the list of interfaces.
2389
2390   this->interface_types_.clear();
2391 }
2392
2393 // This is called for each type.  For a named type, for each of the
2394 // interfaces with hidden methods that it implements, create the
2395 // method table.
2396
2397 int
2398 Build_method_tables::type(Type* type)
2399 {
2400   Named_type* nt = type->named_type();
2401   if (nt != NULL)
2402     {
2403       for (std::vector<Interface_type*>::const_iterator p =
2404              this->interfaces_.begin();
2405            p != this->interfaces_.end();
2406            ++p)
2407         {
2408           // We ask whether a pointer to the named type implements the
2409           // interface, because a pointer can implement more methods
2410           // than a value.
2411           if ((*p)->implements_interface(Type::make_pointer_type(nt), NULL))
2412             {
2413               nt->interface_method_table(this->gogo_, *p, false);
2414               nt->interface_method_table(this->gogo_, *p, true);
2415             }
2416         }
2417     }
2418   return TRAVERSE_CONTINUE;
2419 }
2420
2421 // Traversal class used to check for return statements.
2422
2423 class Check_return_statements_traverse : public Traverse
2424 {
2425  public:
2426   Check_return_statements_traverse()
2427     : Traverse(traverse_functions)
2428   { }
2429
2430   int
2431   function(Named_object*);
2432 };
2433
2434 // Check that a function has a return statement if it needs one.
2435
2436 int
2437 Check_return_statements_traverse::function(Named_object* no)
2438 {
2439   Function* func = no->func_value();
2440   const Function_type* fntype = func->type();
2441   const Typed_identifier_list* results = fntype->results();
2442
2443   // We only need a return statement if there is a return value.
2444   if (results == NULL || results->empty())
2445     return TRAVERSE_CONTINUE;
2446
2447   if (func->block()->may_fall_through())
2448     error_at(func->location(), "control reaches end of non-void function");
2449
2450   return TRAVERSE_CONTINUE;
2451 }
2452
2453 // Check return statements.
2454
2455 void
2456 Gogo::check_return_statements()
2457 {
2458   Check_return_statements_traverse traverse;
2459   this->traverse(&traverse);
2460 }
2461
2462 // Get the unique prefix to use before all exported symbols.  This
2463 // must be unique across the entire link.
2464
2465 const std::string&
2466 Gogo::unique_prefix() const
2467 {
2468   gcc_assert(!this->unique_prefix_.empty());
2469   return this->unique_prefix_;
2470 }
2471
2472 // Set the unique prefix to use before all exported symbols.  This
2473 // comes from the command line option -fgo-prefix=XXX.
2474
2475 void
2476 Gogo::set_unique_prefix(const std::string& arg)
2477 {
2478   gcc_assert(this->unique_prefix_.empty());
2479   this->unique_prefix_ = arg;
2480   this->unique_prefix_specified_ = true;
2481 }
2482
2483 // Work out the package priority.  It is one more than the maximum
2484 // priority of an imported package.
2485
2486 int
2487 Gogo::package_priority() const
2488 {
2489   int priority = 0;
2490   for (Packages::const_iterator p = this->packages_.begin();
2491        p != this->packages_.end();
2492        ++p)
2493     if (p->second->priority() > priority)
2494       priority = p->second->priority();
2495   return priority + 1;
2496 }
2497
2498 // Export identifiers as requested.
2499
2500 void
2501 Gogo::do_exports()
2502 {
2503   // For now we always stream to a section.  Later we may want to
2504   // support streaming to a separate file.
2505   Stream_to_section stream;
2506
2507   Export exp(&stream);
2508   exp.register_builtin_types(this);
2509   exp.export_globals(this->package_name(),
2510                      this->unique_prefix(),
2511                      this->package_priority(),
2512                      (this->need_init_fn_ && !this->is_main_package()
2513                       ? this->get_init_fn_name()
2514                       : ""),
2515                      this->imported_init_fns_,
2516                      this->package_->bindings());
2517 }
2518
2519 // Find the blocks in order to convert named types defined in blocks.
2520
2521 class Convert_named_types : public Traverse
2522 {
2523  public:
2524   Convert_named_types(Gogo* gogo)
2525     : Traverse(traverse_blocks),
2526       gogo_(gogo)
2527   { }
2528
2529  protected:
2530   int
2531   block(Block* block);
2532
2533  private:
2534   Gogo* gogo_;
2535 };
2536
2537 int
2538 Convert_named_types::block(Block* block)
2539 {
2540   this->gogo_->convert_named_types_in_bindings(block->bindings());
2541   return TRAVERSE_CONTINUE;
2542 }
2543
2544 // Convert all named types to the backend representation.  Since named
2545 // types can refer to other types, this needs to be done in the right
2546 // sequence, which is handled by Named_type::convert.  Here we arrange
2547 // to call that for each named type.
2548
2549 void
2550 Gogo::convert_named_types()
2551 {
2552   this->convert_named_types_in_bindings(this->globals_);
2553   for (Packages::iterator p = this->packages_.begin();
2554        p != this->packages_.end();
2555        ++p)
2556     {
2557       Package* package = p->second;
2558       this->convert_named_types_in_bindings(package->bindings());
2559     }
2560
2561   Convert_named_types cnt(this);
2562   this->traverse(&cnt);
2563
2564   // Make all the builtin named types used for type descriptors, and
2565   // then convert them.  They will only be written out if they are
2566   // needed.
2567   Type::make_type_descriptor_type();
2568   Type::make_type_descriptor_ptr_type();
2569   Function_type::make_function_type_descriptor_type();
2570   Pointer_type::make_pointer_type_descriptor_type();
2571   Struct_type::make_struct_type_descriptor_type();
2572   Array_type::make_array_type_descriptor_type();
2573   Array_type::make_slice_type_descriptor_type();
2574   Map_type::make_map_type_descriptor_type();
2575   Channel_type::make_chan_type_descriptor_type();
2576   Interface_type::make_interface_type_descriptor_type();
2577   Type::convert_builtin_named_types(this);
2578
2579   this->named_types_are_converted_ = true;
2580 }
2581
2582 // Convert all names types in a set of bindings.
2583
2584 void
2585 Gogo::convert_named_types_in_bindings(Bindings* bindings)
2586 {
2587   for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
2588        p != bindings->end_definitions();
2589        ++p)
2590     {
2591       if ((*p)->is_type())
2592         (*p)->type_value()->convert(this);
2593     }
2594 }
2595
2596 // Class Function.
2597
2598 Function::Function(Function_type* type, Function* enclosing, Block* block,
2599                    source_location location)
2600   : type_(type), enclosing_(enclosing), named_results_(NULL),
2601     closure_var_(NULL), block_(block), location_(location), fndecl_(NULL),
2602     defer_stack_(NULL), calls_recover_(false), is_recover_thunk_(false),
2603     has_recover_thunk_(false)
2604 {
2605 }
2606
2607 // Create the named result variables.
2608
2609 void
2610 Function::create_named_result_variables(Gogo* gogo)
2611 {
2612   const Typed_identifier_list* results = this->type_->results();
2613   if (results == NULL
2614       || results->empty()
2615       || results->front().name().empty())
2616     return;
2617
2618   this->named_results_ = new Named_results();
2619   this->named_results_->reserve(results->size());
2620
2621   Block* block = this->block_;
2622   int index = 0;
2623   for (Typed_identifier_list::const_iterator p = results->begin();
2624        p != results->end();
2625        ++p, ++index)
2626     {
2627       std::string name = p->name();
2628       if (Gogo::is_sink_name(name))
2629         {
2630           static int unnamed_result_counter;
2631           char buf[100];
2632           snprintf(buf, sizeof buf, "_$%d", unnamed_result_counter);
2633           ++unnamed_result_counter;
2634           name = gogo->pack_hidden_name(buf, false);
2635         }
2636       Result_variable* result = new Result_variable(p->type(), this, index);
2637       Named_object* no = block->bindings()->add_result_variable(name, result);
2638       if (no->is_result_variable())
2639         this->named_results_->push_back(no);
2640     }
2641 }
2642
2643 // Update the named result variables when cloning a function which
2644 // calls recover.
2645
2646 void
2647 Function::update_named_result_variables()
2648 {
2649   if (this->named_results_ == NULL)
2650     return;
2651
2652   for (Named_results::iterator p = this->named_results_->begin();
2653        p != this->named_results_->end();
2654        ++p)
2655     (*p)->result_var_value()->set_function(this);
2656 }
2657
2658 // Return the closure variable, creating it if necessary.
2659
2660 Named_object*
2661 Function::closure_var()
2662 {
2663   if (this->closure_var_ == NULL)
2664     {
2665       // We don't know the type of the variable yet.  We add fields as
2666       // we find them.
2667       source_location loc = this->type_->location();
2668       Struct_field_list* sfl = new Struct_field_list;
2669       Type* struct_type = Type::make_struct_type(sfl, loc);
2670       Variable* var = new Variable(Type::make_pointer_type(struct_type),
2671                                    NULL, false, true, false, loc);
2672       this->closure_var_ = Named_object::make_variable("closure", NULL, var);
2673       // Note that the new variable is not in any binding contour.
2674     }
2675   return this->closure_var_;
2676 }
2677
2678 // Set the type of the closure variable.
2679
2680 void
2681 Function::set_closure_type()
2682 {
2683   if (this->closure_var_ == NULL)
2684     return;
2685   Named_object* closure = this->closure_var_;
2686   Struct_type* st = closure->var_value()->type()->deref()->struct_type();
2687   unsigned int index = 0;
2688   for (Closure_fields::const_iterator p = this->closure_fields_.begin();
2689        p != this->closure_fields_.end();
2690        ++p, ++index)
2691     {
2692       Named_object* no = p->first;
2693       char buf[20];
2694       snprintf(buf, sizeof buf, "%u", index);
2695       std::string n = no->name() + buf;
2696       Type* var_type;
2697       if (no->is_variable())
2698         var_type = no->var_value()->type();
2699       else
2700         var_type = no->result_var_value()->type();
2701       Type* field_type = Type::make_pointer_type(var_type);
2702       st->push_field(Struct_field(Typed_identifier(n, field_type, p->second)));
2703     }
2704 }
2705
2706 // Return whether this function is a method.
2707
2708 bool
2709 Function::is_method() const
2710 {
2711   return this->type_->is_method();
2712 }
2713
2714 // Add a label definition.
2715
2716 Label*
2717 Function::add_label_definition(const std::string& label_name,
2718                                source_location location)
2719 {
2720   Label* lnull = NULL;
2721   std::pair<Labels::iterator, bool> ins =
2722     this->labels_.insert(std::make_pair(label_name, lnull));
2723   if (ins.second)
2724     {
2725       // This is a new label.
2726       Label* label = new Label(label_name);
2727       label->define(location);
2728       ins.first->second = label;
2729       return label;
2730     }
2731   else
2732     {
2733       // The label was already in the hash table.
2734       Label* label = ins.first->second;
2735       if (!label->is_defined())
2736         {
2737           label->define(location);
2738           return label;
2739         }
2740       else
2741         {
2742           error_at(location, "redefinition of label %qs",
2743                    Gogo::message_name(label_name).c_str());
2744           inform(label->location(), "previous definition of %qs was here",
2745                  Gogo::message_name(label_name).c_str());
2746           return new Label(label_name);
2747         }
2748     }
2749 }
2750
2751 // Add a reference to a label.
2752
2753 Label*
2754 Function::add_label_reference(const std::string& label_name)
2755 {
2756   Label* lnull = NULL;
2757   std::pair<Labels::iterator, bool> ins =
2758     this->labels_.insert(std::make_pair(label_name, lnull));
2759   if (!ins.second)
2760     {
2761       // The label was already in the hash table.
2762       return ins.first->second;
2763     }
2764   else
2765     {
2766       gcc_assert(ins.first->second == NULL);
2767       Label* label = new Label(label_name);
2768       ins.first->second = label;
2769       return label;
2770     }
2771 }
2772
2773 // Swap one function with another.  This is used when building the
2774 // thunk we use to call a function which calls recover.  It may not
2775 // work for any other case.
2776
2777 void
2778 Function::swap_for_recover(Function *x)
2779 {
2780   gcc_assert(this->enclosing_ == x->enclosing_);
2781   std::swap(this->named_results_, x->named_results_);
2782   std::swap(this->closure_var_, x->closure_var_);
2783   std::swap(this->block_, x->block_);
2784   gcc_assert(this->location_ == x->location_);
2785   gcc_assert(this->fndecl_ == NULL && x->fndecl_ == NULL);
2786   gcc_assert(this->defer_stack_ == NULL && x->defer_stack_ == NULL);
2787 }
2788
2789 // Traverse the tree.
2790
2791 int
2792 Function::traverse(Traverse* traverse)
2793 {
2794   unsigned int traverse_mask = traverse->traverse_mask();
2795
2796   if ((traverse_mask
2797        & (Traverse::traverse_types | Traverse::traverse_expressions))
2798       != 0)
2799     {
2800       if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
2801         return TRAVERSE_EXIT;
2802     }
2803
2804   // FIXME: We should check traverse_functions here if nested
2805   // functions are stored in block bindings.
2806   if (this->block_ != NULL
2807       && (traverse_mask
2808           & (Traverse::traverse_variables
2809              | Traverse::traverse_constants
2810              | Traverse::traverse_blocks
2811              | Traverse::traverse_statements
2812              | Traverse::traverse_expressions
2813              | Traverse::traverse_types)) != 0)
2814     {
2815       if (this->block_->traverse(traverse) == TRAVERSE_EXIT)
2816         return TRAVERSE_EXIT;
2817     }
2818
2819   return TRAVERSE_CONTINUE;
2820 }
2821
2822 // Work out types for unspecified variables and constants.
2823
2824 void
2825 Function::determine_types()
2826 {
2827   if (this->block_ != NULL)
2828     this->block_->determine_types();
2829 }
2830
2831 // Export the function.
2832
2833 void
2834 Function::export_func(Export* exp, const std::string& name) const
2835 {
2836   Function::export_func_with_type(exp, name, this->type_);
2837 }
2838
2839 // Export a function with a type.
2840
2841 void
2842 Function::export_func_with_type(Export* exp, const std::string& name,
2843                                 const Function_type* fntype)
2844 {
2845   exp->write_c_string("func ");
2846
2847   if (fntype->is_method())
2848     {
2849       exp->write_c_string("(");
2850       exp->write_type(fntype->receiver()->type());
2851       exp->write_c_string(") ");
2852     }
2853
2854   exp->write_string(name);
2855
2856   exp->write_c_string(" (");
2857   const Typed_identifier_list* parameters = fntype->parameters();
2858   if (parameters != NULL)
2859     {
2860       bool is_varargs = fntype->is_varargs();
2861       bool first = true;
2862       for (Typed_identifier_list::const_iterator p = parameters->begin();
2863            p != parameters->end();
2864            ++p)
2865         {
2866           if (first)
2867             first = false;
2868           else
2869             exp->write_c_string(", ");
2870           if (!is_varargs || p + 1 != parameters->end())
2871             exp->write_type(p->type());
2872           else
2873             {
2874               exp->write_c_string("...");
2875               exp->write_type(p->type()->array_type()->element_type());
2876             }
2877         }
2878     }
2879   exp->write_c_string(")");
2880
2881   const Typed_identifier_list* results = fntype->results();
2882   if (results != NULL)
2883     {
2884       if (results->size() == 1)
2885         {
2886           exp->write_c_string(" ");
2887           exp->write_type(results->begin()->type());
2888         }
2889       else
2890         {
2891           exp->write_c_string(" (");
2892           bool first = true;
2893           for (Typed_identifier_list::const_iterator p = results->begin();
2894                p != results->end();
2895                ++p)
2896             {
2897               if (first)
2898                 first = false;
2899               else
2900                 exp->write_c_string(", ");
2901               exp->write_type(p->type());
2902             }
2903           exp->write_c_string(")");
2904         }
2905     }
2906   exp->write_c_string(";\n");
2907 }
2908
2909 // Import a function.
2910
2911 void
2912 Function::import_func(Import* imp, std::string* pname,
2913                       Typed_identifier** preceiver,
2914                       Typed_identifier_list** pparameters,
2915                       Typed_identifier_list** presults,
2916                       bool* is_varargs)
2917 {
2918   imp->require_c_string("func ");
2919
2920   *preceiver = NULL;
2921   if (imp->peek_char() == '(')
2922     {
2923       imp->require_c_string("(");
2924       Type* rtype = imp->read_type();
2925       *preceiver = new Typed_identifier(Import::import_marker, rtype,
2926                                         imp->location());
2927       imp->require_c_string(") ");
2928     }
2929
2930   *pname = imp->read_identifier();
2931
2932   Typed_identifier_list* parameters;
2933   *is_varargs = false;
2934   imp->require_c_string(" (");
2935   if (imp->peek_char() == ')')
2936     parameters = NULL;
2937   else
2938     {
2939       parameters = new Typed_identifier_list();
2940       while (true)
2941         {
2942           if (imp->match_c_string("..."))
2943             {
2944               imp->advance(3);
2945               *is_varargs = true;
2946             }
2947
2948           Type* ptype = imp->read_type();
2949           if (*is_varargs)
2950             ptype = Type::make_array_type(ptype, NULL);
2951           parameters->push_back(Typed_identifier(Import::import_marker,
2952                                                  ptype, imp->location()));
2953           if (imp->peek_char() != ',')
2954             break;
2955           gcc_assert(!*is_varargs);
2956           imp->require_c_string(", ");
2957         }
2958     }
2959   imp->require_c_string(")");
2960   *pparameters = parameters;
2961
2962   Typed_identifier_list* results;
2963   if (imp->peek_char() != ' ')
2964     results = NULL;
2965   else
2966     {
2967       results = new Typed_identifier_list();
2968       imp->require_c_string(" ");
2969       if (imp->peek_char() != '(')
2970         {
2971           Type* rtype = imp->read_type();
2972           results->push_back(Typed_identifier(Import::import_marker, rtype,
2973                                               imp->location()));
2974         }
2975       else
2976         {
2977           imp->require_c_string("(");
2978           while (true)
2979             {
2980               Type* rtype = imp->read_type();
2981               results->push_back(Typed_identifier(Import::import_marker,
2982                                                   rtype, imp->location()));
2983               if (imp->peek_char() != ',')
2984                 break;
2985               imp->require_c_string(", ");
2986             }
2987           imp->require_c_string(")");
2988         }
2989     }
2990   imp->require_c_string(";\n");
2991   *presults = results;
2992 }
2993
2994 // Class Block.
2995
2996 Block::Block(Block* enclosing, source_location location)
2997   : enclosing_(enclosing), statements_(),
2998     bindings_(new Bindings(enclosing == NULL
2999                            ? NULL
3000                            : enclosing->bindings())),
3001     start_location_(location),
3002     end_location_(UNKNOWN_LOCATION)
3003 {
3004 }
3005
3006 // Add a statement to a block.
3007
3008 void
3009 Block::add_statement(Statement* statement)
3010 {
3011   this->statements_.push_back(statement);
3012 }
3013
3014 // Add a statement to the front of a block.  This is slow but is only
3015 // used for reference counts of parameters.
3016
3017 void
3018 Block::add_statement_at_front(Statement* statement)
3019 {
3020   this->statements_.insert(this->statements_.begin(), statement);
3021 }
3022
3023 // Replace a statement in a block.
3024
3025 void
3026 Block::replace_statement(size_t index, Statement* s)
3027 {
3028   gcc_assert(index < this->statements_.size());
3029   this->statements_[index] = s;
3030 }
3031
3032 // Add a statement before another statement.
3033
3034 void
3035 Block::insert_statement_before(size_t index, Statement* s)
3036 {
3037   gcc_assert(index < this->statements_.size());
3038   this->statements_.insert(this->statements_.begin() + index, s);
3039 }
3040
3041 // Add a statement after another statement.
3042
3043 void
3044 Block::insert_statement_after(size_t index, Statement* s)
3045 {
3046   gcc_assert(index < this->statements_.size());
3047   this->statements_.insert(this->statements_.begin() + index + 1, s);
3048 }
3049
3050 // Traverse the tree.
3051
3052 int
3053 Block::traverse(Traverse* traverse)
3054 {
3055   unsigned int traverse_mask = traverse->traverse_mask();
3056
3057   if ((traverse_mask & Traverse::traverse_blocks) != 0)
3058     {
3059       int t = traverse->block(this);
3060       if (t == TRAVERSE_EXIT)
3061         return TRAVERSE_EXIT;
3062       else if (t == TRAVERSE_SKIP_COMPONENTS)
3063         return TRAVERSE_CONTINUE;
3064     }
3065
3066   if ((traverse_mask
3067        & (Traverse::traverse_variables
3068           | Traverse::traverse_constants
3069           | Traverse::traverse_expressions
3070           | Traverse::traverse_types)) != 0)
3071     {
3072       for (Bindings::const_definitions_iterator pb =
3073              this->bindings_->begin_definitions();
3074            pb != this->bindings_->end_definitions();
3075            ++pb)
3076         {
3077           switch ((*pb)->classification())
3078             {
3079             case Named_object::NAMED_OBJECT_CONST:
3080               if ((traverse_mask & Traverse::traverse_constants) != 0)
3081                 {
3082                   if (traverse->constant(*pb, false) == TRAVERSE_EXIT)
3083                     return TRAVERSE_EXIT;
3084                 }
3085               if ((traverse_mask & Traverse::traverse_types) != 0
3086                   || (traverse_mask & Traverse::traverse_expressions) != 0)
3087                 {
3088                   Type* t = (*pb)->const_value()->type();
3089                   if (t != NULL
3090                       && Type::traverse(t, traverse) == TRAVERSE_EXIT)
3091                     return TRAVERSE_EXIT;
3092                 }
3093               if ((traverse_mask & Traverse::traverse_expressions) != 0
3094                   || (traverse_mask & Traverse::traverse_types) != 0)
3095                 {
3096                   if ((*pb)->const_value()->traverse_expression(traverse)
3097                       == TRAVERSE_EXIT)
3098                     return TRAVERSE_EXIT;
3099                 }
3100               break;
3101
3102             case Named_object::NAMED_OBJECT_VAR:
3103             case Named_object::NAMED_OBJECT_RESULT_VAR:
3104               if ((traverse_mask & Traverse::traverse_variables) != 0)
3105                 {
3106                   if (traverse->variable(*pb) == TRAVERSE_EXIT)
3107                     return TRAVERSE_EXIT;
3108                 }
3109               if (((traverse_mask & Traverse::traverse_types) != 0
3110                    || (traverse_mask & Traverse::traverse_expressions) != 0)
3111                   && ((*pb)->is_result_variable()
3112                       || (*pb)->var_value()->has_type()))
3113                 {
3114                   Type* t = ((*pb)->is_variable()
3115                              ? (*pb)->var_value()->type()
3116                              : (*pb)->result_var_value()->type());
3117                   if (t != NULL
3118                       && Type::traverse(t, traverse) == TRAVERSE_EXIT)
3119                     return TRAVERSE_EXIT;
3120                 }
3121               if ((*pb)->is_variable()
3122                   && ((traverse_mask & Traverse::traverse_expressions) != 0
3123                       || (traverse_mask & Traverse::traverse_types) != 0))
3124                 {
3125                   if ((*pb)->var_value()->traverse_expression(traverse)
3126                       == TRAVERSE_EXIT)
3127                     return TRAVERSE_EXIT;
3128                 }
3129               break;
3130
3131             case Named_object::NAMED_OBJECT_FUNC:
3132             case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
3133               // FIXME: Where will nested functions be found?
3134               gcc_unreachable();
3135
3136             case Named_object::NAMED_OBJECT_TYPE:
3137               if ((traverse_mask & Traverse::traverse_types) != 0
3138                   || (traverse_mask & Traverse::traverse_expressions) != 0)
3139                 {
3140                   if (Type::traverse((*pb)->type_value(), traverse)
3141                       == TRAVERSE_EXIT)
3142                     return TRAVERSE_EXIT;
3143                 }
3144               break;
3145
3146             case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
3147             case Named_object::NAMED_OBJECT_UNKNOWN:
3148               break;
3149
3150             case Named_object::NAMED_OBJECT_PACKAGE:
3151             case Named_object::NAMED_OBJECT_SINK:
3152               gcc_unreachable();
3153
3154             default:
3155               gcc_unreachable();
3156             }
3157         }
3158     }
3159
3160   // No point in checking traverse_mask here--if we got here we always
3161   // want to walk the statements.  The traversal can insert new
3162   // statements before or after the current statement.  Inserting
3163   // statements before the current statement requires updating I via
3164   // the pointer; those statements will not be traversed.  Any new
3165   // statements inserted after the current statement will be traversed
3166   // in their turn.
3167   for (size_t i = 0; i < this->statements_.size(); ++i)
3168     {
3169       if (this->statements_[i]->traverse(this, &i, traverse) == TRAVERSE_EXIT)
3170         return TRAVERSE_EXIT;
3171     }
3172
3173   return TRAVERSE_CONTINUE;
3174 }
3175
3176 // Work out types for unspecified variables and constants.
3177
3178 void
3179 Block::determine_types()
3180 {
3181   for (Bindings::const_definitions_iterator pb =
3182          this->bindings_->begin_definitions();
3183        pb != this->bindings_->end_definitions();
3184        ++pb)
3185     {
3186       if ((*pb)->is_variable())
3187         (*pb)->var_value()->determine_type();
3188       else if ((*pb)->is_const())
3189         (*pb)->const_value()->determine_type();
3190     }
3191
3192   for (std::vector<Statement*>::const_iterator ps = this->statements_.begin();
3193        ps != this->statements_.end();
3194        ++ps)
3195     (*ps)->determine_types();
3196 }
3197
3198 // Return true if the statements in this block may fall through.
3199
3200 bool
3201 Block::may_fall_through() const
3202 {
3203   if (this->statements_.empty())
3204     return true;
3205   return this->statements_.back()->may_fall_through();
3206 }
3207
3208 // Class Variable.
3209
3210 Variable::Variable(Type* type, Expression* init, bool is_global,
3211                    bool is_parameter, bool is_receiver,
3212                    source_location location)
3213   : type_(type), init_(init), preinit_(NULL), location_(location),
3214     is_global_(is_global), is_parameter_(is_parameter),
3215     is_receiver_(is_receiver), is_varargs_parameter_(false),
3216     is_address_taken_(false), seen_(false), init_is_lowered_(false),
3217     type_from_init_tuple_(false), type_from_range_index_(false),
3218     type_from_range_value_(false), type_from_chan_element_(false),
3219     is_type_switch_var_(false)
3220 {
3221   gcc_assert(type != NULL || init != NULL);
3222   gcc_assert(!is_parameter || init == NULL);
3223 }
3224
3225 // Traverse the initializer expression.
3226
3227 int
3228 Variable::traverse_expression(Traverse* traverse)
3229 {
3230   if (this->preinit_ != NULL)
3231     {
3232       if (this->preinit_->traverse(traverse) == TRAVERSE_EXIT)
3233         return TRAVERSE_EXIT;
3234     }
3235   if (this->init_ != NULL)
3236     {
3237       if (Expression::traverse(&this->init_, traverse) == TRAVERSE_EXIT)
3238         return TRAVERSE_EXIT;
3239     }
3240   return TRAVERSE_CONTINUE;
3241 }
3242
3243 // Lower the initialization expression after parsing is complete.
3244
3245 void
3246 Variable::lower_init_expression(Gogo* gogo, Named_object* function)
3247 {
3248   if (this->init_ != NULL && !this->init_is_lowered_)
3249     {
3250       if (this->seen_)
3251         {
3252           // We will give an error elsewhere, this is just to prevent
3253           // an infinite loop.
3254           return;
3255         }
3256       this->seen_ = true;
3257
3258       gogo->lower_expression(function, &this->init_);
3259
3260       this->seen_ = false;
3261
3262       this->init_is_lowered_ = true;
3263     }
3264 }
3265
3266 // Get the preinit block.
3267
3268 Block*
3269 Variable::preinit_block(Gogo* gogo)
3270 {
3271   gcc_assert(this->is_global_);
3272   if (this->preinit_ == NULL)
3273     this->preinit_ = new Block(NULL, this->location());
3274
3275   // If a global variable has a preinitialization statement, then we
3276   // need to have an initialization function.
3277   gogo->set_need_init_fn();
3278
3279   return this->preinit_;
3280 }
3281
3282 // Add a statement to be run before the initialization expression.
3283
3284 void
3285 Variable::add_preinit_statement(Gogo* gogo, Statement* s)
3286 {
3287   Block* b = this->preinit_block(gogo);
3288   b->add_statement(s);
3289   b->set_end_location(s->location());
3290 }
3291
3292 // In an assignment which sets a variable to a tuple of EXPR, return
3293 // the type of the first element of the tuple.
3294
3295 Type*
3296 Variable::type_from_tuple(Expression* expr, bool report_error) const
3297 {
3298   if (expr->map_index_expression() != NULL)
3299     {
3300       Map_type* mt = expr->map_index_expression()->get_map_type();
3301       if (mt == NULL)
3302         return Type::make_error_type();
3303       return mt->val_type();
3304     }
3305   else if (expr->receive_expression() != NULL)
3306     {
3307       Expression* channel = expr->receive_expression()->channel();
3308       Type* channel_type = channel->type();
3309       if (channel_type->channel_type() == NULL)
3310         return Type::make_error_type();
3311       return channel_type->channel_type()->element_type();
3312     }
3313   else
3314     {
3315       if (report_error)
3316         error_at(this->location(), "invalid tuple definition");
3317       return Type::make_error_type();
3318     }
3319 }
3320
3321 // Given EXPR used in a range clause, return either the index type or
3322 // the value type of the range, depending upon GET_INDEX_TYPE.
3323
3324 Type*
3325 Variable::type_from_range(Expression* expr, bool get_index_type,
3326                           bool report_error) const
3327 {
3328   Type* t = expr->type();
3329   if (t->array_type() != NULL
3330       || (t->points_to() != NULL
3331           && t->points_to()->array_type() != NULL
3332           && !t->points_to()->is_open_array_type()))
3333     {
3334       if (get_index_type)
3335         return Type::lookup_integer_type("int");
3336       else
3337         return t->deref()->array_type()->element_type();
3338     }
3339   else if (t->is_string_type())
3340     return Type::lookup_integer_type("int");
3341   else if (t->map_type() != NULL)
3342     {
3343       if (get_index_type)
3344         return t->map_type()->key_type();
3345       else
3346         return t->map_type()->val_type();
3347     }
3348   else if (t->channel_type() != NULL)
3349     {
3350       if (get_index_type)
3351         return t->channel_type()->element_type();
3352       else
3353         {
3354           if (report_error)
3355             error_at(this->location(),
3356                      "invalid definition of value variable for channel range");
3357           return Type::make_error_type();
3358         }
3359     }
3360   else
3361     {
3362       if (report_error)
3363         error_at(this->location(), "invalid type for range clause");
3364       return Type::make_error_type();
3365     }
3366 }
3367
3368 // EXPR should be a channel.  Return the channel's element type.
3369
3370 Type*
3371 Variable::type_from_chan_element(Expression* expr, bool report_error) const
3372 {
3373   Type* t = expr->type();
3374   if (t->channel_type() != NULL)
3375     return t->channel_type()->element_type();
3376   else
3377     {
3378       if (report_error)
3379         error_at(this->location(), "expected channel");
3380       return Type::make_error_type();
3381     }
3382 }
3383
3384 // Return the type of the Variable.  This may be called before
3385 // Variable::determine_type is called, which means that we may need to
3386 // get the type from the initializer.  FIXME: If we combine lowering
3387 // with type determination, then this should be unnecessary.
3388
3389 Type*
3390 Variable::type()
3391 {
3392   // A variable in a type switch with a nil case will have the wrong
3393   // type here.  This gets fixed up in determine_type, below.
3394   Type* type = this->type_;
3395   Expression* init = this->init_;
3396   if (this->is_type_switch_var_
3397       && this->type_->is_nil_constant_as_type())
3398     {
3399       Type_guard_expression* tge = this->init_->type_guard_expression();
3400       gcc_assert(tge != NULL);
3401       init = tge->expr();
3402       type = NULL;
3403     }
3404
3405   if (this->seen_)
3406     {
3407       if (this->type_ == NULL || !this->type_->is_error_type())
3408         {
3409           error_at(this->location_, "variable initializer refers to itself");
3410           this->type_ = Type::make_error_type();
3411         }
3412       return this->type_;
3413     }
3414
3415   this->seen_ = true;
3416
3417   if (type != NULL)
3418     ;
3419   else if (this->type_from_init_tuple_)
3420     type = this->type_from_tuple(init, false);
3421   else if (this->type_from_range_index_ || this->type_from_range_value_)
3422     type = this->type_from_range(init, this->type_from_range_index_, false);
3423   else if (this->type_from_chan_element_)
3424     type = this->type_from_chan_element(init, false);
3425   else
3426     {
3427       gcc_assert(init != NULL);
3428       type = init->type();
3429       gcc_assert(type != NULL);
3430
3431       // Variables should not have abstract types.
3432       if (type->is_abstract())
3433         type = type->make_non_abstract_type();
3434
3435       if (type->is_void_type())
3436         type = Type::make_error_type();
3437     }
3438
3439   this->seen_ = false;
3440
3441   return type;
3442 }
3443
3444 // Fetch the type from a const pointer, in which case it should have
3445 // been set already.
3446
3447 Type*
3448 Variable::type() const
3449 {
3450   gcc_assert(this->type_ != NULL);
3451   return this->type_;
3452 }
3453
3454 // Set the type if necessary.
3455
3456 void
3457 Variable::determine_type()
3458 {
3459   if (this->preinit_ != NULL)
3460     this->preinit_->determine_types();
3461
3462   // A variable in a type switch with a nil case will have the wrong
3463   // type here.  It will have an initializer which is a type guard.
3464   // We want to initialize it to the value without the type guard, and
3465   // use the type of that value as well.
3466   if (this->is_type_switch_var_ && this->type_->is_nil_constant_as_type())
3467     {
3468       Type_guard_expression* tge = this->init_->type_guard_expression();
3469       gcc_assert(tge != NULL);
3470       this->type_ = NULL;
3471       this->init_ = tge->expr();
3472     }
3473
3474   if (this->init_ == NULL)
3475     gcc_assert(this->type_ != NULL && !this->type_->is_abstract());
3476   else if (this->type_from_init_tuple_)
3477     {
3478       Expression *init = this->init_;
3479       init->determine_type_no_context();
3480       this->type_ = this->type_from_tuple(init, true);
3481       this->init_ = NULL;
3482     }
3483   else if (this->type_from_range_index_ || this->type_from_range_value_)
3484     {
3485       Expression* init = this->init_;
3486       init->determine_type_no_context();
3487       this->type_ = this->type_from_range(init, this->type_from_range_index_,
3488                                           true);
3489       this->init_ = NULL;
3490     }
3491   else
3492     {
3493       // type_from_chan_element_ should have been cleared during
3494       // lowering.
3495       gcc_assert(!this->type_from_chan_element_);
3496
3497       Type_context context(this->type_, false);
3498       this->init_->determine_type(&context);
3499       if (this->type_ == NULL)
3500         {
3501           Type* type = this->init_->type();
3502           gcc_assert(type != NULL);
3503           if (type->is_abstract())
3504             type = type->make_non_abstract_type();
3505
3506           if (type->is_void_type())
3507             {
3508               error_at(this->location_, "variable has no type");
3509               type = Type::make_error_type();
3510             }
3511           else if (type->is_nil_type())
3512             {
3513               error_at(this->location_, "variable defined to nil type");
3514               type = Type::make_error_type();
3515             }
3516           else if (type->is_call_multiple_result_type())
3517             {
3518               error_at(this->location_,
3519                        "single variable set to multiple value function call");
3520               type = Type::make_error_type();
3521             }
3522
3523           this->type_ = type;
3524         }
3525     }
3526 }
3527
3528 // Export the variable
3529
3530 void
3531 Variable::export_var(Export* exp, const std::string& name) const
3532 {
3533   gcc_assert(this->is_global_);
3534   exp->write_c_string("var ");
3535   exp->write_string(name);
3536   exp->write_c_string(" ");
3537   exp->write_type(this->type());
3538   exp->write_c_string(";\n");
3539 }
3540
3541 // Import a variable.
3542
3543 void
3544 Variable::import_var(Import* imp, std::string* pname, Type** ptype)
3545 {
3546   imp->require_c_string("var ");
3547   *pname = imp->read_identifier();
3548   imp->require_c_string(" ");
3549   *ptype = imp->read_type();
3550   imp->require_c_string(";\n");
3551 }
3552
3553 // Class Named_constant.
3554
3555 // Traverse the initializer expression.
3556
3557 int
3558 Named_constant::traverse_expression(Traverse* traverse)
3559 {
3560   return Expression::traverse(&this->expr_, traverse);
3561 }
3562
3563 // Determine the type of the constant.
3564
3565 void
3566 Named_constant::determine_type()
3567 {
3568   if (this->type_ != NULL)
3569     {
3570       Type_context context(this->type_, false);
3571       this->expr_->determine_type(&context);
3572     }
3573   else
3574     {
3575       // A constant may have an abstract type.
3576       Type_context context(NULL, true);
3577       this->expr_->determine_type(&context);
3578       this->type_ = this->expr_->type();
3579       gcc_assert(this->type_ != NULL);
3580     }
3581 }
3582
3583 // Indicate that we found and reported an error for this constant.
3584
3585 void
3586 Named_constant::set_error()
3587 {
3588   this->type_ = Type::make_error_type();
3589   this->expr_ = Expression::make_error(this->location_);
3590 }
3591
3592 // Export a constant.
3593
3594 void
3595 Named_constant::export_const(Export* exp, const std::string& name) const
3596 {
3597   exp->write_c_string("const ");
3598   exp->write_string(name);
3599   exp->write_c_string(" ");
3600   if (!this->type_->is_abstract())
3601     {
3602       exp->write_type(this->type_);
3603       exp->write_c_string(" ");
3604     }
3605   exp->write_c_string("= ");
3606   this->expr()->export_expression(exp);
3607   exp->write_c_string(";\n");
3608 }
3609
3610 // Import a constant.
3611
3612 void
3613 Named_constant::import_const(Import* imp, std::string* pname, Type** ptype,
3614                              Expression** pexpr)
3615 {
3616   imp->require_c_string("const ");
3617   *pname = imp->read_identifier();
3618   imp->require_c_string(" ");
3619   if (imp->peek_char() == '=')
3620     *ptype = NULL;
3621   else
3622     {
3623       *ptype = imp->read_type();
3624       imp->require_c_string(" ");
3625     }
3626   imp->require_c_string("= ");
3627   *pexpr = Expression::import_expression(imp);
3628   imp->require_c_string(";\n");
3629 }
3630
3631 // Add a method.
3632
3633 Named_object*
3634 Type_declaration::add_method(const std::string& name, Function* function)
3635 {
3636   Named_object* ret = Named_object::make_function(name, NULL, function);
3637   this->methods_.push_back(ret);
3638   return ret;
3639 }
3640
3641 // Add a method declaration.
3642
3643 Named_object*
3644 Type_declaration::add_method_declaration(const std::string&  name,
3645                                          Function_type* type,
3646                                          source_location location)
3647 {
3648   Named_object* ret = Named_object::make_function_declaration(name, NULL, type,
3649                                                               location);
3650   this->methods_.push_back(ret);
3651   return ret;
3652 }
3653
3654 // Return whether any methods ere defined.
3655
3656 bool
3657 Type_declaration::has_methods() const
3658 {
3659   return !this->methods_.empty();
3660 }
3661
3662 // Define methods for the real type.
3663
3664 void
3665 Type_declaration::define_methods(Named_type* nt)
3666 {
3667   for (Methods::const_iterator p = this->methods_.begin();
3668        p != this->methods_.end();
3669        ++p)
3670     nt->add_existing_method(*p);
3671 }
3672
3673 // We are using the type.  Return true if we should issue a warning.
3674
3675 bool
3676 Type_declaration::using_type()
3677 {
3678   bool ret = !this->issued_warning_;
3679   this->issued_warning_ = true;
3680   return ret;
3681 }
3682
3683 // Class Unknown_name.
3684
3685 // Set the real named object.
3686
3687 void
3688 Unknown_name::set_real_named_object(Named_object* no)
3689 {
3690   gcc_assert(this->real_named_object_ == NULL);
3691   gcc_assert(!no->is_unknown());
3692   this->real_named_object_ = no;
3693 }
3694
3695 // Class Named_object.
3696
3697 Named_object::Named_object(const std::string& name,
3698                            const Package* package,
3699                            Classification classification)
3700   : name_(name), package_(package), classification_(classification),
3701     tree_(NULL)
3702 {
3703   if (Gogo::is_sink_name(name))
3704     gcc_assert(classification == NAMED_OBJECT_SINK);
3705 }
3706
3707 // Make an unknown name.  This is used by the parser.  The name must
3708 // be resolved later.  Unknown names are only added in the current
3709 // package.
3710
3711 Named_object*
3712 Named_object::make_unknown_name(const std::string& name,
3713                                 source_location location)
3714 {
3715   Named_object* named_object = new Named_object(name, NULL,
3716                                                 NAMED_OBJECT_UNKNOWN);
3717   Unknown_name* value = new Unknown_name(location);
3718   named_object->u_.unknown_value = value;
3719   return named_object;
3720 }
3721
3722 // Make a constant.
3723
3724 Named_object*
3725 Named_object::make_constant(const Typed_identifier& tid,
3726                             const Package* package, Expression* expr,
3727                             int iota_value)
3728 {
3729   Named_object* named_object = new Named_object(tid.name(), package,
3730                                                 NAMED_OBJECT_CONST);
3731   Named_constant* named_constant = new Named_constant(tid.type(), expr,
3732                                                       iota_value,
3733                                                       tid.location());
3734   named_object->u_.const_value = named_constant;
3735   return named_object;
3736 }
3737
3738 // Make a named type.
3739
3740 Named_object*
3741 Named_object::make_type(const std::string& name, const Package* package,
3742                         Type* type, source_location location)
3743 {
3744   Named_object* named_object = new Named_object(name, package,
3745                                                 NAMED_OBJECT_TYPE);
3746   Named_type* named_type = Type::make_named_type(named_object, type, location);
3747   named_object->u_.type_value = named_type;
3748   return named_object;
3749 }
3750
3751 // Make a type declaration.
3752
3753 Named_object*
3754 Named_object::make_type_declaration(const std::string& name,
3755                                     const Package* package,
3756                                     source_location location)
3757 {
3758   Named_object* named_object = new Named_object(name, package,
3759                                                 NAMED_OBJECT_TYPE_DECLARATION);
3760   Type_declaration* type_declaration = new Type_declaration(location);
3761   named_object->u_.type_declaration = type_declaration;
3762   return named_object;
3763 }
3764
3765 // Make a variable.
3766
3767 Named_object*
3768 Named_object::make_variable(const std::string& name, const Package* package,
3769                             Variable* variable)
3770 {
3771   Named_object* named_object = new Named_object(name, package,
3772                                                 NAMED_OBJECT_VAR);
3773   named_object->u_.var_value = variable;
3774   return named_object;
3775 }
3776
3777 // Make a result variable.
3778
3779 Named_object*
3780 Named_object::make_result_variable(const std::string& name,
3781                                    Result_variable* result)
3782 {
3783   Named_object* named_object = new Named_object(name, NULL,
3784                                                 NAMED_OBJECT_RESULT_VAR);
3785   named_object->u_.result_var_value = result;
3786   return named_object;
3787 }
3788
3789 // Make a sink.  This is used for the special blank identifier _.
3790
3791 Named_object*
3792 Named_object::make_sink()
3793 {
3794   return new Named_object("_", NULL, NAMED_OBJECT_SINK);
3795 }
3796
3797 // Make a named function.
3798
3799 Named_object*
3800 Named_object::make_function(const std::string& name, const Package* package,
3801                             Function* function)
3802 {
3803   Named_object* named_object = new Named_object(name, package,
3804                                                 NAMED_OBJECT_FUNC);
3805   named_object->u_.func_value = function;
3806   return named_object;
3807 }
3808
3809 // Make a function declaration.
3810
3811 Named_object*
3812 Named_object::make_function_declaration(const std::string& name,
3813                                         const Package* package,
3814                                         Function_type* fntype,
3815                                         source_location location)
3816 {
3817   Named_object* named_object = new Named_object(name, package,
3818                                                 NAMED_OBJECT_FUNC_DECLARATION);
3819   Function_declaration *func_decl = new Function_declaration(fntype, location);
3820   named_object->u_.func_declaration_value = func_decl;
3821   return named_object;
3822 }
3823
3824 // Make a package.
3825
3826 Named_object*
3827 Named_object::make_package(const std::string& alias, Package* package)
3828 {
3829   Named_object* named_object = new Named_object(alias, NULL,
3830                                                 NAMED_OBJECT_PACKAGE);
3831   named_object->u_.package_value = package;
3832   return named_object;
3833 }
3834
3835 // Return the name to use in an error message.
3836
3837 std::string
3838 Named_object::message_name() const
3839 {
3840   if (this->package_ == NULL)
3841     return Gogo::message_name(this->name_);
3842   std::string ret = Gogo::message_name(this->package_->name());
3843   ret += '.';
3844   ret += Gogo::message_name(this->name_);
3845   return ret;
3846 }
3847
3848 // Set the type when a declaration is defined.
3849
3850 void
3851 Named_object::set_type_value(Named_type* named_type)
3852 {
3853   gcc_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
3854   Type_declaration* td = this->u_.type_declaration;
3855   td->define_methods(named_type);
3856   Named_object* in_function = td->in_function();
3857   if (in_function != NULL)
3858     named_type->set_in_function(in_function);
3859   delete td;
3860   this->classification_ = NAMED_OBJECT_TYPE;
3861   this->u_.type_value = named_type;
3862 }
3863
3864 // Define a function which was previously declared.
3865
3866 void
3867 Named_object::set_function_value(Function* function)
3868 {
3869   gcc_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
3870   this->classification_ = NAMED_OBJECT_FUNC;
3871   // FIXME: We should free the old value.
3872   this->u_.func_value = function;
3873 }
3874
3875 // Declare an unknown object as a type declaration.
3876
3877 void
3878 Named_object::declare_as_type()
3879 {
3880   gcc_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
3881   Unknown_name* unk = this->u_.unknown_value;
3882   this->classification_ = NAMED_OBJECT_TYPE_DECLARATION;
3883   this->u_.type_declaration = new Type_declaration(unk->location());
3884   delete unk;
3885 }
3886
3887 // Return the location of a named object.
3888
3889 source_location
3890 Named_object::location() const
3891 {
3892   switch (this->classification_)
3893     {
3894     default:
3895     case NAMED_OBJECT_UNINITIALIZED:
3896       gcc_unreachable();
3897
3898     case NAMED_OBJECT_UNKNOWN:
3899       return this->unknown_value()->location();
3900
3901     case NAMED_OBJECT_CONST:
3902       return this->const_value()->location();
3903
3904     case NAMED_OBJECT_TYPE:
3905       return this->type_value()->location();
3906
3907     case NAMED_OBJECT_TYPE_DECLARATION:
3908       return this->type_declaration_value()->location();
3909
3910     case NAMED_OBJECT_VAR:
3911       return this->var_value()->location();
3912
3913     case NAMED_OBJECT_RESULT_VAR:
3914       return this->result_var_value()->function()->location();
3915
3916     case NAMED_OBJECT_SINK:
3917       gcc_unreachable();
3918
3919     case NAMED_OBJECT_FUNC:
3920       return this->func_value()->location();
3921
3922     case NAMED_OBJECT_FUNC_DECLARATION:
3923       return this->func_declaration_value()->location();
3924
3925     case NAMED_OBJECT_PACKAGE:
3926       return this->package_value()->location();
3927     }
3928 }
3929
3930 // Export a named object.
3931
3932 void
3933 Named_object::export_named_object(Export* exp) const
3934 {
3935   switch (this->classification_)
3936     {
3937     default:
3938     case NAMED_OBJECT_UNINITIALIZED:
3939     case NAMED_OBJECT_UNKNOWN:
3940       gcc_unreachable();
3941
3942     case NAMED_OBJECT_CONST:
3943       this->const_value()->export_const(exp, this->name_);
3944       break;
3945
3946     case NAMED_OBJECT_TYPE:
3947       this->type_value()->export_named_type(exp, this->name_);
3948       break;
3949
3950     case NAMED_OBJECT_TYPE_DECLARATION:
3951       error_at(this->type_declaration_value()->location(),
3952                "attempt to export %<%s%> which was declared but not defined",
3953                this->message_name().c_str());
3954       break;
3955
3956     case NAMED_OBJECT_FUNC_DECLARATION:
3957       this->func_declaration_value()->export_func(exp, this->name_);
3958       break;
3959
3960     case NAMED_OBJECT_VAR:
3961       this->var_value()->export_var(exp, this->name_);
3962       break;
3963
3964     case NAMED_OBJECT_RESULT_VAR:
3965     case NAMED_OBJECT_SINK:
3966       gcc_unreachable();
3967
3968     case NAMED_OBJECT_FUNC:
3969       this->func_value()->export_func(exp, this->name_);
3970       break;
3971     }
3972 }
3973
3974 // Class Bindings.
3975
3976 Bindings::Bindings(Bindings* enclosing)
3977   : enclosing_(enclosing), named_objects_(), bindings_()
3978 {
3979 }
3980
3981 // Clear imports.
3982
3983 void
3984 Bindings::clear_file_scope()
3985 {
3986   Contour::iterator p = this->bindings_.begin();
3987   while (p != this->bindings_.end())
3988     {
3989       bool keep;
3990       if (p->second->package() != NULL)
3991         keep = false;
3992       else if (p->second->is_package())
3993         keep = false;
3994       else if (p->second->is_function()
3995                && !p->second->func_value()->type()->is_method()
3996                && Gogo::unpack_hidden_name(p->second->name()) == "init")
3997         keep = false;
3998       else
3999         keep = true;
4000
4001       if (keep)
4002         ++p;
4003       else
4004         p = this->bindings_.erase(p);
4005     }
4006 }
4007
4008 // Look up a symbol.
4009
4010 Named_object*
4011 Bindings::lookup(const std::string& name) const
4012 {
4013   Contour::const_iterator p = this->bindings_.find(name);
4014   if (p != this->bindings_.end())
4015     return p->second->resolve();
4016   else if (this->enclosing_ != NULL)
4017     return this->enclosing_->lookup(name);
4018   else
4019     return NULL;
4020 }
4021
4022 // Look up a symbol locally.
4023
4024 Named_object*
4025 Bindings::lookup_local(const std::string& name) const
4026 {
4027   Contour::const_iterator p = this->bindings_.find(name);
4028   if (p == this->bindings_.end())
4029     return NULL;
4030   return p->second;
4031 }
4032
4033 // Remove an object from a set of bindings.  This is used for a
4034 // special case in thunks for functions which call recover.
4035
4036 void
4037 Bindings::remove_binding(Named_object* no)
4038 {
4039   Contour::iterator pb = this->bindings_.find(no->name());
4040   gcc_assert(pb != this->bindings_.end());
4041   this->bindings_.erase(pb);
4042   for (std::vector<Named_object*>::iterator pn = this->named_objects_.begin();
4043        pn != this->named_objects_.end();
4044        ++pn)
4045     {
4046       if (*pn == no)
4047         {
4048           this->named_objects_.erase(pn);
4049           return;
4050         }
4051     }
4052   gcc_unreachable();
4053 }
4054
4055 // Add a method to the list of objects.  This is not added to the
4056 // lookup table.  This is so that we have a single list of objects
4057 // declared at the top level, which we walk through when it's time to
4058 // convert to trees.
4059
4060 void
4061 Bindings::add_method(Named_object* method)
4062 {
4063   this->named_objects_.push_back(method);
4064 }
4065
4066 // Add a generic Named_object to a Contour.
4067
4068 Named_object*
4069 Bindings::add_named_object_to_contour(Contour* contour,
4070                                       Named_object* named_object)
4071 {
4072   gcc_assert(named_object == named_object->resolve());
4073   const std::string& name(named_object->name());
4074   gcc_assert(!Gogo::is_sink_name(name));
4075
4076   std::pair<Contour::iterator, bool> ins =
4077     contour->insert(std::make_pair(name, named_object));
4078   if (!ins.second)
4079     {
4080       // The name was already there.
4081       if (named_object->package() != NULL
4082           && ins.first->second->package() == named_object->package()
4083           && (ins.first->second->classification()
4084               == named_object->classification()))
4085         {
4086           // This is a second import of the same object.
4087           return ins.first->second;
4088         }
4089       ins.first->second = this->new_definition(ins.first->second,
4090                                                named_object);
4091       return ins.first->second;
4092     }
4093   else
4094     {
4095       // Don't push declarations on the list.  We push them on when
4096       // and if we find the definitions.  That way we genericize the
4097       // functions in order.
4098       if (!named_object->is_type_declaration()
4099           && !named_object->is_function_declaration()
4100           && !named_object->is_unknown())
4101         this->named_objects_.push_back(named_object);
4102       return named_object;
4103     }
4104 }
4105
4106 // We had an existing named object OLD_OBJECT, and we've seen a new
4107 // one NEW_OBJECT with the same name.  FIXME: This does not free the
4108 // new object when we don't need it.
4109
4110 Named_object*
4111 Bindings::new_definition(Named_object* old_object, Named_object* new_object)
4112 {
4113   std::string reason;
4114   switch (old_object->classification())
4115     {
4116     default:
4117     case Named_object::NAMED_OBJECT_UNINITIALIZED:
4118       gcc_unreachable();
4119
4120     case Named_object::NAMED_OBJECT_UNKNOWN:
4121       {
4122         Named_object* real = old_object->unknown_value()->real_named_object();
4123         if (real != NULL)
4124           return this->new_definition(real, new_object);
4125         gcc_assert(!new_object->is_unknown());
4126         old_object->unknown_value()->set_real_named_object(new_object);
4127         if (!new_object->is_type_declaration()
4128             && !new_object->is_function_declaration())
4129           this->named_objects_.push_back(new_object);
4130         return new_object;
4131       }
4132
4133     case Named_object::NAMED_OBJECT_CONST:
4134       break;
4135
4136     case Named_object::NAMED_OBJECT_TYPE:
4137       if (new_object->is_type_declaration())
4138         return old_object;
4139       break;
4140
4141     case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
4142       if (new_object->is_type_declaration())
4143         return old_object;
4144       if (new_object->is_type())
4145         {
4146           old_object->set_type_value(new_object->type_value());
4147           new_object->type_value()->set_named_object(old_object);
4148           this->named_objects_.push_back(old_object);
4149           return old_object;
4150         }
4151       break;
4152
4153     case Named_object::NAMED_OBJECT_VAR:
4154     case Named_object::NAMED_OBJECT_RESULT_VAR:
4155       break;
4156
4157     case Named_object::NAMED_OBJECT_SINK:
4158       gcc_unreachable();
4159
4160     case Named_object::NAMED_OBJECT_FUNC:
4161       if (new_object->is_function_declaration())
4162         {
4163           if (!new_object->func_declaration_value()->asm_name().empty())
4164             sorry("__asm__ for function definitions");
4165           Function_type* old_type = old_object->func_value()->type();
4166           Function_type* new_type =
4167             new_object->func_declaration_value()->type();
4168           if (old_type->is_valid_redeclaration(new_type, &reason))
4169             return old_object;
4170         }
4171       break;
4172
4173     case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
4174       {
4175         Function_type* old_type = old_object->func_declaration_value()->type();
4176         if (new_object->is_function_declaration())
4177           {
4178             Function_type* new_type =
4179               new_object->func_declaration_value()->type();
4180             if (old_type->is_valid_redeclaration(new_type, &reason))
4181               return old_object;
4182           }
4183         if (new_object->is_function())
4184           {
4185             Function_type* new_type = new_object->func_value()->type();
4186             if (old_type->is_valid_redeclaration(new_type, &reason))
4187               {
4188                 if (!old_object->func_declaration_value()->asm_name().empty())
4189                   sorry("__asm__ for function definitions");
4190                 old_object->set_function_value(new_object->func_value());
4191                 this->named_objects_.push_back(old_object);
4192                 return old_object;
4193               }
4194           }
4195       }
4196       break;
4197
4198     case Named_object::NAMED_OBJECT_PACKAGE:
4199       if (new_object->is_package()
4200           && (old_object->package_value()->name()
4201               == new_object->package_value()->name()))
4202         return old_object;
4203
4204       break;
4205     }
4206
4207   std::string n = old_object->message_name();
4208   if (reason.empty())
4209     error_at(new_object->location(), "redefinition of %qs", n.c_str());
4210   else
4211     error_at(new_object->location(), "redefinition of %qs: %s", n.c_str(),
4212              reason.c_str());
4213
4214   inform(old_object->location(), "previous definition of %qs was here",
4215          n.c_str());
4216
4217   return old_object;
4218 }
4219
4220 // Add a named type.
4221
4222 Named_object*
4223 Bindings::add_named_type(Named_type* named_type)
4224 {
4225   return this->add_named_object(named_type->named_object());
4226 }
4227
4228 // Add a function.
4229
4230 Named_object*
4231 Bindings::add_function(const std::string& name, const Package* package,
4232                        Function* function)
4233 {
4234   return this->add_named_object(Named_object::make_function(name, package,
4235                                                             function));
4236 }
4237
4238 // Add a function declaration.
4239
4240 Named_object*
4241 Bindings::add_function_declaration(const std::string& name,
4242                                    const Package* package,
4243                                    Function_type* type,
4244                                    source_location location)
4245 {
4246   Named_object* no = Named_object::make_function_declaration(name, package,
4247                                                              type, location);
4248   return this->add_named_object(no);
4249 }
4250
4251 // Define a type which was previously declared.
4252
4253 void
4254 Bindings::define_type(Named_object* no, Named_type* type)
4255 {
4256   no->set_type_value(type);
4257   this->named_objects_.push_back(no);
4258 }
4259
4260 // Traverse bindings.
4261
4262 int
4263 Bindings::traverse(Traverse* traverse, bool is_global)
4264 {
4265   unsigned int traverse_mask = traverse->traverse_mask();
4266
4267   // We don't use an iterator because we permit the traversal to add
4268   // new global objects.
4269   for (size_t i = 0; i < this->named_objects_.size(); ++i)
4270     {
4271       Named_object* p = this->named_objects_[i];
4272       switch (p->classification())
4273         {
4274         case Named_object::NAMED_OBJECT_CONST:
4275           if ((traverse_mask & Traverse::traverse_constants) != 0)
4276             {
4277               if (traverse->constant(p, is_global) == TRAVERSE_EXIT)
4278                 return TRAVERSE_EXIT;
4279             }
4280           if ((traverse_mask & Traverse::traverse_types) != 0
4281               || (traverse_mask & Traverse::traverse_expressions) != 0)
4282             {
4283               Type* t = p->const_value()->type();
4284               if (t != NULL
4285                   && Type::traverse(t, traverse) == TRAVERSE_EXIT)
4286                 return TRAVERSE_EXIT;
4287               if (p->const_value()->traverse_expression(traverse)
4288                   == TRAVERSE_EXIT)
4289                 return TRAVERSE_EXIT;
4290             }
4291           break;
4292
4293         case Named_object::NAMED_OBJECT_VAR:
4294         case Named_object::NAMED_OBJECT_RESULT_VAR:
4295           if ((traverse_mask & Traverse::traverse_variables) != 0)
4296             {
4297               if (traverse->variable(p) == TRAVERSE_EXIT)
4298                 return TRAVERSE_EXIT;
4299             }
4300           if (((traverse_mask & Traverse::traverse_types) != 0
4301                || (traverse_mask & Traverse::traverse_expressions) != 0)
4302               && (p->is_result_variable()
4303                   || p->var_value()->has_type()))
4304             {
4305               Type* t = (p->is_variable()
4306                          ? p->var_value()->type()
4307                          : p->result_var_value()->type());
4308               if (t != NULL
4309                   && Type::traverse(t, traverse) == TRAVERSE_EXIT)
4310                 return TRAVERSE_EXIT;
4311             }
4312           if (p->is_variable()
4313               && ((traverse_mask & Traverse::traverse_types) != 0
4314                   || (traverse_mask & Traverse::traverse_expressions) != 0))
4315             {
4316               if (p->var_value()->traverse_expression(traverse)
4317                   == TRAVERSE_EXIT)
4318                 return TRAVERSE_EXIT;
4319             }
4320           break;
4321
4322         case Named_object::NAMED_OBJECT_FUNC:
4323           if ((traverse_mask & Traverse::traverse_functions) != 0)
4324             {
4325               int t = traverse->function(p);
4326               if (t == TRAVERSE_EXIT)
4327                 return TRAVERSE_EXIT;
4328               else if (t == TRAVERSE_SKIP_COMPONENTS)
4329                 break;
4330             }
4331
4332           if ((traverse_mask
4333                & (Traverse::traverse_variables
4334                   | Traverse::traverse_constants
4335                   | Traverse::traverse_functions
4336                   | Traverse::traverse_blocks
4337                   | Traverse::traverse_statements
4338                   | Traverse::traverse_expressions
4339                   | Traverse::traverse_types)) != 0)
4340             {
4341               if (p->func_value()->traverse(traverse) == TRAVERSE_EXIT)
4342                 return TRAVERSE_EXIT;
4343             }
4344           break;
4345
4346         case Named_object::NAMED_OBJECT_PACKAGE:
4347           // These are traversed in Gogo::traverse.
4348           gcc_assert(is_global);
4349           break;
4350
4351         case Named_object::NAMED_OBJECT_TYPE:
4352           if ((traverse_mask & Traverse::traverse_types) != 0
4353               || (traverse_mask & Traverse::traverse_expressions) != 0)
4354             {
4355               if (Type::traverse(p->type_value(), traverse) == TRAVERSE_EXIT)
4356                 return TRAVERSE_EXIT;
4357             }
4358           break;
4359
4360         case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
4361         case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
4362         case Named_object::NAMED_OBJECT_UNKNOWN:
4363           break;
4364
4365         case Named_object::NAMED_OBJECT_SINK:
4366         default:
4367           gcc_unreachable();
4368         }
4369     }
4370
4371   return TRAVERSE_CONTINUE;
4372 }
4373
4374 // Class Package.
4375
4376 Package::Package(const std::string& name, const std::string& unique_prefix,
4377                  source_location location)
4378   : name_(name), unique_prefix_(unique_prefix), bindings_(new Bindings(NULL)),
4379     priority_(0), location_(location), used_(false), is_imported_(false),
4380     uses_sink_alias_(false)
4381 {
4382   gcc_assert(!name.empty() && !unique_prefix.empty());
4383 }
4384
4385 // Set the priority.  We may see multiple priorities for an imported
4386 // package; we want to use the largest one.
4387
4388 void
4389 Package::set_priority(int priority)
4390 {
4391   if (priority > this->priority_)
4392     this->priority_ = priority;
4393 }
4394
4395 // Determine types of constants.  Everything else in a package
4396 // (variables, function declarations) should already have a fixed
4397 // type.  Constants may have abstract types.
4398
4399 void
4400 Package::determine_types()
4401 {
4402   Bindings* bindings = this->bindings_;
4403   for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
4404        p != bindings->end_definitions();
4405        ++p)
4406     {
4407       if ((*p)->is_const())
4408         (*p)->const_value()->determine_type();
4409     }
4410 }
4411
4412 // Class Traverse.
4413
4414 // Destructor.
4415
4416 Traverse::~Traverse()
4417 {
4418   if (this->types_seen_ != NULL)
4419     delete this->types_seen_;
4420   if (this->expressions_seen_ != NULL)
4421     delete this->expressions_seen_;
4422 }
4423
4424 // Record that we are looking at a type, and return true if we have
4425 // already seen it.
4426
4427 bool
4428 Traverse::remember_type(const Type* type)
4429 {
4430   if (type->is_error_type())
4431     return true;
4432   gcc_assert((this->traverse_mask() & traverse_types) != 0
4433              || (this->traverse_mask() & traverse_expressions) != 0);
4434   // We only have to remember named types, as they are the only ones
4435   // we can see multiple times in a traversal.
4436   if (type->classification() != Type::TYPE_NAMED)
4437     return false;
4438   if (this->types_seen_ == NULL)
4439     this->types_seen_ = new Types_seen();
4440   std::pair<Types_seen::iterator, bool> ins = this->types_seen_->insert(type);
4441   return !ins.second;
4442 }
4443
4444 // Record that we are looking at an expression, and return true if we
4445 // have already seen it.
4446
4447 bool
4448 Traverse::remember_expression(const Expression* expression)
4449 {
4450   gcc_assert((this->traverse_mask() & traverse_types) != 0
4451              || (this->traverse_mask() & traverse_expressions) != 0);
4452   if (this->expressions_seen_ == NULL)
4453     this->expressions_seen_ = new Expressions_seen();
4454   std::pair<Expressions_seen::iterator, bool> ins =
4455     this->expressions_seen_->insert(expression);
4456   return !ins.second;
4457 }
4458
4459 // The default versions of these functions should never be called: the
4460 // traversal mask indicates which functions may be called.
4461
4462 int
4463 Traverse::variable(Named_object*)
4464 {
4465   gcc_unreachable();
4466 }
4467
4468 int
4469 Traverse::constant(Named_object*, bool)
4470 {
4471   gcc_unreachable();
4472 }
4473
4474 int
4475 Traverse::function(Named_object*)
4476 {
4477   gcc_unreachable();
4478 }
4479
4480 int
4481 Traverse::block(Block*)
4482 {
4483   gcc_unreachable();
4484 }
4485
4486 int
4487 Traverse::statement(Block*, size_t*, Statement*)
4488 {
4489   gcc_unreachable();
4490 }
4491
4492 int
4493 Traverse::expression(Expression**)
4494 {
4495   gcc_unreachable();
4496 }
4497
4498 int
4499 Traverse::type(Type*)
4500 {
4501   gcc_unreachable();
4502 }